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Preface

MOPGP is an international conference series devoted to multi-objective pro-
gramming and goal programming (MOP/GP). This conference brings together
researchers and practitioners from different disciplines of Computer Science,
Operational Research, Optimisation Engineering, Mathematical Programming and
Multi-criteria Decision Analysis. Theoretical results and algorithmic developments
in the field of MOP and GP are covered, including practice and applications of
MOP/GP in real-life situations.

The MOP/GP international conferences are organised in a biennial cycle. The
previous editions were held in United Kingdom (1994), Spain (1996), Canada
(1998), Poland (2000), Japan (2002), and Tunisia (2004). The Seventh meet-
ing (MOPGP’06) was organised in the Loire Valley (Center-West of France) by
X. Gandibleux, (University of Nantes, chairman) and V. T’Kindt (University of
Tours, co-chairman). The conference was hosted during three days (June 12–14,
2006) by the old city hall of Tours which is located in the city centre of Tours.

The conference comprised four plenary sessions (M. Ehrgott; P. Perny;
R. Caballero and F. Ruiz; S. Oussedik) and six semi-plenary sessions (N. Jussien
and V. Barichard; D. Corne and J. Knowles; H. Hoogeveen; M. Wiecek; E. Bampis;
F. Ben Abdelaziz) and 82 regular talks. The (semi-)plenary speakers were invited,
while the regular talks were selected by the international scientific committee
composed of 61 eminent researchers on basis of a 4-pages abstract.

Out of 115 regular talks submitted from 28 countries, 75% were finally accepted,
covering 25 countries. A very low no-show rate of 2% was recorded. One hundred
and twenty-five participants attended the meeting, including academics and prac-
titioners from companies such as Renault, Electricité de France, Ilog, and Airbus.
The biggest delegations came from France (22 plus the 10 members of the local
organising committee), Spain (21), USA (10), Japan (7), Germany (6), Tunisia (6),
UK (6).

Traditionally, a post-conference proceedings volume is edited for the MOP/GP
conferences. For MOPGP’06, the decision has been to publish the volume by
Springer in the Lecture Notes in Economics and Mathematical Systems series,
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vi Preface

edited by V. Barichard, M. Ehrgott, X. Gandibleux and V. T’Kindt. The authors
who presented a talk during the conference were invited to submit a 10-page paper
presenting the full version of their work.

Forty-two regular papers plus two invited papers have been submitted. All of
them have been refereed according to the standard reviewing process, by members
of the MOPGP’06 international scientific committee and other expert referees:
E. Bampis E., V. Barichard, S. Belmokhtar, F. Ben Abdelaziz, R. Caballero, S. Chu,
C. Coello Coello, X. Delorme, P. Dépincé, C. Dhaenens, K. Doerner, M. Ehrgott,
F. Fernandez Garcia, J. Figueira, J. Fodor, X. Gandibleux, J. Gonzalez-Pachon,
S. Greco, T. Hanne, C. Henggeler Antunes, K. Hocine, H. Hoogeeven, H. Ishubuchi,
J. Jahn, A. Jaszkiewicz, N. Katoh, I. Kojadinovic, F. Le Huede, A. Lotov,
A. Marmol, K. Mieettinen, J. Molina, H. Nakayama, P. Perny, A. Przybylski,
C. Romero, S. Sayin, R. Steuer, M. Tamiz, C. Tammer, T. Tanino, V. T’Kindt,
T. Trzaskalik, D. Tuyttens, D. Vanderpooten, L. Vermeulen-Jourdan, M. Wiecek,
E. Zitzler.

Finally, 26 papers have been accepted covering eight main topics of the confer-
ence. With the relatively high number of talks submitted for the conference, 75% of
which have been accepted, followed by an acceptance rate of 59% for full papers, a
fairly high quality of the proceedings is guaranteed.We are sure that the readers of
those proceedings will enjoy the quality of papers published in this volume, which
is structured in five parts:

1. Multiobjective Programming and Goal-Programming
2. Multiobjective Combinatorial Optimization
3. Multiobjective Metheuristics
4. Multiobjective Games and Uncertainty
5. Interactive Methods and Applications.

We wish to conclude by saying that we are very grateful to the authors who
submitted their works, to the referees for their detailed reviews, and more generally,
to all those contributing to the organization of the conference, peoples, institutions,
and sponsors.

Angers, Auckland, Nantes, Tours Vincent Barichard
October 2008 Matthias Ehrgott

Xavier Gandibleux
Vincent T’Kindt
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A Constraint Method in Nonlinear
Multi-Objective Optimization

Gabriele Eichfelder

Abstract We present a new method for generating a concise and representative ap-
proximation of the (weakly) efficient set of a nonlinear multi-objective optimiza-
tion problem. For the parameter dependent ε-constraint scalarization an algorithm
is given which allows an adaptive controlling of the parameters–the upper bounds–
based on sensitivity results such that equidistant approximation points are generated.
The proposed method is applied to a variety of test-problems.

Keywords: Adaptive parameter control · Approximation · Multiobjective
optimization · Scalarization · Sensitivity

1 Introduction

In many areas like economics, engineering, environmental issues or medicine the
complex optimization problems cannot be described adequately by only one ob-
jective function. As a consequence multi-objective optimization which investigates
optimization problems like

min f (x) = ( f1(x), . . . , fm(x))�

s. t. x ∈ Ω ⊆ R
n,

(1)

with a function f : R
n → R

m with m ∈ N, m ≥ 2, and Ω ⊆ R
n a closed set, is get-

ting more and more important. For an introduction to multi-objective optimization
see the books by Chankong and Haimes [3], Ehrgott [6], Hwang and Masud [14],

G. Eichfelder
Institute of Applied Mathematics, University of Erlangen-Nuremberg, Martensstr. 3,
91058 Erlangen, Germany
e-mail: Gabriele.Eichfelder@am.uni-erlangen.de

V. Barichard et al. (eds.), Multiobjective Programming and Goal Programming: 3
Theoretical Results and Practical Applications, Lecture Notes in Economics
and Mathematical Systems 618, © Springer-Verlag Berlin Heidelberg 2009



4 G. Eichfelder

Jahn [16], Miettinen [21], Sawaragi et al. [24], and Steuer [27]. Further see the
survey papers by Hillermaier and Jahn [13], and by Ruzika and Wiecek [23], with a
focus on solution methods.

In general there is not only one best solution which minimizes all objective func-
tions at the same time and the solution set, called efficient set, is very large. Espe-
cially in engineering tasks information about the whole efficient set is important.
Besides having the whole solution set available the decision maker gets a useful in-
sight in the problem structure. Consequently our aim is to generate a representative
approximation of this set. The importance of this aim is also pointed out in many
other works like, e. g. in [5, 9, 20, 26].

Thereby the information provided by the approximation set depends mainly on
the quality of the approximation. With reference to quality criteria as discussed by
Sayin in [25] we aim to generate almost equidistant approximation points. Further
discussions on quality criteria for discrete approximations of the efficient set can
be found, e. g. in [4, 18, 29, 31]. For reaching our target we use the well-known
ε-constraint scalarization which is widely used in applications as it has easy to in-
terpret parameters.

In this context the term of Edgeworth–Pareto (EP) optimal points as minimal
solutions of (1) is very common which means that different points of the set f (Ω)
are compared using the natural ordering introduced by the cone R

m
+.

In Sect. 2 we give the basic notations in multi-objective optimization and we
present the parameter dependent ε-constraint scalarization based on which we de-
termine approximations of the (weakly) efficient set. The needed sensitivity results
for an adaptive parameter control are given in Sect. 3. This results in the algorithm
presented in Sect. 4 with a special focus on bi-objective optimization problems. In
Sect. 5 we apply the algorithm on several test problems. Finally we conclude in
Sect. 6 with an outlook on a generalization of the gained results.

2 Basic Notations and Scalarization

As mentioned in the introduction we are interested in finding minimal points of the
multi-objective optimization problem (1) w. r. t. the natural ordering represented by
the cone R

m
+. A point x̄ ∈ Ω is called a R

m
+-minimal point or an EP-minimal point

of problem (1) if
( f (x̄)−R

m
+)∩ f (Ω) = { f (x̄)}.

This is equivalent to that there exists no x ∈ Ω with fi(x)≤ fi(x̄) for all i = 1, . . . ,m,
and with f j(x) < f j(x̄) for at least one j ∈ {1, . . . ,m}. The set of all EP-minimal
points is denoted as M ( f (Ω)). The set E ( f (Ω)) := { f (x) | x∈M ( f (Ω))} is called
efficient set. A point x̄ ∈ Ω is a weakly EP-minimal point if there is no point x ∈ Ω
with fi(x) < fi(x̄) for all i = 1, . . . ,m.

For obtaining single solutions of (1) we use the ε-constraint problem (Pm(ε))
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min fm(x)
s. t. fi(x) ≤ εi, i = 1, . . . ,m−1,

x ∈ Ω
(2)

with the upper bounds ε = (ε1, . . . ,εm−1)�. This scalarization has the important
properties that every EP-minimal point can be found as a solution of (Pm(ε)) by
an appropriate parameter choice and every solution x̄ of (Pm(ε)) is at least weakly
EP-minimal.

For a discussion of this method see [3,6,10,21,27]. For the choice of the param-
eter ε Steuer [27] proposes a procedure based on a trial-and-error process. Sensi-
tivity considerations w. r. t. the parameter ε are already done in [21] and [3]. There
the Lagrange multipliers were interpreted as trade-off information. Based on this
Chankong and Haimes [3] present the surrogate worth trade-off method. This pro-
cedure starts with the generation of a crude approximation of the efficient set by
solving (Pm(ε)) for the parameters ε chosen from an equidistant grid. In an interac-
tive process the decision maker chooses the preferred solution with the help of the
trade-off information.

Solving problem (Pm(ε)) for various parameters ε leads to various (weakly) ef-
ficient points and hence to an approximation of the efficient set. Thereby we use the
following definition of an approximation (see [11, p. 5]).

Definition 1. A finite set of points A ⊆ f (Ω) is called an approximation of the effi-
cient set E ( f (Ω)) of (1) if for all approximation points y1,y2 ∈ A, y1 	= y2, it holds
y1 	∈ y2 +R

m
+ and y2 	∈ y1 +R

m
+, i. e. the points in A are non-dominated w. r. t. the

natural ordering.

Analogously we speak of an approximation of the weakly efficient set of (1) if for
all y1,y2 ∈ A, y1 	= y2 it holds y1 	∈ y2 + int(Rm

+) and y2 	∈ y1 + int(Rm
+).

Moreover we speak of an equidistant approximation with a distance of α > 0 if
for all y ∈ E ( f (Ω)) there exists a point ȳ ∈ A with

‖y− ȳ‖ ≤ α
2

(with ‖ ·‖ an arbitrary norm). Using the notation of Sayin [25] this corresponds to a
coverage error of α

2 . Furthermore let

min
y1 ,y2∈A
y1 	=y2

‖y1 − y2‖ = α,

i. e. let the uniformity level be α .
We summarize these conditions for the case of a bi-objective optimization prob-

lem, i. e. m = 2, by the following: Let A = {y1, . . . ,yN} be an approximation of the
(weakly) efficient set of (1) with (weakly) efficient points. We speak of an equidis-
tant approximation with the distance α if for consecutive (neighboured) approx-
imation points, (e. g. ordered w. r. t. one coordinate in increasing order), it holds
‖yl+1 − yl‖ = α for l = 1 . . . ,N −1.
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3 Sensitivity Results

For controlling the choice of the parameter ε such that the generated points f (x(ε))
(with minimal solution x(ε) of (Pm(ε)) w. r. t. the parameter ε) result in an equidis-
tant approximation, we investigate the dependence of the minimal-value function
of the problem (Pm(ε)) on the parameter. This is already done for a more gen-
eral scalarization approach in [7]. Here, we apply these results on the ε-constraint
method.

We suppose the constraint set Ω is given by

Ω = {x ∈ R
n | g j(x) ≥ 0, j = 1, . . . , p, hk(x) = 0, k = 1, . . . ,q}

with continuous functions g j : R
n → R, j = 1, . . . , p, hk : R

n → R, k = 1, . . . ,q. We
denote the index sets of active non-degenerate, active degenerate, and inactive con-
straints g j as J+, J0, J− respectively. Equally we set I+, I0 and I− regarding the
constraints εi − fi(x) ≥ 0 (i ∈ {1, . . . ,m− 1}). The following result is a conclusion
from a theorem by Alt in [1] as well as an application of a sensitivity theorem by
Luenberger [19].

Theorem 1. Suppose x0 is a local minimal solution of the so-called reference prob-
lem (Pm(ε0)) with Lagrange multipliers (μ0,ν0,ξ 0) ∈ R

m−1
+ ×R

p
+ ×R

q and there
exists γ > 0 with f , g, h twice continuously differentiable on an open neighbour-
hood of the closed ball Bγ(x0). Let the gradients of the active constraints be linearly
independent and let the second order sufficient condition for a local minimum of
(Pm(ε0)) hold in x0, i. e. there exists some β > 0 with

x�∇2
xL (x0,μ0,ν0,ξ 0,ε0)x ≥ β‖x‖2 for all

x ∈ {x ∈ R
n | ∇x fi(x0)�x = 0, ∀i ∈ I+, ∇xg j(x0)�x = 0, ∀ j ∈ J+,

∇xhk(x0)�x = 0, ∀k = 1, . . . ,q}

for the Hessian of the Lagrange-function at x0.

Then x0 is a local unique minimal solution of (Pm(ε0)), the associated Lagrange
multipliers are unique, and there exists a δ > 0 and a neighbourhood N(ε0) of ε0

such that the local minimal-value function τδ : R
m−1 → R,

τδ (ε) := inf{ fm(x) | fi(x) ≤ εi, i = 1, . . . ,m−1, g j(x) ≥ 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . ,q, x ∈ Bδ (x0)}

is differentiable on N(ε0) with

∂τδ (ε0)
∂εi

= −μ0
i for i = 1, . . . ,m−1.
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Chankong and Haimes present a similar result [3, p. 160] assuming non-degeneracy.
Regarding the assumptions of the theorem the active non-degenerate constraints
remain active and the inactive constraints equally in a neighbourhood of ε0.

We use the results of Theorem 1 for controlling the choice of the parameter ε .
Therefore the Lagrange multipliers μ0

i to the parameter dependent constraints are
needed. Thus a numerical method for solving (Pm(ε0)) is necessary which provides
these Lagrange multipliers. If the problem (Pm(ε0)) is non-convex a numerical pro-
cedure for finding global optimal solutions has to be applied. If this procedure does
not provide the Lagrange multipliers the global solution (or an approximation of it)
can be used as a starting point for an appropriate local solver.

The assumptions of Theorem 1 are not too restrictive. In many applications it
turns out that the efficient set is smooth, see e. g. [2,8]. The efficient set corresponds
directly to the solutions and minimal values of the ε-constraint scalarization for
varying parameters. Thus differentiability of the minimal-value function w. r. t. the
parameters can be presumed in many cases.

4 Controlling of Parameters and Algorithm

Here we concentrate on the bi-objective case m = 2. A generalization to the case
m ≥ 3 for generating local equidistant points can be done easily but for an equidis-
tant approximation of the whole efficient set problems occur as discussed in [7].
For example for m = 2 we can restrain the parameter set by solving the scalar op-
timization problems minx∈Ω f1(x) =: f1(x̄1) and minx∈Ω f2(x) =: f2(x̄2). Then, if x̄
is EP-minimal for (1) there exists a parameter ε so that x̄ is a minimal solution of
(P2(ε)) with f1(x̄1) ≤ ε ≤ f1(x̄2) (see [7, 8, 15]). This cannot be transferred to the
case with three or more objective functions. We comment on the mentioned general-
ization to three and more objectives for generating local equidistant approximation
points at the end of this Section.

We assume we have solved (P2(ε0)) for a special parameter ε0 with an at least
weakly EP-minimal solution x(ε0) = x0 and that the assumptions of Theorem 1 are
satisfied. The problem (P2(ε0)) is called the reference problem. The point f (x0)
is an approximation point of the (weakly) efficient set. Now we are looking for a
parameter ε1 with

‖ f (x(ε1))− f (x0)‖ = α (3)

(e. g. ‖ · ‖ = ‖ · ‖2 or any other norm) for a given value α > 0. Further we assume
that the constraint f1(x) ≤ ε0 is active (if not, a parameter ε̃0 with f1(x0) = ε̃0 and
x0 minimal solution of (P2(ε̃0)) can be determined easily). Since, under the assump-
tions of Theorem 1, active constraints remain active, we can presume f1(x(ε1)) = ε1

for the minimal solution x(ε1) of (P2(ε1)).
We use the derivative of the minimal-value function for a Taylor approximation.

We assume it is possible to presume smoothness of the minimal-value function, see
the comment at the end of Sect. 3. Then we get the following local approximation

f2(x(ε1)) ≈ f2(x0)−μ0(ε1 − ε0). (4)
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As a consequence the relation (3) is approximately satisfied by setting

ε1 = ε0 ±α ·
(√

1+(μ0)2

)−1

.

This results in the following algorithm.

Algorithm for the case m = 2:

Step 1: Choose a desired distance α > 0 between approximation points. Choose
M so that M > f1(x) for all x ∈ Ω . Solve (P2(M)) with minimal solution
x1 and Lagrange multipliers (μ1,ν1,ξ 1). Set ε1 := f1(x1) and l := 1.

Step 2: Solve min
x∈Ω

f1(x) with minimal solution xE .

Step 3: Set

ε l+1 := ε l − α√
1+(μ l)2

and l := l +1.

Step 4: If ε l ≥ f1(xE) solve (P2(ε l)) with minimal solution xl and Lagrange
multipliers (μ l ,ν l ,ξ l) and go to step 3. Otherwise stop.

This algorithm leads to an approximation {x1, . . . ,xl−1,xE} of the set of weakly
EP-minimal points and so in an approximation { f (x1), . . . , f (xl−1), f (xE)} of the
weakly efficient set with points with a distance of approximately α . Solving problem
(P2(M)) in Step 1 is equivalent to solve minx∈Ω f2(x).

Often the distance α which is needed in Step 3 results from the considered ap-
plication. Otherwise, the following guideline can be used: for a desired number of
approximation points N ∈ N choose a value α ≤ ‖ f (xE)− f (x1)‖ · (N −1)−1.

The described parameter control can be generalized to m ≥ 2 using the described
procedure for determining local equidistant approximation, e. g. for doing a refine-
ment of an approximation around a single approximation point f (x0). Then we set
ε0 := ( f1(x0), . . . , fm−1(x0)). The point x0 is a minimal solution of (Pm(ε0)). Let
v∈R

m−1 be a direction so that we are looking for a new parameter ε1 := ε0 +s ·v for
a s ∈R such that (3) is satisfied. We can presume fi(x(ε1)) = ε1

i for i = 1, . . . ,m−1,
as active constraints remain active, and further fm(x(ε1)) ≈ fm(x0)− s μ0� v as in
(4). This results in

|s| = α ·
∥∥∥∥
(

v
−μ0�v

)∥∥∥∥
−1

.

For the direction v we can choose e. g. the m− 1 unit vectors in R
m−1. For finding

even more refinement points additional parameters can be determined for ε1 = ε0±
2 · s · v and so on (see [8]).
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5 Numerical Results

In this section we apply the proposed adaptive parameter control to some test prob-
lems. Here we always choose the Euclidean norm. Applying the algorithm to the
following easy example by Hazen [12, p.186]

min
(

x2
1
2 + x2

2 −10x1 −100 , x2
1 + x2

2
2 −10x2 −100

)�
s. t. x ∈ R

2

leads to the almost equidistant approximation shown in Fig. 1, (a). The chosen pa-
rameters are drawn as points (ε,10) ∈ R

2, too. For comparison the unsatisfactory
result of the common ε-constraint method with an equidistant choice of parameters
can be seen in Fig. 1, (b).

The algorithm works on multi-objective optimization problems with a non-
convex image set, too, as it is demonstrated on the following problem by Tanaka [28]
(Fig. 1, (c)):

min (x1 , x2 )�

s. t. x2
1 + x2

2 −1−0.1 cos
(

16arctan x1
x2

)
≥ 0,

(x1 −0.5)2 +(x2 −0.5)2 ≤ 0.5,
x1, x2 ∈ [0,π].

Here, the efficient set is even non-connected. For this problem we minimized the
objective f1 and solved the scalar optimization problems (P1(ε)).

For comparison with the well-known wide-spread scalarization approach of the
weighted-sum method [30], minx∈Ω w1 f1(x) + w2 f2(x), with weights w1, w2 ∈
[0,1], w1 +w2 = 1, we consider the problem

min
(√

1+ x2
1 , x2

1 −4x1 + x2 +5
)�

s. t. x2
1 −4x1 + x2 +5 ≤ 3.5,

x1 ≥ 0, x2 ≥ 0.
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Fig. 1 Approximation of the efficient set of the test problem by Hazen (a) with adaptively con-
trolled and (b) with equidistant parameters. (c) Approximation for the test problem by Tanaka
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Fig. 2 (a) Approximation
with the weighted-sum and
(b) with the new method
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Fig. 3 (a) Approximation with the ε-constraint-method. (b) Refined approximation. (c) Chosen
parameters

By an equidistant variation of the weights we get the 15 approximation points shown
in Fig. 2, (a) with a highly non-uniform distribution. Using instead the method pro-
posed here we get the representative approximation with 15 points of Fig. 2, (b).

Finally we consider a multi-objective test problem with three objectives which
is a modified version of a problem by Kim and de Weck [17] with a non-convex
image set:

min
(
−x1 , −x2 , −x2

3
)�

s. t. −cos(x1)− exp(−x2)+ x3 ≤ 0,
0 ≤ x1 ≤ π, x2 ≥ 0, x3 ≥ 1.2.

Applying the ε-constraint method for determining a crude approximation by using
parameters on an equidistant grid leads to Fig. 3, (a).
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The decision maker can now choose some especially interesting points. Then,
in a second step, a refinement around these points now using sensitivity informa-
tion can be done for gaining locally almost equidistant points in the image space
(see Fig. 3, (b)) as described at the end of Sect. 4. The chosen parameters are drawn
in Fig. 3, (c). It can well be seen that the distance between the refinement parameters
varies depending on the sensitivity information.

In [7, 8] more test problems are solved. Furthermore a relevant bi- and tri-
objective application problem from intensity modulated radiotherapy planning with
more than 17,000 constraints and 400 variables is computed with the new method
introduced here.

6 Conclusion

We have presented a new method for controlling the parameters of the ε-constraint
method adaptively for generating (locally) concise but representative approxima-
tions of the efficient set of non-linear multi-objective optimization problems. Only
by using sensitivity information which we get with no additional effort by solving
the scalar optimization problems and making use of the byproduct of the Lagrange
multipliers we can control the distances of the approximation points of the effi-
cient set.

A generalization using the scalarization according to Pascoletti and Serafini [22]
which allows to deal with arbitrary partial orderings in the image space introduced
by a closed pointed convex cone is done in [7].

The author is grateful to the referees for their valuable comments and
suggestions.
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The Attainment of the Solution of the Dual
Program in Vertices for Vectorial Linear
Programs

Frank Heyde, Andreas Löhne, and Christiane Tammer

Abstract This article is a continuation of Löhne A, Tammer C (2007: A new ap-
proach to duality in vector optimization. Optimization 56(1–2):221–239) [14]. We
developed in [14] a duality theory for convex vector optimization problems, which
is different from other approaches in the literature. The main idea is to embed the
image space R

q of the objective function into an appropriate complete lattice, which
is a subset of the power set of R

q. This leads to a duality theory which is very anal-
ogous to that of scalar convex problems. We applied these results to linear problems
and showed duality assertions. However, in [14] we could not answer the question,
whether the supremum of the dual linear program is attained in vertices of the dual
feasible set. We show in this paper that this is, in general, not true but, it is true under
additional assumptions.

Keywords: Dual program · Linear programs · Multi-objective optimization ·
Vertices

1 Introduction

Vectorial linear programs play an important role in economics and finance and
there have been many efforts to solve those problems with the aid of appropriate
algorithms. There are several papers on variants of the simplex algorithm for the
multiobjective case, see e.g. Armand and Malivert [1], Ecker et al. [2], Ecker and
Kouada [3], Evans and Steuer [5], Gal [6], Hartley [8], Isermann [9], Philip [16,17],
Yu and Zeleny [21], and Zeleny [22]. However, neither of these papers consider a
dual simplex algorithm, which is in scalar linear programming a very important tool
from the theoretical as well as the practical point of view. In the paper by Ehrgott,
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Puerto and Rodrı́guez-Chı́a [4] it was mentioned that “multi-objective duality the-
ory cannot easily be used to develop a [dual or primal-dual simplex] algorithm”. It is
therefore our aim to consider an alternative approach to duality theory, which is ap-
propriate for a dual simplex algoritm. This approach differs essentially from those in
the literature (cf. Yu and Zeleny [21], Isermann [9], and Armand and Malivert [1]).
In [14] we developed the basics of our theory and showed weak and strong du-
ality assertions. The main idea is to embed the image space R

q of the objective
function into a complete lattice, in fact into the space of self-infimal subsets of
R

q ∪{−∞,+∞}. As a result, many statements well-known from the case of scalar
linear programming can be expressed analogously. However, in order to develop a
dual simplex algorithm, it is important to have the property that the supremum of the
dual problem is attained in vertices of the dual feasible set. This ensures that we only
have to search a finite subset of feasible points. However, in [14] we could not show
this attainment property, which is therefore the main subject of the present paper.

After a short introduction into the notation and the results of [14] we show that
the attainment property is not true, in general. But, supposing some relatively mild
assumptions, we can prove that for one of the three types of problems considered in
[14], the supremum is indeed attained in vertices. This result is obtained by showing
a kind of quasi-convexity of the (set-valued) dual objective function, which together
with its concavity is a replacement for linearity. We further see that it is typical that
the supremum is not attained in a single vertex (like in the scalar case) but in a set
of possibly more than one vertex.

The application of these result in order to develop a dual simplex algorithm is
presented in a forthcoming paper.

2 Preliminaries

We start to introduce the space of self-infimal sets, which plays an important role in
the following. For a more detailed discussion of this space see [14].

Let C � R
q be a closed convex cone with nonempty interior. The set of minimal

or weakly efficient points of a subset B ⊆ R
q (with respect to C) is defined by

Min B := {y ∈ B| ({y}− intC)∩B = /0} .

The upper closure (with respect to C) of B ⊆ R
q is defined to be the set

Cl+B := {y ∈ R
q| {y}+ intC ⊆ B+ intC} .

Before we recall the definition of infimal sets, we want to extend the upper closure
for subsets of the space R

q
:= R

q ∪{−∞,+∞}. For a subset B ⊆ R
q

we set

Cl+B :=

⎧⎨
⎩

R
q if −∞ ∈ B

/0 if B = {+∞}
{y ∈ R

q| {y}+ intC ⊆ B+ intC} else.
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Note that the upper closure of a subset of R
q

is always a subset in R
q. The infimal

set of B ⊆ R
q

(with respect to C) is defined by

Inf B :=

⎧⎨
⎩

MinCl+B if /0 	= Cl+B 	= R
q

{−∞} if Cl+B = R
q

{+∞} if Cl+B = /0.

This means that the infimal set of B with respect to C coincides essentially with the
set of weakly efficient elements of the set cl(B+C) with respect to C. The supremal
set of a set B ⊆ R

q
is defined analogously and is denoted by SupB. To this end,

we have SupB = − Inf(−B). In the sequel we need the following assertions due to
Nieuwenhuis [15]. For B ⊆ R

q with /0 	= B+ intC 	= R
q it holds

InfB = {y ∈ R
q| y 	∈ B+ intC, {y}+ intC ⊆ B+ intC} , (1)

InfB∩B = MinB. (2)

Let I be the family of all self-infimal subsets of R
q
, i.e., all sets B ⊆ R

q
satisfy-

ing InfB = B. In I we introduce an order relation � as follows:

B1 � B2 : ⇐⇒ Cl+B1 ⊇ Cl+B2.

As shown in [14], there is an isotone bijection j between the space (I ,�) and the
space (F ,⊇) of upper closed subsets of R

q ordered by set inclusion. Indeed, one
can choose

j : I → F , j( ·) = Cl+( ·), j−1( ·) = Inf( ·).

Note that j is also isomorphic for an appropriate definition of an addition and a
multiplication by nonnegative real numbers. Moreover, (I ,�) is a complete lattice
and for nonempty sets B ⊆ I it holds [14, Theorem 3.5]

infB = Inf
⋃

B∈B

B, supB = Sup
⋃

B∈B

B.

This shows that the infimum and the supremum in I are closely related to the usual
solution concepts in vector optimization.

In [14] we considered the following three linear vector optimization problems.
As usual in vector optimization we use the abbreviation f [S] :=

⋃
x∈S f (x).

(LP1) P̄ = InfM[S], S := {x ∈ R
n| Ax ≥ b} ,

(LP2) P̄ = InfM[S], S := {x ∈ R
n| x ≥ 0, Ax ≥ b} ,

(LP3) P̄ = InfM[S], S := {x ∈ R
n| x ≥ 0, Ax = b} ,

where M ∈ R
q×n,A ∈ R

m×n,b ∈ R
m.

In the following let a vector c ∈ intC be fixed. In [14] we calculated the dual
problems to (LPi) (i = 1,2,3) (depending on c) as
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(LD1
c)

{
D̄c = Sup

⋃
u∈Tc

(
cuT b + Inf(M− cuTA)[Rn]

)
Tc :=

{
u ∈ R

m| u ≥ 0, ∃c∗ ∈ Bc : AT u = MT c∗
}

,

(LD2
c)

{
D̄c = Sup

⋃
u∈Tc

(
cuT b + Inf(M− cuTA)[Rn

+]
)

Tc :=
{

u ∈ R
m| u ≥ 0, ∃c∗ ∈ Bc : AT u ≤ MT c∗

}
.

(LD3
c)

{
D̄c = Sup

⋃
u∈Tc

(
cuT b + Inf(M− cuTA)[Rn

+]
)

Tc :=
{

u ∈ R
m| ∃c∗ ∈ Bc : AT u ≤ MT c∗

}
.

where the compact and convex set Bc := {c∗ ∈ −C◦| 〈c,c∗〉 = 1} is used to express
the dual constraints. We observed in [14] that the set Tc in (LD1

c)–(LD3
c) is always

a closed convex subset of R
m and, if C is polyhedral, then Tc is polyhedral, too.

Moreover, we have shown the following duality result.

Theorem 1. [14] It holds weak and strong duality between (LPi) and (LDi
c) (i =

1,2,3). More precisely we have

1. D̄c = P̄ ⊆ R
q if S 	= /0 and Tc 	= /0, where “Sup” can be replaced by “Max” in

this case,
2. D̄c = P̄ = {−∞} if S 	= /0 and Tc = /0,
3. D̄c = P̄ = {+∞} if S = /0 and Tc 	= /0.

The following example [14] illustrates the dual problem and the strong duality.
Moreover, in this example we have the attainment of the supremum of the dual
problem in the (three) vertices of the dual feasible set T .

Example 1. [14] (see Fig. 1) Let q = m = n = 2, C = R
2
+ and consider the problem

(LP2) with the data

M =
(

1 0
0 1

)
, A =

(
1 2
2 1

)
, b =

(
2
2

)
.

The dual feasible set for the choice c = (1,1)T ∈ intR2
+ is Tc = { u1,u2 ≥ 0| u1 +u2

≤ 1/3 }. The vertices of Tc are the points v1 = (0,0)T , v2 = (1/3,0)T and
v3 = (0,1/3)T . We obtain the values of the dual objective function at v1,v2,v3
as Dc(v1) = bdR

2
+, Dc(v2) =

{
y ∈ R

2| y1 +2y2 = 2
}

and Dc(v3) = {y ∈ R
2| 2y1 +

y2 = 2}. We see that the three dual feasible points v1,v2,v3 ∈ Tc are already sufficient
for strong duality.

3 Dual Attainment in Vertices

We start with an example that shows that the supremum of the dual problem is, in
general, not attained in vertices of the dual feasible set. Then we show that the dual
attainmant in vertices can be ensured under certain additional assumptions.
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Tc

v1

v3

x1 v2 u1

u2

y2 y2

y1

x2

y1 D(v1)

D[T]

D(v2)
D(v3)

Sup

Inf

M[S]

S

M[S]

Fig. 1 The primal and dual problem in Example 1

Example 2. Let q = m = n = 2, C = R
2
+ and consider the problem (LP2) with the

data

M =
( 1

2 1
0 −1

)
, A =

(
− 1

2 1
3
2 −2

)
, b =

(
−1
−2

)
.

As above, we set c = (1,1)T ∈ intR2
+, hence Bc = {c∗1,c

∗
2 ≥ 0 | c∗1 + c∗2 = 1}. One

easily verifies that the dual feasible set is the set Tc = conv {v1,v2,v3,v4}, where
v1 = (0,0)T , v2 = (1,0)T , v3 = (5,2)T and v4 = (0,1/3)T . However, the four vertices
of Tc don’t generate the supremum, in fact we have (see Fig. 2)

Sup
4⋃

i=1

Dc(vi) = Dc(v1) = InfM[R2
+] = R+(0,1)T ∪R+(1,−1)T .
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Tc

v5

1

1

−2

2

2 3 4 5

Dc(v5)

Dc(vi)Sup

i=1

4

3

M[S]

Fig. 2 The dual feasible set and certain values of the dual objective in Example 2

One can show that v1 = (0,0)T together with v5 = (0,1/8)T generate the supre-
mum, i.e.,

D̄c = Sup
(

Dc
(
(0,0)T )∪Dc

(
(0,1/8)T )),

but v5 is not a vertex of Tc.

It is natural to ask for additional assumptions to ensure that the supremum of
the dual problem is always generated by the vertices (or extreme points) of the
dual feasible set Tc. We can give a positive answer for the problem (LD1

c) by the
following considerations. Moreover, we show that problem (LD1

c) can be simplified
under relatively mild assumptions.

Proposition 1. Let M ∈ R
q×n, rankM = q, u ∈ R

q, v ∈ R
n. Then, for the matrix

H := M−uvT it holds rankH ≥ q−1.

Proof. We suppose q ≥ 2, otherwise the assertion is obvious. The matrix consisting
of the first k columns {a1,a2, . . . ,ak} of a matrix A is denoted by A(k) . Without loss
of generality we can suppose rankM(q) = q. Assume that rankH(q) =: k ≤ q−2.
Without loss of generality we have rankH(k) = k. Since rankH(k+1) = k, there
exist w ∈ R

k+1 \ {0} such that H(k+1)w = 0, hence M(k+1)w = u(vT )(k+1)w. We
have rankM(k+1) = k+1, hence (vT )(k+1)w 	= 0. It follows that u ∈ M(k+1)[Rk+1] =
lin {m1,m2, . . . ,mk+1} =: L. Thus, for all x ∈ R

k+1, we have H(k+1)x = M(k+1)x−
u(vT )(k+1)x ∈ L + L = L. From rankM(q) = q we conclude that mk+2 	∈ L, hence
hk+2 = mk+2 + uvk+2 	∈ L. It follows that rankH(q) ≥ k + 1, a contradiction. Thus,
we have rankH ≥ rankH(q) ≥ q−1. ��

Proposition 2. Let M ∈R
q×n, rankM = q, c∈ intC, c∗ ∈ Bc and Hc∗ := M−cc∗T M.

It holds
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(i) rankHc∗ = q−1,
(ii) Hc∗ [Rn] is a hyperplane in R

q orthogonal to c∗,
(iii) InfHc∗ [Rn] = Hc∗ [Rn].

Proof. (i) We easily verify that c∗T Hc∗ = 0, and so rankHc∗ < q. Thus, the statement
follows from Proposition 1. (ii) is immediate. (iii) We first show that Hc∗ [Rn] +
intC =

{
y ∈ R

q| c∗T y > 0
}

. Of course, for y ∈ Hc∗ [Rn] + intC we have c∗T y > 0.
Conversely, let c∗T y > 0 for some y ∈ R

q. Then, there exists some λ > 0 such that
c∗T λy = 1 = c∗T c. It follows λy− c ∈ Hc∗ [Rn] and hence y ∈ Hc∗ [Rn]+ intC.

(a) Hc∗ [Rn] ⊆ InfHc∗ [Rn]. Assume that y ∈ Hc∗ [Rn], but y 	∈ InfHc∗ [Rn]. Then by
(1) we have y ∈ Hc∗ [Rn]+ intC, hence c∗T y > 0 , a contradiction.

(b) InfHc∗ [Rn] ⊆ Hc∗ [Rn]. Let y ∈ InfHc∗ [Rn] and take into account (1). On the
one hand this means y 	∈ Hc∗ [Rn] + intC and hence c∗T y ≤ 0. On the other hand
we have {y}+ intC ⊆ Hc∗ [Rn]+ intC, i.e., for all λ > 0 it holds c∗T (y + λc) > 0,
whence c∗T y ≥ 0. Thus, c∗T y = 0, i.e., y ∈ Hc∗ [Rn]. ��

Theorem 2. Consider problem (LD1
c), where M ∈ R

q×n, rankM = q, c ∈ intC. Let
the matrix L ∈ R

q×m be defined by L := (MMT )−1MAT . Then it holds

(i) For u ∈ R
m, c∗ ∈ R

q: (AT u = MT c∗ =⇒ c∗ = Lu).
(ii) L[Tc] ⊆ Bc.

(iii) The dual objective Dc : Tc → I , Dc(u) := cuT b + Inf(M− cuTA)[Rn] can be
expressed as

Dc(u) = {y ∈ R
q| 〈Lu,y〉 = 〈u,b〉} .

(iv) For u1,u2, ...,ur ∈ Tc, λi ≥ 0 (i = 1, . . . ,r) with ∑r
i=1 λi = 1 it holds

Dc

( r

∑
i=1

λiui

)
� Sup

r⋃
i=1

Dc(ui).

(v) If D̄c ⊆ R
q, the supremum of (LD1

c) is generated by the set extTc of extreme
points of Tc, i.e.,

Sup
⋃

u∈Tc

Dc(u) = Sup
⋃

u∈extTc

Dc(u).

Proof. (i) Since rankM = q, MMT ∈R
q×q is invertible, and so the statement is easy

to verify.
(ii) Let u ∈ Tc. Hence there exists c∗ ∈ Bc such that AT u = MT c∗. By (i) it follows

that c∗ = Lu, whence Lu ∈ Bc.
(iii) Let u ∈ Tc. By (i) we have AT u = MT Lu. From Proposition 2 we obtain

Dc(u) = cuT b + {y ∈ R
q| 〈Lu,y〉 = 0} =: B1. Of course, we have B1 ⊆ B2 :=

{y ∈ R
q| 〈Lu,y〉 = 〈u,b〉}. To see the opposite inclusion, let y ∈ B2, i.e., 〈Lu,y〉 =

〈u,b〉. It follows c(Lu)T y = cuT b. By (ii), we have c∗ := Lu ∈ Bc. With the aid of
Proposition 2, we obtain y = cuT b+ y− cc∗T y ∈

{
cuT b

}
+(I − cc∗T I)[Rn] = B1.
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(iv) Consider the function dc : Tc → F , defined by dc(u) := j(Dc(u)) =
Cl+Dc(u). Proceeding as in the proof of Proposition 2 (iii), we obtain dc(u) =
{y ∈ R

q| 〈Lu,y〉 ≥ 〈u,b〉} for all u ∈ Tc. One easily verifies the inclusion
dc
(
∑r

i=1 λiui
)
⊇ ⋂r

i=1 dc(ui). Since j is an isotone bijection between (I ,�) and
(F ,⊇), this is equivalent to the desired assertion.

(v) Let u ∈ Tc be given. Since Tc is closed and convex and contains no lines, [18,
Theorem 18.5] yields that there are extreme points u1, . . . ,uk and extreme directions
uk+1, . . . ,ul of Tc such that

u =
l

∑
i=1

λiui, with λi ≥ 0 (i = 1, . . . , l), and
k

∑
i=1

λi = 1,

(see [18, Sects. 17 and 18]). Of course, we have v := ∑l
i=k+1 λiui ∈ 0+Tc and u−v ∈

Tc (where 0+Tc denotes the asymptotic cone of Tc). From (iv) we obtain

Dc(u− v) = Dc

( k

∑
i=1

λiui

)
� sup

i=1,...,k
Dc(ui) � sup

u∈extTc

Dc(u).

It remains to show that Dc(u) � Dc(u− v).
Consider the set V := {u− v}+ R+v ⊆ Tc. By (ii), it holds L[V ] = L(u− v) +

L[R+v]⊆Bc. Since L[R+v] is a cone, but Bc is bounded it follows that L[R+v] = {0}.
This implies L(u−v+λv) = c∗ for all λ ≥ 0, in particular, L(u−v) = Lu = c∗. From
(iii), we now conclude that exactly one of the following assertions is true:

Dc(u) � Dc(u− v) or
(
Dc(u− v) � Dc(u) ∧ Dc(u− v) 	= Dc(u)

)
.

We show that the second assertion yields a contradiction. Since c∗ = Lu = L(u−v)∈
Bc ⊆ −C◦ \ {0}, we have 〈u− v,b〉 < 〈u,b〉 and so 〈v,b〉 > 0 in this case, hence
〈u− v+λv,b〉 → +∞ for λ → +∞. It follows that

D̄c = sup
u∈Tc

Dc(u) � sup
u∈V

Dc(u) = sup
λ≥0

{y ∈ R
q| 〈c∗,y〉 = 〈u− v+λv,b〉} = {+∞} .

This contradicts the assumption D̄c ⊆ R
m. ��

Corollary 1. Consider problem (LD1
c), where M ∈ R

q×n, rankM = q, c ∈ intC and
C polyhedral.

If the supremum D̄c of (LD1
c) is a subset of R

q, then it is generated by the finitely
many vertices u1, . . . ,uk of (the nonempty polyhedral set) Tc. Moreover, we have

D̄c = Sup
⋃

i=1,...,k

Dc(ui) = Max
⋃

i=1,...,k

Dc(ui).

Proof. The set Tc is polyhedral [14, Proposition 7.4]. Hence, extTc consists of
finitely many points, called the vertices of Tc. The first equality follows from
Theorem 2(v)
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To show the second equality let y ∈ Sup
⋃

i=1,...,k Dc(ui) ⊆ R
q be given.

By an assertion analogous to (1) this means y 	∈ ⋃i=1,...,k Dc(ui) − intC and
{y} − intC ⊆ ⋃

i=1,...,k Dc(ui) − intC. From the last inclusion we conclude that
y∈ cl

⋃
i=1,...,k(Dc(ui)− intC) =

⋃
i=1,...,k cl(Dc(ui)− intC) =

⋃
i=1,...,k(Dc(ui)−C).

Hence there exists some i ∈ {1, . . . ,k} such that y ∈ (Dc(ui)−C)\ (Dc(ui)− intC).
By the same arguments as used in the proof of Proposition 2 (iii) we can show the
last statement means y ∈ Dc(ui), i.e. we have y ∈ ⋃i=1,...,k Dc(ui). The statement
now follows from an assertion analogous to (2). ��

It is typical that more than one vertex is necessary to generate the infimum or
supremum in case of vectorial linear programming. It remains the question how to
determine a minimal subset of vertices of S and Tc that generates the infimum and
supremum, respectively.

4 Comparison with Duality Based on Scalarization

Duality assertions for linear vector optimization problems are derived by many au-
thors (compare Isermann [10] and Jahn [11]). In these approaches the dual prob-
lem is constructed in such a way that the dual variables are linear mappings from
R

m → R
q, whereas in our approach the dual variables are vectors belonging to R

m.
In order to show strong duality assertions these authors suppose that b 	= 0. As shown
in Theorem 1 we do not need such an assumption in order to prove strong duality
assertions. However, there are several relations between our dualtity statements and
those given by Jahn [11]. First, we recall an assertion given by Jahn [11] in order to
compare our results with corresponding duality statements given by Jahn and others.
In the following we consider (LD1

c) for some c ∈ intC.

Theorem 3. (Jahn [11], Theorem 2.3)
Assume that V and Y are real separated locally convex linear spaces and b ∈ V,
u∗ ∈ V

∗, y ∈ Y, λ ∗ ∈ Y
∗.

(i) If there exists a linear mapping Z : V → Y with y = Z(b) and u∗ = Z∗(λ ∗),
then λ ∗(y) = u∗(b).

(ii) If b 	= 0, λ ∗ 	= 0 and λ ∗(y) = u∗(b), then there exists a continuous linear map-
ping Z : V → Y with y = Z(b) and u∗ = Z∗(λ ∗).

Usually, one considers in linear vector optimization dual problems of the form
(Isermann [10] and Jahn [11])

(LDo) Max
⋃

Z∈T o
c

Zb,

where
T o

c := {Z ∈ R
q×m | ∃c∗ ∈ Bc : ZT c∗ ≥ 0,(ZA)T c∗ = MT c∗}. (3)

We have the following relationships between (LD1
c) and (LDo):
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Theorem 4. Let M ∈ R
q×n, rankM = q, c ∈ intC and L := (MMT )−1MAT ∈ R

q×m.
Then it holds

D1 :=
⋃

u∈Tc

{y ∈ R
q | 〈Lu,y〉 = 〈u,b〉} ⊇

⋃
Z∈T o

c

Zb =: D2

In the case of b 	= 0 we have equality, i.e., D1 = D2.

Proof. (a) We show D2 ⊆ D1. Assume y ∈ D2. Then there exists Z ∈ T o
c with a

corresponding c∗ ∈ Bc, i.e.,

ZT c∗ ≥ 0, (ZA)T c∗ = MT c∗ (4)

and y = Zb. Put u = ZT c∗, then Theorem 3(i) yields

〈c∗,y〉 = 〈u,b〉. (5)

Furthermore, taking into account (4) we obtain

u = ZT c∗ ≥ 0

and
AT u = AT ZT c∗ = (ZA)T c∗ = MT c∗.

By Theorem 2(i) and (5), we conclude that y ∈ D1.
(b) We show D1 ⊆ D2 under the assumption b 	= 0. Suppose y ∈ D1. Then there

exists u ∈ Tc with the corresponding c∗ ∈ Bc, i.e.

u ≥ 0, (6)

AT u = MT c∗ (7)

and
〈Lu,y〉 = 〈u,b〉.

From Theorem 2(i), (ii) we get 〈c∗,y〉= 〈u,b〉 and c∗ ∈ Bc. So the assumptions c∗ 	=
0, b 	= 0 of Theorem 3(ii) are fulfilled and we conclude that there exists Z ∈ R

q×m

with y = Zb and u = ZT c∗. Moreover, we obtain by (7)

(ZA)T c∗ = AT ZT c∗ = AT u = MT c∗

and from (6) we get
ZT c∗ = u ≥ 0.

This yields y ∈ D2, which completes the proof. ��

Remark 1. Theorem 4 shows, that for linear vector optimization problems under the
assumption b 	= 0 our dual problems coincides with the dual problems given in the
papers [10] and [11].
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The following example shows that the assumption b 	= 0 cannot be omitted in
order to have the equality D1 = D2.

Example 3. Let q = m = n = 2, C = R
2
+, c = (1,1)T ,

A = M =
(

1 0
0 1

)
and b =

(
0
0

)
.

Then we have L = M = A, Tc = Bc, D2 =
{
(0,0)T

}
and

D1 =
{

y ∈ R
2| (y1 ≥ 0∧ y2 ≤ 0)∨ (y1 ≤ 0∧ y2 ≥ 0)

}
,

i.e., D1 	= D2.
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Optimality of the Methods for Approximating
the Feasible Criterion Set in the Convex Case

Roman Efremov and Georgy Kamenev

Abstract Estimation Refinement (ER) is an adaptive method for polyhedral approx-
imations of multidimensional convex sets. ER is used in the framework of the In-
teractive Decision Maps (IDM) technique that provides interactive visualization of
the Pareto frontier for convex sets of feasible criteria vectors. We state that, for ER,
the number of facets of approximating polytopes is asymptotically multinomial of
an optimal order. Furthermore, the number of support function calculations, needed
to be resolved during the approximation, and which complexity is unknown before-
hand since a user of IDM provides his own optimization algorithm, is bounded from
above by a linear function of the number of iterations.

Keywords: Goal programming · Feasible goals method · Interactive decision
maps · Estimation refinement

1 Introduction

The Estimation Refinement (ER) method is the first adaptive method for polyhe-
dral approximations of multidimensional convex sets [3]. It is based on comput-
ing the support function of the approximated set for certain directions specified
adaptively. The method turned out to be an effective tool for approximating the
sets of feasible criterion vectors, so-called Feasible Criterion Set (FCS), in the de-
cision problems with convex decision sets and in the case when the number of
criteria is not greater than eight. The numerical scheme of the ER method [4],
computationally stable to the round-off errors, is implemented in various software,
see www.ccas.ru/mmes/mmeda/soft/. The ER-based software is used in the frame-
work of the Interactive Decision Maps (IDM) technique, which provides interactive
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visualization of the Pareto frontier. In IDM, the maximal set in criterion space,
which has the same Pareto frontier as the FCS (Edgeworth-Pareto Hull (EPH) of
the FCS), is approximated. Then, the Pareto frontier is visualized interactively by
displaying the decision maps, that is, collections of superimposed bi-criterion slices
of EPH, while several constraints on the value of a “third” criterion are imposed. To
present more that three criteria, animation of the decision maps is used.

The IDM technique provides easy and user-friendly interface for exploring the
Pareto frontier of FCS. The combination of IDM and the goal-programming ap-
proach, so-called Feasible Goals Method (FGM), turned out to be a successful sup-
port decision method, see [13]. It consists in a single-shot goal identification on one
of a decision map.

The FGM method has been intensively used in various standalone decision sup-
port systems, see e.g. [2, 11], as well as in the web-based decision aid tools, see
e.g. [8, 14].

In implementations of IDM, EPH is approximated in advance and is separated
from the human-computer exploration of decision maps. At the same time, slices
of the approximation of EPH can be computed in a moment. This feature of the
IDM technique facilitates implementation on computer networks, where decision
maps may be depicted and animated on-line. It is based on simple web client-server
architecture: the approximation of EPH is accomplished on a server side, while the
exploration of the Pareto frontier is carried out by means of Java applets on the
user’s computer, as explained in [13, 14]. The approximation of EPH requires up to
99% of the computing efforts and can be performed automatically. Having this in a
view, we want to be sure beforehand that the approximation will not exceed the time
limits and will generally be solved. That is why theoretical as well as experimental
study of approximation methods has always been an important task, see [13].

The theoretical study of the ER method gave rise to the concept of Hausdorff
methods for polyhedral approximation [10]. It was proven in [9] that the opti-
mal order of convergence of approximating polytopes for smooth CCBs equals to
2/(d −1) where d is the dimension of the space. It was shown in [10] that Hausdorff
methods approximate smooth CCBs with the optimal order of convergence with re-
spect to the number of iterations and vertices of approximating polytopes. Since the
ER method belongs to the class of Hausdorff methods [12], it was the first technique,
for which it was proven that it has the optimal order of convergence with respect to
the number of iterations and vertices. Here we state that, for the Hausdorff meth-
ods, the order of the number of facets of approximating polytopes is also optimal.
In addition, we state that the order of the number of support function calculations in
ER for a class of smooth CCB is optimal, too. The detailed proof of these results is
somewhat tedious and does not suit the format of this paper the proof can be found
in [7]; here we only provide the results.

The outline of the paper is as follows. In Sect. 2 we describe the FGM/IDM
technique and the ER method. We bring an example study of a decision map and
discuss important characteristics of ER as an approximation tool in the framework
of FGM. Section 3 is devoted to formulation of our results. We obtain these results
for the general case first and then adopt them to the ER method. We end up with
some discussion.
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2 The ER Method in the Framework of FGM/IDM Method

Let us formulate the problem the FGM method solves. Let X be the feasible decision
set of a problem and f : X → N̄d be a mapping from X to the criterion space N̄d :
the performance of each feasible decision x ∈ X is described by a d-dimensional
vector y = f (x). Here, Y := f (X) is the FCS of the problem. We shall assume Y
to be compact. With no loss of generality, we shall assume that the criteria must
be maximized. This defines a Pareto order in the criterion space: y dominates y (in
the Pareto sense) if, and only if, y ≥ y and y 	= y. The Pareto frontier of the set
Y is defined as P(Y ) := {y ∈ Y : {y ∈ Y : y ≥ y,y 	= y} = /0}. Let N̄d

− be the non-
positive orthant in N̄d . The set H(Y ) = Y + N̄d

− is known as the Edgeworth-Pareto
Hull of Y . H(Y ) is the maximal set that satisfies P(H(Y )) = P(Y ). The FGM method
is, though, a multiobjective programming technique that represents the information
about the set P(H(Y )) through its visualization.

2.1 The IDM Technique

The key feature of IDM consists of displaying the Pareto frontier for more than
two criteria through interactive display of bi-criterion slices of H(Y ). A bi-criterion
slice is defined as follows. Let (y1,y2) designates two specified criteria, the so-called
“axis” criteria, and z denotes the remaining criteria, which we shall fix at z∗ ∈ N̄d−2.
A bi-criterion slice of H(Y ), parallel to the criterion plane (y1,y2) and related to
z∗, is defined as G(H(Y ),z∗) = {(y1,y2) : (y1,y2,z∗) ∈ H(Y )}. Note that a slice of
H(Y ) contains all feasible combinations of values for the specified criteria when the
values of the remaining criteria are not worse than z∗. Bi-criterion slices of H(Y )
are used in the IDM technique by displaying decision maps. To define a particular
decision map, the user has to choose a “third”, or colour- associated, criterion. Then,
a decision map is a collection of superimposed slices, for which the values of the
colour-associated criterion change, while the values of the remaining criteria are
fixed. Moreover, the slice for the worst value of this criterion encloses the slice for
the better one.

An example of a decision map is given on the Fig. 1. Here, a conflict that can
take place in an agriculturally developed area is represented. A lake located in the
area is used for irrigation purposes. It is also a recreational zone for the residents of
a nearby town. The conflict is described by three criteria: agricultural production,
level of the lake, and additional water pollution in the lake. In Fig. 1, the trade-off
curves, production versus level of the lake, are depicted for several values of pol-
lution. Production is given in the horizontal axis, whereas the lake level is given in
vertical axis. The constraints imposed on pollution are specified by the colour scale
located under the decision map. Any trade-off curve defines the limits of what can
be achieved, say, it is impossible to increase the values of agricultural production
and level of the lake beyond the frontier, given a value of the lake pollution. The
internal trade-off curve, marked by points C and D, is related to minimal, i.e. zero,
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Fig. 1 A decision map

pollution. It shows how the lake level must be decreased to increase production,
while keeping the zero level of additional pollution. For small values of the produc-
tion, about 30%, the maximal level (100%) of the lake is feasible. Then, with the
increment in the production, the maximal feasible level of the lake starts to decrease
more and more abruptly, especially, after point C. The maximal feasible value of the
production for zero pollution, a little bit less, than 70%, is related to the minimal
level of the lake. Note that it is necessary to exchange a substantial drop of the level
(about 30% starting at point D) for a small increment in the production needed to
achieve its maximal feasible value.

Other trade-off curves have a similar shape. Note that as the level of additional
pollution increases, the production level increases as well; nevertheless, if the lake
level is reasonably high, the trade-off curves are close to each other, which means
that, for these lake levels, even a substantial increment in pollution does not result
in economic advantages.

If there are more than three criteria, the user may specify the values of a fourth,
fifth and more criteria by applying scroll-bars: sliders of scroll-bars help to specify
these values manually see Fig. 1. By moving the sliders of the scroll-bars, the user
can study on-line how a variation of these values influences a decision map. The
animation of decision maps, which is a display of series of decision maps related to
the automatically changing value of, say, the fourth criterion, is possible, too.

Before slices of EPH could be generated the EPH itself should be constructed or
approximated in the form of a system of linear inequalities. Approximation method
that is actively used in the framework of FGM is the ER method. We outline here the
scheme of ER for the case of approximation of convex compact bodies. A simple
modification of ER [5] gives an opportunity to approximate the EPH with a desired
accuracy.
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2.2 The ER Method

Let C be the class of CCB in the Euclidian space N̄d with the scalar product 〈·, ·〉
and the Hausdorff metric δ (C1,C2) := max{sup{ρ(x,C2) : x ∈ C1},sup{ρ(x,C1) :
x ∈ C2}}, C1,C2 ∈ C . Let P be the class of convex polytopes. Let P ∈ P . Let
C ∈ C and ∂C be its boundary. Denote the set of the vertices of P by Mt(P) and the
set of d−1 dimensional facets of P by M f (Pn). Let M f (Pn) be given in the form of
a system of linear inequalities. Let P(C) := {P ∈P : Mt(P)⊆ ∂C}. For P∈P(C)
let U(P) be the list of outer normals to its facets. Let g(u,C) be the support function
of C. Let conv{·} means the convex hull of a set. Let C ∈ C be approximated.

The ER method

Prior to the (n + 1)-th iteration of the method, M f (Pn) must be constructed. Each
facet must be given along with the list of vertices that belong to it. Then, the follow-
ing steps are carried out.

Step 1:

1. Find un ∈U(Pn) that solves max{g(u,C)−g(u,Pn) : u∈U(Pn)}. If |g(un,C)−
g(un,Pn)| ≤ ε , then stop the method, otherwise proceed to 2.

2. Select a point pn ∈ ∂C such that 〈un, pn〉 = g(un,C).

Step 2: Find M f (Pn+1) for Pn+1 := conv{pn ∪Pn}.

Taking into account an important role of approximation methods in the frame-
work of FGM it is of practical interest to estimate the complexity of the ER method.
As for the first step, the optimization problem should be solved and, naturally, noth-
ing can be said concerning complexity in general case. The second step is based
on the “beneath-beyond” method [9] of constructing of a convex hull of a polytope
and a point. A stable implementation of the method is discussed in [4]. The stability
is provided due to the form of the facet description in the ER method, see [4, 5].
Furthermore, this implementation does not generate redundant inequalities, that is,
on every iteration n, inequalities that belong to M f (Pn) and only these inequalities
are generated, see [13] for details. Thus, to estimate the real complexity of ER we
need only to know the convergence rate of ER with regard to the number of op-
timization problem to solve, since the optimization problem solving may be time
consuming, and with regard to the number of facets, since, virtually, it may be very
big, see e.g. [13]. We sketch the results we have obtained for these characteristics
in the next section. However, the proofs of these results exceed the scope of this
paper.
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3 Optimal Estimates of Convergence Rates of Methods
for Polyhedral Approximation

To start with, let us introduce some notions and results of the general theory of
polyhedral approximation of CCB we will need to formulate our results.

3.1 Hausdorff Methods for Internal Polyhedral Approximation

Consider the augmentation scheme [10] that is the general algorithmic scheme for
the internal polyhedral approximation of CCB with increasing number of vertices.
Let P0 ∈ P(C). Given Pn ∈ P(C), the (n + 1)-th iteration consists of two steps:
choose pn ∈ ∂C and construct the new polytope Pn+1 := conv{pn ∪Pn}. The aug-
mentation method for polyhedral approximation of C ∈ C is called Hausdorff with
constant γ > 0 if it generates the sequence of polytopes {Pn}n=0,1,... such that
δ (Pn,Pn+1) ≥ γδ (Pn,C) holds for any n > 0. Such a sequence itself is called the
H(γ,C)-(augmentation) sequence. Let us denote by C 2 the class of CCB with the
two times continuously differentiated boundary and the positive principal curva-
tures. In [6] it was proven that the following estimate cannot be improved for the
class of Hausdorff methods:

limsup
n→∞

δ (C,Pn)[mt(Pn)]2/(d−1) ≤ 2
(1−√

1− γ)2 A(C), (1)

where mt(P) is the number of vertices of P and A(C) is a constant that depends on
the body C ∈ C 2. On the basis of this result and a theorem that describes the facial
structure of a convex hull of a polytope and a point, see [9], we have found the
similar estimate for the convergence rate with respect to the number of facets.

3.2 Main Results for General Case

Let kmax
∂C and kmin

∂C be the maximal and minimal principal curvatures of a surface ∂C.
Then r∂C := 1/(kmax

∂C )1/d−1 and R∂C := 1/(kmin
∂C )1/d−1 be the radiuses of the internal

and external rolling balls for C, which are the balls with maximal (minimal) radius
that still can “roll” from within (from the outside of) the surface ∂C, see [1]. Let
C(n,d) be the number of combinations from n by d. By m f (P) denote the number
of facets of P. Let f (n) := m f (Pn+1)−m f (Pn).

Theorem 1. Let C ∈ C 2 and let {Pn}n=0,1,... be the H(γ,C)-sequence. Then

limsup
n→∞

f (n) ≤ f̄ (C,γ),

where f̄ (C,γ) = C
((

5[1−√
1− γ]−1R∂C/r∂C

)d−1
,d −1

)
.
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Theorem 1 and (1) result in the following estimate for the order of convergence
of H(γ,C)- sequences with respect to the number of facets:

Corollary 1.

limsup
n→∞

δ (C,Pn)[m f (Pn)]2/(d−1) ≤ 2 f̄ (C,γ)
(1−√

1− γ)2 A(C),

where f̄ (C,γ) is the same as in Theorem 1.

As can be seen from Corollary 1 and (1), the order of convergence of H(γ,C)-
sequences with respect to the number of facets is the same as with respect to the
number of vertices and is optimal.

3.3 Applications to ER

It is shown in [12] that the ER method is Hausdorff; namely, if {Pn}n=0,1,... is gener-
ated for C ∈ C 2 by ER, there exists such N ≥ 0 that {Pn}n=N,N+1,... is H(1− ε,C)-
augmentation sequence for any ε,0 < ε < 1. From this fact and the Theorem 1
follows:

Theorem 2. Let {Pn}n=0,1,... be generated by ER for C ∈ C 2. Then, it holds:

limsup
n→∞

δ (C,Pn)[m f (Pn)]2/(d−1) ≤ 2 f̄ (C,γ)A(C),

where f̄ (C,γ) = C
(
(5R∂C/r∂C)d−1,d −1

)
.

Denote by s(n) the number of computations of the support function at the itera-
tions up to n.

Theorem 3. Let {Pn}n=0,1,... be generated by the ER method for C ∈ C 2. Then, it
holds:

limsup
n→∞

s(n) ≤ m f (P0)+ f̄ (C,γ)n,

where f̄ (C,γ) is the same as in Theorem 2.

Thus, the value of s(n) is bounded from above by a linear function of n. It follows
that its order of convergence is optimal.

4 Conclusions

It was shown theoretically that the order of convergence of the Hausdorff methods
for internal polyhedral approximation and compact convex bodies from C 2 are op-
timal with respect to the number of facets. For the ER method, it was additionally
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shown that the number of support function calculations up to the iteration n is
bounded from above by a linear function of n. It is important for its applications
in the framework of the IDM technique, when approximating EPH, since every
support function calculation may be time-consuming, as well as when constructing
(animating) decision maps, since the complexity of the algorithm for constructing
bi-criterion slices is directly proportional to the number of facets in the approxima-
tion of EPH.
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Introducing Nonpolyhedral Cones
to Multiobjective Programming

Alexander Engau and Margaret M. Wiecek

Abstract The nondominated set of a multiobjective program is investigated with
respect to a class of nonpolyhedral cones, that are defined in direct generalization of
Pareto, polyhedral, second order and general p-th order cones. Properties of these
cones are derived using the concept of positively homogeneous functions, and two
approaches to generating the associated nondominated points are presented. In par-
ticular, it is shown how a well known relationship between the nondominated points
with respect to a polyhedral cone and Pareto points can be generalized for a non-
polyhedral cone. In addition, several scalarization methods that have originally been
formulated for finding Pareto points can be modified to also allow for a general
(polyhedral or nonpolyhedral) cone. The results are illustrated on examples and dis-
cussed for a specific class of nonpolyhedral cones.

Keywords: Conic scalarization · Domination cones · Multiobjective programming ·
Positively homogeneous functions

1 Introduction

Let R
m be a Euclidean space, Y ⊆ R

m be a nonempty subset, and C ⊆ R
m be a

nonempty cone. The set of nondominated points of Y with respect to the cone C is
defined by [21]

N(Y,C) := {y ∈ Y : Y ∩ (y−C) ⊆ {y}}.
The theory of vector (or multicriteria) optimization deals with the characteri-

zation of this (and other) sets of nondominated points [3, 12] and with developing
multiobjective programming methods for finding or approximating these sets [4,14].
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As the references show, the underlying cone C is usually assumed to be Pareto or,
slightly more general, polyhedral. Some authors have also studied cases where C is
not a cone, but a more general domination structure [20, 22], and derived scalariza-
tion methods to characterize the corresponding nondominated points [8].

This paper investigates the case where C is chosen as a nonpolyhedral cone that is
defined in direct generalization of Pareto, polyhedral, second order and general p-th
order cones. Properties of these cones are derived using the concept of positively
homogeneous functions that can be sublinear or superlinear.

The literature reports on various applications of especially second order cones
in engineering and robust optimization [13], including portfolio optimization, sig-
nal processing, truss topology design, structural engineering, quadratic and robust
linear programming, and norm minimization problems [6]. However, the authors of
this paper are not aware of any applications of nonpolyhedral cones in multiobjec-
tive programming and, therefore, present this research to encourage and propose
their further investigation.

This paper studies the set of nondominated points with respect to nonpolyhedral
cones and develops approaches for its generation. In particular, it is shown how a
well known result relating nondominated points with respect to polyhedral cones
and Pareto points [2, 10, 15, 19, 22] can be generalized to nonpolyhedral cones, so
that the problem of finding nondominated points with respect to a nonpolyhedral
cone can be reduced to finding Pareto points. In addition, several scalarization meth-
ods that have originally been formulated for finding Pareto points to multiobjective
programs can be modified to also allow for a general (polyhedral or nonpolyhe-
dral) cone. The results are illustrated on examples and discussed for a new class of
nonpolyhedral cones.

2 Terminology and Definitions

A cone C ⊆ R
m is a nonempty set for which c ∈ C ⇒ λc ∈ C whenever λ > 0.

It is said to be convex if c,d ∈ C ⇒ c + d ∈ C, and pointed if ∑k
i=1 ci = 0 ⇒

ci = 0 for all i = 1, . . . ,k, where the ci ∈ C are any k elements of C. In addi-
tion, given the cone C, its dual cone is defined by C+ := {w ∈ R

m : wT c ≥ 0
for all c ∈C} with interior intC+ = {w ∈ R

m : wT c > 0 for all c ∈C \{0}}.

Definition 1 (Pareto Cone). The m-dimensional Pareto cone R
m
≥ ⊆R

m is defined by

R
m
≥ := {c ∈ R

m : c ≥ 0}.

Definition 2 (Polyhedral Cone). For a matrix A ∈ R
l×m, the polyhedral cone

C(A) ⊆ R
m associated with A is defined by

C(A) := {c ∈ R
m : Ac ≥ 0}.

In particular, for A = Im ∈ R
m×m the m-dimensional identity matrix, the polyhedral

cone C(Im) = R
m
≥ is the Pareto cone.
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Definition 3 ( p-th Order Cone). Given p ≥ 1, the m-dimensional p-th order cone
Cm

p ⊆ R
m is defined by

Cm
p := {c = (c1,c−1) ∈ R

1+(m−1) : c1 ≥ ‖c−1‖p}.

In particular, for p = 2, the second order cones Cm
2 are also called Lorentz or ice

cream cones, and for all p ≥ 1, the cones Cm
p belong to the more general class of

Bishop–Phelps cones [11, 17].
A function Γ : R

m → R
l is said to be positively homogeneous if Γ (λc) = λΓ (c)

whenever λ > 0. If, in addition, Γ (c + d) ≤ Γ (c)+Γ (d) for all c,d ∈ R
m, then Γ

is said to be sublinear. If, instead, Γ (c + d) ≥ Γ (c)+Γ (d) for all c,d ∈ R
m, then

Γ is said to be superlinear. Finally, if, for all c,d ∈ R
m, Γ (c) = Γ (d) if and only if

c = d, then Γ is said to be injective.

Definition 4 (Nonpolyhedral Cone). For a positively homogeneous function Γ :
R

m → R
l , the nonpolyhedral cone C(Γ ) ⊆ R

m associated with Γ is defined by

C(Γ ) := {c ∈ R
m : Γ (c) ≥ 0}.

It is clear that C(Γ ) defines a cone. In particular, the three cones associated with the
positively homogeneous functions Γ 1(c) = c, Γ 2(c) = Ac, and Γ 3(c) = c1−‖c−1‖p
are C(Γ 1) = R

m
≥, C(Γ 2) = C(A), and C(Γ 3) = Cm

p , respectively.

3 Preliminaries

A positively homogeneous function Γ : R
m → R

l can also be defined under the
equivalent conditions that Γ (λc) ≥ λΓ (c), or Γ (λc) ≤ λΓ (c), whenever λ > 0.
This follows, because Γ (λc) ≥ λΓ (c) = λΓ (λ−1λc) ≥ λλ−1Γ (λc) = Γ (λc) ⇒
Γ (λc) = λΓ (c). In particular, Γ (0) = Γ (2 · 0) = 2Γ (0) ⇒ Γ (0) = 0, and thus,
Γ (λc) = λΓ (c) whenever λ ≥ 0.

Proposition 1 (Rockafellar and Wets [18]). A function Γ : R
m → R

l is sublin-
ear (superlinear) if and only if Γ is positively homogeneous and convex (concave).
Moreover, then Γ

(
∑k

i=1 ci
)
≤ (≥)∑k

i=1 Γ (ci).

Clearly, if a function Γ : R
m → R

l is sublinear, then −Γ is superlinear and vice
versa.

Proposition 2 (Polyhedral Cone). For a matrix A∈R
l×m, let C(A)⊆R

m be the as-
sociated polyhedral cone. C(A) is nonempty because 0 ∈C(A), and always convex.
C(A) is pointed if and only if c �→ Ac is injective.

For the pointedness of a polyhedral cone C(A) ⊆ R
m, equivalent conditions are that

rankA = m ≥ 2 or, since the mapping c �→ Ac is linear, that Ac = 0 if and only if
c = 0. In particular, for A = Im ∈ R

m×m, the Pareto cone C(Im) = R
m
≥ is convex and

pointed.
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Proposition 3 (Nonpolyhedral Cone). For a positively homogeneous function Γ :
R

m → R
l , let C(Γ ) ⊆ R

m be the associated nonpolyhedral cone. C(Γ ) is nonempty
because 0 ∈ C(Γ ), and convex if Γ is superlinear. C(Γ ) is pointed if, in addition,
Γ is injective.

Proof. Let Γ : R
m → R

l be positively homogeneous, then Γ (0) = 0 and, thus,
0 ∈ C(Γ ). Now let c,d ∈ C(Γ ), so Γ (c),Γ (d) ≥ 0. If Γ is superlinear, then
Γ (c + d) ≥ Γ (c) +Γ (d) ≥ 0 and, thus, c + d ∈ C(Γ ), showing that C(Γ ) is con-
vex. If, in addition, Γ is injective, Γ (c) = 0 ⇔ c = 0, let ∑k

i=1 ci = 0 with ci ∈C, so
Γ (ci) ≥ 0 for all i = 1, . . . ,k. Then, by superlinearity,

0 = Γ (0) = Γ

(
k

∑
i=1

ci

)
≥

k

∑
i=1

Γ (ci) ≥ 0 =⇒ Γ (ci) = 0

and, by injectivity, all ci = 0, showing that C(Γ ) is pointed. �

For the pointedness of a nonpolyhedral cone C(Γ )⊆ R
m, the proof of Proposition 3

only requires that Γ (c) = 0 if and only if c = 0, and thus, if Γ is nonlinear, injectivity
of Γ is sufficient, but not necessary. In particular, the superlinear function Γ (c) =
c1 −‖c−1‖p is not injective (e.g., Γ (c) = 0 for all c = (c1,c−1) with c1 = ‖c−1‖p),
but the p-th order cone C(Γ ) = Cm

p is convex and pointed.

Proposition 4. If Γ : R
m → R

l is sublinear, then −C(−Γ ) ⊆ C(Γ ). The reverse
inclusion holds if, instead, Γ is superlinear. Furthermore, both inclusions become
equality if Γ is linear.

Proof. Let Γ : R
m → R

l be sublinear and c ∈ −C(−Γ ), so −Γ (−c) ≥ 0. Then
0 = Γ (0) = Γ (c−c)≤Γ (c)+Γ (−c) and, thus, Γ (c)≥−Γ (−c)≥ 0, showing that
c ∈ C(Γ ). If, instead, Γ is superlinear, then −Γ is sublinear and, thus, −C(Γ ) ⊆
C(−Γ ), or C(Γ ) ⊆−C(−Γ ). �

4 Nondominated Points and Pareto Points

The following result is well established throughout the literature, see [2, 10, 15, 19,
22], among others.

Theorem 1 (Polyhedral Cone). For a matrix A ∈ R
l×m, let C(A) ⊆ R

m be the as-
sociated polyhedral cone. Then

A[N(Y,C(A)] ⊆ N(A[Y ],Rl
≥).

Furthermore, the above inclusion becomes set equality, if the polyhedral cone C(A)
is pointed.
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Hence, the problem of finding the nondominated set of Y with respect to a pointed
polyhedral cone C(A) is equivalent to finding the Pareto set of A[Y ]. Corresponding
results can be derived for general nonpolyhedral cones C(Γ ).

Theorem 2 (Nonpolyhedral Cone). For a positively homogeneous function Γ :
R

m → R
l , let C(Γ ) ⊆ R

m be the associated nonpolyhedral cone. If Γ is sublinear,
then

Γ [N(Y,C(Γ ))] ⊆ N(Γ [Y ],Rl
≥).

The reverse inclusion holds if, instead, Γ is superlinear and injective. Furthermore,
both inclusions become equality if Γ is linear and injective.

Proof. Let ẑ ∈ Γ [N(Y,C(Γ ))], so ẑ = Γ (ŷ) with ŷ ∈ N(Y,C(Γ )). Then Y ∩ (ŷ −
C(Γ )) ⊆ {ŷ}, and hence, there does not exist y ∈ Y \ {ŷ} such that ŷ− y ∈ C(Γ ),
or Γ (ŷ− y) ≥ 0. Now suppose by contradiction that ẑ /∈ N(Γ [Y ],Rl

≥), then there
exists z = Γ (y), z 	= ẑ, so y 	= ŷ, with z ∈ Γ (Y )∩ (ẑ −R

l
≥), thus ẑ − z ∈ R

l
≥, or

Γ (ŷ)−Γ (y) ≥ 0. However, by sublinearity of Γ ,

Γ (ŷ− y)+Γ (y) ≥ Γ (ŷ) =⇒ Γ (ŷ− y) ≥ Γ (ŷ)−Γ (y) ≥ 0,

in contradiction to the non-existence of y ∈ Y \{ŷ} with Γ (ŷ− y) ≥ 0. �
For the second statement and the reverse inclusion, let ẑ = Γ (ŷ) ∈ N(Γ [Y ],Rl

≥).
Then Γ [Y ]∩ (ẑ−R

l
≥) ⊆ {ẑ}, and hence, there does not exist z ∈ Γ [Y ] \ {ẑ} such

that ẑ− z ∈ R
l
≥, or ẑ− z ≥ 0. Since Γ is injective, Γ (y) 	= Γ (ŷ) if and only if y 	= ŷ,

and so there does not exist y ∈ Y \{ŷ} such that Γ (ŷ)−Γ (y) ≥ 0. Now suppose by
contradiction that ẑ = Γ (ŷ) /∈ Γ [N(Y,C(Γ ))], or ŷ /∈ N(Y,C(Γ )). Then there exists
y 	= ŷ with y ∈ Y ∩ (ŷ−C(Γ )), thus ŷ− y ∈ C(Γ ), or Γ (ŷ− y) ≥ 0. However, by
superlinearity of Γ ,

Γ (ŷ) ≥ Γ (ŷ− y)+Γ (y) =⇒ Γ (ŷ)−Γ (y) ≥ Γ (ŷ− y) ≥ 0,

in contradiction to the nonexistence of y ∈ Y \{ŷ} with Γ (ŷ)−Γ (y) ≥ 0. �
If Γ is a linear function, then Γ (c) = Ac for some matrix A ∈ R

l×m, and
Theorem 2 reduces to Theorem 1 with the polyhedral cone C(Γ ) = C(A). �

If C(Γ ) ⊆ R
m is not polyhedral, then, in general, equality in Theorem 2 cannot be

expected.

5 Generating Methods

Several scalarization methods that have originally been formulated for finding
Pareto points to multiobjective programs can be modified to also allow for a general
(polyhedral or nonpolyhedral) cone C. The original methods and additional refer-
ences are discussed in [4].
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Proposition 5 (Geoffrion Method [7]). Let w ∈C+ \{0}, and ŷ ∈ Y be an optimal
solution to

minimize wT y subject to y ∈ Y. (GeM)

(1) If w ∈ intC+, or (2) if the optimal solution ŷ is unique, then ŷ ∈ N(Y,C).

Proposition 5 is similarly given in [19], among others. If the cone C is convex, the
method can be extended by an additional reference point y◦ ∈ Y .

Proposition 6 (Guddat Method [9]). Let C be convex, w ∈ C+ \ {0}, y◦ ∈ Y , and
ŷ ∈ Y be an optimal solution to

minimize wT y subject to y◦ − y ∈C and y ∈ Y. (GuM)

(1)If w ∈ intC+, or (2) if the optimal solution ŷ is unique, then ŷ ∈ N(Y,C).

Proof. Let ŷ ∈ Y be an optimal solution to (GuM) and, by contradiction, assume
that ŷ /∈ N(Y,C). Then there exists y ∈ Y ∩ (ŷ−C), y 	= ŷ, so ŷ = y + c for some
c ∈ C \ {0}. The point y is feasible for (GuM), because y◦ − y = y◦ − ŷ + c ∈ C by
feasibility of ŷ for (GuM) and convexity of C, but

wT ŷ = wT (y+ c) = wT y+wT c

{
> wT y in case (i)
≥ wT y in case (ii)

in contradiction to the (in case (ii): unique) optimality of ŷ to (GeM). �

If w = e = (1, . . . ,1)T ∈ C+ is the unit vector of all ones, then the above method
reduces to the classic method proposed by Benson.

Proposition 7 (Benson Method [1]). Let C be convex, e ∈C+, y◦ ∈Y , and ĉ ∈C be
an optimal solution to

maximize
m

∑
i=1

ci subject to y◦ − c = y ∈ Y and c ∈C. (BM)

(1)If e ∈ intC+, or (2) if the solution ĉ is unique, then ŷ = y◦ − ĉ ∈ N(Y,C).

Proof. Since the constraints y◦ − c = y ∈ Y and c ∈ C can be rewritten as y◦ −
y = c ∈ C and y ∈ Y , and because the maximization of ∑m

i=1 ci = ∑m
i=1(y

◦
i − yi) =

∑m
i=1 y◦i −∑m

i=1 yi is equivalent to the minimization of ∑m
i=1 yi, Proposition 7 follows

from Proposition 6 with w = e. �

Only the following method has originally been formulated for a closed convex cone
C and can, in particular, be derived as a special case of the results in [8]. The proof
is, therefore, omitted.
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Proposition 8 (Pascoletti–Serafini Method [16]). Let r ∈R
m, v ∈ intC, and μ̂ ∈R

be an optimal solution to

minimize μ subject to r + μv− c = y ∈ Y, c ∈C and μ ∈ R. (PSM)

Then there exists ĉ ∈C such that ŷ = r + μ̂v− ĉ ∈ N(Y,C).

6 Bicriteria Examples

The two theorems in Sect. 4 and the generating methods in Sect. 5 are illustrated
for the bicriteria program N(Y,C) on the unit disk Y = {y ∈ R

2 : y2
1 + y2

2 ≤ 1} for
three choices of C ⊆ R

2, as shown in Fig. 1. The boundary of Y is the unit circle and
denoted by ∂Y = {y ∈ R

2 : y2
1 + y2

2 = 1}.

Example 1 (Pareto Cone). Let Γ 1(c) = c be the identity, so C(Γ 1) = C(I2) = R
2
≥

be the Pareto cone. Then

Γ 1[N(Y,C(Γ 1))] = N(Y,C(I2)) = N(Y,R2
≥),

and Theorems 1 and 2 apply trivially. In particular, (see Fig. 2 (left))

N(Y,C(Γ 1)) = N(Y,R2
≥) = {y ∈ ∂Y : y ≤ 0}.

Furthermore, since the Pareto cone is convex, self-dual (i.e., C+(Γ 1) = C(Γ 1) =
R

2
≥) and, in particular, e ∈ intC+ \ {0} = intR2

≥, Propositions 5, 6 and 7 apply for
(GeM), (GuM) and (BM) in their original formulation.

Example 2 (Polyhedral Cone). Let Γ 2(c) = Ac with A =
(

1 0
1 1

)
∈ R

2×2 be a linear
function, so C(Γ 2) = C(A) be the associated polyhedral cone. Since rank A = 2,
C(A) is pointed and Γ 2 is injective, so that, in particular, A−1 =

( 1 0
−1 1

)
exists. Then

both Theorems 1 and 2 apply and give that

Γ 2[N(Y,C(Γ 2))] = A[N(Y,C(A))] = N(A[Y ],R2
≥),

y1

y2

Y

C1

y1

y2

Y

C2

y1

y2

Y

C3

Fig. 1 Pareto, polyhedral and p-th order cone for Examples 1–3 (from left to right)
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y1

y2

Y

N(Y,R2≥)

y1

y2

Y

A[Y]

N(Y,C(A))

N(A[Y],R2≥)

y1

y2

Y

B[Y]

N(Y,C(B))

N(B[Y],R2≥)
��

��

Fig. 2 The sets N(Y,C) and N(Γ [Y ],R2
≥) for Examples 1–3 (from left to right)

and thus, (see Fig. 2 (center))

N(Y,C(Γ 2)) = A−1[N(A[Y ],R2
≥)] = {y ∈ ∂Y : y2 ≤ 0 and y1 − y2 ≤ 0}.

Since C(A) is convex and has the dual cone C+(A) = C(A+) with A+ =
(−1 1

0 1

)
∈

R
2×2, Propositions 5 and 6 apply for (GeM) and (GuM) with w ∈ C+(Γ 2)\{0} =

C(A+) \ {0}. Since A+e =
(

0
1

)
≯ 0, only (ii) of Proposition 7 applies for (BM). In

particular, the Guddat method (GuM) becomes

minimize wT y subject to A(y◦ − y) ≥ 0 and y ∈ Y

and, thus, can be solved as a linear program in the objective space.

Example 3 ( p-th Order Cone). Let Γ 3(c) = c1−‖c2‖p = c1−|c2| be a superlinear
function, so C(Γ 3) = C2

p be the associated p-th order cone. Since Γ 3 is not injec-
tive, both Theorems 1 and 2 do not apply to Γ 3. However, since c1 − |c2| ≥ 0 can
equivalently be written as c1 − c2 ≥ 0 and c1 + c2 ≥ 0, let Γ 4(c) = Bc with B =(1 −1

1 1

)
∈ R

2×2 be a linear function, so C(Γ 3) = C(Γ 4) = C(B). Since rankB = 2,
C(B) is pointed and Γ 4 is injective, so that, in particular, B−1 = 1

2

( 1 1
−1 1

)
exists.

Then Theorems 1 and 2 give that

Γ 4[N(Y,C(Γ 4))] = B[N(Y,C(B))] = N(B[Y ],R2
≥),

and thus, (see Fig. 2 (right))

N(Y,C(Γ 3)) = N(Y,C(Γ 4)) = B−1[N(B[Y ],R2
≥)]

= {y ∈ ∂Y : y1 + y2 ≤ 0 and y1 − y2 ≤ 0}.

Furthermore, since C(B) is convex and self-dual, C+(B) = C(B), Propositions 5 and
6 apply for (GeM) and (GuM) with w ∈C+(Γ 3)\{0} = C+(B)\{0} = C(B)\{0}.
Since Be =

(
0
2

)
≯ 0, only (ii) of Proposition 7 applies for (BM). In particular, the

Guddat method (GuM) becomes

minimize wT y subject to B(y◦ − y) ≥ 0 and y ∈ Y

and, again, can be solved as a linear program in the objective space.
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It turns out that every closed convex cone C ∈R
2 is associated with a linear function

and, thus, polyhedral [5]. This implies that both Theorems 1 and 2 apply to all
bicriteria programs with respect to a closed convex cone C ⊆R

2. For multiobjective
programs N(Y,C) with Y ⊆ R

m, m > 2, and nonpolyhedral cones C ⊆ R
m, however,

only Theorem 2 continues to hold.

7 A Class of Nonpolyhedral Cones

The paper concludes with a discussion of nonpolyhedral cones associated with
positively homogeneous functions of the form Γ = (Γ1, . . . ,Γl) : R

m → R
l with

Γi(c) = AT
i c − αi‖Bic‖, where αi ∈ R, Ai ∈ R

m, and Bi ∈ R
·×m, for i = 1, . . . , l.

If all αi ≤ (≥) 0, then Γ is sublinear (superlinear). In particular, if all αi = 0, then
Γ is linear and C(Γ ) = C(A) with A = (A1, . . . ,Al)T ∈ R

l×m.

Corollary 1 (to Theorem 2). Let αi ∈ R, Ai ∈ R
m, and Bi ∈ R

·×m, for i = 1, . . . , l,
and let C(Γ ) ⊆ R

m be the nonpolyhedral cone associated with Γ = (Γ1, . . . ,Γl) :
R

m → R
l with Γi(c) = AT

i c−αi‖Bic‖. If all αi ≤ 0, then

Γ [N(Y,C(Γ ))] ⊆ N(Γ [Y ],Rl
≥).

If all αi ≥ 0, the reverse inclusion in Theorem 2 holds if the function Γ is also
injective, or if C(Γ ) is pointed. For special cases, this can be verified easily.

Proposition 9. Let α ≥ 0 and C(Γ ) ⊆ R
m be the nonpolyhedral cone associated

with Γ = (Γ1, . . . ,Γm) : R
m → R

m with Γi(c) = ci −α‖c‖p. If αm1/p < 1, then the
function Γ is injective, and the cone C(Γ ) is convex and pointed.

Proof. To show that Γ is injective, let Γ (c) = Γ (d) and, without loss of generality,
assume that ε = α (‖c‖p −‖d‖p)≥ 0 (otherwise switch c and d). Then ci−α‖c‖p =
di −α‖d‖p, or ci −di = α (‖c‖p −‖d‖p) = ε , and thus, c = d + εe. Hence, ‖c‖p =
‖d +εe‖p ≤ ‖d‖p +ε‖e‖p, or ε = α (‖c‖p −‖d‖p)≤ εα‖e‖p = εαm1/p, and thus,
ε = 0 and c = d, showing that Γ is injective. As Γ , in particular, is superlinear,
Proposition 3 then gives that C(Γ ) is convex and pointed. �

Corollary 2 (to Theorem 2, with Proposition 9). Let α ≥ 0 and αm1/p < 1, and let
C(Γ )⊆ R

m be the nonpolyhedral cone associated with Γ = (Γ1, . . . ,Γm) : R
m → R

m

with Γi(c) = ci −α‖c‖p. Then

N(Γ [Y ],Rm
≥) ⊆ Γ [N(Y,C(Γ ))].

The formulation of the generating methods (GeM), (GuM), and (BM), and applica-
tion of Propositions 5, 6 and 7 require knowledge of (at least a subset of) the dual
cone C+(Γ ), which needs to be derived based on the particularly chosen cone C(Γ ).
This is exemplified in the following proposition.
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Proposition 10. Let αi ≥ 0 for all i = 1, . . . ,m, and let C(Γ ) ⊆ R
m be the convex

nonpolyhedral cone associated with Γ = (Γ1, . . . ,Γm) : R
m → R

m with Γi(c) = ci −
αi‖c‖p. Then C(Γ ) belongs to its dual, C(Γ ) ⊆C+(Γ ), and e ∈ intC+(Γ ), if some
αi > 0.

Proof. To show that C(Γ ) belongs to its dual, let w ∈ C(Γ ) and choose any
c ∈ C(Γ ), so wi − αi‖w‖p ≥ 0 and ci − αi‖c‖p ≥ 0. Then wT c = ∑m

i=1 wici ≥
∑m

i=1 α2
i ‖w‖p‖c‖p ≥ 0 and, thus, w ∈ C+(Γ ), showing that C(Γ ) ⊆ C+(Γ ). Fur-

thermore, if c 
= 0 and some αi > 0, then eT c = ∑m
i=1 ci ≥ ∑m

i=1 αi‖c‖p > 0 and, thus,
e ∈ intC+(Γ ). �

Hence, for the cone C(Γ ) in Proposition 10, Propositions 5 and 6 apply for (GeM)
and (GuM) with w∈C(Γ )\{0}, and Proposition 7 applies for (BM), if some αi > 0.
In particular, the Guddat method (GuM) now becomes

minimize wT y subject to y◦i − yi −αi‖y◦ − y‖p ≥ 0 for i = 1, . . . ,m and y ∈ Y

and, thus, results in a nonlinear p-th order cone program.
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A GP Formulation for Aggregating Preferences
with Interval Assessments

Esther Dopazo and Mauricio Ruiz-Tagle

Abstract The purpose of this paper is to develop methods for the estimation of punc-
tual priority weights from interval pairwise comparison matrices given by a group of
experts. Because the complexity of real decision problems, the subjective judgments
and different patterns of the experts, interval comparison matrices provide a flexi-
ble framework to account uncertainty and to achieve consensus solutions among a
group of experts. The development of the provided methods relies on lp-distances to
measure the distance between the preference information given by the experts and
its normative prototype. Then a minimization problem in the lp-distance under some
constraints is obtained. The proposed approach is made operational with the help of
an Interval Goal Programming formulation.

1 Introduction

Let be a group multicriteria decision-making problem, defined by a finite set of
alternatives and a group of decision makers (DMs), where preferences are structured
by pairwise comparison (pc) matrices.

In many applications, due to incomplete information or knowledge, unquantifi-
able information, imprecise data, etc., a natural way for expressing preferences is
interval assessments. So the problem is to develop methods for the estimation of
priority punctual weights from pc matrices with this kind of assessments. In this
context, different problems appear simultaneously:

(a) The problem of rationality (i.e., to derive priority weights from pc matrices
without consistency properties), introducted by Saaty [15], in the context of the
Analytic Hierarchy Process (AHP).
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(b) The consensus problem (i.e., to integrate preferences from a group of DMs).
(c) The imprecise data management.

There are some studies in the literature on how to deal with interval data in
the case of a single expert. In the AHP context some methods, based on eigen-
vector computation, are introduced in [1, 2, 12, 16, 18]. In [10] a lexicographic goal
programming approach is provide for a specific distance. The group problem with
interval assessments has been considered in [4] by using a Logarithmic Goal Pro-
gramming technique. They all provide interval weights. When the interval weights
overlap, there is no unique ranking of alternatives. In this case, additional ranking
procedures are required in order to compare the final alternatives score. In many
applications, a definitive rank order is expected from data given by experts.

On the other hand, a fuzzy approach to the group problem has been considered
in [3], [13], and [17]. All of them provide fuzzy priority vectors, and defuzzification
techniques are required to produce crisp solutions.

For dealing simultaneously with these problems in a more general pc context, we
propose a distance-based framework where a goal programming (GP) formulation
will be stated. An analogous model for ranking aggregation has been proposed in [7]
and for a group problem with crisp data in [6] and [8].

The paper is organized as follows. Problem formulation in a general distance
framework is established in Sect. 2. The Interval Goal Programming formulation of
the model is included in Sect. 3. The proposed model is illustrated with the help of a
numerical example in Sect. 4. Finally, main conclusions derived from the work are
included in Sect. 5.

2 Problem Formulation: A General Distance-Based Approach

Let a finite set of alternatives X = {x1, . . . ,xn}(n ≥ 2) and a group of m experts
{E1, . . . ,Em}. We assume that each expert expresses his preferences on the alterna-
tives as an n× n pc matrix Mk = (mk

ij) [15], where mk
ij represents the estimation of

preference ratio between alternatives xi and x j given by the expert Ek. The prob-
lem is concerned with determining the group priority weights, w1, . . . ,wn, of the
considered alternatives, from preference information given by DMs. We assume
that weights are crisp, positive and normalized, i.e.: ∑n

i=1 wi = 1. We will denote
w = (w1, . . . ,wn)T as priority vector.

In the particular case of one expert, because the elements of pc matrix M = (mij)
represent estimations of the ratio weights ( wi

w j
) of the unknown positive weights,

matrix M is expected to satisfy some natural restrictions.
A pc matrix M is said to be reciprocal if mij ·m ji = 1 for all i, j = 1, . . . ,n (then

automatically mij ·m ji = 1). A pc matrix M is said to be consistent if mij ·m jk =
mik for all i, j,k = 1, . . . ,n. It is easily seen that consistent matrices are necessarily
reciprocal. Saatys theorem [15] states that for every n× n consistent matrix M =
(mij) there exists a set of positive real numbers w1, . . . ,wn, such that
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mij =
wi

w j
i, j = 1, . . . ,n (1)

and the vector w = (w1, . . . ,wn)T is unique up to a multiplicative constant.
These positive numbers, normalized, define the searched priority weights of the
alternatives.

In practice, the complexity of the decision-making problem, imperfect and sub-
jective judgements, etc., lead to non-consistent matrices. This case has been con-
sidered in [5] and [11]. Moreover, we consider the group problem: different experts
with different interest qualification fields could assign different pairwise data for the
same alternatives. In this context, the challenge is to derive group priority weights
for the elements of X from possibly non-consistent and not-compatible information
given by the experts.

Therefore a theoretical approximation framework is considered to look for a
compromise approximated solution. Because the elements of Mk will be considered
as perturbations (collecting uncertainty, noise, etc.) of the precise values wi

w j

mk
ijw j −wi ≈ 0, i, j = 1, . . . ,n; k = 1, . . . ,m, (2)

a lp-distance function will be considered to measure this deviations. In our approach,
the aggregation of DMs preferences is addressed to obtain group priority weights
that minimize the DMs disagreement in a general lp-distance framework. Then, we
look for the solution that optimizes consensus by minimizing total aggregated devi-
ations from the ideal solution by considering a metric lp, as follows

min

[
m

∑
k=1

n

∑
i, j=1

| mk
ijw j −wi |p

] 1
p

i f 1 ≤ p < ∞ (3)

where

n

∑
i=1

wi = 1 (4)

wi > 0 ∀i = 1, . . . ,n

For p = ∞, we look for the solution that minimizes the maximum deviation

min max
i, j=1,...,n
k=1,...,m

(
| mk

ijw j −wi |
)

(5)

subject to the constraints in (4). The distance parameter p defines the kind of dis-
tance metric used and so different decision-making modes. Because p acts on the
deviation | mk

ijw j −wi |, as p increases more importance is attached to the largest de-
viation. So, the case p = 1 leads to a more robust estimation, whereas the estimation
for p = ∞ is more sensitive to extreme residual values.
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On the other hand, because uncertainty, noise, vagueness of judgments, etc., we
consider a more general scenario where imprecise data are allowed. We assume that
expert Ek reports his preferences on the elements of X , giving an interval pc matrix
on X , Mk =

(
[mk

ij,m
k
ij]
)

as follows: he judges that alternative i is between mk
ij and

mk
ij times more important than alternative j with mk

ij,m
k
ij > 0 and mk

ij ≤ mk
ij. Then,

we face to the above optimization problems (3) and (5), in whose data are intervals
mk

ij ∈ [mk
ij,m

k
ij].

Because it is not an easy computational task to solve the above optimizations
problems with interval data, in order to make operative the established analytical
model, we will consider Interval Goal Programming.

3 A GP Formulation

Once the analytical framework have been established, we focus on computing the
approximated weights from the proposed minimization problems (3) and (5) where
data given by the experts are interval data. For that purpose, Interval Goal Program-
ming ([7] , [9]) will be considered. We introduce the following deviation variables:

mk
ijw j −wi = nk

ij − pk
ij (6)

mk
ijw j −wi = nk

ij − pk
ij i, j = 1, . . . ,n, k = 1, . . . ,m

with

nk
ij =

1
2

[∣∣∣mk
ijw j −wi

∣∣∣+(mk
ijw j −wi

)]
(7)

pk
ij =

1
2

[∣∣∣mk
ijw j −wi

∣∣∣−(mk
ijw j −wi

)]

nk
ij =

1
2

[∣∣∣mk
ijw j −wi

∣∣∣+(mk
ijw j −wi

)]

pk
ij =

1
2

[∣∣∣mk
ijw j −wi

∣∣∣−(mk
ijw j −wi

)]
i, j = 1, . . . ,n,k = 1, . . . ,m

The variables nk
ij, nk

ij, pk
ij and pk

ij express the negative and the positive deviations,
respectively.

In the ideal case, when all estimations are precise and compatible, nk
ij = 0 and

pk
ij = 0, i, j = 1, . . . ,n, k = 1, . . . ,m. In the general case, non-rational proper-

ties of each pc matrix and each decision maker expectations provide incompatible
pairwise information. Therefore, following the approach considered in the above
section, we look for a group priority vector that minimizes the aggregation of devia-
tions from interval DMs preferences (Mk,k = 1, . . . ,m) and the normative prototype
( wi

w j
) in a lp-distance framework. So, we look for approximated positive solutions
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that minimize the aggregation of non-wanted residuals, nk
ij and pk

ij, i, j = 1, . . . ,n,
k = 1, . . . ,m, in a lp-metric space.

Therefore, for p ∈ [1,∞), we obtain the following mathematical programming
problem, with the objective function

min

[
m

∑
k=1

n

∑
i, j=1

(
nk

ij + pk
ij

)p
] 1

p

, (8)

subject to:

mk
ijw j −wi −nk

ij + pk
ij = 0 i, j = 1, . . . ,n, k = 1, . . . ,m (9)

mk
ijw j −wi −nk

ij + pk
ij = 0 i, j = 1, . . . ,n, k = 1, . . . ,m

n

∑
i=1

wi = 1

nk
ij,n

k
ij, pk

ij, pk
ij ≥ 0 i, j = 1, . . . ,n, k = 1, . . . ,m

wi > 0 ∀i = 1, . . . ,n.

For p = ∞, we obtain the objective function

minD

subject to nk
ij + pk

ij ≤ D, i, j = 1, . . . ,n, k = 1, . . . ,m and goals and constraints of the
model (9). D is an extra positive variable that quantifies the maximum deviation, it
indicates maximum disagreement with respect to the consensus achieved.

We should make some important points from a computational point of view, for
the most used values of p. For p = 1 and p = ∞, the above formulations are reduced
to linear programming problems that can be solved by using the simplex method.
The case p = 2 corresponds to a quadratic programming problem for which several
numerical tools are available.

4 Numerical Example

We present a numerical example to illustrate the proposed method. We suppose we
are in a fictitious early stage of a national forest planning process, where the main
objective is to estimate future wood supply from commercial planting forests in
Chile. A set of four alternatives are presented to a group of four experts in forestry
economics, from several organizations (private, academic and research) in Chile.
They assess their preferences about the alternatives by the pc interval matrices M1,
M2, M3 and M4, using the Saaty’s scale, as follows:
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Table 1 Priority vectors and their associated rankings for p = 1,2,∞

Metric

p = 1 p = 2 p = ∞

w

⎛
⎜⎜⎝

0.417
0.083
0.417
0.083

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.500
0.119
0.285
0.096

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.446
0.161
0.268
0.125

⎞
⎟⎟⎠

Ranking x1 = x3 � x2 = x4 x1 � x3 � x2 � x4 x1 � x3 � x2 � x4

M1 =

⎛
⎜⎜⎜⎜⎜⎝

[1,1] [5,9]
[ 1

5 , 1
3

]
[3,5][ 1

9 , 1
5

]
[1,1]

[ 1
9 , 1

5

] [ 1
7 , 1

5

]
[3,5] [5,9] [1,1] [3,7][ 1
5 , 1

3

]
[5,7]

[ 1
7 , 1

3

]
[1,1]

⎞
⎟⎟⎟⎟⎟⎠

M2 =

⎛
⎜⎜⎜⎜⎜⎝

[1,1] [1,3] [3,5] [3,5][ 1
3 ,1
]

[1,1]
[ 1

7 , 1
3

] [ 1
5 , 1

3

]
[ 1

5 , 1
3

]
[3,7] [1,1] [1,5][ 1

5 , 1
3

]
[3,5]

[ 1
5 ,1
]

[1,1]

⎞
⎟⎟⎟⎟⎟⎠

(10)

M3 =

⎛
⎜⎜⎜⎜⎜⎝

[1,1] [3,5]
[ 1

5 , 1
3

]
[3,5][ 1

5 , 1
3

]
[1,1]

[ 1
5 , 1

3

] [ 1
7 , 1

3

]
[3,5] [3,5] [1,1] [5,7][ 1
5 , 1

3

]
[3,7]

[ 1
7 , 1

5

]
[1,1]

⎞
⎟⎟⎟⎟⎟⎠

M4 =

⎛
⎜⎜⎜⎜⎜⎝

[1,1] [3,5] [1,3] [5,7][ 1
5 , 1

3

]
[1,1]

[ 1
5 , 1

3

] [ 1
5 , 1

3

]
[ 1

3 ,1
]

[3,5] [1,1] [3,5][ 1
7 , 1

5

]
[3,5]

[ 1
5 , 1

3

]
[1,1]

⎞
⎟⎟⎟⎟⎟⎠

In this example, we find that matrices given by the experts are reciprocal, but
information provided by them is discrepant and not compatible. For instance, the
range of estimations about options x1 and x3 given by the experts E1 and E2 are
different. Even the intersection is empty,

[
m1

13,m
1
13

]
∩
[
m2

13,m
2
13

]
= /0. So, a

consensus between their preference information is required.
We applied the proposed method using lp-metrics for the most usual values of p.

We obtained the priority vectors and associated rankings listed in Table 1.
We notice that there are ties between options x1 and x3, and x2 and x4 for metric 1.

These ties are solved in the result obtained with p = 2 and p = ∞. They yield dom-
inance for option x1 over x3 and for x2 over x4, because greater deviations between
each pairwise comparison are emphasized.

We developed a GP matrix generator using MS Visual FoxPro and problems
were optimized using ILOG CPLEX (Java classes).

5 Conclusions

Our objective is to provide some methods for the estimation of priority punctual
weights that best reflects imprecise preference opinions of a group of DMs in an
interval pc scenario.
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Because rational properties and unanimous consensus are not guaranteed in real-
life problems, a general approximation framework is considered to define a com-
promise solution. The pairwise data given by the experts are considered as samples
of an ideal consistent ratio-matrix. For that purpose, lp-metrics are considered to
measure the distance from the experts data to the normative ones. This general
framework defines different decision-making modes. Moreover, in this context the
p-parameter can be interpreted as having a preference and consensus meaning.

The proposed approach allows dealing with interval assessments which is a nat-
ural way for an expert to express his views in presence of imprecise and unquantifi-
able information. Besides, it provides flexibility that can be exploited to achieve a
compromise solution between the experts in a group problem.

The given Interval GP formulation provides flexible and efficient methods that
can be easily implemented for computing priority crisp weights for the most usual
values of p in practical applications.

On the other hand, most of methods dealing with interval data in the literature,
lead to interval weights. When the interval weights overlap, there is not a unique
ranking of alternatives. Then, additional ranking procedures are required in order to
compare the final alternatives score.
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Bicriterion Shortest Paths in Stochastic
Time-Dependent Networks

Lars Relund Nielsen, Daniele Pretolani, and Kim Allan Andersen

Abstract In recent years there has been a growing interest in using stochastic time-
dependent (STD) networks as a modelling tool for a number of applications within
such areas as transportation and telecommunications. It is known that an optimal
routing policy does not necessarily correspond to a path, but rather to a time-
adaptive strategy. In some applications, however, it makes good sense to require
that the routing policy should correspond to a loopless path in the network, that is,
the time-adaptive aspect disappears and a priori route choice is considered.

In this paper we consider bicriterion a priori route choice in STD networks, i.e.
the problem of finding the set of efficient paths. Both expectation and min–max
criteria are considered and a solution method based on the two-phase method is
devised. Experimental results reveal that the full set of efficient solutions can be de-
termined on rather large test instances, which is in contrast to the time-adaptive case.
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1 Introduction

Recently there has been a growing focus on stochastic time-dependent networks∗

(STD networks) which often provide a better modelling tool in e.g. transporta-
tion applications [3, 9, 10, 12]. Here travel times are modeled as random variables
with time-dependent distributions. Particular cases, such as non-stochastic time-
dependent networks (see [5] for a recent overview) and time-independent stochastic
networks (see [15]) have been widely studied, but are not considered here.

STD networks were first addressed by Hall [4] who pointed out several ways to
formulate the route selection problem in STD networks. If the driver is allowed to
react to revealed (actual) arrival times at intermediate nodes, the best route is not
necessarily a path, but rather a time-adaptive strategy that assigns optimal successor
arcs to a node as a function of leaving time. This is referred to as time-adaptive route
choice. If a loopless path must be specified before travel begins, and no deviations
from the route are permitted, the path is selected a priori on the basis of only the
probability distributions of the arc travel-times. This is referred to as a priori route
choice and may be useful for routing highly sensitive substances for which the path
travelled must be preapproved. The problem of finding a minimum expected travel
time path under a priori route choice is NP-hard [14].

It is quite obvious that multicriteria a priori route choice in STD networks is
a relevant and difficult problem. However, only two papers exist on the subject.
Miller-Hooks and Mahmassani [6] consider bicriterion a priori route choice in dis-
crete STD networks, the objectives being minimizing expected travel time and cost.
A label-correcting procedure is described, which guarantees that all the efficient
paths can be obtained. Computational results are presented on a single road network.
Chang et al. [1] consider multicriterion a priori route choice in a continuous time
STD network, where travel times are normally distributed. They devise a heuristic
method based on the first two moments of the distributions, where an approximate
stochastic dominance criterion is adopted to compare paths. Computational results
are presented on an example network and a single road network.

In this paper we consider bicriterion route choice problems in STD networks
under a priori route choice. More specifically we consider the problem of finding
the set of efficient paths between an origin and a destination node, when leaving
the origin at time zero. We assume that departure times are integer and that travel
times are discrete random variables. The paper differs from previous work in the
following aspects:

(a) We propose a new algorithm using the two-phase method to determine the set of
efficient paths as opposed to the labelling approach proposed by Miller-Hooks
and Mahmassani [6].

(b) We perform a reasonably wide computational experience on grid networks,
where we address the case of two cost criteria, besides the (somehow easier)

∗ Also known as random time-dependent networks, stochastic time-varying networks or stochastic
dynamic networks.
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time/cost case; this allows us to evaluate the effect of uncorrelated and cor-
related cost criteria; furthermore, we consider both expectation and min–max
criteria.

(c) In our computational setting we do not consider a “steady state” with determin-
istic travel times at the end of a single peak period in contrast to [6]. During
the travel, times are stochastic and time dependent, and several peak periods are
encountered.

(d) Since our algorithms solve the bicriterion problem exactly on the set of in-
stances addressed here, we are able to compare the nondominated points found
under a priori and time-adaptive route choice.

The paper is organized as follows. In Sect. 2 we briefly introduce STD networks.
In Sect. 3 we give a short description of the two-phase method, and describe the pro-
cedure we use for its implementation. Computational results are reported in Sect. 4.

2 Stochastic Time-Dependent Networks

Let G = (N,A) be a directed graph, referred to as the topological network and let
o, d ∈ N denote two different nodes which represent the origin and the destination
node in G, respectively. Throughout this paper we consider routing from o towards
d when leaving node o at time zero.

Departure and arrival times belong to a finite time horizon, i.e. a set H =
{0,1, ..., tmax}. Let X(u,v, t) denote the arrival time at node v when leaving node
u at time t along arc (u,v) which is a discrete random variable with density

Pr(X (u,v, t) = ti) = θuvt (ti) , ti ∈ I (u,v, t)

where I(u,v, t) = {t1, ..., tκ(u,v,t)} denotes the set of κ(u,v, t) possible arrival times at
node v. We assume that travel times are positive, and no waiting is allowed in the
nodes. For the situation where waiting is allowed see [11].

Costs are considered in the model by letting c(u,v, t) denote the travel cost of
leaving node u at time t along arc (u,v) and g(t) the penalty cost of arriving at node
d at time t.

A strategy S is a function which provides routing choices for travelling from o
at time zero towards d. That is, if S(u, t) = (u,v) a traveller leaving node u at time
t travels along arc (u,v). Note that a strategy must provide routing choice for all
possible arrival times at an intermediate node. Under time-adaptive route choice
finding the best route with respect to some criterion corresponds to finding the best
strategy. Under a priori route choice we must travel along a loopless path in G, that
is, we must adopt a path-strategy, where the successor arcs of a node for different
leaving times are time-independent. From now on, we shall identify paths with path-
strategies. Let us denote by S the set of all strategies and with SP the set of all
path-strategies. Clearly, SP ⊆ S .
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a

b

c

d

Fig. 1 The topological network G

Table 1 Input parameters

(u,v), t (a,b),0 (a,c),0 (b,c),1 (b,c),3 (b,d),1

I(u,v, t) {1,3} {2} {2} {4,5} {3}
c(u,v, t) (1,1) (3,0) (2,2) (0,4) (3,8)

(u,v), t (b,d),3 (c,b),2 (c,d),2 (c,d),4 (c,d),5

I(u,v, t) {6,7} {3} {3,4} {5,6} {6}
c(u,v, t) (3,6) (2,1) (4,2) (3,3) (1,5)

Example 1. Consider the topological network in Fig. 1, where a is the origin node
and d is the destination node. For each arc in G, the possible departure and ar-
rival times are listed in Table 1. Here a pair ((u,v), t) corresponds to a possible
leaving time t from node u along arc (u,v). For the sake of simplicity, we as-
sume that X(u,v, t) has a uniform density, i.e., for each t ′ ∈ I(u,v, t), we have
θuvt(t ′) = 1/|I(i, j, t)|. For example, if we leave node b at time 3 along arc (b,c),
we arrive at node c at time 4 or 5 with the same probability 1/2. Two possible
strategies are

S1 : S1(a,0) = (a,b), S1(b,1) = (b,d), S1(b,3) = (b,d);
S2 : S2(a,0) = (a,b), S2(b,1) = (b,d), S2(b,3) = (b,c),

S2(c,4) = (c,d), S2(c,5) = (c,d).

Strategy S1 is a path-strategy and corresponds to the path a−b−d while for strategy
S2 we travel different routes depending on the leaving time from node b.

In this paper we assume that two values are associated with a strategy, namely
travel time and cost, where cost is considered in general terms, e.g., a risk measure
or the economic travel cost. Furthermore, different criteria are considered, namely,
expectation criteria (minimize expected travel time or cost) and min–max criteria
(minimize maximum possible travel time or cost). The value associated with a strat-
egy according to these criteria can be formally defined by means of sets of recursive
equations, see [14]. Given a strategy S ∈ SP let W (S) = (W1(S),W2(S)) denote the
two-dimensional vector, where Wi(S), i = 1,2 is the value associated with S with re-
spect to one of the above four criteria. In this paper we face the following problem:
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min W (S) = (W1(S),W2(S))
s.t. S ∈ SP.

(1)

That is, we want to find the set of efficient (Pareto optimal) path-strategies SE ⊆SP
or equivalently the set of nondominated points WE = {W (S) ∈ R

2 | S ∈ SE} in the
criterion space W . We will follow the predominant thought within bicriterion opti-
mization which is to identify all nondominated points, providing one corresponding
efficient solution for each nondominated point.

Nondominated points can be partitioned into two sets, namely supported and un-
supported. The supported ones can be further subdivided into extreme and nonex-
treme as illustrated in the following example.

Example 1. (continued) Assume that two costs ci(u,v, t), i = 1,2, are given for
each leaving time t from node u along arc (u,v), see Table 1.

Consider (1) when both criteria are to minimize expected cost. The criterion
points corresponding to the four possible loopless paths in G are illustrated in
Fig. 2a. In this example all four points are nondominated. W 1,W 2 and W 4 are sup-
ported points all of which are extreme. The extreme points define two triangles,
shown with dashed lines, in which it may be possible to find unsupported nondomi-
nated points such as W 3.

In general the total number of path-strategies is significantly lower than the num-
ber of strategies. Under time-adaptive route choice, i.e. we consider (1) with the
constraint replaced with S ∈ S instead, we have nine possible strategies, i.e. five
points do not correspond to a path. All nine points are illustrated in Fig. 2b. Under
time-adaptive route choice the five points W 1,W 2,W 4,W 5 and W 9 are supported
nondominated points of which W 1 and W 2 are non-extreme. Points which do not lie
inside the triangles such as W 3 and W 7 are dominated. Moreover, the two points W 6
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Fig. 2 Criterion spaces under a priori and time-adaptive route choice
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and W 8 are dominated by W 1 and W 2, respectively. Further details and illustrations
of the (path-)strategies can be found in [11].

Please note that the set of nondominated points under time-adaptive route choice
will always dominate the set of nondominated points under a priori route choice.
However, a nondominated point under a priori route choice (such as W 3) may be
dominated, if time-adaptive route choice is considered.

3 Solution Method

In this section we devise a solution method finding all efficient paths under a priori
route choice based on the two-phase method. The two-phase approach is a general
method for solving bicriterion discrete optimization problems such as (1). As the
name suggests, the two-phase method divides the search for nondominated points
into two phases. In phase one, extreme supported nondominated points are found.
These extreme points define a number of triangles in which unsupported nondom-
inated points may be found in phase two. For a description of a generic two-phase
method see [13].

Both phases make use of a parametric function γ : (W ,R+)→R+ which denotes
the parametric cost of a path-strategy S ∈ SP .

γ (W (S) ,λ ) = W1(S)λ +W2 (S) . (2)

It is well-known that given λ > 0 the path-strategy S with minimum parametric
cost γ(W (S),λ ) corresponds to a supported nondominated point and hence is effi-
cient. As a result all supported extreme nondominated points can be found in phase
one by solving (2) for different values of λ , see [2].

Phase two searches each triangle using an algorithm for ranking path-strategies
with respect to the parametric weight (2), where λ is a function of the slope of the
line joining the two points defining the triangle. The search stops when the paramet-
ric weight reaches an upper bound, which in turn is dynamically updated (decreased)
when new nondominated points are found.

It must be kept in mind that in both phases we have to solve a sequence of difficult
problems, since a priori routing even for the single criterion case is NP-hard. In order
to solve these problems we adopted the newly developed algorithm for ranking paths
in STD networks (procedure K-BPS), see [10]. However, the effectiveness of this
approach is quite different for expectation and min–max criteria.

As long as two expectation criteria are used, the parametric cost γ (W (S) ,λ ) of
a strategy S is equal to the cost of S with respect to the cost vector cλ = c1 ·λ + c2.
This result has been proved in [9, Th. 2] for strategies, and clearly holds for path-
strategies too. As a consequence, we can rank paths with respect to the parametric
cost by applying procedure K-BPS with the costs cλ . This procedure is also used in
phase one, stopping as soon as the best parametric path is found.
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Unfortunately, the above result does not hold, if min–max criteria are consid-
ered. In this case, cλ only provides us with a lower bound Wλ (S) ≤ γ (W (S) ,λ )
(see [9, Th. 3, 4]). By applying procedure K-BPS with costs cλ we generate path-
strategies in non-decreasing order of Wλ (S). In phase one, for each vale value of
λ we let procedure K-BPS run until Wλ (S) reaches the parametric cost of the best
path-strategy generated so far. In phase two a triangle is searched until the lower
bound Wλ (S) reaches the upper bound of the triangle. In phase one it may happen,
due to ranking according to Wλ (S), that procedure K-BPS generates many paths that
actually fall inside the triangle defined by a certain λ . In order to take advantage
of this fact, in our computational tests, we adopt a hybrid algorithm, where the two
phases are combined. More precisely, when a new triangle is identified in the first
phase we search inside the triangle by letting procedure K-BPS continue until the
lower bound Wλ (S) reaches the upper bound.

4 Computational Experience

We implemented the algorithm in C++ and compiled the source code with the GNU
C++ compiler with optimize option -O on a 1 GHz PIII computer with 1 GB RAM
using a Linux Red Hat operating system. The main goals and results of our compu-
tational experience have been anticipated in the introduction, where we pointed out
the original contributions of our work.

4.1 Test Instances

The STD network test instances are generated using the newly developed genera-
tor TEGP (Time-Expanded Generator with Peaks) which includes several features
inspired by typical aspects of road networks. For more details see [8].

Two grid graphs, with sizes 5 × 8 and 10 × 10, are considered; the length of
the time horizon is 144 and 288, respectively. Each grid arc is randomly assigned
an off peak mean travel time, so that the mean travel time changes as a function of
leaving time, increasing up to 100% during peak periods. For the 5×8 grid the mean
travel time follows the two-peaks pattern shown by the dotted line in Fig. 3, while

peak peak t

cost/ time

Fig. 3 Peak effect and random perturbation for an arc
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for the 10×10 grid the pattern in Fig. 3 is repeated, obtaining four peaks. The travel
time distribution is randomly generated around the travel time mean, as a discrete
approximation of a normal distribution. Arc costs are generated independently from
travel times and increase due to the peak effect with a further random perturbation
(10% at most) thus following a pattern similar to the solid line in Fig. 3.

The network parameters are summarized in Table 2. Here IT and IC denote the
range of possible travel times and costs, and κ is the average size of the travel time
distributions. For further details about the test instances see [11].

We report results on three different combinations, namely: T/C, corresponding to
travel time and cost; C/C negcor, where the two costs are negatively correlated; and
C/C nocor, where no correlation between the two costs is assumed. Recall that C/C
negcor is usually considered to be harder. In all combinations the penalty costs are
zero. For each setting of costs five test instances where generated.

4.2 Results

We first consider the case of two expectation criteria. The results are reported in
Table 3. Here |WSE | is the number of supported extreme nondominated points and
CPUSE is the average CPU time (in seconds) used to find the supported nondomi-
nated points. |�| is the number of triangles, while |W�| is the number of nondomi-
nated points in a triangle (points defining the triangle not included). Finally, CPU�
is the CPU time used to find the nondominated points in a triangle (average and
maximum).

In phase one all extreme supported nondominated points can be determined in a
reasonable amount of time. The same holds true for phase two (which is the most

Table 2 Test parameters

Size H Peaks IT IC κ

5×8 144 2 [3,20] [1,2200] 6
10×10 288 4 [3,20] [1,2200] 6

Table 3 Results expectation criteria

|WSE | CPUSE � |W�| CPU�

ave max ave max

5×8 T/C 5 0.54 4 1 4 0.16 0.33
5×8 C/C nocor 4 0.57 3 1 4 0.20 0.40
5×8 C/C negcor 8 1.45 7 3 11 0.73 2.22
10×10 T/C 6 8.90 5 2 8 3.79 22.91
10×10 C/C nocor 8 21.45 7 3 17 5.76 47.57
10×10 C/C negcor 11 25.04 10 6 26 12.08 43.05
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time-consuming phase). That is, we can find the nondominated set for all the test
instances considered.

Comparing the different combinations of criteria, we see that the time–cost case
is in general easier than the cost–cost cases, and that negatively correlated costs
are harder than uncorrelated costs. The plots in Fig. 4 give an intuition of the differ-
ence between C/C negcor and C/C nocor. Indeed, negatively correlated costs produce
more nondominated points that are spread in a larger area of the criterion space. As
a result, we have more triangles to search, and it takes longer time to search each one
of them; see [11] for further details. This fact was also observed under time-adaptive
route choice [9] and is a general feature for discrete bicriterion optimization prob-
lems, see e.g. [13].

The results for two min–max criteria are presented in Table 4; we only consider
the (more difficult) cost/cost combinations here. Compared to expectation criteria
the total number of nondominated points is about the same in average. However, the
CPU time spent is considerably higher, as we may expect, since the parametric prob-
lem is harder to solve and the lower bound used for ranking is not very tight. Also
in this case, the problems with negatively correlated costs are much more difficult.
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Fig. 4 WE for an uncorrelated (left) and negatively correlated (right) test instance (both criteria are
minimizing expected cost)

Table 4 Results min–max criteria

|W�| CPU�|WSE | �
ave max ave max

5×8 C/C nocor 4 3 1 4 0.32 0.68
5×8 C/C negcor 7 6 4 14 2.01 5.65
10×10 C/C nocor 8 7 2 12 17.91 80.12
10×10 C/C negcor 10 9 7 59 100.42 439.72
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4.3 Comparison to the Time-Adaptive Case

Comparing the results for the a-priori case to previous results for the time-adaptive
case [7, 9] allows us to point out interesting differences. Here we restrict ourselves
to expectation criteria, since for min–max criteria the approximation found in [9] is
usually rather week.

First of all, recall that the set of nondominated points has been found for all
the instances considered. This is in deep contrast to time-adaptive route choice,
where not even an ε-approximation with ε = 1% could be found for the same set
of instances [9]. This result may be viewed as surprising, since finding the best
strategy in the single criterion case is easy (can be done in linear time) while finding
the best path-strategy is NP-hard. A reasonable explanation of this apparent paradox
is that the solution space is much more dense in the time-adaptive case, that is, the
total number of path-strategies is much lower than the total number of strategies.
Therefore the ranking procedure used in the second phase does not have to rank as
many solutions.

In order to get a deeper insight in this issue, we made plots comparing the non-
dominated set for the a priori case with an approximation of the nondominated set
for the time adaptive case, obtained using the algorithms from [9]. Fig. 4 shows
two instances on a 5×8 grid with uncorrelated costs (left) and negatively correlated
costs (right).

First, as noted above, negatively correlated costs produce more nondominated
points, spread in a wider area; this situation arises for both a priori and adaptive
routing.

Second, in some cases the a priori nondominated set may contain points close
to the time-adaptive nondominated set. Hence solutions found when priori routing
must be adopted, due e.g. to outside regulations, may still be as good as those found
without this regulation. However, in other cases you may have to pay higher costs, if
paths must be adopted (e.g. if the first cost is below 4,500 in the left plot in Fig. 4).

Finally, in general for our instances there are large variations in the values of ε
for which the a priori nondominated set turns out to ε-dominate (see [16]) the time-
adaptive nondominated set. On average ε = 0.1, the minimum ε value found was
0.03 and the maximum 0.25.
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Clusters of Non-dominated Solutions
in Multiobjective Combinatorial Optimization:
An Experimental Analysis

Luı́s Paquete and Thomas Stützle

Abstract This paper presents an analysis on the level of clustering of approxi-
mate non-dominated solutions for several instances of the Biobjective Travelling
Salesman Problem and the Biobjective Quadratic Assignment Problem. The sets of
approximate non-dominated solutions are identified by high performing stochastic
local search algorithms. A cluster is here defined as a set of non-dominated solutions
such that for any solution of the set there is at least one other that is at a maximum
distance k for a given neighborhood function. Of particular interest is to find k for
which all approximate non-dominated solutions are in a single cluster. The results
obtained from this analysis indicate that the degree of clustering depends strongly
on the problem but also on the type of instances of each problem. These insights
also suggest that different general-purpose search strategies should be used for the
two problems and also for different instance features.

Keywords: Combinatorial optimization · Local search · Multiobjective program-
ming

1 Introduction

When applied to multiobjective combinatorial optimization problems defined in
terms of Pareto optimality, local search algorithms return a set of non-dominated
solutions that approximate the Pareto optimal set. Several of these algorithms con-
sist of two main steps [1,6,9,12]. In the first step, optimal or approximate solutions
with respect to several scalarizations of the objective function vector are obtained;
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then, in the second step, non-dominated solutions are searched with respect to some
neighborhood. Obviously, the success of such algorithms strongly depends on how
close are high quality solutions in the solution space with respect to the neighbor-
hood chosen.

In this paper, we report and interpret some statistics collected on clusters of ap-
proximate non-dominated solutions for two multiobjective combinatorial optimiza-
tion problems in order to provide more insight into potentially successful search
strategies for those problems. Informally, a cluster is defined here as a set of so-
lutions that are reachable from each other by applying k elementary moves with
respect to a given neighborhood. We then compute the percentage of solutions in
the clusters, as well as the number of clusters, for different k. This analysis is per-
formed on several instances of the biobjective traveling salesman problem (BTSP)
and the biobjective quadratic assignment problem (BQAP) for various sizes and
different features. The set of solutions examined here are taken from the union of a
large set of solutions returned by many runs of several high-performing stochastic
local search algorithms for these problems described in [11].

2 Clusters of Non-Dominated Solutions

For this analysis, we extend the notion of efficient graph given in [5] by introduc-
ing a distance δ that corresponds to the minimum number of solutions that must be
visited in order to reach a solution u from a solution v, according to a given neigh-
borhood structure N . Given a set of non-dominated solutions for some problem in-
stance and a distance function δ , let Gk = (V,E) be a graph where V corresponds to
the set of non-dominated solutions and an edge in E connects u and v if δ (u,v) ≤ k,
u,v ∈ V . Then, a cluster of non-dominated solutions at distance k is a connected
component of Gk. Intuitively, given a single solution in a cluster, a local search may
reach any of the solutions inside the cluster by moving through non-dominated so-
lutions that are at a maximum distance of k.

Several statistics can then be collected for several values of k. Examples are the
number of clusters and the percentage of the total number of solutions in clusters.
Note that for these statistics to be interesting for algorithms like those of [1,6,9,12],
resulting singleton graphs are not taken into account. In this paper, we collect these
statistics for various instance classes of the BTSP and the BQAP. For both problems,
solutions are represented as permutations and usual k-exchange neighborhoods can
be applied. In order to judge the level of clustering present in the various instance
classes, we compare the resulting statistics to those that would be observed if the
solutions were distributed uniformly at random in the search space. To do so, we
generated 10,000 random permutations for each instance size and measured the re-
sulting minimum, mode, and maximum of the distribution of distance values (pair-
wise distances measured among the generated solutions); if the number of observed
clusters drops down near the mode, this would suggest that the approximate solu-
tions are scattered randomly in the solution space, which, intuitively, can be seen as
a disadvantage for the local search algorithms mentioned above.
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2.1 The Biobjective TSP

In the biobjective Traveling Salesman Problem (BTSP) are given n cities and a
bidimensional distance vector for each pair of cities. The goal is to find a set of
Hamiltonian tours that is minimal with respect to the notion of Pareto optimality.
This problem is known to be NP-hard since its single objective version is also NP-
hard [14].

In the single objective version case, most local search algorithms are based on the
k-edge-exchange neighborhoods, where two solutions are neighbored if they differ
in at most k edges. Hence, we base our distance measure also on these neighbor-
hoods. Unfortunately, for these neighborhoods the exact distance cannot be com-
puted efficiently. For example, in the case of the 2-edge-exchange neighborhood the
problem of determining the minimum distance between two solutions corresponds
to the problem of sorting a permutation by the minimum number of reversals, which
is known to be NP-hard [4]. Therefore, we use the number of different edges be-
tween tours, which is an approximation of the exact distance between tours; for
example, in the case of the 2-edge-exchange neighborhood, this measure is in the
worst case twice the minimum distance.

The BTSP studied in this article is defined by two distance matrices. Here, we
examined BTSP instances of 100, 300 and 500 cities where we have chosen the two
distance matrices in order to have three different classes of instances: (1) both are
random Euclidean matrices (Eucl), (2) both are random distance matrices (RDM),
and (3) one is a random Euclidean and the other is a random distance matrix (Mix).∗

The plot of Fig. 1 shows the average number of non-dominated solutions found
for each type and size of instance. Interestingly, the results indicate an increasing
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Fig. 1 Average number of non-dominated solutions in the BTSP instances

∗ See [7] for a detailed explanation about the different kinds of TSP instances.
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Fig. 2 Number of clusters and solutions in clusters for two BTSP instances

difference between the number of solution produced in Eucl and RDM instances as
the instance size grows.

Some results of the analysis are presented in the plots of Fig. 2. Given are the
average number of clusters on the left axis, represented by solid lines and filled
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symbols, and on the right axis the average percentage of the total number of solu-
tions in clusters, represented by dashed lines and empty symbols, for an instance of
size 300 (top plot) and one of size 500 (bottom plot); the results on the instances
with 100 cities are very similar. The squares, triangles and circles indicate Eucl,
RDM and Mix instances, respectively. In addition, we indicate the minimum, the
mode and the maximum distance found among all pairs of random permutations by
the first, second and third dashed vertical line in the plot (visible at the right of each
plot), respectively.

The most striking observation is the difference between the range of distance
values between random permutations and those resulting from the BTSP instances;
while almost all solutions of the latter are concentrated in large clusters with less
than one third of the maximum distance, for random permutations the minimum
distance between any two tours is about 95% of the maximally possible distance,
as indicated by the leftmost vertical line. Hence, we can clearly conclude that ap-
proximate solutions to these BTSP instances are strongly clustered. Interestingly,
we also see for small values of k some differences in the number of clusters among
the three instance types. The tendency is that there is a lower number of clusters in
RDM instances than in the other types of instances; this effect could be due to the
lower number of solutions we have found in RDM instances.

2.2 The Biobjective QAP

The quadratic assignment problem is commonly described as an assignment of a set
of n facilities to n locations such that the sum of the products of the flow among
each pair of facilities by the distance between their assigned locations is minimized.
Here we took the biobjective model introduced in [8] which consists of two flow
matrices but always keeps the same distance matrix.

In the k-exchange neighborhoods for the BQAP, two solutions are neighbored if
they differ in the assignment of at most k facilities to locations. The distance con-
sidered between each pair of observed solutions in the BQAP case is the minimum
number of swaps of two assignments of a facility to a location, which can be com-
puted efficiently [2, 13]. We generated instances of three different sizes (25, 50 and
75 locations/facilities) and three different values for the correlation between flow
matrices (0.75, 0.0, −0.75), which translates into certain correlations between the
objectives. In addition, unstructured and structured distance and flow matrices were
considered; the instance generator for structured instances imposes clusters between
locations on the distance matrix and null entries on the flow matrices. Additionally,
the non-zero entries of the flow matrices show a strongly skewed distribution, with
high values occurring rarely. In the unstructured instances, the entries of the distance
and the two flow matrices are generated according to a uniform distribution in the
range [0,99].

The average number of non-dominated solutions found for each correlation value
and size of instances are given in the two plots of Fig. 3 for unstructured (top) and



74 L. Paquete and T. Stützle
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Fig. 3 Average number of non-dominated solutions in unstructured (top) and structured (bottom)
BQAP instances

structured (bottom) instances. Note that the correlation has a strong effect on the
number of solutions for unstructured instances, that is, the lower the correlation,
the larger is the number of solutions returned. This observation is consistent with
other results in the literature, such as in [10] for the multiobjective shortest path
problem. However, this effect is weaker in structured instances, which might be due
to the presence of structure in the input data. Interestingly, the number of solutions
obtained in structured instances is larger than those in unstructured instances.

The results of our analysis are given in the two plots of Fig. 4 for unstructured
(top) and structured (bottom) instances of size 50; the information given is analo-
gous to the BTSP case. The geometric symbols indicate different degrees of correla-
tion between the flow matrices. Once again, the observations are similar for different
sizes.
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Fig. 4 Number of clusters and solutions in clusters for unstructured (top) and structured BQAP
(bottom) instances

The curves indicate a very different pattern from those observed for the BTSP.
For instance, the degree of clustering of approximate solutions is much smaller for
the BQAP instances than for the BTSP instances, as it is indicated by the much lower
percentage of solutions in clusters and the much slower decrease of the number of
clusters. Moreover, the differences between the unstructured and structured BQAP
instances are rather large. While for the structured BQAP instances, the shapes of the
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curves have some similarities to those for the BTSP, for the unstructured instances
the very strong decrease in the number of clusters within the range of distances
found between random permutations (most clearly visible for the instances with 0.75
and 0.0 correlation) is striking. In fact, this means that for unstructured instances
there are approximate solutions that are quite far away from each other with respect
to the neighborhood chosen. In addition, especially on the unstructured instances,
the correlation between the flow matrices strongly affects the number of clusters.

3 Discussions and Conclusions

The experimental results obtained by Borges and Hansen [3] on the BTSP, though
for a more limited number and type of instances, match the results observed in this
article: approximate solutions for this problem are typically clustered with respect
to the well-known 2-edge-exchange neighborhood. Differently, the results obtained
for the BQAP indicate that the structure of the input data plays an important role
on the degree of clustering of approximate solutions. In fact, several statistics on
the input data, such as the flow dominance, change considerably with the presence
or lack of structure [8]. Therefore, it is expected that the level of clustering might
change as well.

This analysis also suggests that stochastic local search algorithms should use dif-
ferent general-purpose search strategies for different problems and for different in-
stance features. For instance, the number of solutions collected for Euclidean BTSP
instances and for structured BQAP instances indicates that local search algorithms
for those problems should forcedly use an archive of bounded size.

Moreover, exploring extensively non-dominated solutions close to approximate
solutions for scalarizations of the objective function vector, as performed in [1, 6, 9,
12], seems to be more appropriate for the BTSP under the 2-exchange neighborhood
than for the BQAP. In fact, these results explain the good performance of the simple
approach proposed in [12] on benchmark instances of the BTSP.

Finally, we remark that, despite the theoretical interest of this topic, the type of
analysis reported in this article helps algorithm designers in identifying the algo-
rithmic strategies that should be used if the real-life input data has certain features.
For the specific case of the BQAP, both the correlation between flow matrices and
the structure of the input data can be easily detected. Similarly, Euclidean distances
are easy to detect for the case of the BTSP. In many cases, the instance features
will arise almost naturally from the problem formulation. For example, if the BQAP
arises from the task of allocating facilities to locations in a new building for a hospi-
tal, where the flow of doctors and the flow of nurses between facilities must be taken
into account, one should expect that there should be a positive correlation between
the two flow matrices. An example for the BTSP consists on planning a sightsee-
ing tour where both distance and cost are two objectives to minimize; the distance
matrix is Euclidean whereas the cost matrix is usually not.
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Computational Results for Four Exact Methods
to Solve the Three-Objective Assignment
Problem

Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott

Abstract Most of the published exact methods for solving multi-objective combi-
natorial optimization problems implicitely use properties of the bi-objective case
and cannot easily be generalized to more than two objectives. Papers that deal ex-
plicitely with three (or more) objectives are relatively rare and often recent. Very
few experimental results are known for these methods and no comparison has been
done. We have recently developed a generalization of the two phase method that
we have applied to the three-objective assignment problem. In order to evaluate the
performance of our method we have implemented three exact methods found in the
literature. We provide an analysis of the performance of each method and explain
the main difficulties observed in their application to the three-objective assignment
problem.

Keywords: Assignment problem · Computational results · Exact methods ·
Multi-objective combinatorial optimization

1 The Multi-Objective Assignment Problem

Efficient algorithms to solve the single-objective assignment problem are well
known. In this paper we consider the assignment problem with p objectives (pAP).
It can be formulated as follows:

“min”(z1(X), . . . ,zp(X)) =
n

∑
i=1

n

∑
j=1

ck
i jxi j k = 1, . . . , p,

n

∑
j=1

xi j = 1 i = 1, . . . ,n,

A. Przybylski (�)
Laboratoire d’Informatique de Nantes Atlantique, FRE CNRS 2729 – Université de Nantes. 2,
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n

∑
i=1

xi j = 1 j = 1, . . . ,n,

xi j ∈ {0,1} i, j = 1, . . . ,n,
(pAP)

where all objective function coefficients ck
i j are non-negative integers and x =

(x11, . . . ,xnn) is the matrix of decision variables.
Let X denote the set of feasible solutions of (pAP). We call R

n2
,X ⊆ {0,1}n2 ⊆

R
n2

, decision space and R
p,Y = {z(x) : x ∈ X} ⊆ N

p ⊆ R
p, objective space. Y is

also called the outcome set.
In the following, for y1,y2 ∈ R

p we shall write y1 � y2 if y1
k ≤ y2

k ,k = 1, . . . , p,
y1 ≤ y2 if y1 � y2 and y1 	= y2, and y1 < y2 if y1

k < y2
k ,k = 1, . . . , p. We shall use

R
p
� := {x ∈ R

p : x � 0} and analogously R
p
≥ and R

p
>.

In multi-objective optimization there is in general no feasible solution which
minimizes all objectives simultaneously.

Definition 1. A feasible solution x∗ ∈ X is called efficient (weakly efficient) if there
does not exist any other feasible solution x ∈ X such that z(x)≤ z(x∗) (z(x) < z(x∗)).
z(x∗) is then called a nondominated point (weakly nondominated point). If x,x′ ∈
X are such that z(x) ≤ z(x′) (z(x) < z(x′)), we say that x dominates x′ (x strictly
dominates x′) and z(x) dominates z(x′) (z(x) strictly dominates z(x′)).

Definition 2. Supported efficient solutions are optimal solutions of a weighted sum
single objective problem min{λ1z1(x) + · · ·+ λpzp(x) : x ∈ X} for some λ ∈ R

p
>.

Their image in objective space are called supported nondominated points.

We use the following notations (definitions can be found in [9]):

• YN : the set of nondominated points,
• YSN : the set of supported nondominated points,
• YNN : the set of nonsupported nondominated points,
• XE ,z(XE) = YN : a complete set of efficient solutions,
• XSE ,z(XSE) = YSN : a complete set of supported efficient solutions,
• XNE ,z(XNE) = YNN : a complete set of nonsupported efficient solutions.

2 Experimental Context

We have solved (3AP) in the sense of determining a complete set XE , i.e., to find
at least one efficient solution for every nondominated point using the methods de-
scribed in [4, 7–9]. We have generated a series of 10 instances of size varying from
5×5 to 50×50 with a step of 5. The objective function coefficients are integers gen-
erated randomly in (0,20). A computer with a P4 EE 3.73 Ghz processor and 4 Gb
of RAM has been used for the experiments. All methods have been implemented in
C. The binaries have been obtained using the compiler gcc with optimizer option
-O3. We have used CPLEX 9.1 to solve the (single objective) assignment problems
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with some additional constraints that need to be solved in the methods of [4,7,8]. In
the next sections, a brief description of each method used is given with an analysis
of the experimental results.

3 The Method of Sylva and Crema (2004)

Given a vector λ ∈ R
p
>, this method computes the nondominated points (with one

corresponding efficient solution for each point) in increasing order of λ T z. This is
done by solving one subproblem for each new efficient solution. After finding k
nondominated points y1, . . . ,yk, the following subproblem is solved

min

{
λ T z(x) : x ∈ X \

k⋃
i=1

Di

}
,

where Di = {x ∈ X : yi � z(x)}. There are two possible cases:

• The subproblem is feasible so that the next nondominated point yk+1 is found
(with a corresponding solution) and the algorithm proceeds to solve the next
subproblem.

• The subproblem is infeasible. Then {y1, . . . ,yk} = YN and the algorithm ends.

Let x ∈ X with y = z(x). To formulate the constraint x 	∈ Di, Sylva and Crema [4]
propose to use disjunctive constraints

x 	∈ Di ⇐⇒ y1 ≤ yi
1 −1 or y2 ≤ yi

2 −1 or . . . or yp ≤ yi
p −1

based on the integrality of the costs. These constraints are linearized in the usual
way:

x 	∈ Di ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yk ≤ (yi
k −1)xi

k +M(1− xi
k) for k = 1, . . . , p

p

∑
k=1

xi
k ≥ 1

xi
k ∈ {0,1} for k = 1, . . . , p,

where M is a big number (an appropriate value can be obtained using the range of
data and the size of the problem).

Therefore, after each iteration p + 1 constraints and p new binary variables are
added to the problem. Consequently, the subproblems to be solved become larger
and larger and more and more constrained.

With this method, we have solved the 5× 5 instance in 0.15 s (|YN | = 12) and
the 10×10 instance in 99,865 s (|YN | = 221). We have not been able to solve larger
instances with this method. The main limitation is clearly the huge difficulty for
CPLEX to solve the subproblems after some iterations. This fact is illustrated in
Fig. 1. It is clearly not possible with this method to solve problems with large cardi-
nality of YN .
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Fig. 1 Number of nondominated points generated versus time on the 10× 10 instance with the
method of [4]

4 The Method of Tenfelde–Podehl (2003)

This method performs three steps:

Step 1: Let P(i) be the problem with p−1 objectives defined by

min
x∈X

(z1(x), . . . ,zi−1(x),zi+1(x), . . . ,zp(x)).

For all i ∈ {1, . . . , p}, P(i) is solved. This gives nondominated points, and
according to Theorem 4 in [2] the ideal point and the nadir point.

Step 2: The nondominated points found in Step 1 are used to determine boxes in
objective space.

Step 3: The boxes defined in Step 2 are explored by dichotomy.

We only describe Step 2. At the end of Step 1, we know that all nondominated
points are located in the large box defined by the ideal and the nadir point. However,
we already know some nondominated points inside this box and it is therefore not
necessary to explore the whole box. For all y found in Step 1, Tenfelde–Podehl [7]
proposes to introduce p hyperplanes hi(y) = {y′ ∈ R

p : y′i = yi}. These hyperplanes
are used to divide the initial box into small boxes (Fig. 2).

Next, small boxes where no nondominated points can exist are excluded using
the following properties:

Property 1. Let P be a problem with p objectives and let y∗ be a nondominated point
obtained in Step 1. The following statements hold.

(a) Every feasible point y with y∗ ≤ y is dominated.
(b) There does not exist a feasible point y for which y ≤ y∗.

Property 2. Let P be a problem with p objectives and let y∗ be a nondominated point
found in Step 1, obtained for problem P(i). Then there does not exist a feasible point
y for which
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Fig. 2 Illustration of the
division of the box defined by
the ideal and the nadir point
with three objectives

nondominated  point

Fig. 3 Illustration of
Property 1 with 3 objectives

z3

z2

z1

Fig. 4 Illustration of Property
2 with 3 objectives and a
nondominated point obtained
by P(1)

z1

z2

z3

(y1, . . . ,yi−1,yi+1, . . . ,yp) ≤ (y∗1, . . . ,y
∗
i−1,y

∗
i+1, . . . ,y

∗
p).

The properties are illustrated in Figs. 3 and 4. Small boxes included in the hashed
areas are excluded.

Then it remains to determine boxes where nondominated points not found in Step
1 may exist. This is done using Property 3.

Property 3. Let P be a problem with p objectives and let y∗ be a nondominated point
not found in Step 1. For i ∈ {1, . . . , p}, there exists a nondominated point yi for P(i)
such that yi

i > y∗i and (yi
1, . . . ,y

i
i−1,y

i
i+1, . . . ,y

i
p) ≤ (y∗1, . . . ,y

∗
i−1,y

∗
i+1, . . . ,y

∗
p).

Using one nondominated point of each problem P(i), Property 3 yields an in-
stersection of p boxes (which is possibly empty or the union of small boxes) called
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Table 1 Experimental results with the method of [7]

Instance Remaining Total inclusions Memory CPU time (s)
size intervals required

5 40 196 1.5 Kb 0.04
10 6,849 1,563,082 11.9 Mb 97.30
15 23,531 25,902,170 197.6 Mb 544.53
20 213,414 2,238,368,109 16.7 Gb ×

admissible interval. All combinations consisting of one nondominated point of each
problem P(i) must be used to determine these boxes. All small boxes that are not in-
cluded in an admissible interval are excluded. The remaining small boxes are called
remaining intervals.

Finally, it remains to explore the remaining intervals. Because their union is not
convex and there are too many remaining intervals, it is necessary to group them
such that ideally:

(a) The grouping yields a convex box
(b) Each of the remaining intervals is explored once
(c) The smallest possible number of admissible intervals has to be searched

This is a difficult problem. Tenfelde–Podehl [7] proposes to use a heuristic (that en-
sures condition (a) and (b) above but not necessarily condition (c)). This heuristic
uses properties of the location of remaining intervals inside the admissible inter-
vals. Therefore, it is necessary to first determine the sets of admissible intervals and
remaining intervals, and the set of remaining intervals included in each admissible
interval.

Table 1 summarizes the experimental results we observed. The column “Total
inclusions” means the sum of the number of remaining intervals in each admissible
interval. As we can see, this number becomes huge quickly. For the 20×20 instance,
16.7 Gb of memory are required. Thus, the limitation of this method is clearly its
memory requirement.

5 The Method of Laumanns et al. (2005)

This is a method based on the ε-constraint approach [3]:

minz1(x)
subject to zk(x) ≤ εk k = 2, . . . , p

x ∈ X .
P(ε)

For a given ε , if P(ε) is feasible, then the optimal solution is weakly efficient.
All efficient solutions are optimal solutions of problems P(ε) with appropriate
choices of ε . While the adaptive variation of ε to find all nondominated points
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Fig. 5 Illustration of the hypergrid with three objectives

is straightforward with two objectives, it has long remained unsolved with three
objectives and more. Laumanns et al. [8] have proposed a generalization and have
provided a source code as example (application to the three-objective multidimen-
sional binary knapsack problem, available at http://www.tik.ee.ethz.ch/
laumanns). In the following, we give a brief description of the implementation
done by the authors of the method which is slightly different from the description in
their paper [8] using a lexicographic objective.

This method uses all (weakly) nondominated points already found. This is done
using a (p− 1) dimensional hypergrid, which partitions the whole objective space
into hyperrectangles parallel to the axis of objectives z2 to zp (Fig. 5). The hyper-
rectangles are explored by decreasing order of the cell index by defining problems
P(ε) with ε equal to the upper-right corner of each hyperrectangle. In the applica-
tion to (3AP), we can subtract 1 from each component, because we assume costs to
be integer.

Solving a problem P(ε) two cases can occur:

• If there is no feasible solution, or a point already found or dominated by a point
already found is obtained then the hyperrectangle is empty (in the sense that there
is no nondominated point inside).

• Otherwise, a new (weakly) nondominated point is found, the exploration of the
grid is stopped, a new grid is defined with this new point, and the exploration of
this new grid is started. It is not necessary to explore all hyperrectangles in this
new grid, since it is already known that some hyperrectangles are empty.

The experimental results of this method on (3AP) are shown in Table 2. The time
needed by this method increases exponentially, which is due to the huge number
of nondominated points. Indeed, with the number of (weakly) nondominated points
found during the exploration, the grid becomes thinner and thinner. Consequently, it
is necessary to solve more and more subproblems to find a new (weakly) nondomi-
nated point. This fact is illustrated in Fig. 6.
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Table 2 Experimental results for the methods of [4], [7], [8] and [9] on (3AP) instances with CPU
time in seconds.

Instance size #YN [4] [7] [8] [9]

5 12 0.15 0.04 0.15 0.00
10 221 99,865.00 97.30 41.70 0.08
15 483 × 544.53 172.29 0.36
20 1,942 × × 1,607.92 4.51
25 3,750 × × 5,218.00 30.13
30 5,195 × × 15,579.00 55.87
35 10,498 × × 101,751.00 109.96
40 14,733 × × × 229.05
45 23,941 × × × 471.60
50 29,193 × × × 802.68

Fig. 6 Number of problems
to be solved for finding one
new (weakly) nondominated
on the 35×35 instance
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6 The Generalization of the Two Phase Method

The two phase method [10] is an exact method to solve bi-objective combinatorial
optimization problems. Its main idea is to make intensive use of efficient algorithms
for the single objective case. However, as these efficient algorithms are problem
specific, it is not possible to modify the problem structure by adding constraints and
only the weighted sum of the objectives can be used. In Phase 1, supported solutions
are determined with a dichotomic scheme using Geoffrion’s theorem. In Phase 2, a
search area where nonsupported points may exist is determined using the supported
points. Then this search area is explored with a problem specific procedure. Very
often, to ensure complete enumeration of the search area, bands are determined.
The determination of the supported solutions in Phase 1 and of the search area in
Phase 2 depends on the natural order of nondominated points in the bi-objective
case.

In a previous work, we have proposed an algorithm for the computation of a set
XSE of a multi-objective linear integer problem [5]. This algorithm requires to be
able to efficiently solve the single objective problem. Therefore it can be used for a
generalization of Phase 1.
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In order to determine a set XNE in Phase 2 it is necessary to describe the search
area where nonsupported points may be found. However, for p > 2 objectives, the
search area cannot be described by simple geometric constructions defined by con-
secutive supported solutions. A first description can be given using lower and upper
bound sets as defined in [1].

L = (convYSN)N is a lower bound set for YN , i.e. YN ⊆ L+R
p
�. Any set of feasible

points U that does not contain yi,y j with yi ≤ y j or y j ≤ yi is an upper bound set for
YN , i.e. YN ∩ (U +R

p
>) = /0. In particular in the context of the two phase method, we

can use U = YSN . Both L and U are obtained in Phase 1. Then the search area can
be defined by (L+R

p
�)\ (U +R

p
>).

However, with this description, it is difficult to define bands to be explored in
the search area. In the bi-objective case, if we are letting YSN = {y1, . . . ,yr} such
that y1

1 < y2
1 < .. . < yr

1 (and therefore y1
2 > y2

2 > .. . > yr
2), the search area consists

of triangles with corner points yi, yi+1 and the local nadir point η i = (yi+1
1 ,yi

2),
i = 2, . . . ,r−1. So, in the bi-objective case, an equivalent way to define the search
area is (L+R

2
�)∩⋃r−1

i=1 (η i−R
2
�). This way to describe the search area is more con-

venient for the application of the two phase method. Indeed, in order to explore the
search area, bands containing the whole triangles are explored. The slimmest pos-
sible bands for this are defined by the hypothenuse of the triangle and the parallel
line containing ηi. Therefore we propose to describe the search area in an equiva-
lent way, in order to be able to define the slimmest bands to explore it. For this, by
analogy with the bi-objective case, we determine a set of points D(U) ⊆ R

p such
that (L +R

p
�) \ (U +R

p
>) = (L +R

p
�)∩⋃u∈D(U)(u−R

p
�). The details of the char-

acterisation of D(U) and its computation, as well as the exploration of bands by a
ranking method can be found in [9].

Table 2 summarizes all experiments for the four methods. We can see that the
two phase method performs much faster than the other methods which is not really
surprising according to our results for (2AP) in [6]. For (3AP), the gap in computa-
tional time is larger. For example, the instance 35×35 is solved almost 1000 times
faster with the two phase method than with the method of [8] and the gap is growing
rapidly!

7 Conclusion

The difficulties to solve (3AP) instances with the methods of [4], [7] and [8] are
caused by the large cardinality of YN . It causes the difficulty to solve the subproblems
with the method of [4], the huge memory requirement for the method of [7], and the
huge number of subproblems to be solved with the method of [8]. Consequently,
only small or medium size instances can be solved with these methods.

On the other hand, the instances are solved easily with the two phase method.
This highlights the importance of exploiting the problem structure when the number
of objectives is increasing.
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Constraint Optimization Techniques for Exact
Multi-Objective Optimization

Emma Rollon and Javier Larrosa

Abstract MultiObjective Branch and Bound search has not been widely studied in
the multiobjective context. The main reason is the lack of general approximation
algorithms to compute lower bound sets. However, many lower bound techniques
has been proposed for mono-objective optimization in the constraint programming
field. In particular, Mini-Bucket Elimination (MBE) is a powerful mechanism for
lower bound computation. Recently, MBE has been extended to multi-objective op-
timization problems. The new algorithm, called MO-MBE, computes a lower bound
set of the efficient frontier of the problem. We show how to embed MO-MBE in a
multi-objective branch and bound search, and we empirically demonstrate the per-
formance of the new approach in two different domains.

Keywords: Constraint programming · Multi-objective branch-and-bound search ·
Multi-objective lower bounds

1 Introduction

In Constraint Optimization Problems (COP) the task is to find the best solution
according to some preferences expressed by means of cost functions [1]. Branch
and Bound (BB) [2] is an exact general search algorithm for COPs solving. BB
is the most usual algorithm in the mono-objective case. The efficiency of BB de-
pends on its hability to detect dead-ends, that is, nodes that do not have any solu-
tion below. Dead-end detection is done with a heuristic function that computes an
underestimation or lower bound of the current subproblem. In recent years, many
heuristic functions have been proposed. For instance, all weighted CSP local con-
sistencies [3, 4] can be used for this purpose. Another alternative is Mini-bucket
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elimination (MBE) [5]. MBE is a generic inference method well-known in Con-
straint Programming [6]. It computes a lower bound of the optimal solution (as-
suming minimization). Therefore, MBE is usually used inside BB to improve its
pruning capability.

Many real world problems involve multiple measures of performance, or objec-
tives, which should be optimized simultaneously. The simultaneous optimization of
multiple, possibly competing, objective functions deviates from single function op-
timization in that it seldom admits a single, perfect solution. Instead, multiobjective
constraint optimization problems tend to be characterized by a family of alternatives
which must be considered equivalent in the absence of information concerning the
relevance of each objective relative to the others.

In MultiObjective Constraint Optimization Problems the task is to find the ef-
ficient frontier, that is, the set of equivalent or non-dominated costs of the set of
feasible solutions. MultiObjective Branch and Bound search (MO-BB) has not been
widely studied in the multiobjective context [7]. One reason is the lack of gen-
eral approximation algorithms to compute lower bounds. In our recent work [8], we
have extended MBE from mono-objective to multi-objective optimization problems,
yielding MultiObjective Mini-Bucket Elimination (MO-MBE). MO-MBE computes
a lower bound set [9] of the efficient frontier. As a consequence, MO-MBE can be
used as a heuristic function in a multiobjective branch and bound algorithm. In this
paper we describe how MO-MBE can be combined with multiobjective branch and
bound search. The resulting algorithm is a simple, extremely generic, exact multi-
objective solving method. Our experiments on bi-objective combinatorial auctions
and bi-objective weighted vertex cover problems demonstrates the performance of
the new approach.

The structure of this paper is as follows: Section 2 provides some preliminar-
ies on multiobjective optimization. Section 3 introduces Multiobjective mini-bucket
elimination. Section 4 describes the multiobjective extension of a generic branch
and bound algorithm and shows how MO-MBE can be integrated as a heuristic
function. Section 5 reports some experimental results. Finally, Sect. 6 gives some
conclusions and points out some directions of future work.

2 Preliminaries

Let X = (x1, . . . ,xn) be an ordered set of variables and D = (D1, . . . ,Dn) an or-
dered set of domains. Domain Di is a finite set of potential values for xi. We call d
the largest domain size. The assignment (i.e, instantiation) of variable xi with a ∈ Di
is noted (xi := a). A tuple is an ordered set of assignments to different variables
(xi1 := ai1 , . . . ,xik := aik). The set of variables (xi1 , . . . ,xik) assigned by a tuple t,
noted var(t), is called its scope. The size of var(t) is the arity of t. When the scope is
clear by the context, we omit the variables and express the tuple as a sequence of do-
main values (ai1 . . .aik). We focus on two basic operations over tuples: the projection
of t over A ⊆ var(t), noted t[A], is a sub-tuple of t containing only the instantiation
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of variables in A. Let t and s be two tuples having the same instantiations to the com-
mon variables. Their join, noted t · s, is a new tuple which contains the assignments
of both t and s. Projecting a tuple t over the empty set t[ /0] produces the empty tuple
λ . We say that a tuple t is a complete instantiation when var(t) = X . Sometimes,
when we want to emphasize that a tuple is a complete instantiation we will call it X .

Let consider problems with one objective. A weighted CSP (WCSP) [10] is
a tuple P = (X ,D ,F ,�), where X and D are variables and domains. F =
{ f1, . . . , fr} is a set of cost functions. Each cost function fi is defined over Yi ⊆ X ,
called its scope. fi associates costs (i.e., numbers) to tuples t such that var(t) = Yi.
We make the usual assumption of costs being natural numbers. � bounds the maxi-
mum acceptable cost of solutions. The objective function is, F(X) = ∑r

i=1 fi(Yi). A
solution is a complete assignment X such that F(X) < �. An optimal solution is a
solution X such that ∀X ′, F(X) ≤ F(X ′). The optimum of the objective function is
the value F(X). The task in a WCSP is to find the optimum and one (of the possibly
many) optimal solutions X .

Let consider problems with p objectives. � = (�1, . . . ,�p) is a vector where
each � j ∈ N is the maximum acceptable cost for the objective j. A p-vector v =
(v1, . . . ,vp) is a vector of p components where each v j ∈ N and v j ≤� j. Let v and
u be two distinct p-vectors. v dominates u (noted v < u) if ∀ j, v j ≤ u j. The sum of
p-vectors is defined as,

v+u =
{
� ∃ j, v j +u j ≥� j
(v1 +u1, . . . ,vp +up) otherwise.

Let S be a set of p-vectors. We define its non-domination closure as 〈S〉 = {v ∈
S |∀u ∈ S, u 	< v}. Let S1 and S2 be two sets closed under non-domination. We say
that S1 dominates S2 (noted S1 < S2) if ∀v ∈ S2, ∃u ∈ S1 s.t u < v. A p-function f
is defined over a set of variables Y ⊆X such that f (Y ) is a p-vector. Let xi ∈Y and
a ∈ Di, the partial instantiation of f with xi := a, noted f xi:=a, is the new function
obtained from f in which xi has been fixed to a. Note that when xi is the only variable
of f , its instantiation produces a constant p-vector.

A multiobjective weighted constraint satisfaction problem (MO-WCSP) is de-
fined as P = (X ,D ,F ,�), where X = {x1, . . . ,xn} and D = {D1, . . . ,Dn} are
variables and domains. � contains, for each objective, the maximum acceptable
cost. F is a set of p-functions that define the multiobjective function F(X) =
∑ f∈F f (X). Given a complete assignment X , we say that it is consistent iff F(X) 	=
{�}. For clarity reasons, we consider that all the objective functions are additive.
However, the same ideas posed in the MO-WCSP framework can be used for mod-
elling problems where the objective functions are, for example, multiplicative (i.e.
Probabilistic Frameworks [11]), or a combination of both. A solution is a consistent
complete assignment. In the constraint programming context, the usual task is to
find an optimal solution. A solution X is efficient or Pareto optimal if there is no
better solution (i.e., ∀X ′, F(X ′) 	< F(X)). XE is the set of efficient solutions and
E F is the corresponding efficient frontier. The task in a MO-WCSP is to compute
E F (and, possibly, one or all efficient solutions for each of its elements).
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3 Mini-Bucket Elimination

MultiObjective Mini-Bucket Elimination (MO-MBE) [8] is the extension of the
well-known mono-objective approximation algorithm Mini-Bucket Elimination
(MBE) [5] to the multiobjective context. MO-MBE is a generic approximation
algorithm that can be used to bound the efficient frontier when the problem is too
difficult to be solved exactly. Assuming minimization problems, MO-MBE provides
a lower bound set of the efficient frontier.

In the following, we augment p-functions by letting them to return a non-
dominated set of p-vectors. MO-MBE uses two operations over p-functions: The
sum of two p-functions f and g, noted f + g, is a new p-function that returns for
each tuple the sum of the corresponding p-vectors, previous removal of dominated
ones. The elimination of variable xi from p-function f , noted f ↓ xi, is a new p-
function not mentioning xi that returns for each tuple the best p-vectors with respect
to the eliminated variable. Formally, let f and g be two p-functions:

• Their sum h = f +g is defined as,

h(t) = 〈{v| t = t ′ · t ′′,v = v′ +v′′,v′ ∈ f (t ′),v′′ ∈ g(t ′′)}〉

• The elimination of xi, h = f ↓ xi is defined as,

h(t) = 〈{v | ∀a ∈ Di, v ∈ f (t · (xi := a))}〉

Consider as an example the 2-functions f and g in Fig. 1 with �= (15,18) under
domains {a,b}. The sum f +g is a 2-function ( f +g)(x1,x2,x3). Note that in ( f +g)
(a,b,a), the sum of the 2-vectors (4,10) and (11,1) is �. As � is dominated by
(10,12), it has been removed. The elimination of variable x3 from f + g is a 2-
function ( f + g) ↓ x3(x1,x2). Note that in ( f + g) ↓ x3(a,a), the 2-vector (4,9) has
been removed as a consequence of the non-domination closure. Moreover, � has
also been removed from ( f +g) ↓ x3(a,b) for the same reason.

f : x1 x2
a a {(3,2),(2,8)}
a b {(4,10)}
b a {�}
b b {�}

g: x2 x3
a a {(1,2)}
a b {(2,1)}
b a {(6,2),(11,1)}
b b {�}

f +g: x1 x2 x3
a a a {(4,4),(3,10)}
a a b {(5,3),(4,9)}
a b a {(10,12)}
a b b {�}
b a a {�}
b a b {�}
b b a {�}
b b b {�}

( f +g) ↓ x3: x1 x2
a a {(4,4),(3,10),(5,3)}
a b {(10,12)}
b a {�}
b b {�}

Fig. 1 Sum and projection over 2-functions. � = (15,18)
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function MO-MBE(X ,D ,F ,�,z)
1. for each i = n . . .1 do
2. Bi := {h ∈ F | xi ∈ var(h)};
3. {Pi1 , . . . ,Pir} :=Partition(z,Bi);
4. for each k = 1..r do gik := (∑ f∈Pik

f ) ↓ xi;
5. F := (F ∪{gi1 , . . . ,gir})−Bi;
6. endfor
7. return g1
endfunction

Fig. 2 Description of MO-MBE. The input is a MO-WCSP instance (X ,D ,F ,�). The output is
g1, a zero-arity p-function which contains a lower bound set of the efficient frontier

MO-MBE (Fig. 2) has a control parameter z. It processes the problem eliminating
variables one by one. For each variable xi, the algorithm computes the so called
bucket of xi (line 2), noted Bi, which contains all p-functions in F having xi in
its scope. Ideally, a new p-function would be computed by summing all functions
in Bi and subsequently eliminating xi. Since this is very space consumming, the
bucket is partitioned into so-called mini-buckets (line 3). Each mini-bucket contains
p-functions such that they do not jointly mention more than z+1 variables. In each
mini-bucket the functions are summed and subsequently xi is eliminated (line 4).
Then, F is updated by removing the functions in Bi and adding each gik (line 5).
After the last elimination, only an empty-scope p-function (i.e., a non-dominated
set of p-vectors) remains. It contains a lower bound set of the original problem (line
7). Note that, if MO-MBE returns {�} the problem does not have any solution.
In general, greater values of z increment the number of p-functions included in
each mini-bucket. Therefore, the lower bound set will be presumable closer to the
efficient frontier. However, greater values of z produce higher arity functions which
require more resources (i.e., space and time).

Theorem 1. [8] MO-MBE with accuracy parameter z is space O(e×∏p−1
j=1 � j ×

dz−1) and time O(e×∏p−1
j=1 �2

j ×dz), where e is the number of p-functions, � j is the
bound of objective j, p is the number of objectives, and d is the largest domain size.

4 Depth First Branch and Bound

MultiObjective Branch-and-Bound (MO-BB) is a recursive description of a generic
search schema for MO-WCSP solving. It searches depth-first the tree defined by
the problem. During search, MO-BB maintains a set of non-dominated p-vectors
corresponding to the best solutions found so far. In the minimization case, those
vectors are an upper bound set or top of the optimal solution. When a new solution
is found, its costs are added to the top and the non-dominated ones are retained as
new top. Moreover, for each partial assignment, the algorithm computes a lower
bound set using a bounding evaluation function, that is, an underestimation of its
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procedure MO-BB(X ,D ,F ,�,E F )
1. if X = /0 then E F := 〈E F ∪F 〉;
2. else
3. xi := Select(X );
4. for each a ∈ Di do
5. F ′ := { f (xi := a) | f ∈ F};
6. if E F 	< LB(X −{xi},D −{Di},F ′,�) then
7. MO-BB (X −{xi},D −{Di},F ′,�,E F );
8. endif
9. endfor
10. endif
endprocedure

Fig. 3 Multi-objective depth-first branch and bound for optimization task

efficient frontier that can be obtained in the remaining problem. If the lower bound
set is dominated by the top, the current path cannot lead to better solutions and the
current branch can be pruned. As a result, the algorithm backtracks to a previous
node.

In its description, MO-BB search (Fig. 3) receives a set of variables X and
the set of its feasible values D , a set of p-functions F , a top vector � and a
non-dominated set E F . After an initial call MO-BB ((x1, . . . ,xn),(D1, . . . ,Dn),
( f1, . . . , fe),�,E F = {�}), the algorithm returns the efficient frontier of the prob-
lem in E F . During search, the current efficient frontier is kept in E F . When no
variable remains, the current assignment is one of the best solutions found so far, so
the efficient frontier is updated (line 1). Note that when there is no more variable to
assign, F contains an empty scope p-function, that is, a constant p-function con-
taining the optimal p-vectors of the current assignment. Then, the algorithm adds
the p-vectors in E F and F and closed them under non-domination. When X is
not empty, a variable is selected (line 3) and the algorithm sequentially attempts the
assignment of its values to the p-functions in F (line 4,5). A lower bound set [9] of
the cost of the current assignment is computed in the bounding evaluation function
LB and compared with the current efficient frontier (line 6). If the current assign-
ment may be extended, the search procedure proceeds by making a recursive call
(line 7). Otherwise, the algorithm is in a dead-end and backtracks.

The performance of the search algorithm can be increased by reducing the ex-
plored search space. This reduction greatly depends on the bounding evaluation
function. Therefore, the wisdom of the evaluation function to foresee a dead-end as
soon as possible is a key factor in the branch and bound algorithm. MO-MBE can be
executed inside branch and bound as a bounding evaluation function in order to pro-
vide lower bound sets of every subproblem. As MO-MBE is executed in each node,
the control parameter z allows us to trade time for accuracy. In one hand, greater
values of z will result in tighter lower bound sets. Therefore, the pruning capability
of the algorithm will increase. However, the execution time will also increase. On
the other, lower values of z will result in less tighter lower bound sets. However,
the execution time will decrease and, as a consequence, reduce the time spent in
every node.
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5 Experimental Results

We have tested our approach in two different domains: biobjective combinatorial
auctions and biobjective weighted vertex cover problems. The purpose of the exper-
iments is to evaluate the performance of MO-BB using MO-MBE as an heuristic
evaluation function (i.e. MO-BBMOMBE ) for solving MO-WCSP problems. To that
end, we compare MO-BBMOMBE with the ε-constraint approach [7] based on search.
Regarding MO-BBMOMBE , experiments in the mono-objective case show that low
values of the control parameter z usually provide reasonable good lower bounds
with a very low cost [12]. Therefore, we follow the same criteria and set the control
parameter z = 2 in all the experiments. For the ε-constraint approach, we use the
well-known IlogSolver 6.1 as a solver engine. Moreover, the time spent for finding
the ideal and nadir point that defines lower and upper bounds on the objective values
of efficient solutions is not taken into account.

The time limit in all our experiments is 300 s. The execution time for unsolved
instances is considered as that time limit. Therefore, for each domain, we report not
just the cpu time, but also the percentage of solved instances within the time limit.
We run all the experiments on a Pentium IV at 3GHz with 2GB of memory, running
Linux.

5.1 Biobjective Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible subsets of goods
[13]. In risk-conscious auctions, the auctioneer wants to control the risk of not being
paid after a bid has been accepted, because it may cause large losses in revenue [14].
Consider a set of goods {1,2, . . . ,n} that go on auction. There are m bids. Bid j is
defined by the subset of requested goods Xj ⊆ {1,2, . . . ,n}, the money offer b j
and the probability of failure r j. The auctioneer must decide which bids are to be
accepted. If two bids have goods in common, only one of them can be accepted.
The first objective is to maximize the auctioneer profit. The second objective is
to minimize risk. Assuming independence, after a logarithmic transformation of
probabilities, this objective can also be expressed as an additive function.

We have generated mono-objective CA using the PATH model of CATS genera-
tor [13] and randomly added payment failure probabilities to the bids in the range
0.0–0.3. We experiment on instances with 20 and 50 goods, varying the number
of bids from 80 to 150. For each parameter configuration we generate samples of
size 25.

Figure 4 reports the results obtained for instances with 20 and 50 goods cor-
responding to the plots on the right and on the left, respectively. MO-BBMOMBE
outperformes ε-constraint in both configurations. For instances with 20 goods, MO-
BBMOMBE solves all the instances within the time limit. However, ε-constraint
only solves completely instances with 80 bids. Moreover, the solved percentage
of ε-constraint decreases as the number of bids increases and it is quite low (20%)
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Fig. 4 Experimental results on bi-objective CA for 20 and 50 goods, respectively. Path distribution.
Time limit 300 s

from 130 bids. It is important to note that, as the time for unsolved instances is set
to 300 s, its effect in the mean cpu time is minimized. For instances with 50 goods,
MO-BBMOMBE does not solve 4 instances with 145 bids and 9 with 150 bids. How-
ever, it is important to note that those instances can be solved in less than 400 s.
ε-constraint does not solve completely any parameter configuration. Moreover, it
fails in solving all instances from 105 bids.

5.2 Biobjective Weighted Vertex Cover

Given a graph G = (V,E), a vertex cover is a subset of vertices S ⊆ V such that
∀(u,v) ∈ E, either u ∈ S or v ∈ S. The minimum vertex cover is a vertex cover of
minimum size. In the weighted version every vertex u has an associated weight
w(u) and the weighted minimum vertex cover is a vertex cover S with minimum
F(S) = ∑u∈S w(u). In the biobjective version each vertex u has two weights w1(u)
and w2(u) and the task is to minimize the two associated objective functions. In our
experiments we generated random graph instances with parameters (N, E, C) where
N is the number of vertices, E is the number of edges and C is the maximum weight.
Instances are generated by randomly selecting E edges. For each vertex, two costs
are randomly generated from the interval [0 . . .C].



Constraint Optimization Techniques for Exact Multi-Objective Optimization 97

N E MO-BBMOMBE ε-Constraint
(nb. vars) (nb. edges) time (sec.) % time (sec.) %

60 95 0.92 100 155.82 80
70 95 1.68 100 289.75 8
80 95 3.17 100 300 0
90 95 6.72 100 288 4

60 250 1.92 100 28.22 100
70 250 4.56 100 221.94 40
80 250 9.23 100 280.46 8
90 250 20.04 100 300 0

60 500 2.03 100 2.56 100
70 500 5.87 100 26.63 100
80 500 17.12 100 216.21 52
90 500 42.35 100 300 0

60 950 1.51 100 0.27 100
70 950 3.87 100 2.65 100
80 950 10.49 100 16.09 100
90 950 32.46 100 122.51 100

Fig. 5 Experimental results on biobjective weighted minimum vertex cover problems. Parameter
C is set to 4. Mean values on 25 instances for each parameter configuration. Time limit 300 s

We tested on samples of size 25 for the following parameter configurations
({60,70,80,90},{95,250,500,950},4). Figure 5 reports the results obtained. The
first and second column show the number of variables and edges, respectively. The
third and fourth columns report the mean cpu time and the percentage of solved
instances within the time limit using MO-BBMOMBE . The fifth and sixth column
report the same information for ε-constraint approach. The first thing to be ob-
served is that MO-BBMOMBE is clearly superior for all parameter configurations.
MO-BBMOMBE solves all instances within the time limit. However, ε-constraint is
only able to solve completely instances with 950 edges. When we fix the number of
constraints and increase the number of variables, the efficiency of both approaches
decreases. When fixing the number of variables and increasing the number of con-
straints, the behaviour of both approaches differs. Regarding MO-BBMOMBE , the
solving time increases until instances with 500 edges. For instances with 950 edges
the time diminishes. However, the solving time for ε-constraint always decreases.

6 Conclusions and Future Work

MultiObjective branch and bound (MO-BB) is a general search schema for multiob-
jective constraint optimization problems. The search space is represented as a tree.
The algorithm searches depth-first the tree defined by the problem. Its output is the
efficient frontier of the problem. The efficiency of the algorithm greatly depends
on its pruning ability which, in turn, depends on the computation of a good lower
bound set at each visited node.

MultiObjective mini-bucket elimination (MO-MBE) is an approximation algo-
rithm for multiobjective constraint optimization problems. It has a control parameter
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z which allow us to trade time and space for accuracy. Its output is a lower bound set
of the efficient frontier of the problem. Therefore, it can be executed inside branch
and bound as a bounding evaluation function in order to provide a lower bound set of
every subproblem. We demonstrate the effectiveness of MO-BB using MO-MBE as
a bounding evaluation function (i.e., MO-BBMOMBE ) in biobjective combinatorial
auctions and vertex cover problems.

In our future work we want to evaluate the performance improvement of MO-
BBMOMBE when using an initial good approximation of the efficient frontier. That
initial approximation can be computed using approximate algorithms to compute
upper bounds [7]. Moreover, we want to continue investigating the symbiosis be-
tween constraint programming and multiobjective optimization.

References

1. Bistarelli S, Fargier H, Montanari U, Rossi F, Schiex T, Verfaillie G (1999) Semiring-based
CSPs and valued CSPs: Frameworks, properties and comparison. Constraints 4:199–240

2. Freuder E, Wallace R (1992) Partial constraint satisfaction. Artif Intell 58:21–70
3. Larrosa J, Schiex T (2003) In the quest of the best form of local consistency for weighted csp.

In: Proceedings of the 18th IJCAI, Acapulco, Mexico
4. de Givry S, Heras F, Larrosa J, Zytnicki M (2005) Existential arc consistency: getting closer

to full arc consistency in weighted csps. In: Proceedings of the 19th IJCAI, Edinburgh, UK
5. Dechter R, Rish I (2003) Mini-buckets: a general scheme for bounded inference. J ACM

50:107–153
6. Dechter R (2003) Constraint processing. Morgan Kaufmann, San Francisco
7. Ehrgott M, Gandibleux X (2002) Multiple criteria optimization. State of the art. Annotated

bibliographic surveys. Kluwer, Dorderecht
8. Rollon E, Larrosa J (2006) Bucket elimination for multiobjective optimization problems. J

Heurist 12:307–328
9. Ehrgott M, Gandibleux X (2001) Bounds and bound sets for biobjective combinatorial opti-

mization problems. Lect Notes Econ Math Syst 507:241–253
10. Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier, Amster-

dam
11. Fargier H, Lang J (1993) Uncertainty in constraint satisfaction problems: a probabilistic ap-

proach. Symbolic and Quantitative Approach to Reasoning and Uncertainity, European Con-
ference ECSQARU 1993

12. Kask K, Dechter R (2001) A general scheme for automatic generation of search heuristics
from specification dependencies. Artif Intell 129:91–131

13. Leuton-Brown K, Shoham MY (2000) Towards a universal test suite for combinatorial auction
algorithms. ACM E-Comm:66–76

14. Holland A (2005) Risk management for combinatorial auctions. Dissertation, University
College Cork, Ireland



Outer Branching: How to Optimize
under Partial Orders?∗

Ulrich Junker

Abstract Partial orders provide a convenient way to express preferences on multiple
criteria. Prominent examples are Pareto-dominance and the preference relations of
(T)CP-nets [1]. In advanced personalized recommender systems, the user may also
specify a partial order over the possible values of a single criterion. We introduce
a technique called outer branching to compute the non-dominated frontier of opti-
mization problems with partial orders. It can be used to compute all Pareto-optimal
solutions for n criteria by performing a systematic search over the criteria space.
Dominance constraints avoid the generation of non-optimal solutions.

Keywords: Constraint programming · Pareto optimization · Preference handling

1 Introduction

Partial orders provide a convenient way to express preferences on multiple crite-
ria. For example, Pareto-optimality uses a partial order to compare tuples of criteria
values. Partial orders may also be used to compare the possible values of a single
criterion. This happens if customer preferences are not completely specified (such
as the customer prefers a red to a blue car, but does not specify a preference concern-
ing a green car). This also impacts notions such as lexicographic optimality, which
imposes a partial order on the criteria space, but not a total one, if the individual
criteria have partial orders.

In this paper, we consider combinatorial problems with partial orders and we in-
vestigate methods to explore the whole space of optimal solutions. We encounter
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this as a subproblem in product configuration when establishing a catalog of
component configurations that are Pareto-optimal w.r.t. price, quality, power con-
sumption [8]. There are two fundamental approaches in order to solve optimization
problems with partial orders. The first approach consists of a generalized Branch-
and-Bound (B&B) search which maintains a frontier of the best non-dominated
values found so far. In Constraint Programming (CP), the frontier prunes the domi-
nated region by bound propagation [6]. The other approach breaks the optimization
problem with partial orders into multiple optimization problems with total orders.
These subproblems can usually be solved by standard optimizers and this second
approach can therefore be implemented with less effort as the multi-objective B&B.
In multi-objective programming, the second approach is pursued by scalarization
methods [12] and by the ε-constraint method [2]. Both do a search over an aux-
iliary space such as a weight space or a parameter space in order to produce the
whole frontier. However, not every weight and parameter combination leads to a
new optimal solution.

We propose an alternative way of computing the non-dominated set by a se-
quence of standard optimization problems, which satisfies three properties:

(a) No Failure: each step, except for the last one, computes a solution.
(b) No Dominance: no dominated solution is computed.
(c) No Redundancy: a solution is not computed twice.

The approach adds ‘outer’ constraints to the set of non-dominated solutions and is
able to split it into disjoint subsets. If chosen carefully, these outer constraints can
be transformed into inner constraints which can be taken into account by a standard
optimizer.

We first introduce combinatorial problems with preferences (Sect. 2) and review
existing optimization approaches (Sect. 3). We then elaborate the outer branching
principle for general partial orders (Sect. 4) and specialize it for computing the
Pareto-optimal frontier for n criteria (Sect. 5).

2 Combinatorial Optimization Under Partial Orders

We consider decision-making problems with combinatorial decision spaces, combi-
natorial criteria spaces, and incomplete (i.e. partial) preference orders.

Let D1, . . . ,Dm be m finite domains and let D be their Cartesian product D1 ×
. . .×Dm. This combinatorial space is subject of constraints C which we express
by logical conditions φ(x) on the variables x := (x1, . . . ,xm). These may be linear
constraints, symbolic constraints, and boolean combinations of those constraints as
offered by modelling languages such as OPL and by Constraint Programming tools.
A tuple v := (v1, . . . ,vm) from D is a solution of the constraint φ(x) iff the condition
φ(v), which results from replacing the variables by the values, is true. The decision
space is the set of solutions of C.
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The decisions are evaluated in terms of multiple criteria z1, . . . ,zn. Let Ω1, . . . ,Ωn
be n outcome domains and let Ω be their Cartesian product Ω1 × ·· ·×Ωn, which
constitutes the outcome space. Each criterion zi is a function from the decision space
to the outcome domain Ωi and thus maps a decision v to an outcome value zi(v).
Examples for those functions are (piecewise) linear expressions, minimum and max-
imum of variables, table expressions, and their combinations. The criteria space is
the set of outcome vectors z(v) := (z1(v), . . . ,zn(v)) that are obtained for all ele-
ments v of the decision space.

The decision maker can compare the values in an outcome domain Ωi and for-
mulate preferences between them, which we model by a binary relation P on the
outcome domain Ωi. If (ω1,ω2) is in P, then the decision maker prefers ω1 as least
as much as ω2. The transitive and reflexive closure of P is a (partial) preorder �, i.e.
a transitive and reflexive binary relation. We are mainly interest in the strict part �
of this preorder, namely the set of all pairs (ω1,ω2) in Ωi ×Ωi such that ω1 � ω2
holds, but not ω2 � ω1. The absence of a strict preference between two outcomes
can either signify indifference or incompleteness. The strict part of a preorder is a
strict partial order, i.e. an irreflexive and transitive relation. We write ω1 ! ω2 as a
short-hand for ω1 � ω2 or ω1 = ω2. The relation ! is a partial order, i.e. an anti-
symmetric preorder. It is a subset of the preorder �, but the inverse does not hold in
general. If all pairs ω1,ω2 satisfy one of ω1 � ω2 or ω2 � ω1 or ω1 = ω2, then � is
a strict total order (and ! is a total order).

A simple example is the choice of a wind-surfing destination among CA (Cali-
fornia), FL (Florida), HI (Hawaii), TX (Texas). The decision space consists of these
four alternatives. The user directly compares these decisions, meaning that the out-
come space is equal to the decision space and that the identity function id is the sole
criterion. The user prefers Hawaii to Florida and to California, which is preferred
to Texas. This leads to the strict partial order �w satisfying HI �w FL, HI �w CA,
CA �w TX, and HI �w TX.

In general, the decision maker will formulate preferences on multiple criteria
z1, . . . ,zn. We thus obtain a strict partial order �i on Ωi for each criterion zi. There
are different ways to combine those orders on Ωi into an order on the Cartesian
outcome space Ω1 × ·· ·×Ωn. Outcome vectors can be compared by different op-
timality notions such as lexicographic optimality, Pareto-optimality, or leximin-
optimality [3, 4]. A vector (ω∗

1 , . . . ,ω∗
n ) is lexicographically better than a vector

(ω1, . . . ,ωn) iff there exists an i such that ω∗
i �i ωi and ω∗

j = ω j for j = 1, . . . , i−1.
A vector (ω∗

1 , . . . ,ω∗
n ) dominates a vector (ω1, . . . ,ωn) in the Pareto-sense iff the

two vectors are different (i.e. ω∗
i 	= ωi for an i) and all outcomes in the first vector

are at least as good as the outcomes in the second vector (i.e. ω∗
i !i ωi for all i). We

thus obtain strict partial orders such as �lex and �pareto on the criteria space Ω . It is
important to note that the lexicographical order �lex is a strict total order iff all the
criterion orders �i are strict total orders, but that the Pareto-order cannot be a strict
total order if there are at least two criteria.

Given a strict partial order � on the outcome space Ω , a solution v in the decision
space dominates another solution w in the decision space iff z(v) � z(w) holds. We
consider the set of non-dominated solutions and the set of their outcomes, which
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we call the optimal outcomes. We characterize the non-dominated solutions by a
logical optimization operator Maxz,� that maps the constraint C to a new constraint.
The solutions of Maxz,�(C) are the non-dominated solutions of C. We now assume
that the constraint language is rich enough to express constraints using the partial
order � and the expression z(x). A vector v ∈ D is a solution of Maxz,�(C) iff
C has the form φ(x) and φ(v)∧¬∃w ∈ D : φ(w)∧ z(w) � z(v) is true. As this
constraint contains a quantifier, it cannot be expressed in usual CP and MIP solvers.
However, it provides an elegant logical characterization of the problem to solve, i.e.
the computation of the set Ω ∗ of optimal outcomes, as the following property holds:

Maxz,�(C) ≡C∧
∨

ω∈Ω∗
z(x) = ω (1)

If the order � is a strict total order >, then the set of optimal outcomes is a singleton
and we refer to its element as the outcome of Maxz,>(C). Our optimization operator
is similar to those used in [3], but is fully embedded in the constraint logic and can
thus be combined with other constraints.

3 Existing Optimization Approaches

The Branch-and-Bound method (B&B) successively splits the decision space into
disjoint subspaces. A branching step transforms a problem Maxz,�(C) into the dis-
junction Maxz,�(C∧ δ )∨Maxz,�(C∧¬δ ) by adding the branching constraint δ to
one branch and its negation to the other branch. The disjunction is logically implied
by the original problem, but is not equivalent to it as a disjunct can have solutions
that are dominated by the solutions of the other disjunct. For instance, consider a
criterion d : Z → Z such that d(x) := 2× x and the problem Maxd,>(x ≤ 50) of
finding the greatest outcome d(x) while keeping x smaller than 50. We use the
branching constraint x ≥ 30. An outcome d(x) of 2 times 50 is obtained for all
solutions x of the left subproblem Maxd,>(x ≤ 50∧ x ≥ 30). The right subproblem
Maxd,>(x ≤ 50∧ x < 30) has solutions with outcome d(x) of 2 times 29, which do
not belong to the set of non-dominated solutions of C. In general, Maxz,�(C ∧ δ )
does not imply Maxz,�(C) as δ can remove non-dominated solutions from the deci-
sion space of C. Classic B&B is used for optimization problems with total orders.
It maintains the outcome z(v) of the best solution found so far and uses it to prune
subproblems that do not contain any better solution. When used with partial orders,
B&B needs to keep a whole frontier of currently best outcomes [6] and requires
sophisticated operations for updating the frontier.

Another method explores different extensions of the partial order and transforms
the problem into multiple optimization problems under total orders. A linear exten-
sion of a (strict) partial order � is a (strict) total order > that is a superset of the
(strict) partial order. For example, the order >w defined as HI >w CA >w TX >w FL
is a linear extension of the wind-surfing preferences �w. We then solve the prob-
lem Maxz,>(C) by a standard optimizer based on classic B&B. The resulting
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solutions are non-dominated solutions of C. Moreover, each solution of C that is
non-dominated under the strict partial order � is also non-dominated under some
linear extension. As the space of linear extensions is factorial in the number d of
outcomes in Ω , many linear extensions will produce the same solution.

This number can be reduced by generalizing the ε-constraint method [2], which
tests whether an outcome ε ∈ Ω is optimal by adding the lower bound constraint
z(x)! ε to C. The method uses a linear extension > of the strict partial order � and
determines the outcome ω of Maxz,>(C∧ z(x)! ε). It thus considers only solutions
v in the decision space that have an outcome z(v) that is equal to or better than ε
w.r.t. the partial order and it compares those solutions w.r.t. the total order. If the
best outcome ω is equal to ε , then ε has succeeded the test since the following
equivalence holds for lower bounds on z(x):

Maxz,�(C∧ z(x) ! ε) ≡ Maxz,�(C)∧ z(x) ! ε (2)

Hence, ε is the outcome of a non-dominated solution in the decision space of C iff
it is the outcome of a non-dominated solution in the subset of the decision space,
which contains all those solutions of C having an outcome that is equal to or bet-
ter than ε w.r.t. the partial order. This method performs only d optimization step,
namely one for each outcome in Ω . However only some of those optimizations will
produce a non-dominated solution.

4 The Outer Branching Principle

As an alternative, we introduce an outer branching scheme, which splits the set
of non-dominated solutions into disjoint subsets. When using the branching con-
straint δ , we consider the subset of non-dominated solutions that satisfies δ in the
left branch and the subset of non-dominated solutions that violate δ in the right
branch. Formally, we transform the original problem Maxz,�(C) into the logically
equivalent disjunction (Maxz,�(C)∧δ )∨(Maxz,�(C)∧¬δ ). We apply outer branch-
ing to the example Maxd,>(x ≤ 50) and the constraint x ≥ 30. The left subproblem
Maxd,>(x ≤ 50)∧ x ≥ 30 has the outcome of 2 times 50 and the right subproblem
Maxd,>(x ≤ 50)∧ x < 30 has no solution.

Outer branching leads to conjunctions of optimization problems and of ‘outer’
constraints. It is only useful if the outer constraints simplify the original optimiza-
tion problems. This simplification is possible if the branching constraint has the
form z(x) = ω∗ and ω∗ is an optimal outcome of the original problem. As explained
above, we obtain such a start solution by applying a standard optimizer to a linear
extension > of the strict partial order �. The resulting outcome ω∗ permits us to
apply the outer branching scheme:

Maxz,�(C) ≡ [Maxz,�(C)∧ z(x) = ω∗]∨ [Maxz,�(C)∧ z(x) 	= ω∗] (3)
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The first branch is satisfied by exactly those non-dominated solutions that have the
outcome ω∗ and is thus reduced as follows:

[Maxz,�(C)∧ z(x) = ω∗] ≡ [C∧ z(x) = ω∗] (4)

In our example, we suppose that Hawaii is not possible as wind-surfing destination.
We obtain California as outcome of the problem Maxid,>w(Cw) where Cw is x 	= HI.
Hence, the left branch reduces to Cw ∧ id(x) = CA.

In the second branch, we obtain all those non-dominated solutions that do not
have the outcome ω∗. None of these solutions has an outcome that is equal to or
dominated by ω∗. We can therefore ‘internalize’ the outer constraint z(x) 	= ω∗

by the constraint z(x) 	# ω∗ supposing that our constraint language permits such a
formulation (ω1 ≺ ω2 stands for ω2 � ω1):

Maxz,�(C)∧ z(x) 	= ω∗ ≡ Maxz,�(C∧ z(x) 	# ω∗) (5)

In the example, the right branch reduces to the problem Maxid,�w(Cw ∧ id(x) 	#w
CA). We then apply the whole procedure to this new problem. In this case, neither
California, nor Texas are possible values for x since they both satisfy id(x) #w CA.
Hence, Florida is the optimal wind-surfing destination of this tightened problem
and we again do an outer branching based on this outcome. The left branch imposes
Florida, whereas the right branch eliminates this last possible value, thus leading to
an inconsistent problem. As a consequence, the procedure stops.

An option is to record the fact that ω∗ is the best value for z w.r.t the total order >:

Maxz,�(C)∧ z(x) 	= ω∗ ≡ Maxz,�(C∧ z(x) 	# ω∗ ∧ z(x) ≤ ω∗) (6)

We can remove the equality from z(x) ≤ ω∗ thanks to the constraint z 	# ω∗:

Maxz,�(C)∧ z(x) 	= ω∗ ≡ Maxz,�(C∧ z(x) 	# ω∗ ∧ z(x) < ω∗) (7)

The complete algorithm is given in Fig. 1. We consider two variants, which both
determine the outcomes of the non-dominated solutions. Algorithm OB1 chooses
a different linear extension in each iteration and is more flexible. Algorithm OB2

Algorithm OB1(z, �, C)

1. D := True; U := True; Ω ∗ := /0;
2. repeat
3. let > be a linear extension of �;
4. solve S := Maxz,>(C∧D∧U);
5. if S has no solution
6. then return Ω ∗;
7. let ω∗ be the outcome of S;
8. Ω ∗ := Ω ∗ ∪{ω∗};
9. D := D∧ z(x) 	# ω∗;

10. U := U ∧ z(x) < ω∗;

Algorithm OB2(z, �, C)

1. D := True; U := True; Ω ∗ := /0;
2. let > be a linear extension of �;
3. repeat
4. solve S := Maxz,>(C∧D∧U);
5. if S has no solution
6. then return Ω ∗;
7. let ω∗ be the outcome of S;
8. Ω ∗ := Ω ∗ ∪{ω∗};
9. D := D∧ z(x) 	# ω∗;

10. U := z(x) < ω∗;

Fig. 1 Computing the optimal outcomes
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uses the same linear extension in all steps and enumerates the non-dominated solu-
tions in decreasing order w.r.t. the chosen linear extension. Both versions maintain
a conjunction D of dominance constraints z(x) 	# ω∗ for all the optimal outcomes
ω∗ found so far. They also maintain a conjunction of upper-bound constraints of
the form z(x) < ω∗ which are optional, but which may help to reduce search ef-
fort. As OB1 uses different linear extensions, it cannot simplify two upper-bound
constraints z(x) <1 ω∗

1 and z(x) <2 ω∗
2 . However, OB2 only needs to keep the last

upper-bound constraint z(x) < ω∗ as all the other upper-bound constraints z(x) < ω
use an outcome ω that is better than ω∗ w.r.t. the total order >.

The algorithms meet the requirements listed in the introduction and ensure that
each step finds a new non-dominated solution. As the conjunction of dominance
constraints is growing in each iteration, we will investigate efficient representations
for the important case of Pareto-optimality.

5 Outer Branching for Pareto-Optimality

In this section, we show how to determine the complete set of Pareto-optimal so-
lutions for n criteria. For convenience, we suppose that each criterion zi has a total
order >i, although the approach handles partial orders as well.

The lexicographic ordering >lex is a linear extension for Pareto-dominance
�pareto and we exploit this relationship to apply the outer branching scheme (3)
and the algorithm OB2. The constraints z(x) 	#pareto ω and z(x) <lex ω can be ex-
pressed as logical constraints on the criteria vector z(x) := (z1(x), . . . ,zn(x)) and the
value vector ω := (ω1, . . . ,ωn):

z(x) 	#pareto ω ≡
n∨

j=1
z j(x) > j ω j

z(x) <lex ω ≡
n∨

i=1
(

i−1∧
j=1

z j(x) = ω j ∧ zi(x) <i ωi) (8)

As problem solving is progressing, we obtain a sequence of solutions
ω(1), . . . ,ω(k) in the k-th iteration of algorithm OB2. As discussed in the last
section, we keep only the lexicographical constraint z(x) <lex ω(k) generated for the
k-th Pareto-optimal solution, but we accumulate the dominance-constraints, thus
obtaining the conjunction

∧k
i=1 z(x) 	#pareto ω(i). As the lexicographical constraint

implies z1(x) ≤ ω(i)
1 , we remove the constraints z1(x) >1 ω(i)

1 from the dominance
constraints. Similarly, the last disjunct of the lexicographical constraint can be
removed as it does not improve any of the criteria as required by the dominance
constraint:

z(x) <lex ω(k) ∧
k∧

i=1
z(x) 	#pareto ω(i)

≡
n−1∨
i=1

(
i−1∧
j=1

z j(x) = ω(k)
j ∧ zi(x) <i ω(k)

i )∧
k∧

i=1

n∨
j=2

z j(x) > j ω(i)
j (9)
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Fig. 2 Pareto-optimal solutions

We consider a simple example with three criteria z1,z2,z3, all of which have
the maximization order >. The Pareto-frontier is described in form of four slices
in Fig. 2. We choose the lexicographical ordering based on the importance ranking
z1,z2,z3, which produces the optimal solution ω(1) := (8,8,1). In the right branch,
we add the constraint

(z1(x) < 8∨ (z1(x) = 8∧ z2(x) < 8))∧ (z2(x) > 8∨ z3(x) > 1)

The lexicographical solution of the original problem and this new constraint is
ω(2) := (8,4,4). We now obtain the following constraint in the right branch:

(z1(x) < 8∨ (z1(x) = 8∧ z2(x) < 4))∧
(z2(x) > 8∨ z3(x) > 1)∧ (z2(x) > 4∨ z3(x) > 4)

The next solution found by the procedure is ω(3) := (8,1,8) leading to the following
constraint:

(z1(x) < 8∨ (z1(x) = 8∧ z2(x) < 1)) ∧
(z2(x) > 8∨ z3(x) > 1)∧ (z2(x) > 4∨ z3(x) > 4)∧ (z2(x) > 1∨ z3(x) > 8)

We have thus determined the three Pareto-optimal solutions for z1(x) = 8. Two fur-
ther iterations add the two Pareto-optimal solutions that satisfy z1(x) = 6. Please
note that (6,3,3) is not a Pareto-optimal solution. It is not returned by the outer
branching algorithm since it violates z2(x) > 4∨ z3(x) > 4. The shadowed region in
Fig. 2 shows the area that is pruned by the dominance constraints. The fifth iteration
produces

(z1(x) < 6∨ (z1(x) = 6∧ z2(x) < 2)) ∧
(z2(x) > 8∨ z3(x) > 1)∧ (z2(x) > 4∨ z3(x) > 4)∧ (z2(x) > 1∨ z3(x) > 8) ∧

(z2(x) > 5∨ z3(x) > 2)∧ (z2(x) > 2∨ z3(x) > 5)

Four further iterations yield the four Pareto-optimal solutions under z1(x) = 4. The
resulting dominance and lex-constraint is:
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(z1(x) < 4∨ (z1(x) = 4∧ z2(x) < 2)) ∧
(z2(x) > 8∨ z3(x) > 1)∧ (z2(x) > 4∨ z3(x) > 4)∧ (z2(x) > 1∨ z3(x) > 8) ∧

(z2(x) > 5∨ z3(x) > 2)∧ (z2(x) > 2∨ z3(x) > 5) ∧
(z2(x) > 8∨ z3(x) > 2)∧ (z2(x) > 6∨ z3(x) > 4) ∧
(z2(x) > 4∨ z3(x) > 6)∧ (z2(x) > 2∨ z3(x) > 8)

As the first criterion z1(x) is omitted in the dominance constraint, we encounter a
dominance effect inside the dominance constraint. Indeed, the four new solutions
projected to z2,z3 dominate the previous solutions projected to z2,z3. As a conse-
quence, we can simplify the constraint as follows:

(z1(x) < 4∨ (z1(x) = 4∧ z2(x) < 2)) ∧
(z2(x) > 8∨ z3(x) > 2)∧ (z2(x) > 6∨ z3(x) > 4)∧ (z2(x) > 4∨ z3(x) > 6)∧

(z2(x) > 2∨ z3(x) > 8)

Three further iterations add the three Pareto-optimal solutions under z1(x) = 2 and
result into the following constraint:

(z1(x) < 2∨ (z1(x) = 2∧ z2(x) < 3)) ∧
(z2(x) > 8∨ z3(x) > 2)∧ (z2(x) > 6∨ z3(x) > 4)∧ (z2(x) > 4∨ z3(x) > 6)∧

(z2(x) > 2∨ z3(x) > 8) ∧
(z2(x) > 7∨ z3(x) > 3)∧ (z2(x) > 4∨ z3(x) > 4) ∧ (z2(x) > 3∨ z3(x) > 7)

The final problem has no solution and the procedure stops. Our approach performs
k lexicographic optimizations to find k Pareto-optimal solutions, but increases the
number of disjunctive constraints in each step. As each lexicographic optimization
needs O(n) calls of a standard optimizer, the algorithm needs O(k · n) calls of a
standard optimizer to find k Pareto-optimal solutions.

6 Related Work

Outer branching uses a dominance constraint similar to Gavenelli’s approach [6].
Whereas Gavanelli’s approach performs a single search based on multiple objec-
tives, outer branching performs multiple searches based on a single objective, which
permits a more informed search and which is essential for applying modern MIP
solvers.

Although the disjunctive dominance constraint can be encoded by linear con-
straints, the resulting problem does not necessarily have a good linear relaxation.
Other approaches therefore seek to eliminate the dominance constraint, but lead to
subproblems that produce redundant solutions, dominated solutions, or no solution.
In [10], the ε-constraint method is successively applied to all vectors ω obtained
by combining criteria values from previous solutions. This leads to (kn−1) standard
optimizer calls in the worst-case and can lead to dominated solutions and failing
subproblems. Preference-based search in [7] uses a more complex form of outer
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branching with branching constraints of the form zi ≥ ωi. However, the negation
zi < ωi cannot be moved inside the optimization operator and the method may en-
counter a significant number of subproblems without solution as illustrated in [7].

Hence, if no redundancy, no dominated solutions, and no failing subproblems
are desired, then outer branching provides a way for meeting these desiderata. The
method can be improved by factorizing effort between the subproblems and by dy-
namically simplifying the dominance constraint.

7 Conclusion

We introduced the outer branching method for combinatorial optimization problems
with partial orders and used it to compute a multi-dimensional Pareto-frontier in a
systematic way, thus addressing an important research topic [5–7, 10]. Dominance
constraints avoid that the same solution is computed twice and ensure that only
O(k ·n) calls of a standard optimizer are needed to compute k Pareto-optimal solu-
tions. The method generalizes efficient versions of the ε-constraint method [11,13],
which were limited to the bicriterion case. This study gives also insights about the
difficulties that need to be addressed when applying the approach to other optimality
notions such as (T)CP-nets [1] or dynamic lexicographical orderings [9].
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On Utilizing Infeasibility in Multiobjective
Evolutionary Algorithms

Thomas Hanne

Abstract In this article, we consider the problem of infeasible solutions (i.e. solu-
tions which violate one or several restrictions of an optimization problem) which can
hardly be avoided when new solutions are generated by stochastic and other means
during the run of an optimization algorithm. Since typical approaches for dealing
with infeasibility such as using a repair mechanism, a punishment approach, or a
simple recalculation of solutions are not fully satisfying in many problems, we sug-
gest a new approach of tolerating and actively using infeasible solutions within the
framework of multiobjective evolutionary algorithms.

The novel evolutionary algorithm allows solving a multiobjective optimization
problem (MOP) with continuous variables by approximating the efficient set. The
algorithm uses populations of variable size and new rules for selecting solutions
for the subsequent generations. In particular, some of the selected solutions may
be infeasible such that the Pareto front is approached at the same time from two
“sides”, the feasible set and a subset of the infeasible set. Since the considered in-
feasible solutions correspond to a dual optimization problem, we call the new algo-
rithm primal–dual multiobjective optimization algorithm, or PDMOEA. The algo-
rithm is demonstrated by considering a numerical test problem and is compared with
two other approaches for dealing with infeasibility. The example shows a specific
strength of the new approach: By tunneling through infeasible regions, the popula-
tion may more easily extent to new separated parts of the Pareto set.
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1 Introduction

In optimization algorithms, the generation of new solutions by stochastic and other
means is often a significant problem because of violating restrictions. It is often not
clear how to obtain new feasible solutions in a straight-forward manner. In many
cases, it is suggested to use repair mechanisms which calculate a feasible solution
from an infeasible one (see, e.g., [10] and [9]). In many cases this approach is,
however, time consuming. In some situations, it is not clear at all how to repair an
infeasible solution in a canonical way. Other means to cope with infeasible solutions
are, for instance, the anew generation of a solution (see, e.g., [4]) or the usage of a
penalty function (see, e.g., [12]) which may provide similar disadvantages. Another
approach for dealing with constraints in MOEAs is discussed in [2]. In complex
real-life multiobjective optimization problems dealing with many soft and hard con-
straints (e.g. in the areas of production planning, scheduling, or vehicle routing) the
issue of infeasibility is of paramount importance for a successful application.

In this article, we present a novel evolutionary algorithm for approximating the
efficient set of a multiobjective optimization problem (MOP) with continuous vari-
ables. The algorithm is based on populations of variable size and exploits new rules
for selecting alternatives generated by mutation and recombination. The specific ap-
proach for dealing with infeasibility is that the algorithm solves at the same time the
original problem and a dual problem such that solutions advance the efficient bor-
der from two “sides”, the feasible set and a subset of the infeasible set. Together
with additional assumptions on the considered MOP and further specifications on
the algorithm, theoretical results on the approximation quality and the convergence
of both subpopulations, the feasible and the infeasible one, can be analyzed [7].

The article is organized as follows: In Sect. 2, the MOP and notations related to
solution sets are introduced. A dual MOP is analyzed in Sect. 3. Section 4 presents
a description of the new MOEA. In Sect. 5 some numerical test results are shown.
Section 6 gives the conclusions.

2 Some Notations

Mathematically, multiobjective optimization problems (MOPs) can be described by

“min” f (x),s.t.x ∈ A (1)

where f : Rn → Rq is a vector-valued objective function and “min” means that each
of the objective functions (the components of f ) should be minimized. In a simi-
lar way, maximization problems can be defined. A ⊆ Rn is called the feasible set
which is usually defined by restriction functions, i.e. A = {x ∈ Rn : g j(x) ≤ 0, j ∈
{1, ...,m}}. Note that, we assume f being defined on the whole domain Rn such that
the objective function can be evaluated for infeasible alternatives.
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Usually for an MOP, there does not exist a unique solution which optimizes all
objective functions at the same time. Therefore, mostly the set of efficient or Pareto-
optimal alternatives is regarded as the solution set of the problem (1). For specifying
this and related sets, the Pareto relation “ ≤ ” defined by

x ≤ y :<=> xi ≤ yi ∀i ∈ {1, ...,q}andxi < yi∃i ∈ {1, ...,q} (2)

for x,y ∈ Rq is used. The component-wise generalization of the scalar “ ≤ ” is de-
fined by

x <= y :<=> xi ≤ yi ∀i ∈ {1, ...,q}. (3)

Using the Pareto relation, the efficient set is defined by

E(A, f ) := {x ∈ A : 	 ∃y ∈ A : f (y) ≤ f (x)}. (4)

The image of E(A, f ) in objective space Rq is also denoted as Pareto set or Pareto
front. See [3] for a survey on efficient sets and other mathematical solution concepts
for MOPs. The set of dominating alternatives with respect to a given set B ⊆ Rn is
defined as

Dom(B, f ) := {x ∈ Rn : ∃y ∈ B : f (x) ≤ f (y)∧ 	 ∃z ∈ B : f (z) <= f (x)}. (5)

Basically, the dominating set consists of all nonfeasible vectors being (strictly)
better than solutions from the efficient set. The nondominated set with respect to a
given set B is denoted as

Nondom(B, f ) := {x ∈ Rn : 	 ∃y ∈ B : f (y) <= f (x)}. (6)

Thus Nondom(B, f ) includes all vectors being better than or incomparable with
vectors from B. with respect to f .

3 A Dual Problem

With respect to the MOP (1) we can define a dual problem by ‘inverting’ the ob-
jective functions (replace min by max) and by considering only those alternatives
which are infeasible for the original problem and in its dominance cone. The formal
definition is as follows:

“max” f (y),s.t.y ∈ Dom(A, f ). (7)

Note that for any y∈Dom(A, f ) there exists x∈A with f (y)≤ f (x). Furthermore,
we have that for any x∈A there does not exist y∈Dom(A, f ) with f (x)≤ f (y). Note
that the efficient set for the dual problem can be defined analogously to (4). We the
find the following result:
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Duality Theorem:

Let x be an efficient solution of (1). Then x is also a dominating solution of (7). Let
y be an efficient solution of (7). Then y is also a dominating solution of (1).

The proof is straightforward and omitted here for brevity. Note that according to
the definition of the dual problem, there is no duality gap as often observed for dual
pairs of MOPs defined according to different duality concepts (see [1]). For further
and more general results on duality in MOP, see [11].

Usually, in Evolutionary Algorithms (EAs) we are dealing with populations of
“entities” which correspond to feasible solutions. Let us assume for simplicity that
feasible parent and offspring solutions are given as follows:

Mt = {at
1, ...,a

t
μ} ⊆ A,

Nt = {at
1, ...,a

t
λ} ⊆ A,

Mt is the parent population in generation t which is assumed to consist of μ
entities. Nt is the offspring population in generation t which is assumed to consist
of λ entities.

During the run of a multiobjective optimization algorithm, Dom(A, f ) is, of
course, not known. We only have an approximation of the efficient set based on a
current population. Dom(Mt , f ) usually is too small to enclose the interesting part of
the alternative space close to the efficient set of the original problem. In particular,
areas of solutions being incomparable with all solutions in Mt would be missing.
Therefore, we include these solutions and assume y ∈ Nondom(Mt , f ) for a dual
optimization problem considered in generation t of the evolutionary algorithm.

4 The Algorithm PDMOEA

Our new algorithms adheres to the usual general framework of EAs which is similar
to the following pseudo code. Note that the sequence of the steps 3–8 (also denoted
as genetic operators), in particular mutation and recombination, may be different
in other variants of evolutionary algorithms. Furthermore, there is no clear distinc-
tion between offspring and the parents of the next generation in some variants of
evolutionary algorithms (such as standard genetic algorithms).

(a) Initialize starting population M0.
(b) Initialize control parameters; t:=0.
(c) Copy and mutate Nt from Mt .
(d) Recombine Nt .
(e) Evaluate fitness of Nt and Mt .
(f) Select Mt+1 from Nt ∪Mt .
(g) If stopping criterion fulfilled then stop.
(h) t := t +1; goto 3.
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Thus, an EA basically consists of a generational loop producing offspring solu-
tions from parent solutions using some variation principles and selecting new parent
solutions according to their fitness.

A more recent idea in dealing with infeasible solutions (which allow to calculate
the objective function) is just to keep some of them in the population (or within
a separate population of infeasible solutions) for further processing. Of particular
interest are those infeasible solutions which dominate the Pareto front built by the
feasible solution set from the current population or which explore new regions being
incomparable (with respect to the Pareto relation) to existing solutions.

The advantages are quite clear:

• No waste of time for repair or recalculation of solutions
• Pareto set may be approximated from “both sides”
• Possibly faster/better approximation

Figure 1 shows (for the case of a biobjective minimization problem) an example
of how a recombination between a feasible and an infeasible solution leads closer
to the true Pareto set than a recombination between two feasible solutions. Note
that, there is, however, no necessity that new solutions located ‘between’ two other
solutions also have intermediate objective values. In Fig. 2, it is illustrated how fea-
sible and infeasible solutions may approach the true Pareto front from two sides. It
becomes evident that the probability of accepting new offspring solutions is much
higher when those infeasible solutions are allowed which dominate existing ones
(with respect to the dual problem) or which are incomparable to those already being
accepted.

In [7] we have analyzed theoretical properties such as convergence for a multi-
objective evolutionary algorithm based on a feasible and an infeasible population.

However, the best general advice with respect to infeasibility might be, that one
should avoid it by using an appropriate encoding. Occasionally, more intelligent
data structures may avoid the infeasibility of solutions at all.

In the following, we sketch a new multiobjective evolutionary algorithm suitable
for approximating the efficient set of an MOP (1) or, respectively, (6). The novel

a

b
c

recombination of a and b

feasible area

recombination of a and c

f 2

f1

Fig. 1 Recombination between feasible and infeasible solutions



118 T. Hanne

Fig. 2 Approximation of the
Pareto front from two sides
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dominated dominating
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concept of the primal–dual MOEA (PDMOEA) is to solve both problems, the orig-
inal one and a dual problem, simultaneously. Therefore, we distinguish the parent
and the offspring solution sets into feasible and nonfeasible solutions.

In the discussion of MOEAs, the specification of the operations for mutation
and recombination are of smaller interest than the selection. This is because the
multiobjective nature of the objective function only affects the fitness evaluation of
a solution, and thus the selection step. Therefore, the discussion of other genetic
operators and steps of the PDMOEA is omitted here for brevity. More details on the
design of these operators can be found in [6].

With respect to the selection operator we favor an elitist selection which con-
serves earlier solutions as long as they remain efficient. In particular, such a selec-
tion allows for an analysis of theoretical properties of MOEAs such as convergence
(see [4]). Since a population with a constant size fixed in advance is usually not ca-
pable of approaching the whole efficient set E(A, f ) with given exactness ε , we use
an MOEA based on a variable population size. In [6] we have analyzed the conver-
gence of such an approach being controlled by an ‘approximation measure’ ε , and
which utilizes an increasable population.

For the PDMOEA we choose a similar concept allowing an increase of the pop-
ulation by new alternatives in order to support approximation. This is especially
important since we assume that generating and evaluating new solutions might be
computationally expensive (see [8] for an example) such that even infeasible alterna-
tives might be worth keeping for approximating the efficient set from the ‘infeasible
side’.

Based on these considerations, we propose the following selection rules:

(a) Keep feasible parents which remain efficient.
(b) Add feasible offspring which dominates previously efficient parents.
(c) Add feasible efficient offspring which has a minimum distance of ε to all al-

ready selected parent and offspring alternatives.
(d) Keep parents which remain feasible and efficient for the dual problem.
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(e) Add offspring being feasible for the dual problem which dominates previously
efficient parents of the dual problem.

(f) Add dual efficient offspring which has a minimum distance of ε to all already
selected dual feasible parent and offspring alternatives.

5 Some Computational Results: Tunneling the Infeasible Areas

For some computational tests we compare three variants of MOEAs using different
strategies for coping with infeasibility. The first variant simply uses recalculation of
a solution if the variation operators violates one or several constraints. The second
variant uses a penalty approach. Each violation of a constraint leads to a correction
of all objective function values which is accomplished by a penalty function. Ba-
sically, the penalty function is the amount of constraint violation multiplied by a
factor. The third variant of handling infeasibility is the PDMOEA described above.

For computational experiments we have considered a multiobjective optimization
problem described in [5], p. 356:

(P4) min f (x), f : R2 → R2 with fi : x �→ xi for i ∈ {1,2}

and
x ∈ X = {x ∈ R2 : x1 ≥ 0,x2 ≥ 0,x2 −5+0.5x1 sin(4x1) ≥ 0}.

The problem (P4) is characterized by 7 curve segments of efficient solutions
which are separated by infeasible areas. In such a case, it very much depends on the
strength of the variation parameters (mutation rates, in particular) whether all these
parts of the efficient set can be reached by the MOEA with a limited amount of time.

To make the results better comparable, each variant is allowed to use the same
amount of time (1 second) on the same computer. Due to a different amount of
calculations per generation and different resulting population sizes, the number per-
formed generations varies: in the first case the MOEA runs for 2413 generations, in
the second one for 2007 generations, and in the third one for 1189 generations. As
can be seen, the PDMOEAs requires more computation time per generation. Nev-
ertheless its results within the half no. of generations are significantly better than
those of the other two approaches. The results of the three computer experiments
(final feasible population in the objective space) are shown in Figs. 3–5. In these
figures, also the curve resulting from the third restriction and defining parts of the
Pareto front is shown.

For comparing the results, we do not present typical measures such as the cov-
erage since these do not reflect the obvious preferability of some solution sets
(see [13]). In fact, the variants of MOEAs show similar coverage results despite
significantly different visualizations.

The final population of MOEA variant 1 only covers the first two upper left parts
of the efficient set (see Fig. 3). Variant 2 which allows for a temporary infeasibility



120 T. Hanne

Fig. 3 Results for solving
P4 using recalculations of
infeasible solutions
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Fig. 4 Results for solving
P4 using a punishment of
infeasible solutions
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Fig. 5 Results for solving P4
using the new PDMOEA
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due to the punishment concept reaches also part 3 of the efficient set (Fig. 4) while
only variant 3 (the PDMOEA) reaches all of the disconnected efficient areas (Fig. 5).

This is due to some tunneling effect: Infeasible solutions are accepted for the
population in those parts of the objective space which connect the separated parts of
the efficient set. Figure 6 shows the final population resulting from the PDMOEA
which includes solutions “walking” through the infeasible areas which separate the
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Fig. 6 PDMOEA solutions
including infeasible ones
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Pareto front. Note that the shown feasible solutions are not identical to those shown
in Fig. 5 since the data is taken from a different stochastic repetition of the experi-
ment. From ten stochastic repetitions of the experiment, the PDMOEA reached all
of the disconnected efficient areas in nine cases.

6 Conclusions

The novel selection rules guarantee that we do not loose any solutions which are
‘good’ with respect to the original or a dual problem. An alternative in the parent
population is replaced by an offspring alternative only if it is not any longer more ef-
ficient (for the primal or the dual problem). New efficient solutions for the primal or
dual problem are added, if they are sufficiently distinct from already selected ones.

In this paper we presented first results of the novel way of treating infeasibility
in comparison with two other approaches. Significant advantages were visible when
the efficient set is not connected and variation operators have difficulties in bridging
these gaps. The new approach allows in such cases for a tunneling of the infeasible
domains separating the Pareto front.

Theoretical properties of the new algorithm have already been analyzed in a sep-
arate paper [7]. It will, however, be subject of a future study to compare the new
algorithm with existing approaches using typical test problems.
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The Effect of Initial Population Sampling
on the Convergence of Multi-Objective Genetic
Algorithms

Silvia Poles, Yan Fu, and Enrico Rigoni

Abstract This paper aims to demonstrate that the initial population plays an im-
portant role in the convergence of genetic algorithms independently from the al-
gorithm and the problem. Using a well-distributed sampling increases the robust-
ness and avoids premature convergence. The observation is proved using MOGA-II
and NSGA-II with different sampling methods. This result is particularly important
whenever the optimization involves time-consuming functions.

Keywords: Convergence · Initial population · MOGA-II, Multi-objective genetic
algorithms · NSGA-II

1 Introduction

Genetic algorithms (GAs) are based on an analogy of natural selection and repro-
duction. Once an initial population has been randomly generated, the genetic algo-
rithm evolves by means of its operators. This paper aims to show that the initial
population plays an important role in the convergence and robustness of a genetic
algorithm. Using a well-distributed sampling instead of a random initial generation,
the alleles present in the initial group are diverse. A larger number of alleles implies
gaining more information on the problem and so increases the robustness and the
convergence of a generic genetic algorithm. Affenzeller in [1] demonstrated that if
the genetic information present in the population is not enough, a genetic algorithm
can suffer from premature convergence and get stuck in local optimal solutions.
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Here we will prove the same observation using two different multi-objective ge-
netic algorithms, MOGA-II [2] and NSGA-II [3] and comparing different sampling
methods.

Several papers [4, 5] show that the construction of a well suited initial popula-
tion can speed up GAs on specific problems and methods. We will prove that a
well-distributed population speeds up the convergence to the correct Pareto front
independently from the GAs and the problem; this result is particularly important
whenever the optimization task involves time-consuming functions.

2 Initial Population Sampling

The initial population of a genetic algorithm can be generated using several types
of sampling methodology. In this paper several different methods are studied and
compared: Random, Sobol, Cross-Validation (Kriging), Latin Hypercube (LHS),
Median LHS (MLHS) and Hammersley sequence (HSS) [6].

Random generates a sequence of random numbers by spreading points uniformly
in the design space. It is a very simple method based on the mathematical theory of
random number generation.

Sobol [7] is a deterministic algorithm (even known as a quasi-random sequence):
its aim is to obtain a uniform sampling of the design space. With this method the
clustering effects of random sampling are reduced, the points are maximally avoid-
ing each other, making Sobol a low-discrepancy method.

Cross Validation distributes the designs uniformly in the design space, on the
basis of the Kriging [8] algorithm used for response surfaces. In fact this method
estimates the error of the model and then chooses a good new set of points in order
to make the response surface more reliable.

Latin hypercube sampling (LHS) [9] is one form of stratified sampling that can
reduce the variance in the Monte Carlo estimate of the integrand. The range of
each input is divided into non-overlapping intervals of equal probability. One value
from each interval is selected randomly with respect to the probability density in the
interval. Then random pairing based on a pseudo-random number generator for all
input variables are employed to formulate the final samples.

Median Latin hypercube sampling (MLHS) also divided each input variable
range into non-overlapping intervals of equal probability, but only the median point
of each interval is selected.

Hammersley sequence sampling technique [10] is another quasi-random number
technique. It uses the Hammersley points to uniformly sample a (k−1)-dimensional
hypercube, and the results revealed that the Hammersley points provide the opti-
mal location for the sample points so as to obtain better uniformity in the (k− 1)-
dimension.
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3 Test Cases

3.1 ZDT Problems

Algorithms are tested on three different two-objective optimizations problems, taken
from the well-known ZDT functions [11]: ZDT1, ZDT2, ZDT3. These are uncon-
strained problems with two objectives to be minimized. The original problems have
30 variables (n = 30), but they are perfectly scalable by virtue of their formulation:

ZDT1 min f1(x) = x1

min f2(x) = g(x)
[
1−
√

x1/g(x)
]

ZDT2 min f1(x) = x1

min f2(x) = g(x)
[
1− (x1/g(x))2

]

ZDT3 min f1(x) = x1

min f2(x) = g(x)
[
1−
√

x1/g(x)− x1
g(x) sin(10π x1)

]
where xi ∈ [0,1] , i = 1,n

and g(x) = 1+9 (∑n
i=2 xi)/(n−1)

The three problems are arranged in order of increasing difficulty (see Fig. 1): ZDT1
has a convex Pareto front, ZDT2 has a non-convex Pareto front, and ZDT3 has a
disconnected Pareto front: it consists of five non-contiguous convex parts.

3.2 Summary Attainment Surfaces

In order to assess the performance of a stochastic multi-objective optimizer several
runs (using different random seeds) are required. The outcome of each single run,
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Fig. 1 Pareto fronts of the ZDT1, ZDT2, and ZDT3 problems
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i.e. a Pareto set approximation, can be visualized by means of an attainment surface
[12], defined as the family of tightest goals attained by the relevant approximation
set. Summary attainment surfaces [13] are a suitable tool for studying the average
behavior over many runs: in particular the median attainment surface is defined as
the region that has been attained by the 50% of the runs.

3.3 Performance Metric

Several quality indicators or metrics have been proposed for performance assess-
ment of multi-objective evolutionary algorithms (for example see [14]): the hyper-
volume indicator or S metric given in [15] is defined as the size of the region
dominated by the relevant Pareto set approximation. The computation of this metric
requires a suitable reference point (the worst point).

In this work the hypervolume metric is computed directly for the median attain-
ment surface, and not for the Pareto set approximations of each single run. Further-
more, since the exact Pareto front is known for each ZDT problem, a normalized
hypervolume metric can be introduced: it is the ratio between the area dominated by
the relevant median attainment surface and the area dominated by the true Pareto
front. So its value is always included in the interval [0,1], and a value close to
1 means a good result. The reference point chosen for all the three problems is
(1.0,3.5): it corresponds to the upper-right corner of all the subsequent median at-
tainment surfaces plots.

3.4 Preliminary Studies

A set of preliminary studies were conducted comparing the performance of MOGA-
II and NSGA-II on some numerical two-objective minimization problems, start-
ing from different initial populations. The numerical benchmarks used are the three
ZDT functions with the problems dimension fixed to 30.

In order to make a fair comparison between the different initial population sam-
plings with 100 points, we run the test functions again without changing the param-
eters for the GAs. So, apart from the test function, each optimization run has been
re-executed 5 times using the following parameters for MOGA-II: 10 generations,
directional cross-over probability 65%, classical cross-over probability 20%, selec-
tion probability 5%, mutation 10%, elitism enabled. The following parameters has
been used for NSGA-II: 10 generations, crossover probability 90%, mutation prob-
ability for real-coded vectors 100%, distribution index for real-coded crossover 20,
distribution index for real-coded mutation 20.
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Fig. 2 Median attainment surfaces on ZDT functions; outcomes starting from Kriging and Sobol
sequences always outperform other results regardless of the GA used

Even if the effect of initial population can strongly depend on mutation, this
preliminary study was designed to investigate on the effect of the initial sampling
on the convergence of GAs, so the mutation is kept fixed. Figure 2 is a median
attainment surfaces plot summarizing some results. These results try out that a well-
distributed initial population really speeds up the convergence to the correct Pareto
front; this statement is true for both genetic algorithms. After ten generations, Sobol
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and Kriging sequences are closer than a Random sequence to the Pareto front. Re-
sults of Fig. 2 has been obtained with an initial population of 100 points in order to
respect the setting of [3].

These initial results confirm the intuition that a larger number of alleles in the
initial population increases the robustness and the convergence of GAs. Anyhow,
the impact of the sample size should be carefully considered; when the ratio of
the population size and number of input variables is small, then uniformity and
independence of the samples become more important.

3.5 Advanced Studies

In the advanced studied we sought to maximize the validity of our preliminary anal-
ysis by extending the tests. In particular, we reformulated the original problem by
scaling the dimension from 2 up to 30. This approach allows to quantify the ef-
fect of dimension on the convergence rate. Furthermore we increased the number of
generations, in order to allow a broader evolution and to study the effect of this fac-
tor. Since the preliminary study showed no qualitative difference between the two
different genetic algorithms, here we limited the study to MOGA-II.

The experiment setup was the following: 3 test problems (ZDT1, ZDT2, and
ZDT3), nine dimensions explored (2, 3, 4, 5, 10, 15, 20, 25, 30), three different
degrees of evolution (10, 20, and 30 generations). With 20 and 30 generation we
performed only the experiments with five or more dimensions, since with less di-
mensions all the samplings produce results very close to the real Pareto front and
indistinguishable from each other.

In Fig. 3 the median attainment surfaces for the ZDT1 problem and for ten gen-
eration are presented: the results confirm the conclusions of the preliminary study.
Kriging sampling produces the best results, followed by Sobol. The more the di-
mensions, more difficult the problem, and more evident the difference between the
different samplings. Due to space limitations only the plots of the median attainment
surfaces for the ZDT1 problem and for ten generation are presented. The behavior
for ZDT2 and ZDT3 problems is qualitatively the same. With 20 and 30 generations
the results are again qualitatively the same, with the obvious difference that all the
approximation sets are closer to the real Pareto front, because of the more advanced
evolution degree.

All of the tables of normalized hypervolume metric values are presented, for all
the experiments performed, in Tables 1, 2, and 3. The relevant plots of performance
metric versus problem dimensions are also shown in Figs. 4, 5, and 6. Some numbers
in Tables 1, 2, and 3 may appear to be similar, but there is no need of statements
about the statistical significance because all the charts demonstrate clearly the better
performance of Kriging and Sobol, especially with higher dimensions, when the
problem is harder.
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Fig. 3 Median attainment surfaces on ZDT1 function, varying the problem dimensions



130 S. Poles et al.

Table 1 Normalized hypervolume metric tables for ZDT1 problem

ZDT1 - 10g

d: 2 3 4 5 10 15 20 25 30

Random 0.9987 0.9944 0.9804 0.9437 0.7076 0.5940 0.5216 0.3862 0.3647
Sobol 0.9988 0.9886 0.9655 0.9605 0.8704 0.8870 0.8759 0.8618 0.8532
Kriging 0.9987 0.9950 0.9942 0.9846 0.9683 0.9673 0.9755 0.9399 0.9410
LHS 0.9985 0.9933 0.9772 0.9407 0.7341 0.5968 0.5017 0.4109 0.3647
MLHS 0.9987 0.9933 0.9762 0.9516 0.7808 0.6349 0.5261 0.3980 0.3608
HSS 0.9988 0.9886 0.9625 0.9342 0.7023 0.5288 0.4463 0.4074 0.3628

ZDT1 - 20g

d: 5 10 15 20 25 30

Random 0.9964 0.9206 0.8601 0.7210 0.6629 0.6599
Sobol 0.9963 0.9748 0.9654 0.9548 0.9444 0.9231
Kriging 0.9985 0.9958 0.9957 0.9968 0.9914 0.9904
LHS 0.9952 0.9239 0.8047 0.7513 0.6252 0.5771
MLHS 0.9959 0.9524 0.8397 0.7546 0.6485 0.5830
HSS 0.9947 0.8989 0.8162 0.7257 0.7002 0.6205

ZDT1 - 30g

d: 5 10 15 20 25 30

Random 0.9990 0.9790 0.9432 0.8770 0.8184 0.8021
Sobol 0.9986 0.9957 0.9871 0.9833 0.9768 0.9637
Kriging 0.9993 0.9987 0.9985 0.9987 0.9976 0.9975
LHS 0.9988 0.9752 0.9227 0.8903 0.7633 0.7202
MLHS 0.9990 0.9872 0.9421 0.8829 0.7964 0.7346
HSS 0.9987 0.9752 0.9154 0.8892 0.8360 0.7674

Table 2 Normalized hypervolume metric tables for ZDT2 problem

ZDT2 - 10g

d: 2 3 4 5 10 15 20 25 30

Random 0.9981 0.9835 0.9664 0.9038 0.6671 0.5181 0.3620 0.2990 0.2383
Sobol 0.9978 0.9774 0.9326 0.9274 0.7575 0.8601 0.7590 0.7997 0.7820
Kriging 0.9970 0.9943 0.9911 0.9707 0.8855 0.8824 0.9059 0.9169 0.8824
LHS 0.9977 0.9876 0.9332 0.8661 0.7121 0.5980 0.3671 0.3113 0.2488
MLHS 0.9972 0.9930 0.9250 0.9035 0.6881 0.4353 0.3997 0.2613 0.1514
HSS 0.9978 0.9797 0.8928 0.9014 0.6707 0.4281 0.3766 0.1967 0.1903

ZDT2 - 20g

d: 5 10 15 20 25 30

Random 0.9896 0.8900 0.7693 0.6104 0.5047 0.5062
Sobol 0.9898 0.8988 0.9379 0.8759 0.8931 0.8864
Kriging 0.9973 0.9880 0.9691 0.9685 0.9781 0.9295
LHS 0.9919 0.9069 0.8178 0.6755 0.6043 0.5110
MLHS 0.9847 0.8363 0.6957 0.6338 0.4830 0.4260
HSS 0.9782 0.8673 0.6950 0.6392 0.5479 0.4870

ZDT2 - 30g

d: 5 10 15 20 25 30

Random 0.9979 0.9733 0.8763 0.7637 0.7178 0.6880
Sobol 0.9978 0.9699 0.9808 0.9339 0.9646 0.9309
Kriging 0.9989 0.9971 0.9969 0.9965 0.9954 0.9860
LHS 0.9987 0.9711 0.8768 0.7952 0.7327 0.6197
MLHS 0.9969 0.9447 0.8196 0.7782 0.6766 0.5702
HSS 0.9975 0.9479 0.8155 0.7631 0.6983 0.5872
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Table 3 Normalized hypervolume metric tables for ZDT3 problem

ZDT3 - 10g

d: 2 3 4 5 10 15 20 25 30

Random 0.9945 0.9786 0.9667 0.9210 0.7444 0.5771 0.5229 0.4093 0.3598
Sobol 0.9966 0.9843 0.9602 0.9046 0.8360 0.8636 0.8166 0.8237 0.8275
Kriging 0.9972 0.9843 0.9835 0.9702 0.9542 0.9261 0.9160 0.9004 0.9218
LHS 0.9967 0.9852 0.9457 0.9361 0.7333 0.5701 0.5013 0.4647 0.3924
MLHS 0.9963 0.9805 0.9493 0.9003 0.7175 0.5856 0.5724 0.4383 0.3638
HSS 0.9930 0.9814 0.9435 0.8826 0.6517 0.5028 0.4574 0.4038 0.3844

ZDT3 - 20g

d: 5 10 15 20 25 30

Random 0.9942 0.9126 0.7936 0.7428 0.6164 0.5652
Sobol 0.9852 0.9557 0.9562 0.9193 0.9095 0.9058
Kriging 0.9942 0.9912 0.9769 0.9777 0.9727 0.9888
LHS 0.9913 0.9106 0.8181 0.6980 0.6415 0.6030
MLHS 0.9860 0.8946 0.8209 0.7574 0.6265 0.5342
HSS 0.9876 0.9209 0.7378 0.7238 0.6406 0.6239

ZDT3 - 30g

d: 5 10 15 20 25 30

Random 0.9971 0.9776 0.9028 0.8560 0.7540 0.6925
Sobol 0.9911 0.9849 0.9825 0.9601 0.9511 0.9382
Kriging 0.9976 0.9946 0.9800 0.9915 0.9861 0.9943
LHS 0.9977 0.9714 0.9225 0.8201 0.7724 0.7680
MLHS 0.9950 0.9699 0.9101 0.8759 0.7584 0.6891
HSS 0.9960 0.9712 0.8765 0.8606 0.7783 0.7492
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Fig. 4 ZDT1: normalized hypervolume metric versus problem dimension (for 10, 20, and 30 gen-
erations)
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Fig. 5 ZDT2: normalized hypervolume metric versus problem dimension (for 10, 20, and 30 gen-
erations)
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Fig. 6 ZDT3: normalized hypervolume metric versus problem dimension (for 10, 20, and 30 gen-
erations)

4 Results and Conclusion

The results of preliminary and advanced studies show that a well-distributed initial
population really speeds up the convergence to the correct Pareto front: this state-
ment is true for both genetic algorithms and all the three optimization problem being
tested. The better performance of Kriging and Sobol sequences is more prominent
in higher dimensions cases, when the problem is harder.
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Pattern Mining for Historical Data Analysis
by Using MOEA

Hiroyuki Morita and Takanobu Nakahara

Abstract In data mining, graph mining is a promising new approach and some al-
gorithms are proposed. However, their application is limited in the field of business.
This is because of the wide diversity of business data. In this paper, we propose
a method which extracts new valuable patterns by using graph mining approach
and MOEA. In our method, historical purchasing data for each customer is trans-
formed into tree structured data and gene is constructed from the structured data
at first. Then the patterns are extracted by using existing MOEA from these genes.
We apply our proposed method to a practical business data. From computational
experiments, we show that our method has good performance and is able to extract
valuable patterns from the view of business.

Keywords: Business data · Data mining · Graph mining · MOEA · Tree structured
data

1 Introduction

Graph mining is a promising new approach in data mining research. It was de-
veloped and focused mainly on the sophisticated fields of organic chemistry and
web analysis. Further, some efficient algorithms were proposed in the last decade
[1, 5, 7, 10, 11]. The study of algorithms in this field is categorized into two groups–
research to find effective subgraphs from a collection of general graphs and research
to count frequent patterns in a tree graph. The algorithms in the former group are
AGM [5], FSG [7], and gSpan [10], and the algorithms in the latter group are
FREQT [1] and TreeMiner [11]. Their performance in the existing applications
is efficient; however, their application in the field of business is limited. This is
because of the wide diversity of business data. For example, the existing algorithms
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are effectively used to identify molecules in chemical compounds. In organic chem-
istry, the number of atoms represented by nodes in a graph is few; therefore, the
size of the graph is restricted. However, business data is diverse and large. Thus, the
direct application of the existing algorithms to this data is expensive in terms of the
computational cost involved.

Data mining related problems include difficult combinatorial optimization prob-
lems; therefore, many evolutionary algorithms have been utilized since the 1990s.
Cantu-Paz and Kamath [2] categorized these studies into four groups-feature extrac-
tion, feature selection, classification, and clustering. Several studies were surveyed
for this categorization; however, most of them treated single objective optimization
problems. Recently, some researchers have proposed multiobjective approaches for
the problem presented in [3,6,8,9]. We believe that these are positive approaches be-
cause these data mining problems have various criteria to be fulfilled. In the business
field, in particular, it is important to evaluate the data mining problems from multi-
ple points of view. The previous studies have proposed MOEA approaches such as
rule extraction and decision tree analysis using given explanatory variables for the
existing mining problems. The studies show interesting results for each application
as an extension of the existing studies.

In our study, we propose a method that extracts new patterns not by combin-
ing the given variables but by creating new ones from historical purchasing data by
using a tree structured data and a multiobjective evolutionary algorithm (MOEA).
Moreover, some wild cards are permitted in the patterns extracted. This enables the
mining of more flexible patterns for business applications. In order to realize our
idea, our algorithm comprises two steps. The first step is transforming the histori-
cal purchasing data∗ into tree structured data. We refer to the structured data as a
“historical tree” (HT ). The second step is finding effective patterns from the HT by
using an MOEA. Our MOEA is based on an existing one [4]. Finally, a decision tree
model is generated by using these patterns as new explanatory variables. Computa-
tional experiments indicate that our MOEA can find many promising patterns that
will construct a decision tree model, which is better than the existing methods.

The remainder of this paper is organized as follows. Section 2 proposes a method
to transform historical purchasing data into a tree structured data. Section 3 explains
our MOEA. Section 4 reports the experimental results. Section 5 constructs the deci-
sion tree model using extracted patterns. Finally, Concluding remarks are discussed
in Section 6.

2 Historical Purchasing Data and Historical Tree

Here, we use historical purchasing data of credit card purchases made by customers
over a period of 2 years. Customer attributes such as gender, date of birth, and occu-
pation, are provided. Although the payment amount and the means of payment are

∗ The data is obtained from the Data Analysis Competition 2005, which was sponsored by Joint
Association Study Group of Management Science (JASMAC).
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Fig. 1 Historical tree and gene

provided, the items purchased by the customers are unclear. In general, the customer
attributes and the amount paid for some terms are used as explanatory variables to
construct models. In our method, the historical purchasing data is transformed into
a tree structured data. Further, patterns are extracted from the structured data and
are used as additional explanatory variables to construct a decision model.

Figure 1 illustrates a historical tree (HT ). The time levels for a HT vary from
1 year to 1 day. This is because we analyze data during 1 year, as mentioned later.
Further, the time level of the top node, that is, the root node, is a year. However,
there is only one node associated with this time level. Due to this the root node
does not have a value. In the data, the daily purchase for majority of customers was
zero; this is because credit cards are not commonly used on a daily basis in Japan.
Therefore, we use two time intervals –weekdays and weekends– instead of the one
day time interval in order to avoid redundancy in the mining patterns. According
to the time levels, the amount paid by each customer is recorded. At each time
level, two codes are mapped according to the amount paid-one is a personal code
and the other is an entire code. The personal code represents the amount paid by
each customer as compared to the distribution of the amount for each customer at
each time level. Conversely, the entire code represents the amount paid by each
customer as compared to the distribution of the amount of all the customers at each
time level. Two types of codes are used because the distribution of purchasing is
different for each customer. Evidently, the average purchases are greater among
the rich customers as compared to the ordinary customers. Therefore, these two
codes depict the changes in individual purchases and their impacts on the entire
purchasing.

Each HT represents a purchasing pattern for a customer. Some partial graphs of
HT are common for a set of customers; further, a section of the HT - is characteristic
for a particular customer. Of these, a subgraph, which is common only for a specific
set of customers, is useful for identifying the customers. In the next section, we
extract such patterns by using the MOEA.
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3 Pattern Mining for HT Using MOEA

In order to apply the MOEA to the HT , we initially transform it into a gene. The
method employed is to trace each node from the root node by the order of a depth
first search. Both the personal codes and the entire codes are transformed in the same
manner. Further, for each code a time code is added to these two codes. The time
code represents the position of the time level that is common to both codes; thus,
season, month, week, and weekdays and weekends are denoted by codes 1, 2, 3,
and 4, respectively. If this code is not included, it is difficult to decode an extracted
pattern into a subgraph of the HT . As a whole, each HT is transformed into a triple
gene with length 172.

Among the customers who use credit cards, the number of customers with re-
volving credits is less in Japan. Owing to this, Japanese credit corporations try to
encourage customers in order to increase their profits in the future. Here, we define
two sets of customers-LR and L. Although both make only lump-sum payments dur-
ing the first year, in the second year, the mode of payment for L does not change,
and LR adopts revolving credit. In other words, LR and L perform similarly in terms
of the mode of payment during the first year; however, both exhibit a gap in the
mode in the second year. The differences observed between the sets of customers in
the data of the first year are interesting for business applications. Our objective is to
find effective patterns that identify LR from these two groups.

Given a pattern p ∈ Pl and where Pl denotes a set of patterns with length l , LRp
and Lp represent the sets of customers with p for each set LR and L, respectively.
Then, each support, which is a ratio of the customers with p to all customers in LR
and L, is defined as follows:

SUP(LR, p) =
| LRp |
| LR | , (1)

SUP(L, p) =
| Lp |
| L | , (2)

where | · | denotes the number of the set. In order to extract effective patterns, one
support value is should be larger than the other because the characteristic patterns
are desirable in only one set. Therefore, we have to optimize the following two
bi-objective problems:

(P1)
{

maximize SUP(LR, p)
minimize SUP(L, p), (3)

(P2)
{

maximize SUP(L, p)
minimize SUP(LR, p). (4)
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elite solutions.

Fig. 2 Flowchart of our algorithm

Given a pattern with length l, two bi-objective pattern mining problems are solved
by using MOEA. Using the basic ideas of [4], some sections are modified to adapt
to the problem. Figure 2 illustrates the flowchart of our algorithm.

Firstly, pattern length l is provided. From our preliminary experiments, we ob-
served that it is difficult to find effective patterns from the data when l is larger
than 13. Therefore, we assigned values from 2 to 12 to l and found patterns for
each l. After generating 200 initial solutions randomly, a crossover operation and
a mutation operation are performed 150 times and 100 times, respectively, at every
generation. When an initial solution is generated, the values of the personal code
and the entire code are chosen from candidate values. With regard to the time code,
the front position is chosen randomly and the following time codes are chosen from
the permutation of the original time code. In general, the number of kinds of time
code has relationship with the computational cost. Moreover, l has some influence
on them too. From some preliminary experiments, we determined sufficiently large
values for l.

In the crossover operation, we cannot apply the existing methods directly. In our
MOEA, we split a triple gene into three single genes- the personal code, the en-
tire code, and the time code. For each personal code and entire code, the existing
crossover method (e.g., one point crossover method) is performed independently.
For the time code, two types of genes from the parent are duplicated in order to
maintain the feasibility of new solutions. Each code has two types of candidate sin-
gle genes; thus, 23 new offsprings are generated by combining these genes, as shown
in Fig. 3. During the crossovers and mutations, every elite solution is retained, and
the solutions dominated by an elite solution are removed from the population. If no
new elite solution is found for 100 consecutive generations, the evolutionary algo-
rithm process is terminated. Finally, a neighborhood search is performed on all final
elite solutions to improve the performance. In the search, neighborhood solutions
are generated by swapping two any codes of the personal code and the entire code.
Any new elite solution updates the set of elite solutions.
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Fig. 3 Crossover method for our experiments

In the patterns, we permit a wild card that is equal to any of the codes- personal
code or entire code. In business applications, it is not always necessary that all the
codes of two patterns are identical. The partial difference between the codes is inter-
pretable and useful; however, too many wild cards generate meaningless patterns.
In our experiments, the number of wild cards used is restricted to l. This is half the
number of the personal and entire codes.

4 Computational Experiments

The computational experiments are performed on a Pentium M 1.5 MHz with
512 MB RAM. The programs are coded in C language. Figure 4 illustrates an ex-
ample of the final elite solutions (l = 7). The upper left shows the elite solutions for
P1, and the lower right shows the elite solutions for P2.

In order to validate the performance of our MOEA, we compare our solutions
with the pareto solutions. We can find all the pareto solutions upto l = 4 by enu-
meration. Figure 5 plots the pareto solutions and our approximate solutions. For P1
and P2, 49 and 70 pareto solutions exist, and the detection ratios of our approxi-
mations are 73.47 and 81.43%, respectively. Although some approximate solutions
found are not exact, we observe that alternative solutions are found near them. On
the whole, our solutions have a good approximation.

The average computational time for each l is shown in Fig. 6. In the experiments,
data of 12,160 customers are used as input data. From the figure, the computational
time greatly depends on l. Although a large computational cost is needed for l = 11,
it is completely acceptable because input data is sufficiently large.
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From the computational experiments, 492 promising patterns are observed to
identify LR customers. By using these patterns, a decision tree is constructed in the
next section.

5 Decision Tree Using the Patterns

Here, the identification of LR or L is an objective variable, and the patterns extracted
and the given attributes of the customer are used as explanatory variables. Since
|LR| and |L| are identical after sampling, a decision tree is constructed. Figure 7
shows this tree. In this figure, LR and L denote leaves that are identified as the
expected group. A numerical value in parenthesis under a leaf denotes the accuracy
of the discrimination. The entire accuracy of this model is 66% and it starts from
50%. Compared to the ordinary decision tree model that does not use patterns as
explanatory variables, we can improve the accuracy of discrimination by about 10%.

In the figure, three patterns are utilized as strong explanatory variables. In the
patterns, “∗” denotes a wild card in the personal codes and the entire codes. Further,
the characters in the time code denote each time level as shown in the figure.

Pattern 1 shows a characteristic pattern of a normal amount of purchasing during
a month, and the purchasing that occurred during the first week of the month but
not during the second week. The customers having this pattern are identified as LR
customers. However, pattern 2 shows that normal amount of purchasing that exists
is similar to pattern 1; however, there is no purchasing during the first week of the
month and there is a normal amount of purchasing during last week of the previous
month. The customers having this pattern are identified as L customers. Pattern 3
is similar to pattern 1; therefore, customers having that pattern are identified as LR
customers. As a result, these patterns show that purchasing during the first week of a
month introduces customers to LR, and purchasing during the last week of a month
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Fig. 7 Decision tree using patterns we found

introduces them to L. This is because of a gap between the account day and the
payment day of credit cards. The account day is the last day of month and the date of
payment is a day in the following month. Based on this, if the customers approve of
pattern 1 or pattern 3, they can delay their payments. When such customers strongly
desire to buy an item, they are expected to shift from being L customers to LR
customers.

6 Concluding Remarks

In this paper, we propose a method to mine effective patterns in terms of multiobjec-
tive optimization from historical purchasing data by using MOEA. Considering the
computational experiments on the historical purchasing data in practice, our method
can find several promising patterns. Further, the accuracy of a decision tree model
is improved by about 10% as compared to the ordinary method.



144 H. Morita and T. Nakahara

As future research, we could apply our method to several various historical pur-
chasing data to obtain a more general method. With regard to MOEA, three exten-
sions are promising. One of them is the extension of a triple gene, discussed in this
paper, to more multiple genes. This extension implies that it is possible to mine
patterns of a number of categories of a general POS data simultaneously. Another
extension is the improvement of our MOEA to mine patterns without specifying the
pattern length. The improvement of generating initial solutions from the elite solu-
tions using the previous pattern length proceeds to the next implementation automat-
ically. The last extension is the removal of numerous redundant patterns. Numerous
redundant patterns are generated within a problem and among problems because
several wild cards are permitted. Although these patterns are useful for finding new
elite solutions, it is redundant to construct a decision tree model using them. After
implementing MOEA, a filter method will be needed for all the patterns extracted
in order to construct a decision tree model efficiently.
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the Multiple Criteria Decision Making Method
TOPSIS
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Abstract The so called second generation of Multi-Objective Evolutionary Algo-
rithms (MOEAs) like NSGA-II, are highly efficient and obtain Pareto optimal fronts
characterized mainly by a wider spread and visually distributed fronts. The subja-
cent idea is to provide the decision-makers (DM) with the most representative set
of alternatives in terms of objective values, reserving the articulation of preferences
to an a posteriori stage. Nevertheless, in many real discrete problems the number
of solutions that belong the Pareto front is unknown and if the specified size of the
non-dominated population in the MOEA is less than the number of solutions of the
problem, the found front will be incomplete for a posteriori Making Decision. A
possible strategy to overcome this difficulty is to promote those solutions placed
in the region of interest while neglecting the others during the search, according to
some DM’s preferences. We propose TOPSISGA, that merges the second genera-
tion of MOEAs (we use NSGA-II) with the well known multiple criteria decision
making technique TOPSIS whose main principle is to identify as preferred solutions
those ones with the shortest distance to the positive ideal solution and the longest
distance from the negative ideal solution. The method induces an ordered list of al-
ternatives in accordance to the DM’s preferences based on Similarity to the ideal
point.
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1 Introduction

Many well known and extendedly used Multi-Objective Evolutionary Algorithms
(MOEAs) like NSGA-II [2] pursue to reach the efficient frontier and to sample it
by a wide and even distributed set of non-dominated solutions. Subsequently, the
decision maker (DM) chooses one solution in accordance with his/her preferences.
Nevertheless, this approach does not always turn out the most appropriate. For in-
stance, in many real discrete problems, if the efficient set is numerous and the size
of the non-dominated population is limited, the MOEA cannot contain the whole set
of solutions, compelling the DM to lose potentially attractive alternatives. In order
to solve the abovementioned disadvantage, a possible strategy is to concentrate the
search in a smaller set of Pareto optimal solutions, according to some DM’s prefer-
ences. The incorporation of preferences into a MOEA is not new [1,3]. Nonetheless,
to the best of our knowledge there is no previous attempt at incorporating TOPSIS
(Technique for Order Preference by Similarity to an Ideal Solution) method [6] into
a MOEA. In that sense we propose TOPSISGA, combining the concept of TOP-
SIS (minimizing the distance to the ideal solution while maximizing the distance to
the negative solution) with MOEA methodologies (we use NSGA-II). With TOP-
SIS, a DM needs input his/her preferences or weights that are used in the proposed
method for guiding the search towards the region of interest. The method induces
an ordering of the solutions based on Similarity to the ideal point.

2 TOPSIS Method

The TOPSIS method was developed by Hwang and Yoon [6] for solving MCDM
problems with a finite number of solutions. The TOPSIS method establishes that
the chosen solution should have the shortest distance to the positive ideal solution
(I+) and the longest distance from the negative ideal solution (I−), where the dis-
tances are calculated with a particular value of p (1≤ p ≤ ∞) of the Minkowski’s

metrics Lp =
{

k
∑

i=1
wp

i | fi(−→x )− f ∗i |
p
}p

. Here, f∗i (i ∈ {1,2, ...,n}) is a vector whose

coordinates corresponds to the coordinates of a reference point. With the TOPSIS
method, that point is I+ or I−. The TOPSIS concept is rational and comprehensible.
Since the Minkowski’s metrics are weighted distances, the order strongly depends
on the weights the DM assigns to each objective according to their preferences. The
TOPSIS procedure consists of:

Step 1. Obtain a decision matrix, where a set of alternatives (solutions) A = (a j,
j = 1,2, . . . ,k) is compared with respect to a set of criterion functions (ob-
jective functions) C = (ci, i = 1,2, . . . ,n), an element xi j of the matrix, is a
value indicating the performance rating of jth alternative with regard to the
criterion ci.
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Step 2. Calculate the normalized decision matrix according to:
ri j = xi j√√√√ k

∑
j=1

x2
i j

.

Step 3. Calculate the weighted normalized values as:
vi j = wiri j

wi is the weight of the ith criterion set by the DM and
n
∑

i=1
wi = 1.

Step 4. Determine the positive ideal solution I+ and the negative ideal solution
I− as:
I+ = (max j v1 j,max j v2 j, ...,max j vn j) = (v+

1 ,v+
2 , ...,v+

n ), see Fig. 1(a)
I− = (min j v1 j,min j v2 j, ...,min j vn j) = (v−1 ,v−2 , ...,v−n ), see Fig. 1(a).

Step 5. Calculate the Euclidean distances for each alternative from the positive ideal
solution as:

d+
j =
√

n
∑

i=1
(vi j − v+

i )2 j=1,2,...k.

Similarly, the Euclidean distances from the negative ideal solution is given
as:

d−j =
√

n
∑

i=1
(vi j − v−i )2 j=1,2,...k.

Step 6. Calculate the relative closeness to the positive ideal solution (rating of Sim-
ilarity to the ideal positive ) as:

D+
j =

d−j
d+

j +d−j
D+

j value [0,1].

Step 7. Sort the solutions in terms of similarity. The final (increasingly labelled)
order is obtained sorting the set of alternatives decreasingly in terms of
D+

j , i.e. from the most similarity to the less. Figure 1(b) shows the basic
principle, a j is closer to the positive ideal and farther from the negative
ideal than az because d+

j < d+
z and d−j > d−z ; D+

j > D+
z and the alternative

a j is better than az.
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3 Proposed TOPSISGA Method

The present approach has a similar structure to other MOEAs, and it introduces two
modifications to the original formulation of NSGA-II [2]: First the size of population
and the archive of non-dominated solutions can differ; Second, TOPSISGA varies
the crowding operator of NSGA-II [2] substituting the crowding distances with the
relative distances D+

j . We assume two populations: Pt , which represents the current
population (size M) during generation t; and Pt

A, which consists of non-dominated
solutions (archive size N). Initially, M individuals are randomly generated and the
archive of non-dominated solutions is set empty. At each generation t, a combined
population Rt = Pt +Pt

A (size M+N) is formed (since all previous population mem-
bers are included in Rt elitism is ensured). Then Rt is sorted based on dominance
(Figs. 2(a) and 2(b)). The following population Pt+1

A is established with the non-
dominated solutions of Rt starting with the set (F1) of rank 1 followed by the set
(F2) with rank 2 until the last set (FL) of rank L. If the count of solutions in all sets
from F1 to FL is larger than the new population Pt+1

A (size N), we sort the last set
FL using the Similarity (D+

j in ascending order) (Figs. 2(a) and 2(c)). Afterwards a
reproductive selection of individuals randomly selected from Pt+1

A is accomplished
using a binary tournament and a mating pool (MP) is filled up, at this stage M new
individuals are generated by applying recombination operators on MP.

Notice, that the selection operator uses a binary tournament and the criterion is:
(1) non-dominated rank -smaller rank (2) similarity -bigger similarity.

4 Experimental Results

4.1 The 0–1 Multiobjective Knapsack Problem

In this section the TOPSISGA method is applied to two problems. The first is
the 0–1 multiobjective knapsack problem (0–1 MOKP), which has been widely
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studied in the multiobjective community. The second application example is a real
world engineering problem in the domain of reliability. Independently of the test
problem the Rt population (size M + N) was set to 200 individuals, the crossover
probability to 0.8, the mutation rate to 0.01, the p value to 2 and the archive
size of non-dominated solutions was changed progressively following the sequence
N=10, 20, 30, 40, 50, 100 individuals. The maximum generation number (G) for the
0–1 MOKP problem was G = 500 and for the reliability problem was G = 50,
G = 100 and G = 250.

4.1.1 Description

The 0–1 MOKP problem is well known and has been the subject of in-depth studies
in the multiobjective domain. It is easy to implement it, but because of its NP-
hard nature, it becomes a very difficult problem to be solved in practice. The 0–1
MOKP can be used to model many real problems and it possesses a high number of
applications in finance particularly. Various evolutionary algorithms have been used
to solve the 0–1 MOKP, e.g. [7, 8].

The 0–1 MOKP consists of to find a subset of items (weights and profits are asso-
ciated to each item) maximizing a multiobjective function -expressed as a function
of the profit values- and considering the constraints of capacity of each knapsack
(maximum weight). The 0–1 MOKP can be defined formally by (1):

⎧⎪⎪⎨
⎪⎪⎩

max. fi(x) =
m
∑
j=1

ci jx j i = 1,2, ...,n

Such that
m
∑
j=1

wi jx j ≤ bi x jε{0,1}
(1)

where:
m = number of items
x j = a decision variable
n = number of objectives
ci j = profit of item j according to knapsack i
wi j = weight of item j according to knapsack i
bi = capacity of knapsack i
The data adopted have been: two objectives and 100 items, the true Pareto frontier
is known (Fig. 3), for more details see:
http://www.tik.ee.ethz.ch/%7ezitzler/testdata.html#testproblems.

4.1.2 Results

Figure 4 shows the results with TOPSISGA and NSGAII (for G = 500 and N = 10).
The labels correspond to the TOPSIS classification of the final front when the
weights are w1 = w2 = 0.5. Notice also that, TOPSISGA focuses upon a particular
region of the efficient frontier while NSGA-II finds an even final set.
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Fig. 3 True Pareto frontier
knapsack problem

Fig. 4 Non-dominated front found by TOPSISGA and NSGAII

Table 1 Metric C(R,A) values for 500 generations

Method N = 10 N = 20 N = 30 N = 40 N = 50 N = 100

TOPSISGA 74 74.5 86.27 87.65 84.5 90.95
NSGA-II 99 86 86.33 83.97 87.68 97.83

Fig. 5 Graphic view of
Table 1
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TOPSISGA was compared with NSGA-II based on the C metric [10] (the lower
the better), using the efficient frontier as a reference set R. Table 1 reports the per-
centage (average after ten runs) of the final outcomes (labelled A) dominated by the
true Pareto frontier. Figure 5 shows graphically the results of Table 1.
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Table 2 Component models available on the market

Model Valves Valves Valves Pumps
1,4,6,9 2,3,7,8 5,10 a,b,c,d

Mod. 1 U=2,9E-03 U=3,0E-03 U=5,0E-04 U=3,5E-03
C=50 C=65 C=37 C=90

Mod. 2 U=8,7E-03 U=1,0E-03 U=6,0E-04 U=3,8E-03
U=35 C=70 C=35 C=85

Mod. 3 U=4,0E-04
C=60

4.2 Safety Systems Design Optimisation

4.2.1 Description

As an application example we will use here a well known dependability prob-
lem, the design optimization of a Safety System (SS) -as practical test we use the
Containment Spray Injection System (CSIS) of a Nuclear Power Plant (NPP). The
problem is combinatorial in nature and NP-hard and it has been widely studied be-
fore [4, 5]. In Fig. 6(a) the CSIS layout design is depicted and Table 2 shows the
Unavailability and Cost of the different market available components (valves and
pumps) for the system, being the optimization purpose to obtain the best design. For
each combination of pumps and valves the system unavailability and the system cost
are computed, the former using a fault tree with design alternatives and the later us-
ing a single aggregating formula. Both objectives are in conflict so a multiobjective
optimisation is the appropriate methodology. When any number of objective func-
tion evaluations can be made during the optimization, the true Pareto front of non
dominated solutions can be obtained using ad hoc multiobjective methods like the
NSGA-II [2]. Figure 6(b) shows the true Pareto frontier [5].
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4.2.2 Results

Figures 7(a) and 7(b) show the results when the unavailability and the cost are
weighted 0.5, 0.5 and 0.8, 0.2 respectively (for G=100 and N=10). The labels cor-
respond to the TOPSIS classification of the final front.

Notice that the final ordering changes with the weights as expected, providing
the DM with a final pre-order according to their preferences. Notice also that, while
NSGA-II finds an even final set (Fig. 8 for G=100 and N=10), the TOPSISGA fo-
cuses upon a particular region of the efficient frontier (Figs. 7(a) and 7(b)) and the
final result is far different from the one reached by NSGA-II despite of the fact that
the objectives were equally weighted. On the other hand, it is evident that it is im-
possible to obtain a similar classification to the one obtained by TOPSISGA from
the final set presented by NSGA-II and vice versa. It raises the question of where is
the right moment to introduce preferences and under what criterion?

Finally, the proposed approach was compared with NSGA-II based on the C
metric [10], using the efficient frontier as a reference set R. Table 3 reports the
percentage (average after ten runs) of the final outcomes (labelled A) dominated by
the true Pareto frontier. Figures 9(a) and 9(b) show graphically the results of Table
3 for 50 and 100 generations.

Fig. 7 Non-dominated front found by TOPSISGA

Fig. 8 Non-dominated fron-
tier found by NSGA-II
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Table 3 Metric C(R,A) values for 50, 100 and 250 generations

Method G N=10 N=20 N=30 N=40 N=50 N=100

TOPSISGA 50 21 10 10.33 8.25 6.38 8.15
NSGA-II 46 29.5 10.33 7.25 7.93 9.45

TOPSISGA 100 18 9.5 9.66 6.5 6.97 4.58
NSGA-II 47 28.55 9.66 4.25 6.96 4.97

TOPSISGA 250 18 6 7 4.5 3.31 2.7
NSGA-II 34 23 4.7 4 4.6 2.47
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Fig. 9 Graphic view of Table 3: (a) 50G, (b) 100G

5 Conclusions

In many real discrete problems the number of solutions that belong to the Pareto
front is unknown. If the specified size of the non-dominated population in the
MOEA is less than the number of solutions of the problem, the found front will
be incomplete for a posteriori making decision. In this work we introduce the
MOEA structure TOPSISGA that combines the second generation of MOEAs (we
use NSGA-II) with the multiple criteria decision making technique TOPSIS. The
conducted experiments show that the proportion of efficient frontier reached by the
algorithms is larger using TOPSISGA when the archive size of non-dominated so-
lutions is small, but this difference seems to disappear when the archive size of
non-dominated solutions increases. Besides, TOPSISGA focuses the search on the
region of interest, giving an order list of alternatives in accordance to the DM’s pref-
erences. Nevertheless, it could be convenient to find a balance between the spread
over the whole front produced by NSGA-II with the identification and the exploita-
tion of the zone of interest realized by TOPSISGA. Kwangsun Yoon [9] measures
the credibility of dp distance function and obtains: the distance function becomes
less specific or less credible as parameter p increases. He recommends the use of d1
for obtaining the most credible compromise solution from the purely mathematical
viewpoint. In TOPSISGA we use the p=2 metric, its influences hasn’t been checked
so far, it is left for future research.
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Multi-Criteria Simple Games

Luisa Monroy and Francisco R. Fernández

Abstract In this paper multi-criteria simple games are introduced. These games
constitute an extension of the basic framework of voting systems and related social-
choice situations and are a natural tool for modelling these kinds of problems. After
introducing and formally defining these games, the special class of monotonic multi-
criteria games is characterized. In addition, we analyze core solution concepts for
multi-criteria simple games∗.

Keywords: Game theory · Multi-criteria analysis · Simple games

1 Introduction

The theory of multi-criteria games analyzes group decision problems when the de-
cision makers consider several criteria, each of which depends on the decision of all
players. Studies of games dealing with a multiplicity of criteria have been focused
on both, the cooperative and the non-cooperative analysis. For example, see [2–4,6]
and references therein.

In traditional cooperative game theory, a special class of games, the simple
games, has been applied to modelling organization and group decision processes,
especially when the problems have qualitative outcomes. These games are charac-
terized by the property that each coalition is assigned a value of either 1 (winning
coalition) or 0 (losing coalition).
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Simple games constitute a good representation of voting systems in which a num-
ber of players or voters are required to collectively accept or reject a given single
proposal. Frequently, however, it is unreasonable to consider isolated issues. For
instance, in many political processes the problem is not to pick one from among a
set of alternatives, but to decide how many of a set of motions will be passed. In
this paper, we introduce games with multiple qualitative criteria, where each player
simultaneously takes into account a set of criteria and the value of every coalition
is given by a one-zero vector, whose non-zero coordinates identify the criteria that
the coalition verifies. In this setting, the coalitions are grouped into families in ac-
cordance with the criteria verified, leading to the multi-criteria simple games. These
games form an appropriate abstract context within which to reason on group deci-
sion problems, where numeric utility values are either inappropriate or else impos-
sible to derive. For instance, voting systems and related social choice situations may
be modelled as multi-criteria simple games.

As an illustration, suppose that the European Parliament has to pronounce si-
multaneously on issues such as incorporating new members, applying new taxes to
foreign countries and eliminating national parliaments. In this situation the value
of every coalition is neither one nor zero, but a one-zero 3-tuple. Thus, it does not
make any sense to consider winning and losing coalition in the traditional way, and
an analysis of this situation as a multi-criteria simple game should be more appro-
priate.

The paper is organized as follows. In Sect. 2 we introduce the model together with
the basic concepts. The special class of monotonic multi-criteria simple games is in-
troduced and characterized in Sect. 3. In Sect. 4 we describe the multi-criteria simple
game in canonical form, which permits the simplification of the model considered.
In Sect. 5 core solution concepts for the multi-criteria simple game are analyzed.
The paper ends with a section devoted to conclusions.

2 Basic Concepts

Let N = {1,2, . . . ,n} be the set of players, where every subset S of N is a coali-
tion, P(N) is the set of all coalitions and we denote the k qualitative criteria by
C1,C2, . . . ,Ck.

Definition 1. A multi-criteria qualitative game is a pair (N,φ) where φ is the func-
tion φ : P(N) → {0,1}k, that assigns to every coalition a one-zero k-tuple, whose
non-zero coordinates identify the criteria that the coalition verifies. This vector is
called the pattern of coalition.

In one-criterion games, coalitions are classified in accordance with their patterns in
winning coalitions (value 1) and losing coalitions (value 0). For the multi-criteria
case, U = {U1,U2, . . . ,Ur} is a classification of the 2n − 1 coalitions in P(N), if⋃r

i=1 Ui = P(N). When the r classes are mutually disjoint sets, the classification is
called a partition.
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There are two ways to define a classification on P(N):

(a) Each class Ui is obtained by establishing different conditions on the criteria.
(b) The pattern of each class is used, where the pattern Pi of a class Ui is the set of

the coalition patterns in the class.

In general, the patterns of the classes are not mutually disjoint sets. However, when
the classification is a partition they are always disjoint sets.

A multi-criteria simple game is determined when the classification U or the cor-
responding family of patterns P are known.

Consider a classification U on P(N) and the function φ : P(N) →{0,1}k.

Definition 2. A multi-criteria simple game is a pair (N,vφ ,U ) where vφ ,U : P(N)→
P(U) is the characteristic function that assigns to each coalition the set of classes
to which it belongs, vφ ,U (S) = {Ul , S ∈Ul , l ∈ { 1, . . . ,r}}.

Henceforth, multi-criteria simple games will be denoted by (N,v).

Example 1. (Simultaneous multiple voting). Consider a multiple vote of five candi-
dates and 100 voters, where each voter casts a vote with at most three names and a
candidate is chosen if he obtains, at least, 51% of the votes. In this voting system,
the vote of each voter is (wi1,wi2,wi3,wi4,wi5), where wi j = 1 if the voter i votes for

the candidate j and wi j = 0 otherwise. Therefore
5

∑
j=1

wi j ≤ 3.

In order to describe this voting process as a multi-criteria simple game, five crite-
ria are considered: Cj, j ∈ {1,2, . . . ,5}. The criterion Cj is attained if the candidate
j obtains 51 or more votes and the function φ : P(N) →{0,1}5 assigns a one-zero
5-tuple to each coalition S . The votes obtained by the candidate j from the voters in
coalition S are denoted by n j(S). Thus, if S is a coalition for which only n4(S) ≥ 51
and n5(S) ≥ 51, then φ(S) = (0,0,0,1,1).

We propose the following classification:

(a) The class U1 is the set of coalitions which verify either, at least the first three
criteria or, at least the first two and the last criteria. Its pattern is

P1 = {(1,1,1,0,0),(1,1,0,0,1),(1,1,1,1,0),

(1,1,1,0,1),(1,1,0,1,1)(1,1,1,1,1)}
(b) The class U2 is the set of coalitions which verify, at least, the fourth and fifth

criteria. Its pattern is

P2 = {(0,0,0,1,1),(0,0,1,1,1),(0,1,0,1,1),(1,0,0,1,1),

(1,0,1,1,1),(0,1,1,1,1),(1,1,0,1,1),(1,1,1,1,1)}
(c) The class U3 is the set of coalitions which verify either, at least the second and

fourth criteria or, at least the third and fourth criteria. Its pattern is

P3 = {(0,1,0,1,0),(0,0,1,1,0),(1,1,0,1,0),(0,1,1,1,0),
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(0,1,0,1,1),(1,0,1,1,0),(0,0,1,1,1),(1,1,1,1,0),

(1,1,0,1,1),(0,1,1,1,1),(1,0,1,1,1),(1,1,1,1,1)}
(d) The class U4 is the set of the remaining coalitions. Its pattern is

P4 = {(0,0,0,0,0),(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),

(0,0,0,1,0),(0,0,0,0,1),(1,1,0,0,0),(1,0,1,0,0),

(1,0,0,1,0),(1,0,0,0,1),(0,1,0,0,1),(0,0,1,0,1)}
Therefore, we have defined a multi-criteria simple game, (N,v), where the charac-
teristic function, v, assigns to each coalition the set of classes to which it belongs.
For instance, consider a coalition S of 76 voters where 40 of them vote for candidates
2, 4 and 5; 16 voters vote for candidates 2, 3 and 4; and 20 voters vote for candidates
4 and 5. The pattern of S is φ(S) = (0,1,0,1,1) and therefore v(S) = {U2,U3}.

When the pattern of a class has a high number of k-tuples, it may be a tedious job
to analyze if a coalition is in the class. However, in many cases, the set of patterns
can be represented by its minimal or maximal elements and, therefore, it is easier to
confirm if a coalition is in the class. A type of game for which this representation
holds is the monotonic multi-criteria simple game, that is introduced in the following
section.

3 Monotonic Multi-Criteria Simple Games

There is a special class of multi-criteria simple games: the class of monotonic multi-
criteria simple games. These games constitute an important tool for modelling vot-
ing systems.

Definition 3. A multi-criteria simple game (N,v) with classification U = {U1,U2,
. . . ,Ur} is monotonic if, for each class Ui ∈U, i = 1, . . . ,r, one of the following two
conditions holds:

(a) ∀S1,S2 ∈ P(N) such that S1 ⊆ S2 and S1 ∈Ui, then S2 ∈Ui.
(b) ∀S1,S2 ∈ P(N) such that S1 ⊆ S2 and S2 ∈Ui, then S1 ∈Ui.

The classes in U which verify the first statement are called positive classes, U+
i , and

the classes in U which verify the second statement are called negative classes, U−
i .

Example 2. Simultaneous multiple voting in Example 1 is a monotonic multi-
criteria simple game.

First, we show that condition 1 is verified by class U2 ( analogously for U1,U3)
and, secondly, that condition 2 is verified by class U4.

Consider coalition S1 ∈U2 and S1 ⊆ S2. Since S1 ∈U2, then at least candidates 4
and 5 have obtained 51 or more votes from the voters in S1. Thus, any super-coalition
of S1, S2, will collect at least the same number of votes for candidates 4 and 5 as
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in S1, and therefore S2 ∈ U2. This class U2 does not verify the second condition,
since the coalition S2 of 53 voters where 21 of them vote for candidates 3, 4 and 5,
and 32 voters vote for candidates 1, 4 and 5, is in U2. However, the sub-coalition S1
formed by 21 voters who vote for candidates 3,4 and 5, and 27 voters that vote for
candidates 1, 4 and 5 is not in U2.

Consider the coalition S2 ∈ U4. In this case, at most only one candidate has ob-
tained at least 51 or more votes from the voters in S2, or only candidates 1 and one
of the others have obtained at least 51 or more votes from the voters in S2, or only
candidates 2 and 5 have obtained at least 51 or more votes from the voters in S2, or
only candidates 3 and 5 have obtained at least 51 or more votes from the voters in
S2. Obviously, any sub-coalition of S2, S1, will collect fewer votes than in S2 and
therefore no candidate will obtain more votes from S1 than from S2. Hence S1 ∈U4.
This class does not verify the first condition in the above definition, since coalition
S1 of 63 voters where 20 of them vote for candidates 1, 2 and 3, and 43 voters vote
for candidates 1, 3 and 5 is in U4. However, if 10 new voters, who vote for candi-
dates 2 and 4, join the coalition S1, then candidates 1,3 and 4 obtain more than 51
votes from the super-coalition S2, and therefore S2 ∈U3.

In this example, U1,U2,U3 are positive classes and U4 is a negative class.

There exist multi-criteria simple games which are not monotonic multi-criteria sim-
ple games as shown in the following example.

Example 3. Consider a multi-criteria simple game with N = {1,2,3,4,5,6} and
classification U = {U1,U2,U3} given by

(a) The class U1 is the set of coalitions with three players.
(b) The class U2 is the set of coalitions with at least four players.
(c) The class U3 is the set of the remaining coalitions.

In this game, any super-coalition of a coalition in U1 has more than three players,
and hence it is not in U1. Any sub-coalition of a coalition in U1 has fewer than three
players, and hence it is not in U1. Therefore, the class U1 is neither a positive class
nor a negative class, and the game is not a monotonic multi-criteria game.

From Definition 3 the concepts of winning coalitions and losing coalitions in
scalar simple games can be extended to the multi-criteria case as follows:

Definition 4. Consider a monotonic multi-criteria simple game (N,v) with classi-
fication U = {U1,U2, . . . ,Ur}. A coalition in a positive class is called a winning
coalition and a coalition in a negative class is called a losing coalition. A coalition
is an absolute winning coalition when it belongs to all positive classes.

The following result characterizes monotonic multi-criteria simple games. In or-
der to prove this result, the operations of union and intersection of patterns are con-
sidered in the set of patterns P.

∀x,y ∈ {0,1}k, x = (x1, . . . ,xk), y = (y1, . . . ,yk)
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x∨ y = max(x,y) = (max(x1,y1), . . . ,max(xk,yk))

x∧ y = min(x,y) = (min(x1,y1), . . . ,min(xk,yk))

Theorem 1. A multi-criteria simple game (N,v) is monotonic if and only if

S1 ⊆ S2 and S1 ∈U+
i ⇒ φ(S1) ≤ φ(S2)

S1 ⊆ S2 and S2 ∈U−
i ⇒ φ(S1) ≤ φ(S2)

Proof. (⇒) Let the multi-criteria simple game be a monotonic game.
Assume S1 ⊆ S2 and S1 ∈U+

i and hence S2 ∈U+
i . Denote φ(S1) = x and φ(S2) =

y. From the natural order in {0,1}k, it follows that x ≤ x∨ y. Since S1 ∪ S2 = S2
and φ(S1 ∪ S2) = x∨ y then φ(S1) = x ≤ x∨ y = φ(S1 ∪ S2) = φ(S2) and therefore
φ(S1) ≤ φ(S2).

Assume S1 ⊆ S2 and S2 ∈ U−
i and hence S1 ∈ U−

i , then φ(S1) = φ(S1 ∩ S2) =
x∧ y ≤ y = φ(S2). Therefore, φ(S1) ≤ φ(S2).

(⇐) The fact that U+
i (U−

i ) is a positive (negative) class, leads to the result. ��

From this theorem it follows that, for monotonic multi-criteria simple games, the
set of patterns is a partially ordered set in accordance with the natural order defined
in {0,1}k. Therefore, the pattern of each class in a multi-criteria simple game can
be given by its minimal (for positive class) or maximal elements (for negative class)
and hence, a coalition belongs to a positive (negative) class if the coalition pattern
is greater than or equal to (less than or equal to) one of those minimal (maximal)
elements.

Thus, in a monotonic multi-criteria simple game, φ(N) = (1,1, . . . ,1) because if
any component of φ(N) is equal to 0, then it is also equal to 0 ∀S ∈P(N). Thus, the
corresponding criterion would never be attained and therefore it could be eliminated.
Analogously, φ( /0) = (0,0, . . . ,0).

In a monotonic multi-criteria simple game the notions of minimal winning coali-
tion and maximal losing coalition are established as follows:

Definition 5. A coalition is a minimal winning coalition (maximal losing coalition)
of a class if its pattern is a minimal element, (maximal element), of the pattern of
the class.

Example 4. The simultaneous multiple voting considered in Example 1 is a mono-
tonic multi-criteria simple game, therefore, its positive classes are given by their
minimal patterns and the negative class is given by its maximal patterns which are:
Pm

1 = {(1,1,1,0,0), (1,1,0,0,1)}, Pm
2 = {(0,0,0,1,1)},

Pm
3 = {(0,1,0,1,0), (0,0,1,1,0)}, PM

4 = {(1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0),
(1,0,0,0,1), (0,1,0,0,1), (0,0,1,0,1)}.

Thus, the coalition S of 51 voters who vote for candidates 4 and 5, is a minimal
winning coalition of the class U2 since φ(S) = (0,0,0,1,1) is a minimal pattern of
the class U2.

We assume that all the classes, except one, are positive. The negative class, R, is
called the residual class and will usually be omitted.
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4 Multi-Criteria Simple Games in Canonical Form

Given a multi-criteria simple game (N,v) with k criteria and classification U =
{U1,U2, . . . ,Ur}, the associated canonical form is established as a multi-criteria
simple game (N,ν) with r criteria, where a coalition verifies the ith-criterion if
the coalition belongs to the class Ui, i = 1, . . . ,r. That is to say, the canonical sim-
ple game, (N,ν), is derived from a qualitative game with r criteria, (N, φ̂), where
φ̂ : P(N) →{0,1}r with

φ̂(S) = (δi(S))i=1,...,r and
{

δi(S) = 1 if S ∈Ui
δi(S) = 0 if S /∈Ui

From this definition it follows that the minimal pattern which defines each class
Ui, i = 1, . . . ,r, in the canonical form is given by the unit vectors (ei)i=1,...,r. Note
that the multi-criteria simple game (N,v) and its associated canonical form (N,ν)
have the same classification and, furthermore, v(S) = ν(S), ∀S ∈ P(N). However,
when a multi-criteria simple game is represented by its associated canonical form,
the classes to which a coalition belongs are known and, therefore, the patterns of
each class in the game (N,v) are not needed. For this reason, the use of the canonical
form of a multi-criteria simple game is very convenient when the model has a high
number of criteria.

Example 5. The canonical form for the simultaneous multiple voting game in Exam-
ple 1 is (N,ν) where φ̂(S)∈ {0,1}3. Thus, if φ̂(S) = (0,1,0) then S∈U2. Therefore,
candidates 4 and 5 have been chosen by the voters in S.

It is important to mention that the associated canonical form of a monotonic
multi-criteria simple game is a monotonic multi-criteria simple game, since both
games have the same classification. In addition, the canonical simple game, (N,ν),
induces r component scalar simple games (N,νi), i = 1, . . . ,r, where a coalition S is
a winning coalition in (N,νi) if S ∈Ui and it is a losing coalition if S /∈Ui.

The voting system in the United Nation Security Council(UNSC) has been con-
sidered as an illustration of several game models proposed in the literature, (See
[1, 5]). In the following example we provide a description of this voting process as
a multi-criteria simple game, and then give its canonical form.

Example 6. The UNSC has five permanent members and ten nonpermanent mem-
bers. A motion is passed if it is supported by at least nine members and no permanent
member is explicitly opposed.

To model this voting system as a multi-criteria simple game we establish two
criteria: C1 : There are at least nine “yes” votes, and, C2 : Each permanent mem-
ber votes “yes” or “abstain”. A classification which determines the game, is U =
{U1,R} where U1 is the set of coalitions which verifies both criteria, and the
remaining coalitions are in R. The patterns of each class are P1 = {(1,1)} and
PR = {(1,0),(0,1),(0,0)}. Thus, the winning coalitions are those in class U1.

The canonical form for this game is (N,ν) where φ̂(S) ∈ {0,1}2. Therefore, if
φ̂(S) = (1,0) then S ∈ U1. The 2 component scalar simple games are (N,ν1) and
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(N,ν2). The first one refers to the alternative “yes” and indicates when a motion
is passed. The second game refers to the alternative “no ” and establishes when a
motion is rejected.

5 The Core

In this section we deal with the core concept in multi-criteria simple games. To this
end, the preference core and the dominance core proposed by Fernández et al. [4],
are applied.

Scalar simple games may be considered as distributors of political power, and
the payoffs can be interpreted as the influence of the players in the attainment of the
final outcome. A similar interpretation for multi-criteria simples game is presented.

Let (N,ν) be a monotonic multi-criteria simple game in canonical form with
classification U = {U1,U2, . . . ,Ur}, and function φ̂ : P(N) → {0,1}r. The value
φ̂(N) = (1, . . . ,1) indicates that coalition N has the control over the r classes in the
classification. Thus, the value φ̂(S) of a coalition is its strength or importance in the
control over the classes, and therefore, the value φ̂(i), i ∈ N, represents the influence
of the player i in each class. The total control φ̂(N) can be allocated among the play-
ers in any way, but no player will accept less worth than the minimum which he can
attain by himself. Hence, an imputation in a multi-criteria simple game represents
a dimensionless measure of the distribution of the total power in each class, among
the players, and the worth given to each player in each class is, at least, as good as
the worth he obtains alone.

Definition 6. An imputation for the monotonic multi-criteria simple game is a ma-
trix

X =

⎛
⎜⎜⎝

x11 x21 . . . xn1
x12 x22 . . . xn2
. . . . . . . . . . . .
x1r x2r . . . xnr

⎞
⎟⎟⎠

satisfying ∑i∈N Xi = φ̂(N)t and Xi ≥ φ̂(i)t ∀i ∈ N, where the i-th column, Xi, repre-
sents the percentage of power of the player i in each criterion, and the j-th row, Xj,
represents the percentage of power of each player in the criterion j.†

Definition 7. The preference core of a multi-criteria simple game is the set of im-
putations X which verify ∑i∈S Xi ≥ φ̂(S)t ∀S ∈ P(N).

Definition 8. The dominance core of a multi-criteria simple game is the set of im-
putations X which verify ∑i∈S Xi ! φ̂(S)t ∀S ∈ P(N).

In scalar simple games, the core consists of the imputations that award everything
to the veto players. If there are no veto players, there is no core. These two well-
known conditions, established by Owen [7], are generalized in this paper for the
multi-criteria case. First, we define veto players for this kind of game.

† For x,y ∈ Rk we denote x ≥ y ⇔ xi ≥ yi; x ! y ⇔∃ j, x j > y j .
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Definition 9. A player i is a veto player for a class if he belongs to all coalitions
in the class. A player i is an absolute veto player if he is a veto player for all the
classes.

Theorem 2. The preference core is nonempty if and only if there is at least one veto
player for each class.

Proof. (⇒) Consider an imputation X in the core and suppose that the game has
no veto player. Then, for every p ∈ N, N\{p} is an absolute winning coalition and
therefore ∑i 	=p Xi = φ̂(N)t , ∀p ∈ N. Thus, X p = (0, . . . ,0)t ∀p ∈ N and X cannot be
an imputation.

(⇐) Suppose that there is at least one veto player for each class. Let S be the set of
all them. Consider a matrix X such that ∑i∈S Xi = (1, . . . ,1)t and Xi ≥ (0, . . . ,0)t ∀i∈
S, Xi = (0, . . . ,0)t ∀i /∈ S.

Since S ⊆ N, it follows that ∑i∈N Xi ≥ ∑i∈S Xi = (1, . . . ,1)t = φ̂(N)t , that is,
∑i∈N Xi = φ̂(N)t , and Xi ≥ φ̂(i)t ∀i ∈ N. Therefore X is an imputation.

Consider T ∈ P(N). If T ∈ Uj,∀ j ∈ {1, . . . ,r} then S ⊆ T and therefore
∑i∈T Xi ≥ ∑i∈S Xi = (1, . . . ,1)t = φ̂(T ).

If T ∈Uj,∀ j ∈ J ⊆ {1, . . . ,r} then T contains, at least, the veto players of these
classes, and therefore ∑i∈T Xi = ∑i∈S∩T Xi +∑i∈T\S Xi ≥ φ̂(T ).

Thus, X is in the preference core.
Analogously, the following result holds. ��

Theorem 3. The dominance core is nonempty if and only if there is at least one
class with one veto player.

Example 7. Consider a monotonic multi-criteria simple game, (N,v), with four play-
ers, N = {1,2,3,4}, and two positive classes, U1,U2, given by their minimal winning
coalitions, which are {{1,2},{1,3,4}} and {{2,3}}, respectively.

Player {1} is a veto player for the class U1 and players {2} and {3} are veto
players for U2, therefore the preference core is nonempty and is given by

{(
1 0 0 0
0 α1 α2 0

)
, α1 +α2 = 1,α1,α2 ∈ R+

}

In this example, player {1} has control over class 1 and players {2} and {3} control
class 2 in relation with the other players. However, between these last two players
there is no dominance relation. Player {4} has no influence in the two classes.

Example 8. Consider a monotonic multi-criteria simple game, (N,v), with N =
{1,2,3,4} and two positive classes, U1,U2, given by their minimal winning coali-
tions, which are {{1,2},{1,3,4}} and {{2,3},{1,4}}, respectively.

Player {1} is a veto player for class U1, but class U2 has no veto player. Thus, the
preference core is empty and the dominance core is given by

{(
1 0 0 0

α1 α2 α3 α4

)
\

4

∑
i=1

αi = 1,∀αi ∈ R+

}
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In this case, player {1} prevails over the others in the first class. However, no player
dominates in the second class.

6 Conclusions

Multi-criteria simple games constitute an important tool for modelling voting sys-
tems since the voting process is a group decision-making method under multiple
qualitative criteria. When choosing a position or a candidate, qualitative multiple
criteria, such as personal characteristics and positions on specific issues, appear in
the process.

Despite their apparently simple structure, such games permit the formulation and
analysis of the widely studied models in classic coalitional game theory literature.
The concepts, properties and results obtained are natural extensions of those pro-
posed in the scalar simple games literature. The solution concept of core, proposed
for multi-criteria simple games, provides a global valuation of the importance of the
players in the game.
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Multiobjective Cooperative Games
with Restrictions on Coalitions

Tetsuzo Tanino

Abstract In this paper we consider a multiobjective cooperative game with restric-
tions on coalitions. We define the restricted game of the original multiobjective co-
operative game and discuss its properties, namely inheritance of superadditivity and
convexity under appropriate combinatorial structures on the feasible coalition sys-
tem. We also study the core of the restricted game.

Keywords: Cooperative games · Core · Multiobjective optimization · Restrictions
on coalitions

1 Introduction

The theory of cooperative games is quite useful in analyzing decision making situ-
ations along with multiple decision makers who can form coalitions. In an ordinary
cooperative game (transferable utility game), the results of coalitions are described
by worths of coalitions, which are real numbers. On the contrary, in a multiobjective
cooperative game, the worth of each coalition is measured by multiple criteria, and
therefore it is given as a set in a multidimensional real space [3,5]. This set might be
obtained by (Pareto) maximization of an admissible set [7]. Some researchers have
studied multiobjective cooperative games and discussed solutions, for example the
cores, of them [3, 5, 7].

On the other hand, cooperative games with some restrictions on coalitions have
been actively studied recently (for example Bilbao [1] and Slikker and van den
Nouweland [6]). In those cases, the set of feasible coalitions is given as a subset
of the power set of the whole player set, and a new game called restricted game is
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defined. Solutions of the original game under the restriction on coalitions are ob-
tained as solutions, such as the core or the Shapley value, of the restricted game.

In this paper, we consider a multiobjective cooperative game with restrictions
on coalitions. We define the restricted game of the original game and discuss its
properties, namely inheritance of superadditivity and convexity. We also study the
core of the restricted game.

2 Maximum and Minimum of a Set in Rp

In multiobjective optimization we consider sets in the p dimensional objective real
space and maxima and/or minima of those sets. In this paper we use the following
notations. First we distinguish two symbols of set inclusions: A ⊆ B means that A
is a subset of B, and A ⊂ B implies that A is a proper subset of B. Let Rp be the p
dimensional real space and Rp

+ the nonnegative orthant in Rp, i.e.,

Rp
+ = {x = (x1, . . . ,xp) ∈ Rp | xi ≥ 0, i = 1, . . . , p}.

We define the sets Y+,Y++,Y−, and Y−− for a set Y ⊆ Rp as follows:

Y+ = Y +Rp
+, Y++ = Y +(Rp

+ \{0})
Y− = Y −Rp

+, Y−− = Y − (Rp
+ \{0}),

where 0 = (0, . . . ,0) ∈ Rp. In terms of these notations, we can define the minimum
and maximum of a set in Rp as follows.

Definition 1 For a set Y ⊆ Rp, the minimum and maximum of Y are defined by

Min Y = {y ∈ Y | (Y − y)∩ (−Rp
+) = {0}} = Y \Y++

Max Y = {y ∈ Y | (Y − y)∩Rp
+ = {0}} = Y \Y−−,

respectively.

A particular type of sets in Rp satisfies the condition that the minimum or the
maximum of a set coincides with the set itself.

Definition 2 A set Y ⊆ Rp is said to be thin (with respect to Rp
+) if one of the

following equivalent conditions is satisfied:

1) Y = Min Y
2) Y = Max Y
3) Y+ \Y = Y++
4) Y− \Y = Y−−

Remark 1 For any Y ⊆ Rp, the sets Min Y and Max Y are obviously thin with
respect to Rp

+.
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3 Multiobjective Cooperative Games

An ordinary cooperative game (transferable utility game) is a pair of a set of players
N = {1, . . . ,n} and a characteristic function v : 2N →R satisfying v( /0) = 0. A subset
S ⊆ N is called a coalition and v(S) is the worth of S. In a multiobjective cooper-
ative game this worth should be measured by multiple (p) criteria, and therefore
it is specified by a subset of Rp [3, 5, 7]. Thus a multiobjective cooperative game
(MO-game for short) is a pair (N,V ), where V is a set-valued mapping from 2N to
Rp, i.e., V (S) ⊆ Rp for any S ⊆ N. We assume that V ( /0) = {0} and that V (S) is
nonempty, compact and thin for any S ⊆ N throughout this paper. The second con-
dition implies that the multidimensional worth V (S) of S is Pareto efficient in the
MO-game. Namely there is no Pareto ordering between two points in V (S). If y is
contained in V (S)−, then it should not be contained in V (S).

In practical situations a number of important cooperative games arise from op-
timization problems (See Curiel [2] for example). Those optimization problems
are linear production programming problems, assignment problems, minimum cost
spanning tree problems, and so on. They can be extended to multiobjective prob-
lems and therefore we can obtain multiobjective cooperative games arising from
them. For example, Nishizaki and Sakawa discussed multiobjective linear produc-
tion programming games in detail [5]. Since solving a multiobjective optimization
problem leads to the Pareto efficient set in the objective space, which is regarded
as the worth in a multiobjective cooperative game, it is quite natural that this set is
thin.

Definition 3 An MO-game (N,V ) is said to be superadditive if

V (S)+V (T ) ⊆V (S∪T )−, for all S,T ⊆ N, S∩T = /0.

Remark 2 From the above definition, if an MO-game (N,V ) is superadditive, then
for any Sk ⊆ N (k ∈ K) such that Sk ∩Sk′ = /0 for k 	= k′, ∑

k∈K
V (Sk) ⊆V (

⋃
k∈K

Sk)−.

Definition 4 An MO-game (N,V ) is said to be convex if

V (S)+V (T ) ⊆ [V (S∪T )+V (S∩T )]−, for all S,T ⊆ N.

It is obvious that convexity is a stronger requirement than superadditivity.

4 Restricted Multiobjective Cooperative Games by Partition
Systems

In fundamental cooperative games and also in MO-games, it is assumed that an
arbitrary subset S of N can form a coalition, i.e., every S is feasible or admissi-
ble. In practical situations, however, this assumption is not necessarily valid. Some
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coalitions may not be feasible because of physical or ideological reasons. Those sit-
uations are dealt with by introducing the concept of feasible coalition system [1]. A
set system is a pair (N,F ), with F ⊆ 2N . The sets belonging to F are called feasi-
ble coalitions. For any S ⊆ N, maximal feasible subsets of S are called components
of S. In many cases we impose appropriate combinatorial structures on (N,F ).

Definition 5 [1] A partition system is a set system satisfying

(a) /0 ∈ F , and {i} ∈ F for every i ∈ N, and
(b) for all S ⊆ N, the components of S, denoted by ΠF (S) = {T1, . . .Tl} form a

partition of S.

Proposition 1 [1] A set system (N,F ) which satisfies the first condition of the
above definition is a partition system if and only if S,T ∈ F and S∩T 	= /0 imply
S∪T ∈ F .

A typical example of a partition system is the communication structure by
Myerson [4].

Definition 6 Let (N,V ) be an MO-game and let (N,F ) be a partition system. The
F -restricted game (N,V F ), is defined by

V F (S) = Max ∑
T∈ΠF (S)

V (T ),

where ΠF (S) is the collection of the components of S ⊆ N.

Remark 3 Since V (T ) is compact for any T ⊆ N, V F (S) is also compact and thin.
If S ∈ F , then ΠF (S) = {S} and hence V F (S) = V (S).

Lemma 1. Let (N,F ) be a partition system, S,T ⊆ N with S∩T = /0,

ΠF (S) = {Sk}k∈K , ΠF (T ) = {Tl}l∈L, and ΠF (S∪T ) = {Um}m∈M.

Then {Sk}k∈K ∪{Tl}l∈L is a subpartition of {Um}m∈M.

Proof. It is obvious that {Sk}k∈K ∪{Tl}l∈L is a partition of
⋃

m∈M Um = S∪T . For
each Sk there exists some Um such that Sk∩Um 	= /0. Then we can prove that Sk ⊆Um.
In fact, otherwise, Um ⊂ Sk ∪Um ∈ F since F is a partition system, which is a
contradiction. Analogously each Tl is contained in a unique Um. Hence {Sk}k∈K ∪
{Tl}l∈L is a subpartition of {Um}m∈M . ��

Due to this lemma we can prove the following theorem which shows the inheri-
tance of superadditivity of the original game to the F -restricted game.

Theorem 1 Let (N,V ) be a superadditive MO-game and (N,F ) be a partition sys-
tem. Then the F -restricted game (N,V F ) is also superadditive.
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Proof. Let ΠF (S) = {Sk}k∈K , ΠF (T ) = {Tl}l∈L, and ΠF (S ∪ T ) = {Um}m∈M .
Then due to Lemma 1 and Remark 1,

V F (S)+V F (T ) = Max ∑
k∈K

V (Sk)+Max ∑
l∈L

V (Tl)

⊆ ∑
k∈K

V (Sk)+ ∑
l∈L

V (Tl)

⊆ ∑
m∈M

V (Um)−

= [ ∑
m∈M

V (Um)]−

= [Max ∑
m∈M

V (Um)]−

= V F (S∪T )−

The second last equality follows since ∑
m∈M

V (Um) is compact. This completes the

proof. ��

5 Inheritance of Convexity

In this section we consider a more special type of feasible coalition systems called
intersecting systems, and prove the inheritance of convexity to the restricted games
by intersecting systems.

Definition 7 A partition system (N,F ) is called an intersecting system if for all
S,T ∈ F with S∩T 	= /0 we have S∩T ∈ F .

Remark 4 In Bilbao [1], a set system (N,F ) is called an intersecting family if
for all S,T ∈ F with S∩T 	= /0 we have S∩T ∈ F and S∪T ∈ F . Therefore an
intersecting system is an intersecting family satisfying the first condition, /0 ∈F and
{i} ∈ F , of the partition system.

Theorem 2 Let (N,V ) be a convex MO-game and (N,F ) be an intersecting system.
Then the restricted game (N,V F ) is also convex.

Proof. Let S,T ⊆N. If S∩T = /0, convexity reduces to superadditivity and therefore
holds obviously. Hence we assume that S∩T 	= /0 in the proof. Let

ΠF (S) = {S1, . . . ,Sl}, and ΠF (T ) = {T1, . . . ,Tm}.

We prove the theorem by induction both in l and in m.
(a) First let l = 1, i.e., suppose that ΠF (S) = {S} and therefore V F (S) = V (S).

We prove the relation

V (S)+V (T ) ⊆ [V (S∪T )+V (S∩T )]−
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by induction with respect to m. Thus we first consider the case m = 1. Then
ΠF (T ) = {T} and V F (T ) = V (T ). Since S,T ∈ F and (N,F ) is an intersecting
system, S∪T,S∩T ∈ F . Then

V F (S)+V F (T ) = V (S)+V (T )
⊆ [V (S∪T )+V (S∩T )]−
= [V F (S∪T )+V F (S∩T )]−,

since (N,V ) is convex. Thus we have proved the case m = 1. Next suppose that the
result holds for m = 1, . . . ,k− 1 (l = 1) and prove the case m = k. Let ΠF (T ) =
{T1, . . . ,Tk} and we assume without loss of generality that S ∩ Tk 	= /0. Thus S ∪
Tk,S∩Tk ∈ F . Let T ′ = T1 ∪ . . .∪Tk−1. Then ΠF (T ′) = {T1, . . . ,Tk−1}.

V F (S)+V F (T ) = V F (S)+Max
k

∑
m=1

V (Tm)

⊆ V F (S)+
k

∑
m=1

V (Tm)

= V F (S)+V F (Tk)+
k−1

∑
m=1

V (Tm)

⊆ V F (S∪Tk)+V F (S∩Tk)+V F (T ′)−Rp
+

⊆ V F (S∪Tk ∪T ′)+V F ((S∪Tk)∩T ′)+V F (S∩Tk)−Rp
+

= V F (S∪T )+V F (S∩T ′)+V F (S∩Tk)−Rp
+

⊆ V F (S∪T )+V F ((S∩T ′)∪ (S∩Tk))−Rp
+

= [V F (S∪T )+V F (S∩T )]−.

Thus the theorem is proved for l = 1 and m = 1,2, . . . .
(b) Now we suppose that the result is valid for l = 1, . . . ,k− 1 and m = 1,2, . . .

and prove the case l = k and m is arbitrary. In this case ΠF (S) = {S1, . . . ,Sk}. We
assume without loss of generality that Sk ∩T 	= /0 and let S′ = S1 ∪ . . .∪Sk−1. Then

V F (S)+V F (T ) = Max
k

∑
l=1

V (Sk)+V F (T )

⊆
k

∑
l=1

V (Sk)+V F (T )

=
k−1

∑
l=1

V (Sl)+V (Sk)+V F (T )

⊆ V F (S′)+V F (Sk)+V F (T )−Rp
+

⊆ V F (S′)+V F (Sk ∪T )+V F (Sk ∩T )−Rp
+

⊆ V F (S′ ∪Sk ∪T )+V F (S′ ∩ (Sk ∪T ))+V F (Sk ∩T )−Rp
+
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= V F (S∪T )+V F (S′ ∩T )+V F (Sk ∩T )−Rp
+

⊆ V F (S∪T )+V F ((S′ ∩T )∪ (Sk ∩T ))−Rp
+

= [V F (S∪T )+V F (S∩T )]−.

This completes the proof of the theorem. ��

6 The Core of Restricted Games

In a cooperative game, an allocation scheme of the profit among the players is re-
garded as a solution of the game. For an MO-game, this allocation is described by
an np dimensional vector x = (x1, . . . ,xn), where each xi (i = 1, . . . ,n) is a p dimen-
sional vector representing a payoff vector received by player i.

The core is a fundamental solution concept not only in cooperative games, but
also in MO-games [3, 5, 7]. It is characterized by two types of requirements: group
rationality and coalition rationality.

Definition 8 The core of an MO-game (N,V ) is defined by

C(V ) =

{
x ∈ Rnp | ∑

i∈N
xi ∈V (N), ∑

i∈S
xi ∈V (S)+ for all S ⊆ N

}
.

Theorem 3 Let (N,V ) be an MO-game and let (N,F ) be a partition system such
that V (N)= V F (N), which is true when N ∈ F . Then

C(V F ) ⊆
{

x ∈ Rnp | ∑
i∈N

xi ∈V (N),∑
i∈S

xi ∈V (S)+ for all S ∈ F

}

Moreover, if ∑T∈ΠF (S)V (T ) is thin for any S ⊆ N, then the equality hods in the
above relation, and therefore C(V ) ⊆C(V F ).

Proof. First let x ∈ C(V F ). Then ∑
i∈N

xi ∈ V F (N) = V (N) and ∑
i∈S

xi ∈ V F (S)+ =

V (S)+ for any S ∈F . Conversely, suppose that ∑
i∈N

xi ∈V (N) = V F (N) and ∑
i∈S

xi ∈

V (S)+ = V F (S)+ for all S ∈ F . Take S 	∈ F and let ΠF (S) = {Sk}k∈K . Then

∑
i∈S

xi = ∑
k∈K

∑
i∈Sk

xi ∈ ∑
k∈K

V (Sk)+

= [∑
k∈K

V (Sk)]+ = [Max ∑
k∈K

V (Sk)]+ = V F (S)+.

Hence x ∈C(V F ), as was to be proved. ��
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7 Conclusion

We have defined the F -restricted game (N,V F ) for a multiobjective cooperative
game (N,V ) and a partition system (N,F ). It is shown that superadditivity is inher-
ited from (N,V ) to (N,V F ). Inheritance of convexity is guaranteed when (N,F )
is an intersecting system. We have also considered the core of (N,V F ) and proved
that it can be specified by the original game (N,V ) under some condition.
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An Experimental Investigation of the Optimal
Selection Problem with Two Decision Makers

Fouad Ben Abdelaziz and Saoussen Krichen

Abstract We explore the optimal selection problem where two decision makers are
involved in the evaluation of the arriving offers. We develop three stopping rules
to avoid conflictual situations where a decision makers agrees with a current offer
and the other wishes to discard it. The three stopping rules are then implemented
in C language and runned on a series of problems with various sizes. The exper-
imental results show that the selection rules generate different behaviours of the
decision makers. Finally, we compare our problem with the optimal selection prob-
lem including a single decision maker and show the loss of utility generated by the
introduction of an additional decision maker.

Keywords: Dynamic programming · Game theory · Group decisions · Optimal
stopping

1 Introduction

The optimal selection problem (OSP) is widely studied in the literature because of
its importance in modelling and solving various practical situations as the selection
of projects, the purchase of assets in stock exchanges, and the search of petroleum
location. The basic version of the OSP was formulated and solved in [3]. The OSP
consists in a sequence of a fixed number of n offers observed by a single decision
maker (DM) with the objective of maximizing his utility known as the “nothing
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but the best” utility. The DM is rewarded by 1 if he chooses the best offer and 0
otherwise. The utility of the DM is expressed as follows:

v(k) =
{

1 if k = 1
0 otherwise. (1)

The main dilemma of the OSP is that if an offer is refused and has a relative rank
1, it can be the best of the sequence. However, if it is accepted, there is a nonzero
probability to be not the best. In this case, the DM is rewarded by 0. Indeed, if
an offer is once observed and refused, it cannot be re-observed in later stages. We
investigate in this paper an OSP where two DMs are involved in the selection of a
single offer. We call this problem the bilateral optimal selection problem (BOSP).
n offers are observed one at a time by both DMs. At each stage of the selection
process, a group decision should be taken: accept the current offer and stop sampling
or discard it and examine the next offer. We assume that no recall of previously
examined offers is allowed: if an offer is once discarded, it cannot be re-examined in
later stages. A conflict arises when one DM decides to accept a currently inspected
offer and the second decides to discard it. In such conflicting situations a decision
should be taken by defining a stopping rule for the group. We propose to explore
three stopping rules namely:

• Either DM accepts an offer
The selection process is stopped if • Both DMs accept an offer

• An interactive dynamic approach
of the two individual decisions yields
to an acceptance

We develop for each of the above stopping rules its dynamic programming formu-
lation. Then, illustate and detail the above approaches by an experimental investiga-
tion using a C++ computer code for various sizes of the problem. We compare the
bilateral situation to the single DM selection problem by providing expected utilities
of the DM for the same sizes of problems for the BOSP.

2 Dynamic Programming Formulation

We develop in this section the backward recursive equations related to each stop-
ping rule. For all cases, the decision is taken in terms of two main components: the
expected utility when stopping and the expected utility when continuing the selec-
tion process. These two expressions are different from case to case in the sense that
the induvidual decision of the opponent is integrated differently when changing the
stopping rule. In what follows, we develop the dynamic equations when each DMp
(p = 1,2) tries to select an offer out of the rp best offers (rp is a prefixed threshold
by DMp). So, each DM’s utility is:
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vp(kp) =
{

1 if kp ≤ rp
0 otherwise. (2)

2.1 A BOSP Allowing a Stop by One DM

Since the utility of each DM is expressed in terms of the absolute rank of the se-
lected offer and only relative ranks are available during the selection process, the
conditional probability that the current offer has an absolute rank k such that its rel-
ative rank at stage i is kp should be outlined. The corresponding probability (3) that
the ith offer with relative rank kp has an absolute rank k is expressed as follows [6]:

P{(n,k)|(i,kp)} =
Ckp−1

k−1 Ci−kp
n−k

Ci
n

. (3)

The optimality equation of DMp (p = 1,2) at stage i when the relative rank of the
ith offer is kp for DMp and kp′ for DMp′ (p, p′ ∈ {1,2}) is:

Evp(i,kp,kp′) =
{

max{Evp
s (i,kp),Evp

c (i)} if i = 1, . . . ,n−1
vp(kp) if i = n.

(4)

For instance, when developing the optimality equations of each DMp (p = 1,2), the
stopping part Evp

s (i,kp) at stage i is computed regardless the opponent’s individual
decision. So, DMp behaves when deciding to stop as in the single DM framework.
Accordingly, DMp’s expected utility if he decides to stop sampling by accepting the
ith offer with relative rank kp is:

Evp
s (i,kp) =

rp

∑
k=kp

Ckp−1
k−1 Ci−kp

n−k

Ci
n

. (5)

The expected utility of DMp (p = 1,2) when he decides to discard the ith offer by
following the optimal strategy is:

Evp
c (i,kp′) =

1
(i+1)2

i+1

∑
j=1

i+1

∑
k=1

Evp(i+1, j,k)χE , (6)

where χE denotes the indicator function of the event:

E = {Evp′
s (i,kp′)− 1

(i+1)2 ∑i+1
j=1 ∑i+1

k=1 Evp′(i+1, j,k) < 0}. That is

χE =
{

1 if E occurs
0 otherwise. (7)
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2.2 A BOSP Allowing a Stop by Both DMs

We reconsider in this section the BOSP with an alternative stopping rule for the
group: the acceptance of an offer requires the individual acceptance of the two DMs.
We develop the backward recursive equations for DMs 1 and 2 regarding the prob-
lem assumptions and the utilities in (2).

We remind that the optimality equation for DM1, at stage i, is written as follows:

Ev1(i,k1,k2) =
{

max{Ev1
s (i,k1,k2),Ev1

c(i)} if i = 1, . . . ,n−1
v1(k1) if i = n.

(8)

The expected utility for DM1, conditioned by DM2’s acceptance, if he decides to
accept the current offer is:

Ev1
s (i,k1,k2) =

r1

∑
k=k1

Ck1−1
k−1 Ci−k1

n−k

Ci
n

χE . (9)

The value ∑r1
k=k1

C
k1−1
k−1 C

i−k1
n−k

Ci
n

denotes the expected individual utility of DM1 when the
absolute rank of the selected offer varies from k1 to r1.

The expected utility of DM1 if he decides to continue the selection process is:

Ev1
c(i) =

1
(i+1)2

i+1

∑
k=1

i+1

∑
l=1

Ev1(i+1,k, l) (10)

DM2 is allowed to decide about the ith offer only if DM1 accepts it therefore:

Ev2(i,k2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max{Ev2
s (i,k2),Ev2

c(i)} if DM1 accepts the ith offer
and i = 1, . . . ,n−1

Ev2
c(i) if DM1 rejects the ith offer

and i 	= n,
v2(k2) if i = n.

(11)

DM2 is allowed to accept or reject the current offer if DM1 accepts and k2 ≤ r2. In
this case, his expected utility if he decides to accept the ith offer is:

Ev2
s (i,k2) =

r2

∑
k=k2

Ck2−1
k−1 Ci−k2

n−k

Ci
n

(12)

And his expected utility when continuing the process is:

Ev2
c(i) =

1
(i+1)2

i+1

∑
k=1

i+1

∑
l=1

Ev2(i+1,k, l). (13)
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2.3 An Interactive Dynamic Stopping Rule for the BOSP

The interactive approach described in [2] is a stopping rule allowing, at each
stage of the selection process, the consideration of the two standpoints, then their
aggregation taking into account previous stages. We assume that the utilities of
the DMs are described in equation (2). The individual expected utility of DMp
(p = 1,2), with relative rank of the ith offer kp, when he decides to select the current
offer and stop the process is the following:

sp(i,kp) =
n−i+kp

∑
j=kp

P{(n, j)|(i,kp)}vp( j), (14)

Where

P{(n, j)|(i,kp)} =
Ckp−1

k−1 Ci−kp
n−k

Ci
n

. (15)

The expected utility of DMp when stopping the process is 0 when the group decision
is to continue sampling, and sp(i,kp) otherwise. This is expressed as follows:

Evp
s (i,kp) =

{
sp(i,kp) if λ 1

i s1(i,k1)+λ 2
i s2(i,k2) ≥ λ 1

i Ev1
c(i)+λ 2

i Ev2
c(i)

0 elsewhere. (16)

The expected utility of DMp at the ith stage if he decides to discard the ith offer and
continue according to his individual optimal strategy is:

Evp
c (i) =

1
i+1

i+1

∑
j=1

Evp(i+1, j). (17)

The group decision is taken by aggregating the individual expected utilities of the
DMs using weights. The following algorithm describes main steps of the interactive
approach.

Where
λ 1

i+1 = min{λ 1
i + Ev1

s (i,k1)−Ev1
c(i)

Ev1
s (i,k1) ,1}

λ 2
i+1 = 1−λ 1

i+1.
(18)

3 Experimental Results

The above dynamic equations were implemented for each stopping rule in C++
language and experiments were conducted on a series of BOSPs with sizes varying
from n = 5 to n = 300. Some interpretations are noticed when observing the ex-
pected utiltities of each DM at stage 1. They correspond to the winning probabilities
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Table 1 The interactive algorithm for the BOSP

Initialization:
• Compute individual optimal strategies for DMs 1 and 2.
• Ask the two players to jointly propose initial aggregating weights λ 1

0 and λ 2
0 . If not let

λ 1
0 = λ 2

0 = 1
2 .

Iterative process:
At any stage i (i = 1, . . . ,n) one of the following cases holds:
• i = n, then STOP and accept the nth offer.
• DMs 1 and 2 accept the ith offer, then offer i is accepted ⇒ STOP sampling.
• DMs 1 and 2 refuse the ith offer, then offer i is refused ⇒ CONTINUE sampling.
• Either DM accepts and the other refuses then the overall decision will be taken in the fol-

lowing way:

If λ 1
i Ev1

s (i,k1)+λ 2
i Ev2

s (i,k2)

⎧⎪⎪⎨
⎪⎪⎩

≥ λ 1
i Ev1

c(i)+λ 2
i Ev2

c(i) STOP with the ith offer as a com-
promise.

< λ 1
i Ev1

c(i)+λ 2
i Ev2

c(i) CONTINUE sampling.
and update the λ -weights as in (18)

of the DM. Other observations related to the expected rank and the comparison of
the BOSP with the single DM OSP are also anlayzed.

3.1 Winning Probabilities

Different values of rp are considered in these experiments:

(a) r1 = r2 = 1: each DM is interested by his best offer.
(b) r1 = r2 = 3: In this case each DM tries to select an offer out of the three best

offers.
(c) r1 = 1 and r2 = 3: The utilities of the DMs are different.

For each utility and each size of the problem, the expected utility of each DMp is
generated. The numerical results are displayed in Tables 2 and 3.

The first column in each table (2 and 3) enumerates the number of offers con-
sidered by the players. The second, the third and the fourth column of each table (2
and 3) displays the probability that DMs 1 and 2 respectively select one out of the
r1 best and one out of the r2 best of the sequence of n offers.

In what follows, we try to compare the two first stopping rules developed in
Sect. 2: stopping if either DM decides to stop, and stop if both DMs decide to accept.
Winning probabilities for the case r1 = r2 = 3 are plotted in Fig. 1. The dashed curve
of Fig. 1 correponds to the series of winning probabilities when stopping if either
DM decides to stop, and the other line corresponds to the case where an offer is
accepted if both DMs decide to stop and accept it. It follows from the above results
that under an optimal play of both players:
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Fig. 1 Winning probabilities for r1 = r2 = 3 with the two first stopping rules

Table 2 Expected winning probabilities of the DMs if either DM decides to stop the selection
process

r1 = r2 = 1 r1 = r2 = 3 r1 = 1 and r2 = 3

n DM1 DM2 DM1 DM2 DM1 DM2

5 0.28 0.28 0.691 0.691 0.28 0.713
10 0.21 0.21 0.406 0.406 0.152 0.521
20 0.15 0.15 0.295 0.295 0.115 0.303
30 0.1 0.1 0.212 0.212 0.081 0.0274
40 0.1 0.1 0.166 0.166 0.081 0.261
50 0.1 0.1 0.175 0.175 0.066 0.217
60 0.08 0.08 0.15 0.15 0.056 0.186
70 0.08 0.08 0.131 0.131 0.06 0.192
80 0.075 0.075 0.116 0.116 0.053 0.171
90 0.068 0.068 0.104 0.104 0.057 0.177

100 0.07 0.07 0.117 0.117 0.052 0.162
110 0.06 0.06 0.107 0.107 0.047 0.149
120 0.059 0.059 0.099 0.099 0.051 0.156
130 0.06 0.06 0.092 0.092 0.047 0.145
140 0.057 0.057 0.086 0.086 0.044 0.136
150 0.053 0.053 0.081 0.081 0.041 0.128
200 0.05 0.05 0.074 0.074 0.04 0.122
250 0.044 0.044 0.07 0.07 0.036 0.109
300 0.04 0.04 0.059 0.059 0.03 0.092

• The priority does not provide any advantage for the leader in the game: when
r1 = r2, the players are rewarded by the same utilities.

• When observing the expected utilities in Tables 2 and 3, we can notice that if each
player’s utility is to select the best offer of the sequence (r1 = r2 = 1), they are
rewarded by the minimum expected values regarding the other cases. So, more
the players consider relaxed utilities, more their winning probabilities increase.
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Table 3 Expected winning probabilities for the BOSP when stopping if both DMs accept to stop

r1 = r2 = 1 r1 = r2 = 3 r1 = 1 and r2 = 3

n DM1 DM2 DM1 DM2 DM1 DM2

5 0.308 0.308 0.775 0.775 0.360 0.745
10 0.191 0.191 0.559 0.559 0.246 0.473
20 0.118 0.118 0.389 0.389 0.165 0.298
30 0.088 0.088 0.31 0.31 0.127 0.231
40 0.070 0.070 0.26 0.26 0.104 0.185
50 0.059 0.059 0.226 0.226 0.09 0.159
60 0.052 0.052 0.201 0.201 0.08 0.14
70 0.046 0.046 0.18 0.18 0.07 0.123
80 0.041 0.041 0.166 0.166 0.064 0.112
90 0.038 0.038 0.154 0.154 0.059 0.103

100 0.035 0.035 0.143 0.143 0.055 0.095
110 0.032 0.032 0.133 0.133 0.051 0.089
120 0.03 0.03 0.126 0.126 0.048 0.084
130 0.028 0.28 0.119 0.119 0.045 0.079
140 0.026 0.026 0.113 0.113 0.042 0.073
150 0.025 0.025 0.107 0.107 0.04 0.069
200 0.02 0.02 0.087 0.087 0.032 0.056
250 0.016 0.016 0.074 0.074 0.027 0.047
300 0.014 0.014 0.064 0.064 0.023 0.04

• If r1 	= r2, the players are not rewarded by the same payoffs. We can notice that
the player who considers a more relaxed utility (r1 = 3) obtains a better expected
utility compared to his opponent.

• We can easily deduce from Fig. 1 that when adopting the second stopping rule
(stop if both DMs decide to stop) the winning probability of each DM is greater.
So, it is more suitable for the group to adopt the second stopping rule. We can
conclude from Tables 2 and 3 that the second stopping rule allows best expected
utilities.

3.2 Expected Rank

Since the second stopping rule (stop if both DMs decide to stop) is more suitable for
the group, we apply it on a series of problems with n ∈ {5, . . . ,100}. For the stop by
both DMs rule, we computed the expected minimum rank at stage 1. This is done
by replacing the utility of (2) by vp(kp) = kp and changing all the maximizations
by minimizations in the dynamic equations. These expected ranks are dipslayed in
the second column of Table 4. For the interactive approach, we generated randomly
a sample of 10,000 permutations of the BOSP for each size of the problem. The
mean of the obtained ranks is recorded in the third column of Table 4. We notice
from Table 4 that for n = 10, the expected rank for the second stopping rule and
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Table 4 Expected and mean ranks for the second and third stopping rules respectively

n Both DMs Negotiation

10 3.99 3.571
20 7.17 5.16
30 10.30 6.40
40 12.70 7.33
50 16.45 8.20
60 19.07 8.975
70 23.14 9.64
80 25.75 10.288
90 28.17 10.888

100 32.33 11.451
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Fig. 2 Expected ranks by second and the third stopping rules

the mean rank for the interactive approach are almost equal. However, for larger n,
the mean rank far exceeds the expected rank. This can be clearly seen in Fig. 2. The
gray line in Fig. 2 denotes the mean rank by the interacive approach while the black
line corresponds to the expected rank when stopping if both DMs decide to stop.
We can see in Fig. 2 the gap between the two stopping rules with a sample of offers
with various permutations.

Moreover, we can say that for large n a sample of 10,000 permutations against n!
possible permutations does not provide an accurate idea about the real mean rank.

3.3 Comparison with the Single DM Case

An alternative investigation of the problem consists in comparing the BOSP and the
OSP with a single DM formerly developed by Gusein-Zade [6]. The comparison
consists in observing the impact of considering an additional DM in the selection
process. Therefore, we consider the BOSP with r1 = r2 ∈ {1,2,3} compared with
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Table 5 The choice of an offer out of the r best in the single and bilateral DM cases

n r = r1 = r2 = 1 r = r1 = r2 = 2 r = r1 = r2 = 3

r = 1 r1 = r2 = 1 r = 2 r1 = r2 = 2 r = 3 r1 = r2 = 3

5 0.433 0.28 0.7 0.513 0.88 0.691
10 0.398 0.21 0.636 0.287 0.791 0.406
20 0.384 0.15 0.604 0.216 0.747 0.295
30 0.378 0.1 0.594 0.194 0.734 0.212
40 0.375 0.1 0.588 0.152 0.728 0.166
50 0.374 0.1 0.585 0.125 0.723 0.175
60 0.373 0.08 0.583 0.13 0.721 0.15
70 0.372 0.08 0.582 0.114 0.719 0.131
80 0.371 0.075 0.581 0.101 0.718 0.116
90 0.371 0.068 0.58 0.09 0.716 0.104

100 0.371 0.07 0.579 0.098 0.716 0.117
110 0.37 0.06 0.579 0.09 0.715 0.107
120 0.37 0.059 0.578 0.083 0.714 0.099
130 0.37 0.06 0.578 0.077 0.714 0.092
140 0.37 0.057 0.577 0.072 0.713 0.086
150 0.369 0.053 0.577 0.078 0.713 0.081
200 0.369 0.05 0.576 0.06 0.712 0.074
250 0.369 0.044 0.575 0.055 0.711 0.070
300 0.368 0.04 0.575 0.052 0.71 0.059

the OSP where the utility of the DM is 1 if the selected offer is one out of the 3 best
offers and 0 otherwise. We implemented the dynamic approach for the single DM
case in C++ language and generated the winning probabilities for the DM. Table 5
contains the expected utilities of the DM for the same sizes of the sequences and
same thresholds r = 1,2,3. Table 5 contains the generated results for both single
and bilateral cases. In the bilateral case, we provide a single value for each problem
since the expected utility at stage 1 is the same for both players. We clearly see how
the expected utility of each player decreases compared with the single DM case.

4 Conclusion

We studied in this paper the bilateral optimal selection problem. We proposed three
stopping rules namely: either DM can decide to stop, or when both DMs decide to
stop, or after an aggregation of the two individual decisions.

We have written the dynamic equations for all the proposed stopping rules. Then,
we investigated and compared the stopping rules on a set problems for n = 5 to
n = 300. The stopping rules provide, as expected, different results. Surprisingly,
stopping the process by the acceptance of both DMs provide more expected utility
than stopping by either of the DMs. This can be explained by the fact that when
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either DM can stop the process, he tends to stop earlier. Compared with the case
of a single DM, experimental results in Sect. 3 illustrate the loss of expected utility
when considering two DMs.

References

1. Ben Abdelaziz F, Krichen S (2007) Optimal stopping by two or more deicision makers: a survey.
Comput Manage Sci 4:89–111.

2. Ben Abdelaziz F, Krichen S (2005) An interactive method for the optimal selection problem
with two decision makers. Eur J Oper Res 162:602–609

3. Gilbert J, Mosteller F (1966) Recognizing the maximum of a sequence. Am stat Assoc J
61:35–73

4. Krichen S, Ben Abdelaziz F (2007) An optimal stopping problem with two decision makers.
Seq Anal 26(4):467–480

5. Szajowski K, Yasuda M (1997) Voting procedure on stopping games of Markov chain. Lect
Notes Econ Math Syst 445:68–80

6. Gusein-Zade SM (1966) The problem of choice and the optimal stopping rule for a sequence
of independent trials. Theory Probab Appl 11:472–476



Solving a Fuzzy Multiobjective Linear
Programming Problem Through the Value
and the Ambiguity of Fuzzy Numbers∗
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Abstract In this paper we solve multiobjective programming problems with fuzzy
parameters and flexible constraints. To work with fuzzy numbers we use two real
indices, the value and the ambiguity. In order to rank two fuzzy numbers a lexico-
graphic ranking procedure can be used: in the first step the values of fuzzy numbers
are compared, if these values are ‘approximately equal’ then we compare their am-
biguities. In this paper we apply this ranking procedure to a fuzzy programming
problem with fuzzy coefficients. In the first step we solve a model in which the
fuzzy coefficients have been defuzzified by its corresponding value. Now the ques-
tion is to determine when two solutions of the first step are approximately equal.
In order to answer this question we propose to reflect the decision makers (DMs)
preferences through the natural language, establishing a semantic correspondence
for the different satisfaction degrees. We consider as approximately equal all the so-
lutions whose global satisfaction degrees belong to the same linguistic label. Then,
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Universidad del Paı́s Vasco. Plaza Oñati 1, 20018-San Sebastián, España
e-mail: mariano.jimenez@ehu.es

∗Supported by the Universidad del Paı́s Vasco (project UPV05/45) and the Spanish Ministerio de
Edocación y Ciencia (project MTM2004-07478)

V. Barichard et al. (eds.), Multiobjective Programming and Goal Programming: 187
Theoretical Results and Practical Applications, Lecture Notes in Economics
and Mathematical Systems 618, © Springer-Verlag Berlin Heidelberg 2009



188 M. Jiménez et al.

1 Introduction

Decision-Makers (DMs) usually take into consideration criteria of a diverse nature
in their decision-making process and in general some of them clash and simultane-
ous optimization of all objectives is impossible. For these reasons many DMs prefer
to follow a satisfaction criterion (in order to reach certain aspiration levels) rather
than an optimization one. But often these aspiration levels cannot be stated with
precision and are expressed in an imprecise way, i.e. “to improve the present profit
situation considerably”. Furthermore, when addressing real-world problems, fre-
quently the parameters are non-random uncertainness or imprecise numerical quan-
tities. Fuzzy numbers are very adequate for modelling these situations, being that
their membership function represents the possibility distribution of uncertain coeffi-
cients. Thus in this paper we deal with a flexible programming problem with fuzzy
coefficients,

max c̃rx r = 1, . . . ,q
s.t. ãix � bi i = 1, . . . ,m

x ≥ 0
(1)

where c̃rx = c̃r1x1 ⊕ c̃r2x2 ⊕ ·· · ⊕ c̃rmxn, ãix = ãi1x1 ⊕ ã12x2 ⊕ ·· · ⊕ ãinxn, bi ∈ R,
x ∈ R

n.
c̃r j = (c1

r j,c
2
r j,c

3
r j,c

4
r j), ãi j = (a1

i j,a
2
i j,a

3
i j,a

4
i j) with c•••,a

•
•• ∈ R, are fuzzy num-

bers, [c1
r j,c

4
r j], [a

1
i j,a

4
i j] being their supports and [c2

r j,c
3
r j], [a

2
i j,a

3
i j] their core. ⊕ de-

notes the extended minimum addition [9]. That is to say, given two fuzzy num-
bers Ã, B̃, if Ã⊕ B̃ = C̃, then the membership function of C̃ is defined as μC̃(z) =
supz=x+y min{μÃ(x),μB̃(y)}. It is easy to show that c̃rx(r = 1, . . . ,q) and ãix(i =
1, . . . ,m) are fuzzy numbers too [3]. � represents a flexible constraint, i.e., smaller
violations of constraints could be acceptable, so we admit a tolerance interval for
the right hand sides.

In order to work with fuzzy numbers we propose to use a canonical represen-
tation of a fuzzy number ã through two real indices [2]: the value ‘V (ã)’ and the
ambiguity ‘A(ã)’, that allow for the capturing of relevant information contained in
a fuzzy number. The value of a fuzzy number may be seen as its central value and
the ambiguity may be interpreted as the global spread of the number. The value and
the ambiguity are calculated as follows,

V (ã) =
∫ 1

0
α[ f−1

a (α)+g−1
a (α)]dα, A(ã) =

∫ 1

0
α[g−1

a (α)− f−1
a (α)]dα

where fa and ga are respectively the left and the right shape function of fuzzy num-
ber ã.

Delgado et al. [2], proposed to rank two fuzzy numbers by the value-ambiguity
indices. The obtained ranking should be mainly determined by the value. Only when
the values are almost equal, could the ranking result be driven by the ambiguity. Ac-
cording to these considerations the aforementioned authors suggest a lexicographic
ranking procedure with the following steps: In the first step the values of the fuzzy
numbers are compared. If they are approximately equal then one can proceed to



Solving a Fuzzy Multiobjective Linear Programming Problem 189

the second step. If this is not the case, the fuzzy numbers are ranked according to
the relative position of the values. In the second step the ambiguities of the ‘almost
equal’ fuzzy numbers are compared. Observe that more ambiguity gives the chance
of very good results but, at the same time, the risk of very bad results. That is to say
a risk-adverse DM should prefer the fuzzy number with less ambiguity and a risk-
seeking DM should prefer the fuzzy number with larger ambiguity. In this paper,
the above ranking procedure is introduced in our model in order to solve a flexible
programming problem with fuzzy coefficients.

It is easy to show that

V (ãix) =
n

∑
j=1

V (ãi j)x j, A(ãix) =
n

∑
j=1

A(ãi j)x j

and similarly for c̃rx.
We notice that to figure out the value-ambiguity indices for a non triangular-

trapezoidal fuzzy number is very easy. So our approach easily permits for handling
with fuzzy numbers to have non linear membership functions.

2 Solving a Multiobjective Programming Problem
with Fuzzy Coefficients

Following Zimmermann [10], we will assume that the DM can establish in model
(1) a fuzzy aspiration level g̃r for each objective function. Then it can be written as
follows

Find x
such that c̃rx 	 g̃r r = 1, . . . ,q

ãix � bi i = 1, . . . ,m
x ≥ 0.

(2)

The membership function μk(x) represents the degree to which the decision vec-
tor x satisfies the k-th fuzzy goal or constraint. Therefore μk(x) should be 0 if the
k-th constraint is strongly unfulfilled, and 1 if it is completely satisfied. Then, for
flexible inequalities of type 	, μk(x) should increase monotonously from 0 to 1
over the tolerance interval and, for inequalities of type �, μk(x) should decrease
monotonously from 1 to 0 over the tolerance interval.

As was stated in the introduction, in order to solve problem (2), we use the value-
ambiguity ranking procedure following Delgado et al. [2], proposing ourselves a
procedure consisting of two steps. In the first step we work with the value of the
fuzzy coefficients and in the second step we choose, between the almost equal solu-
tions of the first step, those with lesser (or larger) ambiguity (depending on the DM
attitude in the face of risk).
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(1) First step: working with the value of the fuzzy coefficients

We propose to replace each fuzzy constraint of (2) by one pessimistic crisp one (3)
and a new objective (4),

ãix � bi ⇔
{

a4
i x ≤ bi + ti

μi(x) = μg̃r(V (c̃rx)) → max (4)

where V (ãix) is the value of the fuzzy number ãix and ti is the tolerance margin of
the i-th fuzzy constraint. The crisp constraint (4) assures us that even in the most
pessimistic situation the tolerance margin will be not surpassed. Symmetrically for
the goals of (2)

c̃rx 	 g̃r ⇔
{

c1
r x ≥ gr −dr

μr(x) = μg̃r(V (c̃rx)) → max .

Therefore model (2) may be described by the following multi-objective optimiza-
tion problem

max
x∈XU

(μ1(x), . . . ,μq+m(x)) (5)

where XU = {x ∈ R
n
+ : c1

r x ≥ gr −dr,r = 1 . . . ,q;a4
i x ≤ bi + ti, i = 1, . . . ,m}.

Following Bellman and Giertz [1], in this paper, in order to aggregate the con-
straints satisfaction degrees, the ‘minimum’ operator is used, but depending on the
context other aggregation operators could be used [5]. So the global satisfaction
degree may be described by

λ (x) = min((μ1(x), . . . ,μq+m(x))). (6)

According to Negoita and Sularia [7] the model (2) is equivalent to

maxλ
subject to λ ≤ μg̃r(V (crx)), r = 1, . . . ,q

λ ≤ μbi(V (aix)), i = 1, . . . ,m
x ∈ XU .

(7)

When the membership functions μ• are linear, the model (7) is a linear pro-
gramming problem. If the membership functions are nonlinear, then they could be
approximated by piecewise linear functions and the model (7) could be formulated
as a linear programming problem [4].

(2) Second step: to minimize (or maximize) the ambiguity between the almost
equal solutions

In the second step the ambiguities of the almost equal solutions of the first step
are compared. More ambiguity gives the chance of good results but, at the same
time, bigger risk of bad values. On the contrary less ambiguity decreases the risk
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of bad values in return for a decrease in the chance of good results. That is to say a
risk-adverse DM should prefer the solution with less ambiguity and a risk-seeking
DM should prefer those with more ambiguity.

Once the problem (7) has been solved, the question is to determine when we can
consider that two solutions are approximately equal. According to Delgado et al. [2]
the relation approximately equal is to be constructed in each particular case accord-
ing to the problem characteristics and the DMs subjectivity. As we are working in
an uncertain environment the DM will be more comfortable if she/he can reflect
her/his preferences through natural language, so we establish a semantic correspon-
dence for the different degrees of satisfaction [9]. In accordance with Miller [6] and
Yager [8] human beings are capable of distinguishing between, remembering and
using seven or nine terms. Table 1 shows a scale with seven linguistic labels related
with the satisfaction degree of the solution of model (7). Likewise Table 1 shows
the numerical interval that we associate with each linguistic label.

Let xo be an optimal solution of (7) and λ o the corresponding optimal objective
value. We consider as almost equal to xo any feasible solution having an objective
value belonging to the same linguistic label as λ o. Thus according to (6) the almost
equal solutions to xo are those that verify λ o

1 ≤ min((μi(x), . . . ,μq+m(x))) ≤ λ o
2 ,

where λ o
1 ,λ 0

2 are the bounds of the interval corresponding to the linguistic label of
λ o. But obviously no feasible solution can have a global satisfaction degree bigger
than the optimal objective value λ 0, then it is enough to look for the feasible solu-
tions that verify μi(x) ≥ λ o

1 , i ∈ {1,2, . . . ,q + m}. Now, to rank these almost equal
solutions we will take into account the DM’s attitude towards uncertainty, finding
those with minimum (or maximum) ambiguity. In order to avoid solutions biased
towards fuzzy coefficients with larger value, we use the relative ambiguity, that is
to say we divide the ambiguity of each fuzzy coefficient by its corresponding value.
Thus in the second step we solve the following model

min
m

∑
r=1

wr

n

∑
j=1

A(c̃r j)
V (c̃r j)

x j +
q

∑
i=1

w′
i

q

∑
j=1

A(ãi j)
V (ãi j)

x j

subject to μk(x) ≥ λ o
1 k = 1,2, . . . ,q+m

x ∈ XU

(8)

Table 1 Set of seven linguistic labels

Linguistic label Significance Interval

l1 Null [0,0]
l2 Very low [0,0.2]
l3 Low [0.2,0.4]
l4 Average [0.4,0.6]
l5 High [0.6,0.8]
l6 Very high [0.8,1]
l7 Perfect [1,1]
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where the weights wr ∈ [−1,1] (r = 1, . . . ,m), w′
i ∈ [−1,1] (i = 1, . . . ,q) represent

a measure of the attitude of the DM against the uncertaity, regarding the r-th goal
or i-th constraint, respectively. Thus wr > 0 (w′

i > 0) represents a risk-adverse DM,
wr < 0 (w′

i < 0) a risk-seeking DM and wr = 0 (w′
i = 0) a risk-neutral DM.

3 An Illustrative Example

Company C manufactures three products P1, P2 and P3. The production capacity
is 5 tons for each product. And, for technical reasons, at least 1 ton of each product
must be produced. It is estimated that product P1 yields a profit of about 23 monetary
units, P2 yields about 8 monetary units and P3 yields about 15 monetary units per
ton. Also, it is pointed out that products P1, P2 and P3 yield respectively ‘about 3’,
‘about 1’, and ‘about 2 units’ of pollution per ton respectively. The total pollution
amount should be ‘essentially smaller’ than 10.5 units, considering that 13 is the
tolerance threshold. The company has 50 workers and “should not want to contract
more workers”, considering that the tolerance threshold is for four workers more.
Each ton of P1 needs about 15 days work, each ton of P2 needs about 5 days work
and each ton of P3 needs about 5 days work. The company is trying to figure out
how many units of products P1, P2 and P3 should be produced to “improve the
present benefit situation substantially”, which can be expressed as follows: a benefit
greater or equal to 95 m.u. is fully satisfactory, a benefit of less than 70 m.u. being
unacceptable.

The problem can be expressed by the following model (see (2)):

Find (x1,x2,x3)
Such that 2̃3x1 ⊕ 8̃x2 ⊕ 1̃5x3 	 95 (total profit)

3̃x1 ⊕ 1̃x2 ⊕ 2̃x3 � 10.5 (environmental impact)
1̃5x1 ⊕ 5̃x2 ⊕ 5̃x3 � 50 (employment)

x1,x2,x3 ≤ 5 (production capacity)
x1,x2,x3 ≥ 1 (technical necessities)

(9)

The uncertain parameters are estimated by the following fuzzy numbers, trian-
gular or trapezoidal for the sake of simplicity,

2̃3 = (22.5,22.8,23.4,22.98); 8̃ = (7.9,8,8,8.2); 1̃5 = (14.7,14.9,15.1,15.4);
3̃ = (2.9,3,3,3.1); 1̃ = (0.95,1,1,1.1); 2̃ = (1.9,2,2,2.5);

1̃5 = (14.5,15,15,15.3); 5̃ = (4.8,5,5,5.1); 5̃ = (4.9,5,5,5.1)

(a) First step: According to the above considerations, at first priority level we work
with the value of fuzzy numbers. Thus we write (see model (7)),
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maxλ
s.t. λ ≤ (1/20)(22.98x1 +8.02x2 +15.02x3 −70)

λ ≤ (1/2.5)(13−3x1 −1.01x2 −1.99x3)

λ ≤ (1/4)(56−14.97x1 −4.98x2 −5x3)

22.50x1 +7.9x2 +14.7x3 ≥ 75

3.1x1 +1.1x2 +2.05x3 ≤ 13

15.3x1 +5.1x2 +5.1x3 ≤ 54

x1,x2,x3 ≤ 5

x1,x2,x3 ≥ 1.

(10)

The optimal solution for this model is x1 = 1.41,x2 = 5,x3 = 1, whose global
satisfaction degree is λ o = 0.7.

(b) Second step: According to Table 1 the value λ o = 0.7 belongs to the linguistic
label l5, that is to say its global satisfaction degree is ‘high’, like all solutions
that produce a global satisfaction degree between λ o

1 = 0.6 and λ o
2 = 0.8. So

we consider all of them to be almost equal solutions. Thus according to (8) we
solve the following model

minw1(
0.28
22.98

x1 +
0.05
8.02

x2 +
0.18

15.02
x3)+

w2(
0.03

3
x1 +

0.03
1.01

x2 +
0.03
1.99

x3)+

w3(
0.13
14.97

x1 +
0.05
4.98

x2 +
0.03

5
x3)

s.t. (1/20)(22.98x1 +8.02x2 +15.02x3 −75) ≥ 0.6
(1/2.5)(13−3x1 −1.01x2 −1.99x3) ≥ 0.6
(1/4)(54−14.97x1 −4.98x2 −5x3) ≥ 0.6

21x1 +7.5x2 +13x3 ≥ 75
3.2x1 +1.2x2 +2.2x3 ≤ 13

15x1 +5x2 +2x3 ≤ 54
x1,x2,x3 ≤ 5
x1,x2,x3 ≥ 1.

(11)

Suppose the DM is risk-adverse in the three constraints, then w1 = w2 = w3. The
optimal solution to the corresponding model is: x1 = 2.7,x2 = 1,x3 = 1. This
solution, supplies less profit than the solution xo obtained in the first step (model
(11)), in exchange for producing less environmental impact and spending less
working days (See Fig. 1).
Now suppose that the DM is risk-seeking in profit and pollution and risk-
adverse to working days. Thus, in (11) w1 = −1,w2 = −1,w3 = 1. The optimal
solution to the corresponding model is: x1 = 1,x2 = 5,x3 = 1.74. (See Fig. 2).
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Fuzzy left hand side for solution obtained in the first step (model 10)  

Fuzzy left hand side for solution obtained in the second step (model 11)  
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0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

65 70 75 80 85 90 95 100 9 10 11 12 13 14 45 47 49 51 53 55

Profit Pollution Employment

Fig. 1 Solution in case the DM is risk-adverse in the three constraints
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Fig. 2 Solution in case the DM is risk-seeking in profit and pollution and risk-adverse in employ-
ment

These graphics allow the DM to visualize the risk of non fulfilment of the con-
straints and to compare the different almost equal solutions. In the case that she/he
doesnt agree with the solutions obtained, she/he can change the tolerance threshold
of the flexible constraints or the linguistic labels to her/his degree of satisfaction.

4 Conclusions

Delgado et al. [2] have suggested a lexicographic ranking procedure for the value-
ambiguity pair to rank fuzzy numbers. In this paper we propose a method that ap-
plies this ranking procedure to solving flexible multiobjective linear programming
problems with fuzzy coefficients. The use of value-ambiguity indices allow us to
use nonlinear fuzzy numbers without losing information or increasing the complex-
ity. Our method allows the DM to interact in all steps of the decision-making pro-
cess. In the first step she/he can determine the tolerance interval of the flexible con-
straints and the linguistic labels for her/his degree of satisfaction. In the second step
she/he can change the weights of the ambiguities to generate different almost equal
solutions. Lastly our method supplies graphics that allow the DM to visualize the
risk of non fulfilments of the constraints and to compare the different almost equal
solutions.
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A Robust-Solution-Based Methodology to Solve
Multiple-Objective Problems with Uncertainty

Daniel Salazar, Xavier Gandibleux, Julien Jorge, and Marc Sevaux

Abstract This paper presents the formulation and evaluation of a methodology
to solve multiple-objective problems in the presence of uncertainty based on ro-
bustness. The methods were developed regarding a particular real “Released when
Completing blocking (RCb)” scheduling flowshop problem characterized by several
equivalent solutions, but they can be extended to another robustness problems.

Keywords: Flowshop scheduling problem · Genetic algorithm · Multiobjective
evolutionary algorithm · Multiobjective simulated annealing · Robustness · Robust
schedule · Release when completing blocking

1 Introduction

Robustness is a very important concept present in diverse areas related to Multicri-
teria Decision-Making. In general words we can say that robustness is an attribute
related to the “ability of a subject to cope well with uncertainties” [12], more pre-
cisely the uncertainties that accompany the input of a system. In this work we are
particularly interested in the concept of robust solution in optimisation and its ap-
plication to find the final set of alternatives in Multiple-Objective (MO) problems.
The application of robustness described here is framed in a specific “Released when
Completing blocking”(RCb) bi-objective hybrid flowshop scheduling problem, but
the methodologies studied can be adapted to other classes of problems.
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2 The RCb Hybrid Flowshop Bi-Objective Scheduling Problem

This problem was studied first in [3] and is originated in a waste treatment plant. It
consists of a set of silos (1st stage; m ≥ 1 identical parallel machines) where a group
of trucks unload the waste (1st operation), and a mixer (2nd stage; critical machine)
that processes the waste to dispose it of. There is no storage capacity, thus once a
silo accepts the load it cannot be released until the waste is completely transferred
to the mixer and the processing ends. Subsequently, the sequence strictly begins at
the 1st stage and finalizes at the 2nd with no preemption (see Fig. 1).

This problem poses two objectives, the minimisation of the Makespan -strongly
associated with the critical machine- and the minimisation of the Average Waiting
Time between the ready time (when a truck arrives) and the starting time (when the
unloading begins) of each job at the 1st stage. No other objectives or constraint were
supplied.

The optimisation of these two objectives was tackled in [3] with a Multiple-
Objective Simulated Annealing algorithm (see Algorithm 1) solving two real in-
stances (see Fig. 2) -corresponding to a waste treatment problem- along with several
random instances . The procedure was built using MNEH, an heuristic proposed by
Nawaz, Enscore and Ham and modified by Martı́nez [7] (see [3] for more details).

Contrary to what was expected, the output is featured by few or even only one
non-dominated point and a large number of equivalent schedules, no matter what
instance is chosen. In other words, there are several different schedules that show
the same Makespan and the same Average Waiting Time: different alternatives for
the DM that yield the same performance in terms of objectives values.

The results obtained by [3] show that the algorithm is capable of solving the
optimisation problem, so one could say that the problem itself does not represent
a technical challenge. Nevertheless the described situation raises an unfavourable
panorama for decision-making: once a desired solution is identified in the objective

1st Stage

1

1 2 3

3

4

4

2

2nd Stage

Time

Mx

M2

M1

Fig. 1 RCb scheduling problem in a waste treatment plant (two stages example)
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Algorithm 1 Multiple-Objective Simulated Annealing [3]
begin

XPE ← /0 ; xinit ← xMNEH()
for all λ ∈ Λ loop

T0 ← T ; Ncount ← 0
n ← 0; xn ← xinit ; XPEλ ←{xn}
repeat randomly draw x ∈ N (xn)

if isBetter(x,xn)
or else isAccepted(x,xn,n,Tn,λ )

then
XPEλ ← archive(XPEλ ,x);
xn+1 ← x ; Ncount ← 0

else
xn+1 ← xn; Ncount ++

endIf
n++
updateParameters(α,n,Tn,Ncount )

until isFinished(Tn)
xinit ← xMinAttente(XPEλ )

endLoop
XPE ← merge(XPEλ )

end

where:

• isBetter, is a procedure that calculates Δzk ← zk(x)− zk(xn) and returns ¬(∀k : Δzk ≥ 0).
• isAccepted, is a procedure that calculates the probability of acceptance probn for the current

iteration with exp
(
−∑q

k=1 λk (zk(x)− zk(xn))/Tn
)
, and then generates a random number prob

uniformly distribute in [0,1] and returns (prob < probn).
• isFinished, is a procedure that verifies if whether the predefined number of interation Nstop

or the limit temperature for the cooling process Tstop has been reached.
• merge, is a procedure that merges XPEλ ,λ ∈ Λ into XPE and eliminates the dominated solu-

tions

space, how does one select the right alternative from the numerous set of equivalent
schedules? In other words, can a DM choose a particular schedule from hundreds
of equivalent solutions? A random selection is does possible but isn’t it risky? It is
possible to refine the final set to facilitate the decision making?

To help answer these questions we incorporate the concept of robustness pre-
sented in the next sections, based on the following considerations:

• It is a real life problem:

– Its implementation entails dealing with uncertainty.
– The amount of information about the problem is scarce.

• We propose:

– To offer the DM optimal and robust solutions.

• We assumed:

– Trucks may arrive earlier or later the expected time.
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Fig. 2 An example of a real instance: ready and processing time of each truck

– No online scheduling is possible.
– Delays in tasks are not considered.
– The sequence will be strictly respected.
– The DM is averse to giving more information.

3 Robustness in Optimisation

There are several formulations of robustness closely related to design. Most of
them turn around the idea of insensitivity of a solution or design to small varia-
tion of the decision variables and/or the design parameters [5,13,14]. Nevertheless,
none of them establishes how insensitive a solution should be or what “small varia-
tion”means. Since the answers to these questions rely on the Decision Maker (DM),
it is possible to classify the robustness concepts in terms of the type of information
provided by an analyst/DM and the stage where it is provided.

Let us consider any optimisation procedure as a three stages process: (1) input,
(2) solving, (3) output. The first step comprises the acquisition of data, the mod-
elling of the objectives and disturbances and the exercise of a priori DM’s prefer-
ences. The second step consists in optimising the function(s) by means of a classical
and/or a heuristic method; and finally in the third step the DM obtains the efficient
frontier from which to choose the desired alternative. Here we focus our analysis to
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metaheuristics. According to this, it is possible to identify in the literature two basic
approaches regarding either single or MO.

Let X be a vector of decision variables and let δ be a vector of disturbances. Let
F(X) be a function that describes the performance of a system, and finally let Ft be
a target value.

1st Approach: from input to output This is the typical approach adopted in ro-
bust design which is strongly associated with Taguchi’s work [2]. Two subprob-
lems derive from this approach:

(a) Minimize the deviation:

min
x

var
x,σ

|Ft −F(X +δ )|

(b) Optimize F(X) and minimize the variability:

Opt
x

F(X)∧min
X

var
X ,σ

|F(X)−F(X +δ )|

2nd Approach: from output to input This is the approach adopted in [8, 9, 11]
and consists in assessing that solution that allows or resists to the largest level
uncertainty in the input without missing any requirement.

1st Approach:

In evolutionary optimisation, this approach is commonly accomplished by means
of an Effective Function (either in single [4, 14] and multiple objective optimisa-
tion [1]) formulated as Fe f f = 1

N ∑N
i=1 F(X + δi) where F is the objective function

which is averaged over a neighbourhood of the decision vector X. Here the ana-
lyst/DM points out a plausible assumption or real information (Probability Distri-
bution Functions or PDF) to generate N realizations (δi) of the disturbance δ before
searching the optimum, but none requisite is stated for the output Fe f f (X). Notice
that the main drawback in terms of robustness of the solution is that the problem
cannot be solved without an appropriate description of the uncertainty, i.e. a way of
generating the disturbances δ .

2nd Approach:

In evolutionary optimisation, this approach adopts a different point of view, using
metaheuristics to search for the maximal range of each disturbance (refers as Maxi-
mal volume Inner Box -MIB- in [8]) that assures the objective functions always meet
the prerequisites set by the DM [8]. This approach has been extended by formulat-
ing the original problem as a multiple objective problem [9, 11], by converting one
constraint into an objective. However, problems subject to uncertainty more than
one objective had not been tackled before.
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One way to follow this approach in optimisation consists simply in settings some
goals or requirements to the objective function, in that way that the performance is
bounded, yielding F� ≤F(X +δ )≤Fυ . The bounds are fixed by some DM’s criteria
and therefore the problem converts into an optimisation problem of maximising the
size of the deviation s.t. the original constraints plus the performance requirement
F� ≤ F(X + δ ) ≤ Fυ . Notice that this approach cannot be applied without some
previous knowledge of the range of F(X).

4 Proposed Methodology

As the DM did not provide any information about δ nor about plausible limits
F�, Fυ , it was not possible to solve the problem with a single application of any
of the robustness approaches presented earlier. Given that panorama, we propose
a mixed strategy that merges the two approaches, based on the least number of
assumptions that derive from answering these questions: What is the maximal di-
mension that can be neglected in the objective space? And, what is a reasonably
significant level of uncertainty in the input?

4.1 Formulation

The answer to the first aforementioned question gives the maximal level of indiffer-
ence that the DM is willing to tolerate, i.e. any difference lower than this level is ne-
glected. The second answer gives the minimal level of uncertainty that is considered
significant in the input. Thus, with the two quantities we developed the following
methods (Fig. 3):

Method 1:

Step 1: Define a set of measures εi each of one representing the maximal level of
indifference tolerated by the DM for each objective (we use here the concept
of ε-dominance but based on preference information)

Input:

Filtering by
e-dominance

Filter each
e-box by

Distances

Metaheuristic

During
the search

After the
search

Output:

MIB

MIB

Distances

�   Set of alternatives
�  feff(x)
�  PDF base for di.

�  Set of efficient e-
  boxes, each of one
  containing only
  one robust
  solution

Fig. 3 Alternatives for Robust-Solution-based MO Optimisation
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Step 2: Optimize with robust values as Fe f f (X) = (F1
e f f (X),F2

e f f (X))

• Let any schedule S be defined by S(X) = {�,TS(X)} a sequence � and a
vector of starting times TS

• Where the Effective Makespan is

F1
e f f (X) =

1
N

N

∑makespan(S(X +δ ))

and the Effective Average Waiting Time is

F2
e f f (X) =

1
N

N

∑AWT (S(X +δ ))

and � remains the same and S(X +δ ) = {�,TS(X +δ )} for δi = U(±10)

Step 3: Wipe out all the solutions located in dominated ε-hyperboxes, and prune
the set of non-dominated solutions, selecting only one solution for each
non-dominated hyperbox according to some criterion.

Possible criteria:

• Distance to the ε-hyperbox ideal vertex, or
• MIB = Maximal Volume Inner Box

The core procedure is based on the use of effective functions. For that matter
a base PDF is assumed which represents the minimal significant level of uncer-
tainty that any schedule should be able to cope with. Additionally, the concept of
ε-dominance [6] is incorporated as a filtering tool as in [10], in such a way that the
objective space is divided into ε-boxes and all solutions contained into each ε-box
are indifferent to the DM.

In order to filter the content of the non-dominated ε-boxes, we tested two criteria:
the former consists in removing all the solutions but the closer to the ideal point of
each box, whereas the second keeps the solution with the larger MIB. The filtering
process is then performed during the whole search.

Method 2:

Methods 1 and 2 employ the same approaches of robustness, the main differences
relies on the stage when the 2nd Approach (MIB) is applied. In Method 1 the pruning
phase inside each hyperbox is performed during the search either for the distance
criterion or the MIB criterion. In Method 2 there is no pruning phase, thus the whole
set of non-dominated solutions found are presented to the DM, then they can select
the hyperbox of interest and employ the MIB criteria to decide which solution to
select.
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Fig. 4 Results obtained with Method 1 using the two criteria for pruning

4.2 Implementation Details

The implementation for solving our RCb MO problem is based on the assumption
that no online scheduling can be done, therefore the sequence of jobs is invariable
and only the ready and starting times can change. As PDF base we chose an uniform
distribution Uj(read time j ± δ j), where δ j=10’ for each job j. With these assump-
tions, once a schedule is generated by MOSA (Algorithm 1), we can assess the
effective objective functions (Makespan and Average Waiting Time) (F1

eff ,F
2
eff ) by

means of a simulation of 30 samples, yielding good results. The simulation follows
the original sequence, readjusting only the starting times. Afterward the determina-
tion of the ε-box the vector (F1

eff ,F
2
eff ) belongs to is straightforward. We use additive

ε-dominance [5] and εi=10’.
The calculation of the MIB of any particular schedule is performed by a genetic

algorithm (GA) of 20 individuals in 30 generations, where each individual repre-
sents a vector of j maximal disturbances δ j initialized as δ j=10’ and has a potential
MIB associated, assessed as ∏ j(δ j). The GA looks for the largest ranges of δ j

(maximizes MIB) that assure (F1
eff ,F

2
eff ) still belongs to its original ε-box or to an

immediate neighbour. For each individual (F1
eff ,F

2
eff ) is recalculated.

5 Results

The different alternatives to conjugate the robustness approaches described earlier
where tested and evaluated with the real instances of data. Fig. 4 shows the results
of applying Method 1 with pruning by distances(circles) and pruning by MIB (solid
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Fig. 5 Results obtained with Method 2

squares). Notice that the two approaches produce similar outcomes and show the
ability to reduce the original huge number of equivalent solutions to a few robust
non-dominated schedules by means of a logical procedure. Nevertheless, in this
case pruning by distances seems a better option, since it produces a better spread
outcome with a lower computational burden.

However, a pretty different appreciation can be obtained when we apply Method
2 (Fig. 5). The upper left cluster represents a groups of solutions belonging the same
ε-box. It is evident that in this case a pruning by distances will favor the solution
placed at the lower left “corner”of the cluster. That solution seems to overcome even
the non-dominated point obtained without considering robustness (solid rhomboid).
Nevertheless this apparent gain on quality is an effect of the Monte Carlo simulation.
In other words, we don’t have crispy values but intervals, as it was represented in
Fig. 4. Thus, comparing distances could be even not relevant for that case. Nonethe-
less, two close non-dominated points might have very different MIB as is shown in
the lower right cluster of Fig. 5. As a matter of fact, the solutions practically overlap
each other but one of them is five times more robust that the other. It shows that
a single application of an effective function may underestimate the robustness of a
particular solution regarding the others, especially due to the imprecision introduced
by the simulation or average procedure.

It is important to mention that the methods developed and tested in this work
may be adapted to diverse real problems where the information is scarce. The results
obtained lead us to conclude that the MIB should be included to improve assure a
higher quality of the results. Nevertheless, since its application entails a considerable
computational burden, some balance must be found between Method 1 and Method
2 using pruning by MIB, in order to improve the efficiency. This step is open for
further research.
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6 Conclusions

The proposed methodology permits to reduce the huge number of equivalent solu-
tions related to each non-dominated point by means of a logical procedure based on
two different formulations of the concept of robustness, as well as the ε-dominance
merged with preferences. The results shown that the MIB measure is a remarkable
complement of the Fe f f approach since it allows the DM to find even more robust
solutions that the single application of Fe f f , without sacrifice the attained level of
optimality. In that sense, filtering by MIB seems a better alternative than filtering by
distance.

Finally, the present work poses new issues for further researches like the gen-
eralization of the current approach to other kind of problems, the evaluation of the
effect of executing the filtering process during or after the search as well as the con-
venience of incorporating MIB as an additional objective. Some of these questions
are currently under study.
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6e Conférence Francophone de MOdélisation et SIMulation (MOSIM’06), Rabat, Morocco,
April 2006

4. Jin Y, Branke J (2005) Evolutionary optimization in uncertainty environments - a survey.
IEEE Trans Evol Comput 9(3):303–317

5. Jin Y, Sendhoff B (2003) Trade-off between optimality and robustness: An evolutionary mul-
tiobjective approach. In: Evolutionary Multi-Criterion Optimization, LNCS 2632. Springer,
Berlin, Germany, pp 237–251

6. Laumanns M, Thiele L, Zitzler E, Deb K (2002) Archiving with Guaranteed Convergence
and Diversity in Multi-Objective Optimization. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2002), San Francisco, California, USA, July 2002.
Morgan Kaufmann, New York, pp 439–447
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On the Use of Preferential Weights in Interactive
Reference Point Based Methods

Kaisa Miettinen, Petri Eskelinen, Mariano Luque, and Francisco Ruiz

Abstract We introduce a new way of utilizing preference information specified by
the decision maker in interactive reference point based methods. A reference point
consists of aspiration levels for each objective function. We take the desires of the
decision maker into account more closely when projecting the reference point to be-
come nondominated. In this way we can support the decision maker in finding the
most satisfactory solutions faster. In practice, we adjust the weights in the achieve-
ment scalarizing function that projects the reference point. We demonstrate our idea
with an example and we summarize results of computational tests that support the
efficiency of the idea proposed.

Keywords: Interactive methods · Multiple objectives · Multiobjective optimiza-
tion · Multiobjective programming · Preferences · Reference point methods

1 Introduction

In multiobjective optimization, several objective functions are to be optimized si-
multaneously. Because the objective functions typically are conflicting, it is im-
possible to find a solution where all the objectives can simultaneously reach their
individual optima. Instead, we can identify compromise solutions, that is, so-called
nondominated solutions, where none of the objectives can get a better value without
deterioration to at least one of the other objectives. Ultimately, the task of solving
multiobjective optimization problems is to find the best nondominated solutions to
be called a final solution. This usually necessitates additional information from a
decision maker (DM), an expert in the domain of the problem in question.
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Many methods have been developed for solving multiobjective optimization
problems during the years. Among them, interactive multiobjective optimization
methods are widely used (see, e.g. [6] and references therein). In them, a solution
pattern is formed and iteratively repeated, and the DM takes actively part in the so-
lution process by specifying and refining preference information. In this way, the
DM can learn about the possibilities and limitations of the problem and about the
interdependencies among the objective functions. Furthermore, only such nondom-
inated solutions are generated that are interesting to the DM. Assuming the DM has
time enough to take part in an interactive solution process, the final solution can
be expected to be satisfactory because the DM can genuinely affect and direct the
solution process in order to find a desired final solution.

There are many interactive methods and they differ basically from each other in
what kind of information is asked from and shown to the DM at each iteration, and
in the way the successive solution candidates are calculated. Examples of types of
preference information asked from the DM include marginal rates of substitution,
surrogate values for trade-offs, classification of objective functions and reference
points. For further details, see, for example, [6, 14] and references therein.

Among interactive approaches, methods using reference points (for the idea see,
e.g. [6, 15]) have been popular (for some comparative studies, see, e.g. [9, 10]) be-
cause of their straightforward nature. A reference point consists of desirable val-
ues for each objective function. For DMs, reference points are a natural way of
expressing desires in solutions because DMs do not have to learn to use new, arti-
ficial concepts. Instead, objective function values are used that as such are mean-
ingful and understandable for DMs. Examples of methods utilizing reference points
include reference point method [15], visual interactive approach [4], STOM [13],
GUESS [2] and light beam search [3]. In addition, methods based on classification
are closely related to reference point methods because with a classification, the DM
indicates what kind of changes are desirable in the current objective function val-
ues. Thus, a reference point can be formed once a classification has been made [11].
Methods based on classification can be found, for example, in [1, 9, 11, 13], among
others.

In this paper, we concentrate on interactive reference point based methods where,
as already mentioned, the DM is at every iteration asked to specify a reference
point consisting of desirable or acceptable values for each objective function. The
next solution candidate is then generated by minimizing an achievement scalariz-
ing function. In practice this means that the reference point is projected to the set
of nondominated solutions and any nondominated solution can be found by altering
the reference point. In most of the methods using achievement scalarizing functions,
while the reference point is changed at each iteration, weights determining the pro-
jection direction are kept unaltered during the whole process and their purpose is
mainly to normalize different objectives. In all, in achievement scalarizing func-
tions widely used, the weights have no real preferencial meaning. Rather than that,
they are just instrumental.

Widely-used interactive reference point based methods are comfortable and in-
tuitive for DMs, and many real applications show that they perform well and,
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eventually, are able to find a good solution. Nevertheless, sometimes it may be dif-
ficult for the DM to find certain solutions. For example, if the DM has a greater
interest in achieving a certain level for a given objective function than for the others,
the only way to do it may be to provide much better values to the corresponding
aspiration level. In some cases, it may even be necessary to give an aspiration level
better than the ideal value for this objective, in order to push the solution towards the
desired value. In these cases, the reference point may not have a clear interpretation
for the DM. The use of a greater weight for this particular objective would make the
process much easier. We believe that, in general, the use of some kind of weights
reflecting preferences can ease and accelerate the solution process.

The reference point can be projected in many directions to become nondominated
and some of the directions may be more desirable to the DM than others (especially
when aspiration levels are unachievable and the reference point is far from the set
of nondominated solutions). Because DMs do not usually want to use too much
time in the solution process it is important to help the DM in finding a satisfactory
solution fast. Our goal is to reflect the DM’s desire to reach aspiration levels by
incorporating preference information into weights in the achievement scalarizing
function. This should result in a solution that is closer to the most preferred solution
of the DM.

2 Concepts and Notations

We consider multiobjective optimization problems of the form

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S (1)

involving k (≥ 2) conflicting objective functions fi : S → R that we want to min-
imize simultaneously. The decision variables x belong to the nonempty com-
pact feasible region S ⊆ Rn. Objective vectors consist of objective values f(x) =
( f1(x), . . . , fk(x))T and we denote Z = f(S).

In multiobjective optimization, objective vectors are optimal if none of their com-
ponents can be improved without deteriorating at least one of the others. More pre-
cisely, a decision vector x′ ∈ S is said to be efficient if there does not exist another
x ∈ S such that fi(x) ≤ fi(x′) for all i = 1, . . . ,k and f j(x) < f j(x′) for at least one
index j. On the other hand, a decision vector x′ ∈ S is said to be weakly efficient
for problem (1) if there does not exist another x ∈ S such that fi(x) < fi(x′) for all
i = 1, . . . ,k. The corresponding objective vectors f(x) are called (weakly) nondom-
inated objective vectors. Note that the set of nondominated solutions is a subset of
weakly nondominated solutions.

Let us assume that for problem (1) the set of nondominated objective vec-
tors contains more than one vector. We calculate the ideal objective vector z� =
(z�

1, . . . ,z
�
k)

T ∈ Rk by minimizing each objective function individually in S, that is,
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z�
i = minx∈S fi(x) = minx∈E fi(x) for all i = 1, . . . ,k, where E is the set of efficient

solutions. This gives lower bounds for the objectives. The upper bounds, that is, the
nadir objective vector znad = (znad

1 , . . . ,znad
k )T , can be defined as znad

i = maxx∈E fi(x)
for all i = 1, . . . ,k. In practice, the nadir objective vector is usually difficult to obtain.
Its components can be approximated using a pay-off table but in general this kind
of an estimate is not necessarily too good (see, e.g., [6] and references therein.)

Furthermore, sometimes a utopian objective vector z�� is defined as a vector
strictly better than the ideal objective vector. Then we set z��

i = z�
i − ε for all i =

1, . . . ,k, where ε > 0 is a small real number. This vector can be considered instead
of an ideal objective vector in order to avoid the case where ideal and nadir values
are equal or very close to each other. In what follows, we assume that the set of
nondominated objective vectors is bounded and that we have global estimates of the
ideal and nadir objective vectors available.

All nondominated solutions can be regarded as equally desirable in the mathe-
matical sense and we need a decision maker (DM) to identify the most preferred
one among them. A DM is a person who can express preference information related
to the conflicting objectives and we assume that less is preferred to more in each ob-
jective for her/him. Here we assume that the DM specifies preferences in the form
of reference points.

Typically, when solving multiobjective optimization problems, the multiple ob-
jective functions and preferences specified by the DM are combined in real-valued
scalarizing functions. Scalarizing functions can be optimized with appropriate sin-
gle objective optimization techniques and they generate (weakly) nondominated so-
lutions for the original problem.

The main scheme of interactive techniques based on reference points is the fol-
lowing. At each iteration h, the DM provides aspiration levels qh

i for every objective
fi (i = 1, . . . ,k), and these levels constitute a reference point qh = (qh

1, . . . ,q
h
k)

T re-
flecting her/his hopes. Next, an achievement (scalarizing) function is minimized in
order to find a solution that best satisfies the hopes expressed. The DM can then give
a new reference point and the iterative solution process continues until the DM has
found the most preferred solution as the final solution and wants to stop.

An example of an achievement function is given in problem

minimize max
i=1,...,k

[
μh

i ( fi(x)−qh
i )
]

subject to x ∈ S,
(2)

where μh
i is a weight assigned to the objective function fi. The solution of problem

(2) at iteration h is denoted by xh and the corresponding objective vector by fh =
f(xh). The solution is (weakly) efficient for any reference point (see, e.g. [6]). There
are also other forms of achievement functions see, for example, [6, 15].

Usually, in reference point based methods the reference point is changed at
each iteration, while the weights are kept unaltered during the whole interac-
tive solution process. The weights can be set for all i = 1, . . . ,k, for example, as
μi = 1/[znad

i − z��
i ]. These weights normalize the values of each objective function
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fi to an approximately similar magnitude with the other objectives. In what follows,
we refer to these scaling factors as basic weights μb.

No matter which achievement function formulation is used, the idea is the
same: if qh ∈ Z + Rk

+, then the minimization of the achievement function subject
to the feasible region allocates slack between the reference point and nondominated
solutions producing a nondominated solution. Here Rk

+ = {q ∈ Rk | qi ≥ 0 for i =
1, . . . ,k}. In other words, in this case the reference point is a nondominated solution
of the problem in question or it is dominated by some nondominated solution. On
the other hand, if qh /∈ Z +Rk

+, then the minimization must produce a solution that
minimizes the distance between qh + Rk

+ and Z, see [6, 15]. In what follows, we
say that a reference point is feasible if qh ∈ Z + Rk

+. Otherwise, we say that it is
infeasible. We can easily judge the feasibility of the reference point by studying the
sign of the optimal achievement function value.

Let us point out that even though we in the following sections refer to formulation
(2), the scheme presented does not depend on the form of the achievement function
used and any other formulation could be used as well.

3 Reflecting Preference Information

When in reference point based methods the DM provides at iteration h a new refer-
ence point qh, (s)he may expect that there exists a nondominated objective vector,
or a solution very close to it. However, the expectations of the DM may be too opti-
mistic (or pessimistic) and the reference point given may actually be quite far from
the set of nondominated objective vectors.

In this section, we propose a scheme to incorporate the DM’s preference informa-
tion to weights in reference point based interactive procedures. We suggest the new
scheme to be used so that both the solutions calculated by minimizing the achieve-
ment function with the basic weights and with the new weights proposed are shown
to the DM. This is because we do not claim that the new weights could in all possible
situations give a more preferred solution than the one produced with basic weights.

We assume that the DM is able to rank the relative importance of achieving each
aspiration level every time a new aspiration level has been provided. It should be
noted here that the DM is not asked to give any global preference ranking of the
objectives, but we are interested in the local importance of achieving each of the
aspiration levels.

After the DM has specified her/his reference point, (s)he assigns objective func-
tions to classes in an increasing order of importance for achieving corresponding
aspiration level. This importance evaluation allows us to allocate the k objective
functions into index sets Jr which represent the importance levels r = 1, . . . ,s, where
1 ≤ s ≤ k. If r < t, then achieving the aspiration levels of objective functions in the
index set Jr is less important than achieving aspiration levels of the objectives in
Jt . One objective function can only belong to one index set but several objectives
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can be assigned to the same index set Jr. This means that achieving their aspiration
levels is equally important. Here we have different weights depending on whether
the reference point is feasible or not.

If the current reference point is infeasible, the weights for objectives fi with i∈ Jr
are set as

μh
i = r/[znad

i − z��
i ] (3)

for each r = 1, . . . ,s. On the other hand, if the reference point is feasible, we set
μh

i = 1/[r(znad
i −z��

i )] for i∈ Jr and r = 1, . . . ,s. This scheme allows us to set weights
using the information given by the DM in order to produce a solution that is closer to
the preferences. Note that the number of importance levels s may be different from
one iteration to another. For further details, see [5]. As mentioned in the beginning
of this section, we propose to calculate the solution together with the one obtained
using basic weights. In this way, the DM is able to choose the most preferred solu-
tion. Finally, let us remind that the preference schemes suggested can be combined
with any achievement function, because we only modify the weights used.

4 Example

We illustrate the behaviour of our weighting scheme with a nonlinear multiobjec-
tive optimization problem involving the first two objective functions of the problem
described in [7]. For this problem, we have the ideal and nadir objective vectors as
z� = (−8.13,−8.13)T and znad = (−0.05,2.02)T , respectively. The basic weights
are then μb = (0.12,0.10)T .

Let us now demonstrate how our weighting scheme behaves. We assume that
the DM has provided an infeasible reference point q1 = (−6.00,−6.00)T and the
preference order ranking 2, 1 for achieving the aspiration levels, that is, it is more
important to achieve the aspiration level of the first objective function. Then the
weights defined by (3) are μ1 = (0.24,0.10)T . When problem (2) is solved with this
information, we obtain f1 = (−4.72,−2.79)T . On the other hand, if we had used the
basic weights, we would have obtained solution f1

b = (−3.93,−3.40)T , which has a
higher, that is, worse value for f1.

We can also demonstrate what happens if the DM specifies a feasible reference
point. Let us assume that the DM sets q2 = (−5.00,1.00)T . In this case, the weights
are μ2 = (0.06,0.10)T and the solution obtained is f2 = (−7.01,−0.26)T . If we had
used basic weights, we would have obtained solution f2

b = (−6.53,−0.92)T where,
again, the value of f1 is worse. The solutions are depicted in Fig. 1.

In Figs. 2 and 3 we demonstrate complete interactive solution process with both
our new weighting scheme and basic weights, respectively. As can be seen, less (5
vs. 8) reference points, that is, iterations were needed in finding the most preferred
solution with the new weighting scheme.
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Fig. 1 Example problem
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Fig. 2 Preference weights
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Fig. 3 Basic weights
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5 Computational Tests

We have carried out several computational tests in order to compare the perfor-
mance of our weighting scheme to the solutions generated by using basic weights.
With four multiobjective optimization problems described in [12] we have made
tests with both real decision makers and with three different types of utility func-
tions (linear, quadratic and exponential). In other words, in the latter type of tests,
we have replaced the responses of the DM by utility functions. In each test, we
compared the solution of the weighted scheme to the solution obtained with basic
weights. We used two settings of tests, Test I and Test II. In the first setting, Test I,
we used several single reference points and the solution minimizing the achievement
scalarizing function was found. In this test setting, we assumed that our weighting
scheme would produce better solutions than basic weights. In the second test setting,
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Test II, an interactive solution process was carried out with both weighting schemes
and we assumed that the number of solutions that have to be generated before find-
ing the most preferred solution is smaller with our weighting scheme.

With human DMs in Test I, each DM specified different reference points and
graded the solution obtained (with achievement functions using our weighting
scheme and basic weights) using a scale 1–5 reflecting how well her/his expec-
tations were satisfied (5 indicated that (s)he was very satisfied with the solution
obtained). In Test II, DMs again solved each test problem two times but this time
using an interactive reference point method incorporating our weighting scheme or
basic weights and in each test they tried to find the most preferred solution. They
graded the final solutions obtained using the scale 1–5. In addition, we recorded the
number of iterations used, that is, how many reference points were needed before
the final solution was found. In Table 1, we summarize average values for the grades
and numbers of iterations.

With utility functions, we carried out so-called automated tests without involv-
ing real DMs. Again, we used two settings, Test I and Test II. In Test I, 100 ran-
dom reference points q = (q1, . . . ,qk)T were generated with qi ∈ [z�

i ,z
nad
i ] for all

i = 1, . . . ,k. The gradient of utility function at the generated reference point was used
to imitate preference specifications in order to calculate weights for our weighting
scheme. This information was used then to solve problem (2). Test I was stopped
here whereas in Test II, a new reference point was generated in the gradient direc-
tion of the utility function at the solution point obtained, and then a new solution
was again computed. The iterative procedure was stopped when some solution had
lower utility function value than the solution obtained at the previous iteration. The
depicted process was carried out also for basic weights for each test problem and
each utility function.

As far as Test I is concerned, our weighting scheme produced a solution with a
higher utility than basic weights in 69% of the tests and the average improvement in
these cases was 224%.

A summary of the results of automated tests for Test II is given in Table 2.
We compared utility function values achieved for the problems CaballeroReyRuiz2
(CRR), ChankongHaimes (CH), PeakFunctions (PF) and modified PeakFunctions
(with only two first objective functions - PFM), described in [12]. In Table 2 we
list results for each of three utility function types. We have carried out five tests for
each utility function and collect here the average results. The first column ‘Prob’
gives the acronym of the test problem and the second column ‘U.f.’ the type of the
utility function in question. In the third column, ‘Max u.’ we have the maximal util-
ity function value and in the fourth column ‘B.u.’ the utility function value of the

Table 1 Tests with human DMs, average values

Test I (Grades) Test II (Grades) Test II (No. of iterations)

Basic 2.75 4.13 6.79
Preference 3.76 4.67 5.56
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Table 2 Average results for automated Test II

Prob U.f. Max u. B.u. P.u. #(P.u.≥B.u.) Improve Impair

lin. -128.86 -162.50 -173.86 2 10% 21%
CRR quad. 43.21 12.71 9.98 4 17% 100%

exp. -1304.89 -2028.97 -1648.70 5 29% –
lin. 75.46 69.54 70.37 2 5% 1%

CH quad. 93.51 92.25 93.12 5 1% –
exp. -53.62 -66.85 -61.87 3 20% 7%
lin. -1018.95 -1747.89 -1513.33 4 30% 3%

PF quad. -687.22 -1215.90 -1236.52 2 16% 15%
exp. -297815.99 -14554704.21 -2131364.60 4 5485% 1084%
lin. -66.64 -114.71 -107.86 4 26% 54%

PFM quad. 1.81 0.22 -4.05 0 – 236%
exp. -1371.10 -1392.95 -1472.49 1 0% 7%

solution corresponding to basic weights. The next column ‘P.u.’ shows the utility
function value of our weighting scheme. Let us point out that due to the stopping
criterion used, the final utility function value does not necessarily have to be close
to the maximal utility function value. The three last columns refer to number of test
runs (0–5) when our weighting scheme produced a solution with a better utility than
the basic one, mean percentage improvement of utility value in cases reported in
the previous column and, finally, the mean percentage impairment in the rest of the
test runs.

Based on our experiments we can say that our weighting scheme seems to be
very intuitive and not very demanding for the DM. The results support our claim
that it outperforms the basic weight scheme in a majority of cases. However, the
conversion used from an ordinal scale to a cardinal one is rather rough. This means
that with more objectives the ratio between different weights is not equal. It would
naturally be possible to formulate weights with an equal proportion for all objectives
but we want to keep our weighting scheme as simple as possible and, in any case,
the results obtained were encouraging.

6 Conclusions

We have suggested a new way of taking preference information coming from the
DM more closely into account in interactive reference point based methods devel-
oped for multiobjective optimization. Our goal is to be able to produce solutions that
are more satisfactory to the DM than the ones produced with standard approaches.
In this way, the DM can find the final solution with less iterations. We have also
tested our scheme and the results support the usability of our idea. Nevertheless, as
has also been reported, the basic weighting scheme may produce better results in
some cases. This is why we recommend to use our weighting scheme together with
the basic one, and to let the DM choose the best solution.
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10. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR

Spectrum 24:193–213
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12. Miettinen K, Mäkelä MM, Kaario K (2006) Experiments with classification-based scalarizing

functions in interactive multiobjective optimization. Eur J Oper Res 175:931–947
13. Nakayama H, Sawaragi Y (1984) Satisficing Trade-off method for multiobjective program-

ming. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Berlin,
pp 113–122

14. Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. Wiley,
New York

15. Wierzbicki AP (1982) A Mathematical basis for satisficing decision making. Math Modell
3:391–405



Interactive Multiobjective Optimization
of Superstructure SMB Processes

Jussi Hakanen, Yoshiaki Kawajiri, Lorenz T. Biegler, and Kaisa Miettinen

Abstract We consider multiobjective optimization problems arising from super-
structure formulation of Simulated Moving Bed (SMB) processes. SMBs are widely
used in many industrial separations of chemical products and they are challenging
from the optimization point of view. We employ efficient interactive multiobjec-
tive optimization which enables considering several conflicting objectives simulta-
neously without unnecessary simplifications as have been done in previous studies.
The interactive IND-NIMBUS software combined with the IPOPT optimizer is used
to solve multiobjective SMB design problems. The promising results of solving a
superstructure SMB optimization problem with four objectives demonstrate the use-
fulness of the approach.

Keywords: Interactive methods · Interior point optimization · IPOPT · Multiobjec-
tive optimization · NIMBUS · Simulated moving bed processes · Superstructure

1 Introduction

Real-world optimization problems typically have several conflicting objectives that
need to be considered simultaneously. Optimization of real-world industrial pro-
cesses is often computationally demanding and may require many evaluations of
the process model during the optimization. Thus, it is important to have optimiza-
tion tools that require only few process model simulations in order to obtain an
optimal or satisfactory solution quickly.

The problem is too often simplified by optimizing only one objective function,
although there usually are several objectives that should be considered at the same
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time. By optimizing several objective functions simultaneously, one can obtain bet-
ter understanding of the whole problem and its interdependencies. In multiobjective
optimization (MOO) [7], we can identify Pareto optimal solutions where no objec-
tive can get better values without impairment in at least one of the others. In order
to obtain the best solution for the problem in question, we typically need a decision
maker (DM), who can express preference information about different Pareto opti-
mal solutions. Some MOO methods try to generate a representation of all Pareto
optimal solutions. For many real-world problems these methods can be too slow
because they need to generate a large number of solutions. Besides, with more than
two objectives, displaying the solutions to the DM is not trivial and it is not easy for
the DM to select one of many alternatives as the final solution. Instead, interactive
MOO methods aim at decreasing the cognitive burden set on the DM and let the
DM to direct the solution process in order to find the most preferred solution [7].

In this study, we consider MOO of Simulated Moving Bed (SMB) processes
which have been applied to many important separations in sugar, petrochemical,
and pharmaceutical industries. Because they operate dynamically, in periodic cy-
cles, systematic optimization of SMBs remains a challenging problem. Prior to the
application of the full discretization approach where both spatial and temporal vari-
ables are discretized, optimization of SMB processes was known to be an expensive
and challenging problem with long solution times [5].

There exist a number of conflicting objectives associated with these processes
including productivity, product quality, utilization of desorbent (solvent) and gener-
ation of waste streams. Recently, MOO algorithms have been applied for periodic
separation processes for gas separation [6] and for SMB processes [9]. A modified
sum of weighted objective functions was used in [6] to obtain a representation of the
Pareto optimal set. Note, that the approach is valid only for two objective functions.
On the other hand, nondominated sorting genetic algorithm (NSGA) was applied
to an SMB problem with two and three objective functions [9]. NSGA tries to ap-
proximate the set of Pareto optimal solutions, but it cannot guarantee the Pareto
optimality of the solutions obtained.

In order to accelerate the process optimization, an efficient full discretization
approach was developed and combined with a large-scale nonlinear programming
method for the optimization of SMBs in [5]. More recently, this approach was ex-
tended to a superstructure SMB formulation and the ε-constrained method was used
to solve the biobjective problem, where throughput and desorbent consumption were
optimized [4].

To summarize, we can say that so far, SMB processes have been considered with
1, 2, or 3 objectives, only and all the MOO approaches used have been trying to
approximate the whole Pareto optimal set and, thus, have needed to generate lots of
Pareto optimal solutions in order to get a good representation. Therefore, they are
computationally inefficient. Usually, the ultimate aim is to find a single best solution
as the final solution to be implemented and not a set of solutions.

In this paper, we consider a MOO problem arising from the superstructure for-
mulation of SMB introduced in [4]. In our previous study [2], we applied interac-
tive MOO to the standard SMB model and we found that the optimization tools
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we used, that is, the interactive design tool IND-NIMBUS based on the NIMBUS
method [7, 8] and the interior point optimizer IPOPT [11], were useful in solving
the problem. We considered the case with four conflicting objective functions which
was a novel way to consider SMBs. Now, we consider the same problem with four
objective functions, but using a superstructure formulation instead of the standard
one. The superstructure formulation is a more general way to represent SMBs and
some novel SMB operating schemes can be obtained [4]. When compared to the
standard one, the problem with superstructure formulation has significantly more
degrees of freedom and a much richer solution space, but it may require more com-
putational effort to determine optimal solutions.

2 Interactive Process Design Tool

IND-NIMBUS is an implementation of the interactive MOO method NIMBUS [7,8]
developed for solving MOO problems arising, for example, in industry. The general
idea of the NIMBUS method is to help the DM in finding the most satisfactory com-
promise between conflicting objectives without generating too many Pareto optimal
solutions (see also http://nimbus.it.jyu.fi).

With interactive MOO methods the DM can guide the solution procedure and is
able to learn about the behaviour of the problem. (S)he can study the interrelation-
ships of the objective functions and obtain a wider understanding of their effects on
the whole problem. Another benefit is that interactive methods are computationally
efficient, because only a small number of Pareto optimal solutions usually needs to
be computed. On the other hand, interactive methods require the DM to take part in
the solution procedure continuously and, thus, the DM has to be willing to devote
time to this task. One can expect the DM to find the most preferred solution when
(s)he can actively take part in the solution procedure. It is important that the method
is easy to use and that the DM can easily answer the questions proposed to her/him.

NIMBUS converts the original multiple objectives together with preference in-
formation coming from the DM into a new problem with a single objective function.
This new problem can then be solved with appropriate solvers developed for scalar-
valued problems. NIMBUS is particularly well suited for problems involving more
than two objective functions. IND-NIMBUS has been previously applied to several
industrial optimization problems, including the design of papermaking processes
and standard SMB processes [1, 2].

We consider the following MOO problem. The vector-valued objective function
f = ( f1, . . . , fk)T consists of k real-valued objective functions fi : R

n →R that are to
be optimized simultaneously. The decision variables x belong to the feasible region
S ⊆ R

n. The objective vectors z = f (x) are in the objective space R
k. We assume

that the objective functions are conflicting, that is, all of them do not attain their
optima at the same decision vector x. For the simplicity of presentation, we assume
that all the objective functions in this section are to be minimized. Thus, the MOO
problem considered is of the form
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minimize { f1(x), . . . , fk(x)}
subject to x ∈ S.

(1)

Minimization of the vector-valued objective function f is understood in the sense
of Pareto optimality: A decision vector x∗ ∈ S is called a Pareto optimal solution
if there does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x∗) for
all i = 1, . . . ,k and f j(x) < f j(x∗) for at least one j. Provided that the problem is
correctly specified, the final solution of a rational DM is always Pareto optimal and,
thus, we can consider only Pareto optimal solutions.

The outline of the interactive NIMBUS algorithm is the following. First, a Pareto
optimal starting point is generated together with information about the ranges of
each objective function in the set of Pareto optimal solutions. We show the ranges to
the DM in order to inform her/him about what is possible to achieve in the problem
in question.

As a starting point, we use a neutral compromise solution [8], where the average
within the range of each objective function is projected to be Pareto optimal. At each
iteration, the DM is shown the values of the objective functions in the current Pareto
optimal solution f (xc) and (s)he is asked to indicate how the current solution should
be improved. This is done with the help of classifying the objective functions into up
to five different classes, that is, the functions fi whose value i) should be improved as
much as possible (i ∈ Iimp), ii) should be improved until some specified aspiration
level z̄i (i ∈ Iasp), iii) is satisfactory at the moment (i ∈ Isat), iv) can impair up to
some specified bound εi (i ∈ Ibound) and v) can change freely (i ∈ I f ree).

Note, that Iimp ∪ Iasp ∪ Isat ∪ Ibound ∪ I f ree = {1, . . . ,k}. The aspiration levels and
the upper bounds are given by the DM. In order to be able to produce a new Pareto
optimal solution, the classification is acceptable if Iimp∪Iasp 	= /0 and Ibound ∪I f ree 	=
/0 due to Pareto optimality. Note, that the definition of the classes does not take into
account whether individual objectives are to be minimized or maximized.

According to the classification information provided by the DM, up to four new
solutions are generated that try to follow the preferences of the DM as well as pos-
sible. In the synchronous NIMBUS method [8], this is realized by forming the cor-
responding number of new single objective subproblems and the solutions of the
subproblems are guaranteed to be Pareto optimal. For details, see [8]. The new
problems are solved with a suitable single objective optimizer and in this paper,
we use the IPOPT optimizer [11]. The solutions obtained and the current Pareto
optimal solution are then shown to the DM, who selects the most preferred one.
In IND-NIMBUS, different types of visualizations of the Pareto optimal solutions
are provided to the DM in order to aid the comparison and selection. There is also a
possibility to generate intermediate Pareto optimal solutions between any two Pareto
optimal solutions obtained [8]. Then, if the DM is satisfied with any of the solutions
obtained, we terminate the solution procedure. Otherwise the DM can make another
classification in the solution (s)he selected.

IPOPT is a large-scale nonlinear optimization package [11] based on a Newton-
based interior point (barrier) algorithm with filter line-search method. For a gen-
eral optimization problem constrained with equality constraints and bounds for the
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decision variables, IPOPT applies an interior penalty formulation to convert and
solve the problem as a sequence of barrier problems for a decreasing sequence of
barrier parameters converging to zero. We assume that the functions in the optimiza-
tion problem are twice continuously differentiable. It can be shown, that under mild
regularity assumptions the solutions of the barrier problems will converge to the so-
lution of the original problem as the barrier parameter goes to zero. For details of
IPOPT, see [11] and http://projects.coin-or.org/Ipopt.

3 Superstructure of Simulated Moving Bed Processes

Modeling of SMB

Simulated Moving Bed emerged in the 1960s as a continuous version of chromato-
graphic separation. Since then, SMB has been widely used in pharmaceutical, food,
and sugar industries. In particular, separation of chiral isomers has been one of grow-
ing application areas in recent years.

An SMB unit consists of multiple chromatographic columns, as shown in
Fig. 1(a). Feed and desorbent are supplied into the circulation loop, and extract and
raffinate products are withdrawn simultaneously. All of the streams are switched to
the adjacent column at a regular interval, or step time. This system does not have a
steady state, but has a Cyclic Steady State (CSS), where the concentration profiles
repeatedly propagate through the columns.

There have been many nonstandard SMB operating schemes proposed to en-
hance the performance. For example, VARICOL systems performs asynchronous
valve switching, creating larger degrees of freedom [10]. In PowerFeed systems,
the liquid velocities are time-dependent. In order to find optimal nonstandard SMB
operating schemes, Kawajiri and Biegler [4] proposed an optimization approach
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based on an SMB superstructure. In this approach, the superstructure that embeds
numerous kinds of existing and novel operating schemes, as shown in Fig. 1(b),
replaces the standard SMB model. Note that the liquid velocities of feed (u j

F(t)),
desorbent(u j

D(t)), extract(u j
E(t)), and raffinate(u j

R(t)) are treated as time-dependent
variables. In their approach, the optimal operating scheme can be determined by
finding the optimal control profiles of the liquid velocities. They also formulated a
biobjective optimization problem, with a fixed purity and recovery, and found that
the performance of the superstructure can be significantly improved from standard
SMBs. In this study, we extend their approach to an interactive multiobjective op-
timization scheme considering four objective functions: throughput, desorbent con-
sumption, purity, and recovery.

We use the Linear Driving Force model for modeling of chromatographic
columns as in our previous study [2]. The throughput ūF and desorbent consumption
ūD are given by:

ūF :=
1

tstep

NCol

∑
j=1

∫ tstep

0
u j

F(t)dt, ūD :=
1

tstep

NCol

∑
j=1

∫ tstep

0
u j

D(t)dt,

respectively, where tstep is the step time. The purity and recovery of the extract
product, PEi and REi , are given by:

PEi :=
100 ·

NCol
∑
j=1

tstep∫
0

u j
E(t)C j

E,i(t)dt

NCol
∑
j=1

Nc
∑

i=1

tstep∫
0

u j
E(t)C j

E,i(t)dt
, REi :=

100 ·
NCol
∑
j=1

tstep∫
0

u j
E(t)C j

E,i(t)dt

NCol
∑
j=1

tstep∫
0

u j
F(t)C j

F,i(t)dt
,

respectively, where C j
E,i(t) is the concentration of component i in the extract stream,

and C j
F,i(t) is the feed concentration of component i. More information about the

superstructure model can be found in [4].
The SMB superstructure model above is fully discretized both in spatial and

temporal domains [5]. The spatial domain is discretized via a central difference
method. The resulting ODEs are then discretized in the temporal domain using a
particular Runge-Kutta discretization: Radau collocation on finite elements.

Multiobjective SMB superstructure

The SMB superstructure problem to be considered is for the separation of fructose
and glucose. The values for the parameters in the SMB model are from [3, 5] as
given in [2]. The superstructure SMB optimization problem is large having 34 102
decision variables and 34 017 equality constraints. Thus, the superstructure SMB
problem has 85 degrees of freedom.

For the MOO of SMB superstructure, we use four different objective functions
for this problem: maximize throughput T (ūF ), minimize consumption of solvent,
or desorbent D (ūD), maximize product purity P (PEi ), and maximize recovery of
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the valuable component in the product R (REi ). Thus, our vector-valued objective
function is f = (T,D,P,R)T and the multiobjective SMB superstructure problem is
of the form

maximize ūF , minimize ūD, maximize PEi , maximize RRi

subject to the SMB superstructure model described in [4]. (2)

These objectives have a number of clear conflicts. For example, if throughput is
increased, the feed mixture is more likely to contaminate the products, that is, the
purity decreases. Moreover, with uncertain prices and raw material costs, a multiob-
jective approach can be an extremely useful tool for SMB design.

By imposing upper bounds on objective functions, we eliminate those parts of
feasible region that give impractical objective values; it is unlikely that the DM is
satisfied with solutions of extremely low throughput, high desorbent consumption,
low purity, or low recovery. Restricting the feasible region is also important for
numerical stability. For example, if throughput approaches zero, then concentrations
of the chemical components in the columns become zero, making the denominators
in equations for PEi and REi very small. For the reasons above, we set the following
bounds for the objective functions: T ≥ 0.8, D ≤ 10.0, P ≥ 90.0 and R ≥ 85.0.
Note, that the upper bounds for T and R are different from the ones we used in our
previous study with the standard SMB [2] (0.4 and 70.0, respectively).

The discretized multiobjective optimization problem (2) is constrained by linear
and bilinear equality/inequality constraints. The different objective functions are
either linear (T and D) or bilinear (P and R). As a result, the optimization problem
is nonconvex.

We use IND-NIMBUS coupled with IPOPT to solve this four objective SMB
problem. The SMB superstructure model has been implemented in AMPL mod-
elling language. The multiple objectives are handled by the computationally effi-
cient IND-NIMBUS within a single, generalized NLP formulation, which is solved
with the efficient IPOPT optimizer. With this approach, we want to generate new
solution candidates efficiently and maintain the interactive nature of the solution
procedure.

4 Solution Procedure and Discussion

Next, we describe the solution procedure. A screenshot of the classification window
of IND-NIMBUS is shown in Fig. 2. In IND-NIMBUS, the classification is made
by clicking different parts of the bars representing the objective functions in the
current Pareto optimal solution (single solution in the left in Fig. 2). The value of
each objective function is represented with a colored bar that originates from left
and right for the objectives to be minimized and maximized, respectively. In both
cases, the interpretation is the same: the shorter the colored bars, the better is the
corresponding objective function value. All the solutions generated can be seen on
the right and interesting solutions can be taken in the set Best candidates at any time.
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Fig. 2 A screenshot of IND-NIMBUS

The DM involved in this solution procedure was an expert in the field of SMBs.
The best and the worst objective function values in the Pareto optimal set were
(1.187,1.477,97.9,95.3)T and (0.800,9.733,90.0,85.0)T , respectively. In other
words, those are the approximated ranges for the Pareto optimal set. Note, that we
are minimizing desorbent consumption and maximizing all the others, as mentioned
previously.

There were altogether four classifications and one generation of intermediate so-
lutions in the solution procedure and they are shown together with the solutions ob-
tained in Table 1. The Pareto optimal solutions preferred by the DM after each action
are shown in bold face. As a starting point for MOO, we obtained a neutral com-
promise solution z1 = (0.933,6.898,92.7,88.5)T . First, the DM wanted to improve
purity and throughput and he was willing to compromise desorbent consumption
while the value of recovery was satisfactory. Thus, he made the first classification
(Iimp={P}, Iasp={T}, z̄T = 0.95, Ibound={D}, εD = 1.78 and Isat={R}) and three
different solutions were obtained (z2, z3 and z4).

The DM preferred z4 = (0.894,7.743,94.9,87.2)T because it had the highest
value for throughput and he chose z4 as the starting point for the next classifica-
tion. This time, new Pareto optimal solutions, z5 to z7 were obtained (Table 1). In
the same manner, Pareto optimal solutions from z8 through z16 were obtained in ac-
cordance with classifications, or actions, given by the DM. After these actions, the
DM was satisfied with the objective values of z16 = (0.831,3.797,95.2,85.8)T , and
concluded the solution procedure.

The final solution is shown in both bold face and italics in Table 1. Through the
interactive solution procedure, the DM found that 95% purity can be achieved with
a moderate increase of desorbent consumption but significantly higher throughput
and recovery could be obtained compared to the final solution of our previous study
with the standard SMB formulation, z = (0.461,1.29,95.0,76.2)T [2].

The optimal operating scheme at the final solution of this study is shown in Fig. 3.
The figure shows a novel, high performance operation where tstep is divided into five,
optimally chosen time periods or finite elements. Note, that the feed is introduced
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Table 1 Pareto optimal objective function values for superstructure SMB problem

Solution T [m/h], max D [m/h], min P [%], max R [%], max

Best 1.187 1.477 97.9 95.3
Worst 0.800 9.733 90.0 85.0

z1 0.933 6.898 92.7 88.5
Iasp, z̄T = 0.95 Ibound ,εD = 8.2 Iimp Isat

z2 0.860 7.663 96.0 86.1
z3 0.801 6.683 97.8 85.0
z4 0.894 7.743 94.9 87.2

Iimp Ibound ,εD = 8.5 Isat Ibound ,εR = 86.0
z5 1.066 8.684 92.4 85.0
z6 1.185 9.74 90.2 85.0
z7 1.027 8.464 92.9 85.6

4 interm. solutions between z3 z7

z8 0.842 7.105 96.3 86.3
z9 0.887 7.291 95.1 87.0
z10 0.932 7.658 94.2 87.0
z11 0.980 8.008 93.5 86.6

Isat Iimp Isat Ibound ,εR = 86.0
z12 0.827 2.742 93.9 85.0
z13 0.867 3.383 93.9 85.8

I f ree Ibound ,εD = 4.0 Iasp, z̄P = 95.0 I f ree

z14 0.821 3.554 95.4 85.6
z15 0.800 3.175 95.7 85.0
z16 0.831 3.797 95.2 85.8
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Fig. 3 The optimal operating scheme for the final solution

only in the second finite element, a three zone operation, while only a two zone op-
eration is performed in the second element. On the other hand, the first, fourth and
fifth finite elements are characterized by pure recycles with neither input nor output
streams. Note, that the optimal structure derived from this approach is very differ-
ent from the standard SMB shown in Fig. 1(a). Producing a single Pareto optimal
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solution took 111 IPOPT iterations (406 objective function evaluations) and 835
CPU seconds on average. (In our previous study with the standard SMB formula-
tion [2] the corresponding numbers were 16.4, 27.6, and 65.8, respectively).

5 Conclusions

For the first time, a four objective optimization problem arising from the super-
structure formulation of simulated moving bed processes was succesfully solved.
We used the interactive IND-NIMBUS software in MOO where a generalized NLP
formulation is solved with the interior point optimizer IPOPT. Previously, we have
applied these efficient optimization techniques to solve the four objective problem
for the standard SMB model. By using the superstructure formulation we could ob-
tain novel SMB operating schemes and the results show that we were able to obtain
a better overall solution when compared to the solution obtained with the standard
formulation. The promising results give new perspectives for SMB optimization.
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Scheduling of Water Distribution Systems
using a Multiobjective Approach

Amir Nafi, Caty Werey, and Patrick Llerena

Abstract According to technical and economic criteria, a right maintenance policy
must be applied to enhance the hydraulic performance and the reliability of water
networks. Water networks ensure delivery of water to consumers with the help of
pressured networks consisting in several hydraulic components: tanks, reservoirs,
pipes, valves, and pumps. The current paper deals with the combination of a multi-
objective approach based on Pareto ranking and Genetic Algorithm with a hydraulic
software in order to develop a decision support model for pipes renewal. The model
is based on the identification of critical pipes and assessment of maintenance costs.
It ensures the work planning on pipes and the availability of financial resources at
the right time and in the right way. A set of non-dominated solutions according to
hydraulic and economic objectives is proposed, selection of the right one remains to
the water utility manager. We propose an overview of the developed approach and
we present an application on a realistic water network.

Keywords: Decision support model · Genetic algorithm · Hydraulic simulation ·
Maintenance · Multiobjective · Water network

1 Introduction

Water utilities ensure the delivery of water to the population with the help of network
and plants, which allow transport and treatment of water from the source to the end
users. We focus on the distribution of water from the source area to the consumers.
Historically, the major part of the European water networks was laid after the Second
World War until the beginning of the 1980 years. The priorities of water utilities
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are changing. Their goal is not only to deliver water to the end users, but to enhance
the reliability of the network by reducing the occurrence of leaks and failures, in
order to improve the service level.

Thus, many utilities are dealing with water quality problem, problems water qual-
ity, leaks, loss of pressure in pipes, interruptions of water distribution and contami-
nation of water. Those problems can be described by factors dealing with the state of
the pipe itself and the environment that brings deterioration. So, water utilities have
to prevent occurrence of failures and lack of water by an adequate renewal policy.
The objective of our work is to propose a decision tool using failures prediction on
pipes by taking into account technical, economic and financial constraints. We have
to identify which pipes should be considered? Which rehabilitation should be done?
When it should be done? How much will it cost? In which manner the water utility
would dispose of sufficient resources to support works on the network? How the
budget will be planned? We consider the whole networks by measuring impact of
decision about a pipe on pipes remained, the hydraulic deterioration of the network,
qualitative variables, assessing and allocating budget to rehabilitation according to
a multi-objective approach.

2 Previous Works

Maintenance policy of water networks is widely treated in literature, depending on
criteria and approaches used in decision making. We identified methods based on
the description of failures occurrences by statistical models that allow to predict
damages on pipes using historical data considering past breaks on the network. The
different deterioration states of pipe can also be described with the help of a Markov
chain. The process is irreversible and the evolution between states is assessed by a
transition probability. For these methods the aim is to provide an optimal mainte-
nance policy based on the structural deterioration of pipe. An other approach was
proposed by Miettinen [10] which considers a statistical model and objective func-
tion handling social costs related to works on network. Kleiner [8] describes the
evolution of breaks on pipes in time using the model proposed by Miettinen [10] but
they consider more than one intervention on pipes, more rehabilitation alternatives
are taken into account. They consider also hydraulic constraints that must be handled
in the optimization process. Kleiner [8], Shamir and Howard [12] use Dynamic Pro-
gramming to propose an optimal scheduling of replacement. Multi-criteria analysis
was proposed by Le Gauffre et al. [9] to determine classes of pipes in a network de-
pending on criteria linked to the pipe itself and its environment, the approach uses
ELECTRE-TRI method and proposes a classification of pipes giving priority for
pipes that must be replaced. Halhal et al. [7] propose an approach based on messy
genetic algorithm applied to water networks considering function of hydraulic bene-
fit and technical constraints by a multiobjective optimization. Atiquzzaman et al. [2]
propose an application of Non Sorting Genetic Algorithm II (NSGA II) for the de-
sign of water network by considering a range of diameter for the pipes in network.
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Authors defined two objective functions, the technical assessing pressure benefit
assessment and economic for assessing the cost of works on pipes. The proposed
application, considered a small network and did not take into account the struc-
tural deterioration, the decision taken is based exclusively on the hydraulic opera-
tion of the network. Dandy and Engelhardt [3] deals with an optimization model
based on genetic algorithm, where the economic criteria consider the deterioration
of pipe. Predictions of failures are obtained depending on the pipe material. The
model does not consider the reliability of the network. It appears that several meth-
ods are adapted to a specific context or number of variables. We propose to take into
account more variables that influence the decision of pipes replacement. The main
lack concerns the non-consideration of the whole network and more alternatives for
renewal works than identical replacement on the network. Few applications consider
both physical and hydraulic operation of pipes. The use of Dynamic Programming
gives good results at the scale of a pipe and for small network, but it seems un-
adapted for large networks considering an important set of renewal alternatives. The
determination of the different states of pipe is difficult, the distinction of states is not
easy to establish and the analysis of the deterioration of buried water pipe is impos-
sible. The use of Markov chain for the description of structural deterioration is more
used for inspected infrastructures where we assess the state of the asset according
to periodic inspections, specially bridges and roads. We propose in this paper, a hy-
brid approach based on the use of statistical model, hydraulic simulation ensured by
Epanet2 and a multi-objective optimization approach using Modified Genetic Al-
gorithm (MGA) inspired from NSGA II [4]. The model proposes non-dominated
solutions according to hydraulic and economic criteria.

3 The Problem Formulation

Water pipes renewal problem concerns both economic and technical objectives. The
decision should find a trade-off between the hydraulic performance of the network
and costs of works on pipes. In order to involve theses objectives we adopt a multi-
objective approach based on Pareto dominance and using genetic algorithm. We
define the decision variables and objective functions of the problem as follow.

3.1 Decision Variables

We define a renewal policy i on the network as a sequence of interventions (works),
that reduce the maintenance cost, water losses on the considered time horizon and
enhance the hydraulic performance of the network. The aim is to propose an ade-
quate combination of interventions. We consider three possible alternatives, corre-
sponding to the renewal works on the pipes network: to do nothing and repair if a
break occurs, to replace by a similar pipe (same diameter) and to reinforce (enhance
diameter). As shown in Fig.1, a renewal policy is a string of alternatives coded by
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Fig. 1 Decision variables and policy encoding

integers from 1 to 3. Where the code 1 represents the alternative to do nothing.
The code 2 represents the alternative to replace and the code 3 the alternative to
reinforce. Alternatives represent the design variables of the model. We consider the
decision variable xi j as the renewal alternative proposed by the policy i for the pipe
j. The length of the string depends on the number of pipes considered in the decision
model. For three alternatives and p pipes, we have 3p possible renewal policies.

3.2 The Objective Functions and Constraints

Genetic algorithms do not use the objective function itself, but consider a fitness
function that takes into account the assessment of the solutions according to sev-
eral objectives. Two objective functions are defined, F1i which assesses the pressure
benefit obtained for the policy i and F2i assesses the cost of the renewal works to
be done. The constraints considered ensure the right hydraulic performance of the
network by the respect of a minimum service pressure Pmin and maximum pressure
Pmax to avoid an overpressure that can deteriorate pipes. For a given planning hori-
zon Ω , a set of design variables xi j, p pipes involved in the decision making and the
defined objective functions, the mathematical formulation of considered problem is
given for a policy i as follow:

MaximizeF1i = Maximum(Pressure bene f it) (1)

MinimizeF2i = Minimum(Renewal costs) (2)

u.c:

Pmin ≤ P(k) ≤ Pmax,k = 1,n

where k is the node index in the network and P(k) is the pressure level of node k.
The budget B(Ω)i required to achieve a renewal policy i on the network takes into
account only the replacement and reinforcement of pipes, the estimation of budget
is given by equation below:

B(Ω)i =
p

∑
j=1

xi j.Cj and xi j 	= 1. (3)

The objective function F1i measures the pressure benefit available in the network
for a given configuration of the network corresponding to a solution i given by the
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string of design variables (xi1xi2...xip). For a given solution i and for the pipe j, if
the design variable xi j = 1, the pipe still unchanged, no modifications are done. If
xi j = 2, then a replacement of the pipe is required. It corresponds to a modification
of the pipes roughness without diameter modification. For xi j = 3, the reinforce-
ment is required. The pipes diameter is enhanced and the roughness is modified.
For all solutions, modifications corresponding to design variables are carried out,
then hydraulic simulations are ensured by Epanet2 to determine the pressure level
on consumer nodes. The value of objective function is calculated by:

F1i(xi1xi2...xip) =
n

∑
k=1

(P(k)−Pmin)
n

. (4)

The objective function F2i assesses the total cost of a given policy, which is ex-
pressed as the weighted sum of works cost on pipes, and inverse of hydraulic index
HCIj expressing the hydraulic importance of each pipe j. We assume that costs
data are available in water utilities. For the considered network, we calculate the
hydraulic critical index for each pipe of the network, after we measure the corre-
sponding cost for each generated policy by the MGA algorithm. For a given solution
considered p pipes for renewal with cost Cj for alternativexi j corresponding to the
pipe j. Equation (1) assesses the economic objective for ith solution:

F2i(xi1xi2...xip) =
p

∑
j=1

1
HCIj

.xi j.Cj. (5)

4 The Decision Support Model

The proposed model takes into account a set of endogenous and exogenous variables
that describe the deterioration of pipes. We assess the criticity of pipes network
according to future failures and their impact on the hydraulic operation. First we
predict a failure rate by analyzing a historic of failures and a set of environment data
(nature of soil, length, diameter, installation date) with the help of a statistical model,
Proportional Hazard Model described in [10] and [5]. The decision support model
involves a hydraulic simulation, which aims to measure the hydraulic importance of
each pipe in the network and calculate a Hydraulic Critical Index (HCI). This index
expresses the ratio between the water not delivered and the water that should be
delivered when a pipe is removed from the network. We propose objective functions
that include the importance of each pipe in the network, the structural deterioration
process, costs due to works to be done on the network and hydraulic capacity. The
optimization process is shown in Fig. 2 .
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Fig. 2 The decision support model

4.1 Structural Pipes Deterioration

We assume that specific data concerning pipes and renewal costs of works on pipes
are available in the water utility. According to the available data, we use a statisti-
cal model to describe the structural deterioration process of pipes with the help of
statistical functions. We use the PHM developed in [1] and [5] to determine the Sur-
vival function S(t). In this process, we have to identify pipes candidates to renewal
according to structural deterioration. The selection of these pipes depends on the
prediction of future breaks during the planning period, age of pipes and previous
failures. Andreou [1] determines three previous failures of pipes as threshold for the
acceleration of the deterioration stage. The Survival function S(t) is given by the
equation below:

S(t) = exp
[
−exp(−∑βi.zi

σ
).t

1
σ

]
(6)

where zi represents covariates related to environment variables, βi regression coef-
ficient and σ parameter of scale obtained from available data. Usually the data are
observed and checked on a time horizon, called the observation window and noted
[ta, tb]. Where ta corresponds to the starting year of observation and tb year of the end
of observation. For a pipe j, we assess the occurrence probability of the next break
from the calculation of survival function between the date of the last break occurred
at time tl and the date t of occurrence of the next break obtained for a probability of
occurrence P(t) j less than 0.5.

P(t) j =
S(t − tb)
S(tb − tl)

(7)
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According to the date of occurrence of the next break, the previous failures and
the age of pipes, we select the pipes which are candidates to renewal.

4.2 Hydraulic Reliability

The next step consists in assessing the importance of each pipe in the network
operation and measuring the impact of its unavailability. Two indexes are defined.
According to the performance reduction after failure occurrences, we identify an
index, which expresses the impact of the pipe failure on water supply. We assume
that only one pipe failure is possible at the same time (failures are not simultane-
ous). For each pipe of the network, we simulate a break by closing temporarily
the pipe and run a hydraulic simulation using Epanet2. We compare the quantity
of water delivered to consumers before QBe f ore and after QA fter unavailability of
the considered pipe. The pipe is critical if the amount of water not delivered is
important. For a pipe j, Hydraulic Critical Index is given by:

HCIj =
(QBe f ore −QA fter)

QBe f ore
, j = 1, p (8)

4.3 The Modified Genetic Algorithm: MGA

The previous sub-processes aim to select pipes to be handled in the optimization
procedure. According to the nature of the problem, the use of a multiobjective ap-
proach is recommended. As defined above, two main objectives are taken into ac-
count, the renewal costs and the hydraulic performance of the network. We modify
the structure of the Simple Genetic Algorithm by changing the selection procedure.
In fact the assessment of solutions is based on a Pareto ranking procedure adapted
from [4]. The procedure consists in ranking solutions according to the two objec-
tives considered. At each iteration, the Fitness value of solutions depends on the
rank of solution and the hydraulic performance of each policy. In order to ensure
a fast convergence of the Algorithm, an elitist approach is applied according to the
Non-Sorting Genetic Algorithm II developed by [4]. Each solution i defined by the
string (xi1xi2...xip) is assessed according to the objective function F1i and F2i with
xi j = 1,2 or 3 corresponding to design variables encoding the renewal alternatives
considered. At each generation, m represents the number of solutions generated ran-
domly with the help of the genetic algorithm. The ranking procedure identifies non-
dominated solutions for a bi-objective optimization problem under constraints. The
constraints handled are the minimum pressure required to ensure the proper opera-
tion of the network, the maximum pressure not to be exceeded at consumer nodes,
we assume that hydraulic model is still unchanged on the planning horizon Ω . All
solutions that violate the constraints have a rank less than remain solution’s rank.
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Fig. 3 The water network studied

For m possible solutions generated, the fitness value of a solution i with the rank ri
is given by:

Fitness(i) =
1

m− ri +1
. (9)

The assessment of solutions according to objectives defined above is ensured
by Epanet2 [13], a ranking procedure and genetic algorithm programmed in VBA
Macro on Excel. The decision support model proposed a set of non-dominated so-
lutions.

5 Application

The model was applied on a realistic water distribution network in Alsace (France),
after testing on theoretical network. The considered network is composed of 450
pipes, 325 nodes, five tanks and three pumps. The consumption nodes consist in
houses, two plants, a swimming pool and an old peoples home. The considered
network is shown by Fig. 3.

According to the availability of the data in the water utility, two analysis were
carried out. The first concerns the structural deterioration of pipes. We dispose of
data on observation window from year 1995 to 2004 related to length, diameter,
installation date, nature of soil, soil occupation, traffic level and previous failures.
Using the available data, we did a regression in order to assess the parameters of
the Survival function S(t) according to PHM model. We identified four significant
variables in the deterioration process of pipes: Previous failures (PF), length (L),
diameter (D) and age of pipes. The survival function were obtained from the regres-
sion on significant variables and defined by the equation (10):
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S(t) = exp[−26.10−5.(PF +1)1.19.L0.717.D−0.902.Age1.167.t1.072]. (10)

The selection of pipes candidates to renewal according to structural deterioration
is based on the prediction of the next failures during the planning horizon, the pre-
vious failures and the age of the pipes. The analysis of the hydraulic performance
indicates that pressure deficiencies appear on several nodes in the peak day (summer
day) and peak period, which is situated between 07:00 pm and 09:00 pm.

During the peak demand period, we notice a pressure deficiency in 66 nodes.
The solutions proposed by the model must take into account the structural dete-
rioration of pipes and the hydraulic deficiency to enhance network performance.
According to hydraulic deficiencies and structural deteriorations, 40 pipes were se-
lected. These pipes are candidate to renewal. The next step is the implementation
of the Modified Genetic Algorithm. It allows us to identify the required renewal
alternatives for each pipe among those considered into the problem: to repair, to re-
place or to reinforce. The solutions will be generated by the Genetic Algorithm. For
each solution, hydraulic simulation ensured by Epanet2 is done. Feasible solutions
must increase pressure deficiencies during the period of peak demand. The pres-
sure in nodes nodes must be between Pmin = 20m and Pmax = 50m. We implement
the MGA on the studied network considering a set of initial population m = 100,
number of 100 generations, a crossover probability Pc = 0.85 and mutation proba-
bility Pm = 0.015. Among the 340possible renewal policies, MGA assesses 10,000
policies.

A set of non-dominated solutions is obtained according to objective functions F1i
and F2i and resumed in Table 1. According to solutions shown in the Table 1, MGA
proposes a set of non-dominated solutions which are sensitive to available budget
and hydraulic performance of the water network. The final decision remains to util-
ity manager depending on available budget and hydraulic performance required.
The Fig. 4 shows the Pareto front formed by the non-dominated solutions. After ob-
taining a set of non-dominated solution, the selection of a solution according to the
water utility manager preference may be difficult. The proposed approach should

Table 1 . The non-dominated solutions

(i)F1i F2i B(Ω) Pmin Pmax Renewal Replace Reinforce

1 20060488,14 9,36 838661,39 48,85 20,90 29 16 13
2 12105676,75 9,30 748444,80 48,86 20,90 22 16 6
3 6520315,06 8,98 446461,55 48,85 20,90 17 12 5
4 8897817,49 9,19 631657,03 48,85 20,90 20 14 6
5 7374055,92 9,06 533807,79 49,14 20,90 18 10 8
6 5729569,19 8,94 403807,40 48,85 20,90 15 11 4
7 5549727,00 8,91 370574,16 48,85 20,90 14 11 3
8 5441391,77 8,74 341987,24 48,85 20,22 12 10 2
9 5127634,44 8,69 304176,53 48,85 20,84 12 8 4
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Fig. 4 The Pareto front

be coupled with an appropriate method to help the decision maker to find the most
preferred solution among proposed ones.

6 Conclusion

The Modified Genetic Algorithm (MGA) allows us to propose a set of acceptable
solutions according to technical constraints, economic and technical objectives. It
appears that the model takes into account variables linked to structural deterioration
with the help of the Proportional Hazard Model (PHM) Survival function and hy-
draulic performance. The model should be performed in order to take into account
the annual programming of works, detailed annual scheduling is not considered
in the current study. More sensitive simulations should be carried out in order to
check the proposed solutions, including budget constraints. The approach proposed
can be generalized for similar multiobjective problems dealing with structural and
operation deterioration of infrastructures disposed on the network. It is clear that
specific simulation models are required to describe the operation of infrastructures
and to measure the deterioration level. The proposed approach allows trade-offs be-
tween economic and technical incommensurable criteria. The trade-off is expressed
by the set of possible scenarios assessed according to specific objectives. The uses
of a multiobjective approach avoids the definition of weights to express the share
of each criterion involved in the decision, in order to reduce the risk of bias. It is
also required to help decision maker to select a final solution among non-dominated
solutions. Miettinen [10] propose a set of optimization methods that could be cou-
pled with MGA and help water utility manager to select a final solution among
Pareto front.
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On Conditional Value-at-Risk Based Goal
Programming Portfolio Selection Procedure

Bogumil Kaminski, Marcin Czupryna, and Tomasz Szapiro

Abstract A new goal programming portfolio selection procedure has been proposed
in the paper. It uses conditional value at risk at different confidence levels as objec-
tives in a multi-criteria optimisation model. In order to asses the proposed proce-
dure a new comparison method of different portfolio selection models is developed.
Based on Warsaw Stock Exchange data it is shown that the proposed approach has
better performance than the chosen standard portfolio selection methods.

Keywords: Conditional value at risk · Goal programming · Portfolio selection

1 Introduction

The aim of the paper is to propose a new portfolio selection procedure based on
Conditional Value at Risk.

In the portfolio selection problem an investor faces a very large decision space∗

and conflicting objectives: return maximization and risk minimization. Therefore
he or she might have a difficulty in selecting a portfolio that would reflect his or
her preferences exactly. The solution of this problem proposed in the literature is to
use analytical methods that would help an investor to choose his or her investment
portfolio.

Markowitz [7] and then Sharpe [11] proposed to use variance as a risk measure
in the portfolio selection problem. Since then other methods for risk measurement
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∗ The number of assets that can be considered often exceeds 1,000. Such a size of decision space
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have been proposed in the literature and applied in practice. As examples of such
approaches one can mention: semivariance approach [3], mean average deviation
approach [6], Gini’s mean (absolute) difference approach [13], minimal value ap-
proach [14], value at risk (VaR) approach [5] and conditional value at risk (CVaR)
approach [10]. Each such approach will be called portfolio selection method in the
paper.

Consider an investor facing a portfolio selection problem. The application of a
portfolio selection method to this problem results in some portfolio that is optimal
with respect to risk measure used in this method. Such a portfolio will be called a
recommended portfolio. On the other hand, a portfolio that would be chosen by an
investor if he or she followed his or her true preferences will be called an optimal
portfolio. The difference between optimal portfolio and recommended portfolio will
be called optimality gap. In the paper we assume that the true preferences of an
investor can be described by his or her utility function†.

Each of the above mentioned portfolio selection methods presents a different
measure of an investor’s risk aversion. Therefore for each method recommended
portfolios and optimality gaps may differ. In the paper we define the robustness of
the portfolio selection method as its optimality gap against a class investor prefer-
ences‡. The smaller the optimality gap the more robust the method is.

Value at risk is currently receiving an increasing interest in financial sector. Its
use is grounded by recommendations of Basle Committee on Banking Supervision
on risk management requirements. However this risk measure has been criticized
in the literature. For example [1] shows that it is not coherent – a sum of VaRs of
two financial instruments might be lower than VaR of a portfolio consisting of these
instruments. Therefore CVaR is proposed in the literature as a risk measure closely
related to VaR, but not burdened by its undesired properties.

In the paper we propose a CVaR based goal programming portfolio selection
method. The method allows an investor to reveal his risk attitude by specifying
CVaR goal levels. This results in a method that is more robust compared to standard
approaches. In order to show this we develop a methodology allowing for measure-
ment and comparison of robustness of our method against other methods.

The portfolio selection method taking into account several CVaRs in the recom-
mended portfolio selection has been proposed by Ogryczak [9]. It is based on an
interactive multi-criteria approach. However, in practice it is not always possible or
desirable to use interactive procedure for portfolio selection. Therefore we restrict
the scope of our analysis to non-interactive portfolio selection methods.

The proposed portfolio selection method assumes that an investor chooses sev-
eral Conditional Value at Risk confidence levels and specifies for each confi-
dence level the desired (goal) CVaR value. We show that this approach ensures
that the recommended portfolios are not stochastically dominated (second order)

† We assume that an investor behaves as if he or she was making his or her decisions by maximiz-
ing some utility function. Analytical form of this utility function does not need be known and in
practice it is usually not known.
‡ The class of investor preferences is described by a set of his or her hypothetical utility functions,
see Sect. 4.
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and have desirable computational features. Namely the recommended portfolio can
be found using linear programming for piecewise linear penalty functions. For non-
linear penalty functions genetic algorithm approach is proposed.

We compare recommended portfolios obtained by the method proposed in the pa-
per with recommended portfolios obtained by other portfolio selection methods. The
robustness of different methods is measured as the average and maximum difference
between recommended portfolio and optimal portfolio for a class of investor’s utility
functions.

We concentrate on the risk measures that can be interpreted using Yaari’s dual
utility theory, see [12]. However, the proposed portfolio selection methods compar-
ison approach can as well be used for the class of the risk measures interpretable
within von Neumann–Morgenstern utility theory (for instance probability of loss or
expected shortfall) or even grounded in a framework that is not based on utility.

The paper is organized as follows. In Sect. 2 we define CVaR and discuss its
properties. Next in Sect. 3 we propose the CVaR based goal programming method.
Finally in Sect. 4 we compare our method to standard methods found in the litera-
ture.

2 Conditional Value at Risk Properties

In this section we define CVaR and discuss its properties that will be used to support
the properties of the CVaR goal programming portfolio selection method introduced
in Sect. 3.

We define Conditional Value at Risk at a given confidence level p as follows:

CVaRp(X) =
1
p

∫ p

0
F−1(q)dq (1)

where random variable X has cumulative distribution function F(x) (see [9]).
One can interpret CVaR, in an intuitive way, as an average over 100p% of worst

outcomes in a sample drawn independently from a population with cumulative dis-
tribution function F(x) of a random variable X . In particular notice that when p = 1
the CVaR reduces to expected value of return.

It is important to note that CVaR criterion is grounded in dual utility theory.
Namely for each CVaR level p there exists a dual utility function§ that gives the
same ordering of random variables as CVaR. This is stated in Theorem 1.

Theorem 1. (see [2]) Consider random variables X1 and X2 with cumulative distri-
bution functions F1(x) and F2(x) respectively. For dual utility function:

fp(q) =
{ q

p if q ∈ [0, p]
1 if q ∈ [p,1]

§ [12] presents the foundations of dual utility theory.
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where p ∈ [0,1] the following condition holds:

CVaRp(X1) ≤ CVaRp(X2) ⇔
∫ ∞

−∞
td fp (F1(t)) ≤

∫ ∞

−∞
td fp (F2(t)) .

Notice that the right side of the above equivalence is a comparison of expected
values of random variables X1 and X2 under dual utility transformation of probabil-
ities.

From the above theorem it follows that there exists such a dual utility function,
for which there is no optimality gap for portfolio optimization method based on
CVaR at any level p as a goal function (that is: investor’s optimal portfolio is exactly
the same as recommended portfolio).

Additionally CVaR has also desirable computational properties. It can be shown,
see [10], that portfolio optimization method with CVaR as an objective function can
be expressed as a linear programming problem by introducing an additional variable
v and N nonnegative variables di. Parameter p defines confidence level of CVaR and
m is the number of assets:

v− 1
pN

N

∑
i=1

di → max

subject to:

di ≥ v−Rix

∀i ∈ {1, . . . ,N} : di ≥ 0
m

∑
i=1

xi = 1

∀i ∈ {1, . . . ,m} : xi ≥ 0.

(2)

By xi we define the share of asset i value in whole portfolio and as R we define the
matrix with N rows and m columns, taking the values of discrete multidimensional
random variable describing potential returns on the portfolio¶.

Based on the definition of CVaR and its properties given by equation 2 in the next
section we introduce goal programming CVaR based portfolio selection method.

3 Goal Programming Portfolio Selection Procedure

In this section we define the CVaR based goal programming portfolio selection
method. Next we show how it can be solved by linear programming for piecewise
linear penalty functions and define genetic algorithm framework used for non-linear
penalty functions.

¶ We assume that for each asset we have N possible returns each occurring with probability 1
N . In

practice the distribution of returns is determined using historical data. Then such random variable
is defined by N past observations of returns, see [5].
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In the proposed portfolio selection method an investor chooses K CVaRs, their
confidence levels p j and their objective levels g j. A goal programming problem can
be written as:

K

∑
j=1

P
(
g j −CVaRp j(x)

)
→ min

subject to:
m

∑
i=1

xi = 1

∀i ∈ {1, . . . ,m} : xi ≥ 0

(3)

where P(·) is an increasing penalty function (such an approach allows for penalty
functions non symmetric around 0). One can show that optimal solutions of this
problem are nondominated:

Theorem 2. Optimal solution of problem given by equation 3 is nondominated in
second order stochastic dominance sense.

Proof. Notice that function F(x) = ∑K
j=1 P

(
g j −CVaRp j(x)

)
is a decreasing func-

tion of each CVaRp j(x).
Assume that xopt is an optimal solution of problem given by equation 3. As-

sume that there exists a non-optimal solution y that dominates xopt in second or-
der stochastic dominance sense. Then, using results from [9], for such solution
∀ j ∈ {1, . . . ,K} : CVaRp j(xopt) ≤ CVaRp j(y). But this leads to the conclusion that
F(y) ≤ F(xopt) and this contradicts the assumption that y is non-optimal. ��

Theorem 3 shows how the problem given by equation 3 can be expressed in a
linear programming form for piecewise linear penalty functions.

Theorem 3. Assuming P(s) = min(w+s,w−s),w+ ≥ w− the goal programming
problem given by equation 3 can be expressed as:

K

∑
j=1

w+s+
j −w−s−j → min

subject to:

∀ j ∈ {1, . . . ,K} :

(
v j −

1
p jN

N

∑
i=1

d j
i

)
+ s+

j − s−j = g j

∀i ∈ {1, . . . ,N}, j ∈ {1, . . . ,K} : v j − rix ≤ d j
i ,d

j
i ≥ 0

m

∑
i=1

xi = 1∀i ∈ {1, . . . ,N} : xi ≥ 0

∀ j ∈ {1, . . . ,K} : s+
j ≥ 0,s−j ≥ 0

(4)

Proof. Let g j −CVaRp j(x) = s+
j − s−j , where s+

j ,s−j ≥ 0. Under this notation we
have: P

(
g j −CVaRp j(x)

)
= w+s+

j −w−s−j . Notice that because we are solving a
minimization problem either s+

j or s−j is equal to 0.
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Therefore the problem given by equation 3 can be rewritten as:

K

∑
j=1

w+s+
j −w−s−j → min

subject to:
∀ j ∈ {1, . . . ,K} : CVaRp j(x)+ s+

j − s−j = g j
m

∑
i=1

xi = 1

∀i ∈ {1, . . . ,m} : xi ≥ 0∀ j ∈ {1, . . . ,K} : s+
j ≥ 0,s−j ≥ 0.

(5)

Notice that because either s+
j or s−j is equal to 0 and w+s+

j −w−s−j is minimized
expression CVaRp j(x) = s−j − s+

j + g j is maximized. Therefore we can replace
CVaRp j(x) using the formula from equation 2. Using this substitution we obtain
the optimization problem formulation given by equation 4. ��

Although the class of piecewise linear penalty functions is wide it need not al-
ways reflect decision makers preferences precisely. Therefore we also consider non-
linear or non convex penalty functions (as for instance it could be assumed that
penalty function should not be continuous in 0). For such functions genetic algo-
rithm approach for finding recommended solution is proposed.

In the paper we take the following penalty function as an example‖:

P(s) = exp(s)+α[s > 0],α > 0. (6)

In such case our optimization problem cannot be linearized and solutions are ob-
tained with genetic algorithm optimization approach.

In the paper we apply the genetic algorithm optimization procedure following [8].
Below we specify: individual encoding scheme, population size, stopping criterion,
initial population generation, cross-over and mutation procedures.

We encode each individual as a vector of m real numbers representing the share
of each asset in the portfolio. For population size we use 1,000. The optimization is
stopped after 1,000 steps (stopping criterion).

In order to initialize the population we employ the following procedure:

• For i ∈ {1, . . . ,S}, j ∈ {1, . . . ,m} draw ui, j independent random samples from a uniform
0−1 distribution.

• Normalize the random draws vi, j = ui, j/∑m
k=1 ui,k.

• Initialize i-th individual as a vector vi = [vi,1, . . . ,vi,m].

Notice that vi meets the constraints of our optimization problem.
In the new population generation we employ the following cross-over algorithm:

• Randomly draw two parents v1 and v2.

‖ For logical expression �: [�] =
{

1 if � is true
0 if � is false .
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• Generate an m-element random vector r containing 0 and 1 (each value drawn with
probability 1

2 ).

• Calculate initial children as:

c1 = rvT
1 +(1− r)vT

2 and c2 = rvT
2 +(1− r)vT

1 .

• Normalize children v′i = ci/(1cT
i ).

Notice that v′i meets the constraints of our optimization problem if v1 and v2 meet it.
We employ the following mutation algorithm:

• Randomly draw a subject v.

• Randomly select its index for mutation. Let it be index t.

• Draw vt from an uniform 0−1 distribution (thus update vector v).

• Normalize output by v′ = v/1vT .

Notice that v′ meets the constraints of our optimization problem if v meets it.
In the next section we compare the linear programming and genetic programming

versions of proposed portfolio selection method to standard methods found in the
literature.

4 Method Assessment Procedure

In this section propose a procedure for the measurement of robustness of a portfo-
lio selection method. Next using this procedure we evaluate the CVaR based goal
programming approach by comparing it to standard methods.

The proposed approach to method robustness assessment is based on optimality
gap measurement. In order to measure an optimality gap we assume that an in-
vestor has preferences that can be described by dual utility function. A portfolio
that maximizes investors expected return under his dual utility function is called op-
timal portfolio (an investor would choose this portfolio if he knew and could apply
his dual utility). A portfolio that is chosen by given portfolio selection method is
called recommended portfolio. The distance between the optimal portfolio and the
recommended portfolio is called optimality gap.

In order to evaluate the robustness of different portfolio selection methods the
calculation of optimality gap is performed under assumption of different dual utility
functions of an investor. Intuitively – the best portfolio selection method should have
the lowest optimality gaps for a wide range of investor’s dual utility functions.

The approach described above is divided into the following steps:

(a) Select a set of n hypothetical utility functions of an investor and m portfolio selection
procedures;

(b) For each utility function i calculate optimal portfolio po
i ;

(c) For each portfolio selection procedure j calculate recommended portfolio pr
j;
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(d) Calculate deviations di, j = ‖po
i − pr

j‖ (distance between an optimal portfolio for i-th
hypothetical utility function from portfolio chosen by j-th portfolio selection method-
optimality gap);

(e) Compare portfolio selection methods based on average and maximum of square root
of mean quadratic deviation of their deviation vectors [d1, j, . . . ,dn, j].

In the paper we employ the following family of investor’s hypothetical dual util-
ity functions:

fn(p) = 1− (1− p)n,n ∈ {2,3, . . . ,10}. (7)

We have chosen the following types portfolio selection methods for comparison:

• Non linear EXP, see equation 6, goal programming CVaR (α = 1, CVaR confidence
levels: 10, 25, 50%);

• LP goal programming CVaR (w+ = 2, w− = 1, CVaR confidence levels: 10, 25, 50%);

• Single objective CVaR maximization (for values of confidence levels p equal to 5, 10,
25, 50, 75 and 100%)∗∗;

• Gini Mean Difference (GMD), see [13];

• Markovitz SD minimization approach (with constraints E(X) ≥ 0 and E(X) ≥ 1),
see [7].

The goals for the goal programming method were set in the following way. Firstly
for postulated dual utility functions we calculated all CVaRs of the optimal portfo-
lio. Secondly we randomly added or subtracted 1% of deviation from the optimal
CVaR values (to take into account that desired levels of goals can be evaluated by
an investor only approximately before she or he solves the optimization problem).

The comparison of the methods is based on Warsaw Stock Exchange data. We
used year 2005 data for 13 stocks included in WIG20 index††.

In Table 1 we present the following comparative statistics of deviation vectors
[d1, j, . . . ,dn, j] for each procedure:

• SqRavg: average of square root of mean quadratic deviation;

• SqRmax: maximum of square root of mean quadratic deviation.

The goal programming based procedures have best performance for selected ref-
erence utility functions. One can also notice that the worst performing portfolio
selection method was expected return maximization (CVaR(1.00)).

5 Summary

In the paper we have proposed a new CVaR based goal programming method and
developed an approach to assess its performance in reference to other portfolio se-
lection methods. The procedure is grounded in the dual utility theory and gives rec-
ommended portfolios that are non dominated in second order stochastic dominance
sense, see Theorem 2.
∗∗ Notice that CVaR(1.00) reduces to maximization of expected return of the portfolio.
†† WIG20 index includes the biggest companies quoted on Warsaw Stock Exchange. The 13 stocks
taken for analysis have been quoted since 01.01.2004 or earlier.
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Table 1 Empirical comparison of different portfolio selection procedures for Warsaw Stock Ex-
change data. GP-based procedures have best average performance

Procedure SqRavg(%) SqRmax(%)

GP EXP 3.98 5.52
GP LP 3.69 6.73
CVaR(0.05) 8.32 10.46
CVaR(0.10) 5.08 9.31
CVaR(0.25) 4.81 5.97
CVaR(0.50) 5.02 6.24
CVaR(0.75) 8.42 12.25
CVaR(1.00) 30.80 31.55
GMD 8.01 9.45
Markovitz (E(X) ≥ 0) 7.12 8.54
Markovitz (E(X) ≥ 1) 22.87 24.38

We have shown that the method has desirable computational properties. For
piecewise linear penalty functions the recommended portfolio can be found by lin-
ear programming, see Theorem 3. For non-linear or non-convex penalty function a
genetic algorithm framework was proposed.

In the paper we propose to evaluate different portfolio selection methods by com-
paring optimality gap between investor’s optimal portfolio and recommended port-
folio. This methodology was applied to compare robustness of CVaR based goal
programming method (piecewise linear and non-linear cases) to standard portfolio
selection methods found in the literature. The comparison, given in Table 1, shows
that the CVaR based goal programming method has the best performance for se-
lected reference utility functions.

The proposed CVaR based goal programming method is applied in the paper
within a non-interactive framework. However, it can be extended to allow for an
interactive reconstruction of investor’s true preferences. This goal can be achieved
by allowing an investor to either accept a recommended solution or update the CVaR
goal levels and ask for the next recommended solution.

The work presented in the paper focuses on procedures based on dual utility the-
ory. However, the proposed portfolio selection methods comparison approach can
be applied for evaluation of other methods giving recommended portfolios against
any investor’s optimal portfolio derivation approach.
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Optimal Bed Allocation in Hospitals

Xiaodong Li, Patrick Beullens, Dylan Jones, and Mehrdad Tamiz

Abstract In this paper a decision aiding model is introduced for optimizing the
allocation of beds in a hospital. The model is based on queueing theory and goal
programming (GP). Queueing theory is used to obtain some essential characteris-
tics of access to various departments (or specialities) within the hospital. Results
from the queueing models are used to construct a multi-objective decision aiding
model in the GP framework, taking account of targets and objectives related to cus-
tomer service and profits from the hospital manager and all department heads. The
model is developed for a public hospital in China. The performance of the model
and implications for hospital management are presented.

Keywords: AHP · Bed allocation · Goal programming · Health-care modelling ·
Queueing theory

1 Introduction

Public hospitals in China are facing more and more economic pressures from the
unprecedented development of private hospitals with professional management and
high-level medical equipment. Since public hospitals are to be run as profitable insti-
tutes of the Chinese health service system, there is increased attention in improving
the management of health care resources within public hospitals. In this paper, a
decision making model based on the combination of queueing theory and goal pro-
gramming (GP) is designed to help management assess potential improvements in
the allocation of beds to different hospital departments. These models are developed
for and tested on the Zichuan Hospital in China.
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Zichuan Hospital was established in 1949 as a medium-sized hospital, and cur-
rently provides a wide range of medical services over eleven departments, including
orthopaedics, surgery, nerve medicine, internal medicine, paediatrics, and obstet-
rics. For reasons of confidentiality, the departments are henceforth identified only
by their numeral index. The average occupancy rate of beds is used as a perfor-
mance measure in the hospital. From 2004 data, an obvious difference in the bed
occupancy rates between the departments can be seen. For instance, the average oc-
cupancy rate was 98.04 % in department 7, while 47.85 % in department 9. A high
rate may indicate revenue loss from patients turned away when no beds are avail-
able, and similarly, a low occupancy rate a waste of hospital resources as beds are
often left unused.

The general manager of the hospital felt that the problem with bad occupancy
rates may have been caused in part by shifts in the arrival patterns of patients for
certain specialties due to the increased competition from private hospitals, which
often specialize in certain areas. The lack of advanced insights blocked manage-
ment in making any significant changes. It was decided to build a decision aiding
model across the different departments to assess the potential of bed reallocation to
improve the hospitals overall performance. The general manager must consider var-
ious factors simultaneously, such as the importance of each department, the penalty
cost from lost patients, and the holding cost for idle beds. The decision making pro-
cess should consider not only the overall achievement for the whole hospital but also
the performance in each department. Therefore, the decision aiding model must take
into account the conflicts between hospital manager and department heads as well
as between different departments. Faced with limited resources, a balance needs to
be found between the loss from patients turned away and unoccupied beds in each
department while being restricted by several constraints, including the fixed total
capacity of beds in the hospital.

Various methods from Operational Research (OR) have been developed and ap-
plied to deal with problems of health care resource allocation. Research method-
ologies used include queueing theory (Cooper and Corcoran [2]), simulation (Fetter
and Thompson [5]), and mathematical programming. During the last two decades,
goal programming (GP) has become more and more a popular approach for allo-
cating resources in health care. Blake and Carter [1] present a methodology includ-
ing two linear GP models for allocating resources in hospitals to achieve (among
other objectives) a preferred mix and volume of types of treatment. Keown and
Martin [8] describe the application of integer GP to capital budgeting decisions in
hospitals.

Several studies in the literature focus on the problem of bed allocation across
different departments, medical specialities, or types of patients in a hospital. Es-
ogbue and Singh [4], for example, develop a mathematical model useful in devis-
ing an admission policy in a ward for different types of patients and in which the
objective function is made up of shortage and holding costs. Kao and Tung [7]
present an approach for periodically reallocating beds to services to minimize the
expected overflows. Their demand forecasting system uses an M/G/∞ queueing
model to approximate the patient population dynamics for each service. Their study
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emphasizes that forecasts should form the basis for analysis and accepts approxima-
tion by queueing models for the sake of procedural simplicity. Lapierre et al. [10]
consider the problem of allocating a number of beds to different medical and sur-
gical specialities in a hospital, taking into account that the scheduling of medical
procedures varies over a week and that the demand for various medical services
shows seasonality. A time series model is developed by using hourly census data
to make good decisions regarding the size of each unit. Similarly, to determine the
frequency distribution associated with a hospital care units census, Cote [3] present
an analytic approach based on a modified version of the Holt-Winters multiplicative
seasonality forecasting model.

Very few studies, however, consider the bed allocation problem as a multi-
objective problem. Kim et al. [9] demonstrate with a validated computer-simulation
model that there is no single dominant solution to the bed-allocation problem, thus
indicating the multi-objective nature of the problem. Oddoye et al. [12] detail a GP
model to analyze the performance of a Medical Assessment Unit (MAU) and find
solutions for bed allocation for patients with minimum delay. However, due to the
deterministic nature of the model built, it is difficult to investigate the systems per-
formance for optimal work flow. Hence, Oddoye et al. [11] present a simulation
model considering the factors in length of stay, number of beds, nurses and doctors
in the MAU. Thereafter a GP model is applied to perform trade-off analysis, using
the results from the simulation model. The hourly allocation schemes of resources
can be deployed within the MAU to help minimizing delays and increase the flow
of patients.

This paper contributes to the research literature on multi-objective decision mak-
ing for bed allocation by introducing a novel mathematical model which combines
queueing theory and GP. It is assumed that every department (or speciality, or type
of treatments needing similar care) is to be awarded a fixed number of beds. It is
assumed that the number of beds affects the performance of a department in terms
of (1) the acceptance probability when a new patient arrives and (2) the average
daily profits. The queueing model of Gorunescu et al. [6] is applied (Sect. 2) to find
for each department, respectively, the number of beds required to achieve a targeted
acceptance probability, and the number of beds needed to optimize daily profits.
Results show that these objectives are conflicting. Hence, the queueing model is
used to model (1) and (2), respectively, as functions of the number of beds awarded.
Thereafter, a GP model is formulated using the queueing model results and solved to
obtain an allocation of beds to each department subject to a limit on the total number
of available beds for the hospital (Sect. 3). Case study results using 2004 data from
the Zichuan Hospital in China illustrate how bed reallocation affects performance,
according to the predictions of this model, of each department and the hospital in
general (Sect. 4). Finally, conclusions and recommendations for future research are
given (Sect. 5).
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2 Application of Queueing Models

Queueing models are widely used in industry and business to improve customer
services, such as in the airlines and telecommunication sectors, in banks, and su-
permarkets. These models are particularly useful in determining capacity needs in
the context of stochastic arrival patterns and service times. In the context of hos-
pital bed allocation, Gorunescu et al. [6] argue that patient arrivals for a specialty
or department can be fairly approximated by a Poisson process, and patient service
time following a phasetype distribution. They hence develop an M/PH/m queueing
model where the number of beds available is fixed to m and no queuing is allowed; a
patient finding that all m beds are occupied, is lost. If the Poisson arrival and steady
state distributions hold, this M/PH/m queuing model is valid. Previous studies sug-
gest the appropriateness of this model, even when there is some seasonality in pa-
tient admissions. With a Poisson arrival rate of λ per unit time (day) and an average
length of stay of τ days, the average number of arrivals during an average length of
stay is therefore λτ . Assuming the queueing system is in steady state, the probabil-
ity L that some arrivals are lost because all m beds are occupied can be given by (1)
and then the probability of admitted patients can be represented by (2), where k is
defined as the number of phases of the service time [6]:

L =
(λτ)m/m!

∑m
k=0
[
(λτ)(k)/k!

]
,

(1)

ca = 1−L. (2)

In order to measure the utilization of beds in a speciality, they defined the bed
occupancy rate ρ by:

ρ = λτ(1−L)/m. (3)

From this formula, the probability of admitted patients for different values of num-
ber of beds m can be calculated. It is found to be a concave function which asymp-
totically approaches 100 % as illustrated in Fig. 1.

Fig. 1 Patient admission probability as a function of the number of beds (Department 1)
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In addition, Gorunescu et al. [6] introduced a base stock inventory model to find
the relationship between the average profit per day and the number of beds. The
three components that result in total profit in this model are related to: the revenue
r (minus direct treatment costs) per day generated from each admitted patient; the
penalty cost as a fixed percentage of the lost revenue for each patient turned away;
and the holding cost h per day and per idle bed. According to queuing theory, the
average number of patients in the hospital equals λτ(1− L); the average demand
per unit time that is lost equals λL; and the average idle-bed inventory equals [m−
λτ(1−L)]. Therefore, the average profit per day cp for each department is:

cp = rλτ(1−L)−πL−h [m−λτ(1−L)] . (4)

The values of average profit per day corresponding to different number of beds
can therefore be calculated. See Fig. 2. The optimal profit per day is achieved by
balancing the number of delayed patients against the number of empty beds. As seen
in Fig. 2, the profit per day is a concave function starting from a negative value when
the number of beds approaches zero. As the number of beds increases, more patients
can be admitted generating more revenue and lowering penalty costs. Increasing the
number of beds above the optimal number decreases profits due to the excessive
holding costs of idle beds.

Both ca as a measure of the level of service offered, and cp as a measure of profits
obtained, are seen as considerably important criteria, and more useful concepts as
opposed to bed utilization rates, to judge whether an allocation of hospital resources
is reasonable.

The above two models were used to obtain the values of patient admission prob-
ability and profit per day with various numbers of beds for each department in the
hospital. Taking 95% as an ideal value for admission probability, and the optimal
profit per day as a second ideal value for profit, the optimal number of beds for each
department are as summarized in Table 1.

The total number of beds needed to get the ideal target of patient admission
probability is 280, which is, purely by accident, exactly equal to the current amount
of beds in the hospital. If all departments would need to be satisfied in getting their

Fig. 2 Profit per day as a function of the number of beds (Department 2)
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Table 1 Optimal number of beds to reach the ideal values for each department

Department Number of Number of
beds in respect to beds in respect to

95% of patient optimal profit per
admission day

1 25 29
2 25 28
3 30 34
4 31 36
5 26 30
6 40 46
7 49 58
8 25 26
9 10 11
10 6 6
11 13 15
Total 280 319

own optimal profit per day, however, the number of beds required is 319, which
exceeds the existing 280. The limit of 280 beds is viewed as a hard constraint by the
hospital manager.

3 GP Model Description

Table 1 shows that the existing 280 beds in the hospital are not able to satisfy all de-
partments to reach their targets. An optimal bed allocation for the hospital manager
therefore will have to violate some departments individual objectives. It is thus im-
portant to consider when distributing the 280 available beds among the departments
the trade-offs between objectives in patient admission and profit performance, as
well as among all decision makers including the hospital manager and every depart-
ment head. The objective of the GP model is to offer a decision aiding tool that can
help making such trade-offs.

3.1 Assumptions

Objectives are produced from all the decision makers including the hospital manager
and department heads. They try to achieve two types of objectives: patient admission
and profit per day. These two objectives are conflicting in the sense that an optimal
allocation of resources for one objective is in general not optimal for the other. For
each objective, a two-level target (lower and upper) is defined based on the concept
of a penalty function in goal programming [13]. The flexibility as such introduced
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in the model allows certain departments to concentrate on admitting more patients
since their patients may need urgent treatment. Other departments, however, having
a work flow pattern of generally less critical services may wish to concentrate more
on how to increase profits per day. Note that ‘department’ in this model may be
loosely interpreted; it may also refer to a speciality or any grouping of patients
requiring similar treatment.

From Figs. 1 and 2, it can be seen that piecewise linear approximations offer an
effective way to represent these concave functions in the GP model. A mixed integer
linear programming methodology can then be used, introducing breakpoints in the
expression of the GP model constraints:

ba
i = number of breakpoints in patient admission probability function of depart-

ment i.
bp

i = number of breakpoints in profit per day function of department i.
The following notation is used for the (integer) decision variables:
xi j = number of beds between breakpoint ( j − 1) and j of admitting patient in

department i.
yi j = number of beds between breakpoint ( j− 1) and j of profit per day in de-

partment i.
The following parameters are also introduced:
ca

i j = unit value of patient admission probability for xi j.
cp

i j = unit value of profit per day for yi j.
In addition, target values and deviations in the GP model are represented as fol-

lows:
gQ

i = target values of different objectives for decision maker i.
nQ

i = negative deviations associated with the targets of the objectives for decision
maker i.

pQ
i = positive deviations associated with the targets of the objectives for decision

maker i,
where Q = a1,a2, p1, p2; and i = 0,1, . . . ,11; a1 and a2 represent the targets at the
upper and lower-level of patient admission probability; and p1 and p2 imply those
at the upper and lower-level of profit per day, respectively. Parameters and variables
with index i = 0 are from the hospital manager, and i = 1, . . . ,11 represents the
department number.

3.2 Objective Function

The aim of the GP model is to minimize all the negative deviations from patient
admission probability and profit per day. The weighted GP technique is used with
the following achievement function:

Min =
11

∑
i=0

(
wa1

i

ga1
i

na1
i +

wa2
i

ga2
i

na2
i +

wp1
i

gp1
i

np1
i +

wp2
i

gp2
i

np2
i

)
, (5)
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where w values are the weights derived from the preferences of decision makers
by the AHP technique [14]. In order to avoid arbitrary solutions which do not cor-
respond to the actual preference of the decision makers, a percentage normalizing
procedure is implemented without introducing new deviational variables [15].

3.3 Model Constraints

The two-level target values of each objective of decision makers are reflected by
(6) – (13). The total number of beds is a hard limit in this model ((14) and (15)).
Equation (16) expresses that the number of beds chosen in both objectives for each
department must be equal. Equations (17) and (18) add the restriction that the value
of the variable cannot exceed the number of beds (x̄i j and ȳi j ) between breakpoint
( j−1) and j.
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xi j ≤ x̄i j i = 1, . . . ,11; j = 1, . . . ,ba
i , (17)

yi j ≤ ȳi j i = 1, . . . ,11; j = 1, . . . ,bp
i . (18)

nQ
i , pQ

i ≥ 0, and xi j,yi j are non-negative and integer for all i and j.
In (8) and (9), the patient admission probability for the hospital as a whole is

determined as the average admission probability where the weights in the average
are given by the different arrival rates. In (12) and (13), which specify the profit
targets for the hospital as a whole, the hospital manager cannot assume the sum of
the target of each department head as his/her own profit target value because the
total number of beds is restricted. Thus, an additional model for determining the
maximal feasible value is needed. This model is to be solved before the actual GP
model, and has the following objective function:

Maxgp1
0 =

11

∑
i=1

11

∑
j=1

cp
i jyi j (19)

subject to the set of (10), (11), (14), (18) and yi j ≥ 0 and integer. The outcome of
this model sets the upper level target for the general manager in (12).

The GP model presented keeps the total number of beds constant. It can of course
be easily modified to other values. In practise, it may be that certain departments
are limited in space for beds or cannot accept large changes in beds compared to
the current situation for other reasons. This concern may arise, for example, from
envisaged limitations for changing the capacity of other resources such as special
nursing capabilities or specialists. To model such concerns, the specification of ad-
ditional lower and upper bounds on the number of beds that may be awarded to a
department can be easily introduced as additional constraints. Such constraints were
not introduced for the case study presented in Sect. 4.

4 Discussion of Results

Due to limitations of space, the results of the application of the GP model to the
Zichuan Hospital data of 2004 are only briefly described. The current and new num-
bers of beds per department, as predicted by the model, are displayed in Fig. 3. Note
that Department 7 will obtain twelve more beds in order to satisfy the requirement of
a large amount of patients. The other departments, however, are much less affected.

4.1 Patient Admission

The change in performance of patient admission probability as predicted by the
GP model is displayed in Fig. 4. Seven departments cannot achieve the upper-level
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Fig. 3 Current allocation of beds and new allocation found with GP
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Fig. 4 Current and new values of patient admission probability

target of 95% while only departments 1, 3, 4, and 7 can admit more than 95% of
coming patients in the new situation. The results further predict that five departments
will improve their performance, especially department 7. There is also a significant
increase from 90.59 to 94.94% in the performance of the entire hospital.

4.2 Profit per Day

The results of the model for daily profits are displayed in Fig. 5. As the upper-
level targets of profit are defined as those reached with an optimum number of beds
for each department, and since the total number of beds needed for this to happen
largely exceeds the available number of beds (see Table 1), it was to be expected
that the majority of departments are not able to achieve their upper-level target in
the new bed allocation. Department 3 is the only speciality that reaches its top target
in the new configuration. There are six departments which produce a higher profit,
with department 7 again achieving the largest improvement. Most departments reach
at least 90% of their optimum. The hospitals overall achievement with 280 beds is
now almost at its perfect level; it increases its profits from 93.36 to 99.64% of the
optimum.

4.3 Bed Occupancy

It is interesting to also review how the bed reallocation suggested by the model al-
ters the bed occupancy rate per department as this is a performance measure used in
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Fig. 5 Current and new values of profits as a percentage of the maximum achievable profit in the
queueing model
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Fig. 6 Current and new values of bed occupancy rates

many hospitals. Results are given in Fig. 6. The hospitals total bed occupancy is low-
ered, but the performance in patient admission probability and profits is improved.
While all departments who see their bed occupancy rates fall gain more beds and
a higher patient admission probability, and vice versa, the impact on profits is less
predictable. With the sole exception of department 9, however, all departments who
decrease (increase) their occupancy rates increase (decrease) their profits. These
findings perfectly illustrate that high bed occupancy rates are actually often not de-
sirable for both patient admission probability and profits.

Generally, between 75 and 80% of the beds in most departments are occupied
in the new bed allocation which is seen as an acceptable level in practice. Note,
however, that department 10 actually decreases its occupancy rate to 50% while it
improves patient admission probability and profits. Not conforming to the indus-
try practice of an occupancy rate around 80% therefore does not necessarily imply
bad performance. Overall, these comparisons make clear that bed occupancy rates
are not adequate performance measures and should not be used by themselves to
evaluate the performance of a department or to steer bed reallocation policies in
hospitals.

5 Conclusions

This paper is concerned with the strategic problem in a hospital of bed reallocation
among its departments. A decision making model is built based on a combination of
queuing theory and goal programming. The M/PH/m queuing model can be used
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effectively to investigate some essential characteristics of access to service in the
hospital. It provides a means of calculating patient admission probability and profit
achievement as functions of the number of beds for each individual department.
The basic assumptions for it to be applicable are that the arrival process is Pois-
son and that results reflect a steady state situation. While this queuing model can
be criticized for lacking the modelling power of other approaches such as discrete
event simulation, it does lead to results based on the simple measurement of aver-
age arrival rates and average residence times for each department, without further
requirements of detailed modelling. The Goal Programming methodology that uses
the results of the queuing model as input, however, does not exclude the use of other
techniques for providing this input.

The GP methodology has been used to construct a multi-objective decision aid-
ing model taking account of targets and objectives of the hospital manager and the
department heads. The case study results show that the reallocation of beds leads the
hospital to overall larger profits and a higher admission probability. While some de-
partments will gain in performance, other departments may have to accept a lower
performance. In this case study, this has not resulted in large conflicts as depart-
ments with a bad performance largely benefit from the reallocation while excellent
performance departments see their performance only slightly decreased. In compar-
ison to the presented approach, the use of bed occupancy rates has been shown to
be ill-equipped for estimating the performance of a hospital department in terms of
customer service and profits.

Bed allocation in this paper was made to departments. It is highly likely that
more complex policies such as pooling of beds between departments may further
lead to increased performance. This forms an interesting area for further research.
The approach presented may serve as a starting point for the development of ca-
pacity planning models for businesses operating in similar conditions, such as the
allocation of beds or room types in hotels.
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Multiobjective (Combinatorial) Optimisation –
Some Thoughts on Applications

Matthias Ehrgott

Abstract In recent years there have been considerable advances in methodology (ex-
act and heuristic algorithms) to solve multiobjective optimization problems. Com-
bined with the rapid improvement in computing technology, this means that large
scale multiobjective optimization problems arising in real world applications have
become tractable.

In this paper, I outline some application areas and illustrate how the application
of multiple objective methods provide secondary benefits such as additional insight
in the application area and improved processes. These benefits are in addition to the
primary benefits of more realistic modelling and better decision support by includ-
ing the conflicting goals that decision makers usually face.

However, the study of real world applications also motivates research on the
mathematical aspects of multiobjective optimization. I illustrate this win–win sit-
uation using examples drawn from finance (portfolio optimization), transportation
(train timetabling, airline crew scheduling), medicine (radiotherapy treatment plan-
ning), and telecommunication (routing in networks).

Keywords: Multiobjective optimization · Optimization in medicine · Real world
application · Transportation

1 Mathematical Formulation

A multiobjective optimisation problem is the following mathematical programme

M. Ehrgott
Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland
Mail Centre, Auckland 1142, New Zealand
e-mail: m.ehrgott@auckland.ac.nz

V. Barichard et al. (eds.), Multiobjective Programming and Goal Programming: 267
Theoretical Results and Practical Applications, Lecture Notes in Economics
and Mathematical Systems 618, © Springer-Verlag Berlin Heidelberg 2009



268 M. Ehrgott

min f (x) = ( f1(x), . . . , fp(x))
subject to g(x) � 0,

where f : R
n → R

p is a vector-valued objective function and g(x) : R
n → R

m.
In the case of integer programmes, that I am mainly concerned with in this paper,

I further assume that f and g are linear functions. Thus a multiobjective integer
programme is

min f (x) = Cx

subject to Ax � b

x ∈ {0,1}n.

I denote by X = {x ∈ R
n : g(x) � 0} or X = {x ∈ {0,1}n : Ax � b} the feasible

set in decision space and by Y = f (X) = { f (x) : x ∈ X} the feasible set in objec-
tive space. I understand solving a multiobjective integer programme as finding a
complete set of efficient solutions XE , according to the definition of [11]. A feasi-
ble solution x̂ is efficient if there is no x ∈ X with f (x) � f (x̂) and f (x) 	= f (x̂).
The image of the efficient set in objective space is the set of non-dominated points
YN := f (XE).

It is of course impossible to give a comprehensive survey of applications of mul-
tiobjective optimisation in the space of this paper. I have therefore made a very sub-
jective selection of problems that I am familiar with. They are nevertheless drawn
from widely different application areas. In each of the examples I emphasise why
I find it instructive and what lessons can be learned. The applications I consider
are the portfolio selection problem in finance (Sect. 2), train timetable information
and airline crew scheduling from the transportation field (Sects. 3 and 4), radiother-
apy treatment design in medicine (Sect. 5) and the telecommunication application
of routing in IP networks (Sect. 6).

2 Finance: Portfolio Optimisation

The first problem I want to discuss is the portfolio optimisation problem of deciding
on an investment of a certain sum of money, for example at a stock exchange, so as
to maximise the return and minimise the associated risk. If the number of websites
is an indication of importance, this is a very important problem: A Google search
for ‘Risk Return Portfolio Stock Exchange’ produces about 10 million hits, among
those http://www.ise.ie/intuition.asp?type=SUCCESS of the Irish stock exchange,
where one can read that “In this section of the Exchange’s e-learning tool you can
learn more about the trade off between risk and return”.

As the phrase ‘trade off’ indicates, portfolio optimisation is a classical bicriteria
optimisation problem. It is arguably the first one that has been intensively studied
since the seminal work of Markowitz [16] appeared. The original single objective
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formulation employed for its solution is nothing but the ε-constraint scalarisation of
the problem

max f1(x) = μT x

min f2(x) = xT σx

subject to eT x = 1
x � 0,

(1)

where μ is the expected return, σ is the covariance matrix of the returns, and e is a
vector of ones.

As a bi-objective programme with linear and quadratic objectives and linear con-
straints, the non-dominated and efficient sets are relatively easy to compute. Fig. 1
shows the non-dominated set of a portfolio optimisation problem with n = 40 assets
from Ehrgott et al. [8].

So why should I talk about this problem? The reason becomes apparent when
one compares theory with reality. As Konno [13] observes, most investors do not
actually buy efficient portfolios, but rather those behind the non-dominated frontier.
Can this behaviour be explained? The assumption underlying the Markowitz model
is that investors are ‘after the money’ and therefore only interested in return and risk.
One might call such investors ‘average’ or ‘standard’ investors. However, individual
investors might not act according to the Markowitz assumption, and consider other,
additional, objectives. Such multiobjective models have been proposed, e.g. in [22]
and [8]. The latter uses formulation (2)

max f1(x) = μT
1 x

min f2(x) = xT σx

max f3(x) = μT
3 x

Fig. 1 The non-dominated frontier of a portfolio optimisation problem
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max f4(x) = dT x

max f5(x) = stx

subject to eT x = 1
x � 0,

(2)

where μ1 and μ3 are the 1- and 3-year expected returns, d is the dividend and s is
the Standard and Poor star ranking. Steuer et al. [22] call investors that use such
non-standard criteria ‘suitable portfolio investors’. Investors may also like to have
control over the number of assets in the portfolio and the fraction of investment in a
single asset. This can be incorporated by using additional binary variables as in [3]
to yield model (3).

max f1(x) = μT
1 x

min f2(x) = xT σx

max f3(x) = μT
3 x

max f4(x) = dT x

max f5(x) = stx

subject to eT x = 1

xi � uiyi, i = 1, . . . ,n

xi � liyi, i = 1, . . . ,n

eT y = k

y ∈ {0,1}n,

(3)

where k is the number of assets, and li and ui are lower and upper bounds on the
fraction of capital invested in asset i.

By now, the continuous, convex, linear-quadratic bi-objective Markowitz model
has become a true multiobjective and mixed integer problem, which is certainly
worthy of further study. But besides showing that (multiobjective) portfolio optimi-
sation remains an interesting topic more than 50 years after its first appearance one
can learn another important lesson. Conventional portfolio theory cannot predict be-
haviour of individual investors. However, the introduction of additional objectives
provides a rather plausible explanation of this phenomenon. The concept of suitable
portfolio investors opens possibilities for further research. Assuming that investors
make rational (optimal) decisions, how many and which objectives are needed to
explain a particular solution as efficient? Furthermore, the importance of multicrite-
ria decision aid increases, as criteria need to be made explicit and decision support
is necessary to find an investor’s most preferred portfolio.

Much more information on this topic can be found in Chap. 20 in [9] and refer-
ences therein.
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3 Transportation: Train Timetable Information

At the time of planning my trip to Europe, including attendance at the MOPGP con-
ference, I considered using the train from Pirmasens, Germany, to Tours. The online
timetable information of Deutsche Bahn (see http://www.reiseauskunft.bahn.de)
provided two possible connections shown in Table 1.

So I had a choice between shorter travel time or fewer train changes. Obviously
this is a multiobjective shortest path problem (a third objective, fare, is not available
due to the international connection).

The multiobjective shortest path problem is a well studied multiobjective com-
binatorial optimisation (MOCO) problem. In particular, it is known that already the
bi-objective version is NP-hard because the digraph at the top of Fig. 2 can be used to
demonstrate a reduction from the NP-hard knapsack problem. Moreover, the graph
at the bottom of Fig. 2 shows that it is intractable, i.e. there can be exponentially
many efficient paths and non-dominated points, see, e.g. [5] for proofs.

This is pretty bad news for a problem which is so easy in its single objective
version. Table 2 shows computation times on a standard PC and the number of
efficient paths for relatively big networks from [19].

Apparently, the NP-hardness and intractability are not an issue in these examples
(and all others tested in [19]). It is particularly striking that the large road networks
have very few efficient paths. Can this discrepancy be explained?

Indeed it can. Mueller-Hannemann and Weihe [18] have investigated properties
of networks with two objectives that allow better estimates of the number of efficient
paths. Using the ratio between the first and second objective on the arcs they prove
Theorem 1.

Table 1 Two train connections between Pirmasens and Tours

Station Date Time Duration Changes

Pirmasens Su, 11.06.06 09:32 8:49 4
Tours Su, 11.06.06 18:21
Pirmasens Su, 11.06.06 09:32 10:05 3
Tours Su, 11.06.06 19:37

Fig. 2 The multiobjective shortest path problem is NP-hard (top) and intractable (bottom)
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Table 2 Number of efficient paths and CPU times for bi-objective shortest path problems of dif-
ferent types

Type Nodes Edges Efficient paths CPU time

Grid 20,002 79,600 247 6.93
Grid 4,902 19,596 1,594 28.27
NetMaker 14,000 153,742 17 0.03
NetMaker 3,000 31,559 6 <0.01
Road 9,559 39,377 7 0.03
Road 330,386 1,202,458 21 1.10

Theorem 1.

(a) Even if the ratio between first and second length of an arc assumes only 2 values
there can be exponentially many efficient paths.

(b) If there are k different ratios between first and second length of an arc there are
at most O(n2k−2) efficient bi-tonic paths. A bi-tonic path is a path where the
sequence of ratios switches only once from increasing to decreasing.

Mueller-Hannemann and Weihe [18] have conducted experiments on the train
graph of the Deutsche Bahn rail network, which has 1.4 million nodes, 2.3 million
arcs and found that 84% of efficient paths are bi-tonic. Moreover, the number of
efficient paths using different combinations of objectives is very small. For distance
versus time on average two and at most eight paths are efficient. For fare versus time
the numbers are three and 22 and for the three objectives distance, time, and train
changes they are 10 and 96.

Again, one learns a number of lessons from this. Firstly, the concepts of NP-
hardness may not be too relevant in multiobjective optimisation. Since almost
all MOCO problems are NP-hard and intractable, there is virtually no distinction
among problems by these criteria. Moreover, worst case estimates may simply not
apply in a particular application, even if problem instances become very large. It is
therefore always worthwhile studying the circumstances of the application. That will
be beneficial for the application and it might lead to interesting mathematical results.

4 Transportation: Airline Crew Scheduling

BBC News of Sunday, 4 August, 2002, had an item that serves well to explain a
problem in airline crew scheduling.

Passengers with low-cost airline . . . are suffering delays after 19 flights in and out of Britain
were cancelled. The company blamed the move – which comes a week after passengers
staged a protest sit-in at Nice airport – on crewing problems stemming from technical
hitches with aircraft. Crews caught up in the delays worked up to their maximum hours
and then had to be allowed home to rest. Mobilising replacement crews has been a problem
as it takes time to bring people to airports from home. Standby crews were already being
used and other staff are on holiday.
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To understand how this problem arose, one needs to understand the standard
integer programming model of the airline crew scheduling problem. The goal is to
partition the scheduled flights into a set of ‘pairings’ each of which can be operated
by a crew member to minimise cost. Let

ai j =
{

1 pairing j includes flight i
0 otherwise.

The problem can then be formulated as a generalised set partitioning problem

min = cT x

subject to Ax = e

Mx = b

x ∈ {0,1}n.

(4)

This particular type of set partitioning problem can be solved using column gen-
eration and constrained branching strategies [2]. Software to solve (4) (optimally or
heuristically) is in use by all airlines. In fact, airline crew scheduling has been one
of the biggest successes of Operations Research.

However, as can be seen from the news item above, things do not always go
as planned and delays are common occurrences in operation. Optimal crew sched-
ules according to (4) often operate with minimal ‘sit times’ between flights, that is
without buffer time between flights to be operated by the same crew member. In
addition, aircraft are also kept operating with minimal ‘turn time’ between flights.
In such a scenario consider Fig. 3. If arriving flight Fr is late the next flight operated
by the same aircraft is inevitably late, too. Moreover, if two crew members C and
F arriving on flight Fr are scheduled to operate flights Fs and Ft , these will also be
delayed. It is easy to imagine that this propagation of delays through the schedule
can cause major and very expensive disruptions.

Thus, dealing with delay has become a focus of research in recent years. I shall
explain two approaches. The first one is based on the stochastic nature of delays and
incorporates the cost of delay into the problem formulation resulting in a stochastic
programme with recourse [25]. The formulation is

Fig. 3 Delay propagation due to aircraft changes
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mincT x+Q(x)
subject to A1x = e

A2x = b

x ∈ {0,1}n,
(5)

where Q(x) = ∑ω∈Ω p(ω)Q(x,ω) and Q(x,ω) is the cost of delay under schedule
x in scenario ω . Details of the solution algorithm – a branch and bound algorithm,
which requires a set partitioning problem to be solved in every node – can be found
in [25].

The second approach is based on the conflicting goals of minimising cost and
minimising delay caused by aircraft changes, i.e. it is a bi-objective programme [6]:

minrT x

mincT x

subject to A1x = e

A2x = b

x ∈ {0,1}n,

(6)

where r j is a penalty for short ground time that does not allow recovery from previ-
ous delays. The 95%-quantile of the delay distribution is used as a delay measure in
the calculation of r j. The bi-objective set partitioning models are solved using the
method of elastic constraints

minrT x+ ps

subject to A1x = e

A2x = b

cT x− s = ε
x ∈ {0,1}n

s � 0,

(7)

a variant of the ε-constraint scalarisation which allows the ε-constraints to be vio-
lated but penalises the violation. It is known [7] that all solutions found are weakly
efficient and that all efficient solutions can be found. But most importantly it turns
out to be computationally superior to the ε-constraint method. In fact, an instance
of (7) could be solved in approximately the same time as (4), whereas solving the
ε-constraint scalarisation often exceeded the node limit of 1,000 and ran more than
10 times longer.

Both approaches have been implemented using the same crew scheduling soft-
ware and the same schedule. The optimal solution of the stochastic programme and
efficient solution of the bi-objective programme were simulated using 100 delay
scenarios. Fig. 4 shows the average costs and delays.

Using either the stochastic or bi-objective approach to robust crew scheduling
one may solve the problem of delays caused by aircraft changes. This does not
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Fig. 4 Cost versus delay for schedules obtained with the stochastic and bi-objective programmes

address the problem of an arriving crew splitting up to operate different flights.
Thus, the issue is only partially resolved: What is the use of having robust solutions
for pilots if cabin crew do something different?

Robust crew scheduling should also address unit crewing, i.e. the problem of
keeping crew together for a sequence of flights for as long as possible. Thus, one
wants to solve the pairings problem for several crew groups simultaneously so as
to minimise cost and maximise unit crewing. The corresponding problem formula-
tion is

min cT
1 x1 + cT

2 x2
min eT s1 + eT s2
subject to A1x1 = e

M1x1 = b1
A2x2 = e
M2x2 = b2

U1x1 − U2x2 − s1 + s2 = 0
x1 x2 s1 s2 ∈ {0,1}n.

(8)

Using new branching strategies and the elastic constraint method as in (7), Tam
[23] has obtained results that show that unit crewing, crew changing aircraft, and
robustness of crew schedules are closely related, as shown in Fig. 5.

One sees here, that working on a particular application necessitates the develop-
ment of new solution techniques. Such developments drive multiobjective program-
ming, eventually making it applicable in other real word situations, where multiob-
jective models haven’t been considered yet or couldn’t be solved before. One can
also see that bi-objective models may be an alternative to stochastic programming,
if the recourse objective can be captured by means of a deterministic objective. This
is especially relevant for integer models, where the stochastic programme is particu-
larly hard to solve and computationally expensive. Finally, multiobjective modelling
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Fig. 5 Unit crewing versus number of aircraft changes and cost

can lead to a more comprehensive view of an application. From the bi-objective
model for robust scheduling it is only a small step towards the simultaneous consid-
eration of several crew groups in the unit crewing problem. In fact, the next question
is immediate: Why not include aircraft routing and consider assignment of aircraft
to flights simultaneously with crew scheduling? This is an unsolved problem that is
currently under investigation [24].

5 Medicine: Radiotherapy Treatment Design

External beam radiotherapy is one of the major forms of cancer treatment. About
50% of cancer patients receive radiotherapy for curative or palliative purposes.
Beams of electrons or high energy photons generated by a linear accelerator are
focused on the tumour from several directions. An oncologist prescribes a dose dis-
tribution to be achieved by the treatment, that is a radiation dose to be delivered to
the tumour that achieves the curative or palliative intent of the treatment but avoids
damage to healthy tissues.

Given the beam directions, the purpose of radiotherapy treatment design is to
find beam intensity (or fluence) maps for each beam that realise the desired dose
distribution. Here I consider the treatment design problem for intensity modulated
radiotherapy (IMRT), where beam intensity can vary across a beam. The advan-
tage of IMRT is described on http://www.cancernews.com/data/Article/259.asp as
follows

IMRT represents an advance in the means that radiation is delivered to the target, and it is
believed that IMRT offers an improvement over conventional and conformal radiation in its
ability to provide higher dose irradiation of tumour mass, while exposing the surrounding
normal tissue to less radiation.

Many optimisation models, both linear and nonlinear, are available for this prob-
lem. The most popular optimisation model is based on an oncologist’s prescription
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of a goal dose T G to the target and upper bounds CG and NG on the dose to crit-
ical structures and normal tissue. It consists of the minimisation of a norm of the
(nonnegative) deviation of delivered and goal dose:

min
x�0

ωT‖AT x−T G‖+ωC
∥∥(ACx−CG)+

∥∥+ωN
∥∥(ANx−NG)+

∥∥, (9)

where (·)+ = max{·,0}. AT ,AC and AN are dose deposition matrices which al-
low to calculate the dose distribution generated by intensity x. In practice the Eu-
clidean norm is most often used and the most popular solution technique is simu-
lated annealing. The result of the optimisation depends crucially on the values of
ωT ,ωC,ωN , which are often deemed indispensable for effective treatment planning.
A trial and error process is usually needed to find values that result in a good quality
treatment.

The words ‘higher’ and ‘lower’ in the above quotation indicate that treatment
planning is about conflicting goals. And to anyone familiar with multiobjective op-
timisation it is obvious that the standard dose based model (9) is the weighted sum
scalarisation of the multiobjective programme

min
x�0

(
‖AT x−T G‖ ,

∥∥(ACx−CG)+
∥∥ ,
∥∥(ANx−NG)+

∥∥) . (10)

However, this model has only been used in the form (9), with a set of pre-selected
weights to produce several efficient plans [4, 15]. The first non-scalarised multiob-
jective LP model has been proposed by Küfer and Hamacher [14].

In the context of the multitude of objective functions used in radiotherapy treat-
ment planning models a theorem stated in [20] becomes important.

Theorem 2. The two multiobjective problems min{( f1(x), . . . , fp(x)) : x ∈ X} and
min{(h1( f1(x)), . . . ,hp( fp(x))) : x ∈ X} with strictly increasing functions h1, . . . ,hp
are equivalent.

Theorem 2 is not really surprising, but it is important as it illustrates that much
of the discussion about the right model is void. I present here a linear model with
three objectives derived from (the scalar) LP in [12]:

min(zT ,zC,zN)
subject to AT x+ zT e � lT

AT x � uT

ACx− zCe � uC

ANx− zNe � uN

zN � 0
x � 0.

(11)

This multiobjective linear programme may have thousands of variables and tens
of thousands of constraints. Since it has only three objectives it is advantageous
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Fig. 6 The non-dominated set of (11) for a prostate cancer example

Fig. 7 The approximate non-dominated set of (11) for the same prostate cancer example

to solve it in objective space. Benson’s “outer approximation” algorithm [1] can
be used for this purpose. In [21] a simplified version of this problem with 1,293
constraints and 821 variables has been solved. 3,165 non-dominated extreme points
have been obtained, shown in Fig. 6. The computation took nearly 1 h.

From Fig. 6 it can already be seen that many of the extreme points differ only
very slightly. This result points to another issue: How is a solution to be selected
among so many options? And does one want an extreme point solution in the first
place?

At this stage it is necessary to reconsider the model. It uses a dose deposition
matrix A, separated by rows into AT ,AC, and AN as input. The entries in A are the
result of a dose calculation model, that calculates the amount of dose deposited at
a point in the body at unit intensity of a sub-beam. Even with sophisticated dose
models this calculation is imprecise. That means that the data of (11) is imprecise.
It turns out that in clinical practice calculating a dose distribution to 0.1 Gy precision
is sufficient.

It is therefore possible to use an approximation version of Benson’s algorithm
that is guaranteed to solve the MOLP (11) to within an additive precision of 0.1
and achieve a dramatic effect. This algorithm calculates 88 non-dominated extreme
points in less than one minute. The approximated non-dominated set is shown in
Fig. 7.
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I have so far assumed that the beam directions are given. However, they also have
to be chosen. This choice is currently done manually. Mathematically the optimisa-
tion of beam directions can easily be incorporated in (11):

min(zT ,zC,zN)

subject to AT x+ zT e � lT

AT x � uT

ACx− zCe � uC

ANx− zNe � uN

zN � 0

x � 0

x � My

eT y � r.

(12)

The solution of the large scale multiobjective mixed integer programme (12) is a
challenge for both multiobjective optimisation and radiotherapy treatment design.

I find this application particularly instructive. It shows how hard it can be to
convince practitioners of the usefulness of multiobjective optimisation, even if they
already use elements of it, albeit unknowingly. It is a reminder that the results of
optimisation can never be more precise that the input data, and that it is always
worth exploiting features of the application to simplify methods. In addition, apply-
ing multiobjective optimisation can lead to improved processes in the application
area as secondary benefits. In this example the trial and error search for ‘optimal’
weights can be eliminated. Instead, treatment planners can concentrate on their main
task, namely to find a best possible treatment plan for the patient. Because the mul-
tiobjective model allows a separation of plan calculation and selection, a speed up
of the planning process can be expected. Again, multicriteria decision aid is called
upon to provide appropriate decision support systems.

6 Telecommunication: Routing in IP Networks

Routing of data packets in computer networks using the internet protocol is usu-
ally based on the OSPF protocol (open shortest path first). This protocol applies
Dijkstra’s algorithm to minimise the number of hops (the number of intermediate
routers) along the path from the origin of the packet to its destination. While other
protocols exist that allow aggregation of several objectives, routing is still using a
‘best effort’ rather than ‘Quality of Service’ philosophy.

It does not take much imagination to see that several objectives are relevant in
this context. Gandibleux et al. [10] have developed a routing protocol that uses the
three objectives
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• min f1(p) = ∑(i, j)∈p c1(i, j), where c1(i, j) denotes the delay on link (i, j)
• max f2(p) = min(i, j)∈p c2(i, j), c2(i, j) denoting the available bandwidth of link

(i, j) and
• min f3(p) = |{(i, j) ∈ p}|, counting the number of hops

as well as additional constraints. They have implemented a modification of Mar-
tin’s label correcting algorithm [17] to deal with the constraints and the bandwidth
objective, which is of the min max rather than the min sum type.

Considering the delay and bandwidth objectives only, there are five efficient paths
from node seven to node eleven in the network of Fig. 8, an actual IP network (band-
width and delay are listed along the arcs).

This application shows that even long known algorithms can be useful in today’s
problems. Once more, as seen in the other examples, multiobjective modelling helps
thinking outside the box.

Chapter 22 in [9] and references therein contain much more on multicriteria de-
cision analysis in telecommunication.

Fig. 8 Efficient routes in an IP network using bandwidth and delay objectives
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7 Conclusion

In this paper I have sketched a number of applications of multiobjective program-
ming. I have tried to show that interacting with practitioners in many areas is mu-
tually beneficial in the sense that real world applications provide opportunities for
progress in multiobjective optimisation methodology and theory and that multiob-
jective models provide insights in applications that conventional models cannot re-
veal. In particular, multiobjective models help question standard procedures and
thus induce the practitioner to think outside a conventional framework. It is easily
possible that multiobjective optimisation results in benefits that are not at all part
of the model. Last but not least, the real world has many challenges and new appli-
cation areas in store to motivate established and future researchers to work in this
area.
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Multi-scenario Multi-objective Optimization
with Applications in Engineering Design

Margaret M. Wiecek, Vincent Y. Blouin, Georges M. Fadel, Alexander Engau,
Brian J. Hunt, and Vijay Singh

Abstract The notion of multi-scenario multi-objective optimization is proposed as
a methodological framework for handling engineering design and other decision
problems represented as a collection of multi-criteria optimization problems. Three
specific research issues are discussed in this context, namely, the modelling of deci-
sion maker’s preferences, the development of a concept of optimality, and the devel-
opment of solution approaches to finding a preferred feasible solution for the overall
problem. Two models of preferences that generalize the classical Pareto preference
and two solution approaches to a class of multi-scenario multi-objective optimiza-
tion problems are presented. Illustrative examples are included.

Keywords: Engineering design · Multi-objective optimization · Multi-scenario
optimization · Preferences

1 Introduction

The science of engineering design assumes a decision-making paradigm for the
product development process, which is substantiated by the application of mathe-
matical optimization as a tool for modelling and solving the underlying decision
problems. Because of the multiplicity of engineering disciplines and criteria in-
volved in a design problem, design has been studied within the framework of multi-
disciplinary optimization and multi-objective optimization.

Mass customization has forced the engineering and science communities to look
for designs appropriate for groups of applications, rather than a single application.
For example, while customers typically want a car with maximum reliability at
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minimum cost, a higher level of reliability usually results in a higher cost. This
design problem can be modelled as an optimization problem with two conflicting
criteria. Additionally, the car may be designed for various driving conditions, dif-
ferent markets, or different types of use. While in every scenario the criteria may
have different mathematical representations, their physical interpretation remains
the same, that of minimizing cost and maximizing reliability. In other applications,
the mathematical representation, the physical meaning of the criteria, and the design
space may vary from scenario to scenario. As a result, a design process under differ-
ent scenarios for the same physical problem leads to the problem of multi-scenario
multi-objective optimization.

The concept of scenario has not been formally defined in the mathematical lit-
erature, although the context of some research efforts brings an obvious analogy to
this concept. For example, in their study of single-objective optimization problems,
Kouvelis and Yu [13] propose the concept of “robust solution,” one that would be
robust for the same mathematical model associated with multiple data instances or
scenarios. As a result, finding the robust design is based on multi-objective opti-
mization.

In the field of engineering, load cases are commonly considered in structural
analysis. A structure to be designed will be subjected to different loads or forces,
and the analysis proceeds by examining the structural response for each load case.
The objective is typically to minimize weight, and the stress constrains the solution
space. The worst case scenario is used to dimension the structural members. In such
an example, the load cases are scenarios.

Problems in multi-disciplinary optimization mentioned above may also lead to
multi-scenario multi-objective optimization if a multi-objective problem is associ-
ated with every design discipline. For example, this is the case in aircraft wing
design in which three engineering design disciplines are involved (aerodynamics,
structural mechanics, and control), and a scenario is understood as a design disci-
pline [18].

Another application offering the context of scenarios comes from product family
design [7]. Traditional design process considers designing a single product, while
product family design, studied since the 1990s, deals with groups of related prod-
ucts. A product platform is a set of common components or parts from which sev-
eral variations of a product can be made. Product platform design requires selection
of shared parts and assessment of potential sacrifices in individual product perfor-
mance resulting from parts sharing. Each product can be viewed as a scenario. De-
pending on the number of products in a family, a single or multi-scenario problem
can be formulated. For example, if there are two products in the family, a bi-scenario
problem can be formulated by associating some performance criteria with each of
the products.

In vehicle design, recent efforts have focused on the optimization of groups of
vehicle performance indices (criteria) in different operating manoeuvres (scenarios)
[6, 9].

This paper reports on a multi-year joint research effort conducted at Clemson
University between a group of operations researchers and a group of engineering
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design researchers [6, 17]. The latter raised the need for the consideration of multi-
scenario multi-objective optimization, provided a host of relevant engineering prob-
lems and case studies that revealed new research issues, while the former undertook
an effort to develop a supporting theory. In this paper we propose a methodological
framework for handling engineering design and other problems represented as a col-
lection of multi-criteria problems and thus formalize the concept of multi-scenario
multi-objective optimization.

While the concept of optimality for conventional multi-criteria problems is well
established and researched in the literature, the same concept for a collection of such
problems remains unknown. In Sect. 2, we define a multi-scenario multi-objective
program. We then focus on two specific research issues arising in this context,
namely, modelling decision makers (DMs) preferences over a set of scenarios and
the development of solution approaches to finding a preferred feasible solution for
the overall problem. In Sect. 3, we present two models of preferences that general-
ize the classical Pareto preference and apply one of them to a tractor–trailer design
problem. In Sect. 4, we propose two solution approaches to a class of multi-scenario
multi-objective optimization problems and illustrate one of them on a mathematical
example. The paper is concluded in Sect. 5.

2 Multi-Scenario Multi-Objective Optimization

The multi-objective programming framework includes the following basic elements:
a set of feasible solutions (decisions), a collection of objective (criterion) functions
(performance indices) that evaluate the solutions and produce attainable outcomes,
and DMs preferences. The goal is to identify those feasible solutions that yield
the most satisfactory (preferred) outcome(s) according to the DM’s preferences. In
our work we use the concept of optimality introduced by Yu [20] who extends the
classical definition of Pareto-optimality [15] and uses convex cones to model DMs
preferences.

Let R
n be an n-dimensional Euclidean decision space and n the number of deci-

sion variables. Let S = {1, . . . ,N} be a set of scenarios, Xs ⊆R
n be the set of feasible

solutions for scenario s,s ∈ S, with X = ∩sXs 	= /0, and Cs be a cone modelling DMs
preferences for scenario s. The multi-scenario multi-objective program (MSMOP)
is represented by the following collection of multi-objective programs:

{(Xs, f s,Cs),s ∈ S}, (1)

where f s = [ fs1, fs2, , fsm(s)], and fs j : R
n → R, j = 1,2, . . . ,m(s) are objective (cri-

terion) functions associated with scenario s, and m(s) is the number of objective
functions in scenario s.

Consider a single-scenario multi-objective program MOPs = (Xs, f s = [ fs1, fs2,
. . . , fsm(s)],Cs), or for brevity given as MOP = (X , f = [ f1, f2, . . . , fm],C). Let R

m

be referred to as the objective space and define the set of outcomes Y ⊆ R
m as
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the set Y = {y ∈ R
m : y = f (x) for x ∈ X}. Let C ⊆ R

m be a convex polyhedral
cone. Assume that C is a set of all dominated directions in R

m and refer to it as
the domination cone. A domination cone contains all vectors d ∈ R

m such that for
x,x1 ∈ X , if f (x1) = f (x) + d for some d ∈ D,d 	= 0, then f (x1) is dominated by
f (x). The vectors in the domination cone can be thought of as “bad” or “dominated”
directions to travel within R

m. To solve MOP is understood as to find its efficient
set E(X , f ,C) in X . A feasible solution x ∈ E(X , f ,C) if there does not exist another
feasible solution x1 ∈ X and d ∈ C,d 	= 0, such that f (x) = f (x1)+ d. The image
of E(X , f ,C) is referred to as the non-dominated set N(Y,C) and a non-dominated
outcome (element of N(Y,C)) is one that is not dominated by any other outcome
in Y . We also make use of the weakly efficient set denoted as w-E(X , f ,C) and the
ε-efficient set denoted ε-E(X , f ,C). Let intC denote the interior of the cone C. A
feasible solution x ∈ w-E(X , f ,C) if there does not exist another feasible solution
x1 ∈ X and d ∈ intC, such that f (x) = f (x1) + d. Let ε ∈ C. A feasible solution
x ∈ ε-E(X , f ,C) if there does not exist another feasible solution x1 ∈ X and d ∈C,
such that f (x)− ε = f (x1)+d. The weakly non-dominated set, denoted w-N(Y,C),
and the ε-non-dominated set, denoted ε-N(Y,C), are defined accordingly.

For the concept of Pareto-optimality, that is commonly used in multi-objective
optimization, the polyhedral Pareto (domination) cone, CPar, is given as CPar =
{d ∈ R

m : d ≥ 0}. In this case, the sets E(X , f ,CPar) and N(Y,CPar) are referred
to as Pareto efficient and Pareto non-dominated, respectively. Given two outcomes
y1,y2 ∈ Y,y1 	= y2, with y1 ≥ y2, we say that y1 is Pareto dominated by y2 or that y2

is Pareto dominating y1.
The Pareto preference can be generalized by applying a p×m matrix A in the

cone description, which gives a new polyhedral cone

CA = {d ∈ R
m : Ad ≥ 0}, (2)

with the matrix A becoming the algebraic model of the new preference. While the
terminology efficient and non-dominated is used for preferences with general cones,
the terminology A-efficient and A-non-dominated is being used for preferences mod-
elled with polyhedral cones represented by the matrix A as given in (2).

For a review of recent advances in cone-based preference modelling for decision
making with multiple criteria the reader is referred to [19].

3 Modelling Preferences

A review of multi-objective optimization literature indicates that weighting methods
[8] and ranking methods (e.g., based on the lexicographic order) are probably most
commonly used to model relative importance of criteria in real-life applications. A
different approach based on cones is proposed by Noghin [14] who uses weights to
augment the Pareto cone and model importance of criteria. Hunt and Wiecek [11]
follow on Noghin and advocate the use of cones in a simple design problem. In
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the same spirit, Hunt [10] develops a theoretical and methodological framework to
model specific cone-based preferences. Since in general, a different preference may
guide each MOP in the multi-scenario formulation, we employ this framework to
allow for that modelling feature.

3.1 Algebraic Models of Preferences

We now consider a simplified formulation of MSMOP in which in every scenario
the criterion functions are the same but cones modelling DMs preferences may be
different. In other words, while the same criteria are used across all scenarios for
the evaluation of feasible decisions, the distinction among the criteria is captured in
their relative importance that might be different from scenario to scenario.

Consider again MOP = (X , f = [ f1, f2, . . . , fm],C) and assume that the DM ini-
tially chooses C to represent the Pareto preference according to which all objec-
tive functions are to be minimized. However, the DM additionally considers certain
criteria more important than the others and, due to that importance, is willing to
accept decay in the latter to achieve improvement in the former. We propose two
approaches to model this relative importance by means of convex polyhedral cones
that subsume the Pareto cone.

In Model 1, only one criterion i, i ∈ {1, ...,m} is assumed to be less important
than the other criteria and therefore it is allowed to decay (increase its values) while
all the other criteria, being more important, improve (decrease their values). We
define allowable trade-offs ai j ≥ 0 for every j ∈ {1, . . . ,m}, j 	= i, representing the
number of units of decay in criterion i for 1 unit of improvement in criterion j. The
m(m− 1)×m matrix A modelling this preference consists of m blocks, each with
m−1 rows and m columns, because for each criterion viewed as less important, the
remaining m− 1 criteria improve. Let Ai j denote row j ∈ {1, . . . ,m− 1} of block
i ∈ {1, . . . ,m}, and (Ai j)k denote the element of Ai j in column k ∈ {1, . . . ,m}. Then
(Ai j)i = 1 for all i and j, and (Ai j) j = ai j if j < i. Also, (Ai j) j+1 = ai( j+1) if j > i, and
(Ai j)k = 0 otherwise. Figure 1 depicts the matrices of Model 1 for multi-objective
programs with 2, 3, and 4 criteria.

In the more general Model 2, all criteria are divided into two groups: the group of
more important criteria, M, and the group of less important criteria, L. We assume
that the maximum decay allowed for each criterion in L is bounded by the total
improvement for all criteria in M. We define allowable trade-offs ai j for every pair
(i, j), i 	= j, i ∈ L, j ∈ M, where ai j ≥ 0 denotes the number of units of decay in cri-
terion i for one unit of improvement in criterion j. The structure of the m×m matrix
modelling this preference depends on the sets L and M. Figure 2 illustrates these
matrices for multi-objective problems with two and three criteria. For the deriva-
tion of both algebraic models and the properties of the cones, the reader is referred
to [10].
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[
1 a12

a21 1

]
⎡
⎢⎢⎢⎢⎢⎣

1 a12 0
1 0 a13

a21 1 0
0 1 a23

a31 0 1
0 a32 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 0 0
1 0 a13 0
1 0 0 a14

a21 1 0 0
0 1 a23 0
0 1 0 a24

a31 0 1 0
0 a32 1 0
0 0 1 a34

a41 0 0 1
0 a42 0 1
0 0 a43 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1 Matrices of Model 1 for m = 2, 3, and 4

[
1 0

a21 1

] [
1 a12
0 1

] ⎡
⎣ 1 0 0

0 1 0
a31 a32 1

⎤
⎦

⎡
⎣ 1 a12 0

0 1 0
0 a32 1

⎤
⎦

(a) (b) (c) (d)

Fig. 2 Matrices of Model 2: (a) m = 2,M = {1},L = {2}; (b) m = 2,M = {2},L = {1};
(c) m = 3,M = {1,2},L = {3}; (d) m = 3,M = {2},L = {1,3}

3.2 Generating A-Efficient Solutions

Two results from the literature help establish methods for finding A-efficient solu-
tions E(X , f ,CA) and A-non-dominated outcomes N(Y,CA).

Theorem 1 ([16]) Let C1 and C2 be cones in R
m. If C1 ⊆ C2 then N(Y,C2) ⊆

N(Y,C1).

Theorem 2. Let C be a convex and pointed cone in R
m represented by CA = {d ∈

R
m : Ad ≥ 0}. Then

(a) [14] E(X , f ,CA) = E(X ,A f ,CPar);
(b) [11] A[N(Y,CA)] = N(A[Y ],CPar).

Based on Theorem 2, given two outcomes y1,y2 ∈Y,y1 	= y2, with Ay1 ≥ Ay2, we
say that y1 is A-dominated by y2 or that y2 is A-dominating y1.

Two methods are proposed to implement the preference models and generate
A-efficient solutions. In the first one-step method, given a matrix A modelling the
preferences we find the set E(X ,A f ,CPar). In the other two-step method, we first
find the set E(X , f ,CPar) and then the set E(E(X , f ,CPar),A f ,CPar). Each method
requires finding the Pareto efficient set with respect to new criterion functions that
result from applying the matrix A to the original criteria. Clearly, to apply the mod-
els, the DM is expected to have knowledge and experience to come up with the
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allowable trade-offs ai j and construct the matrices. Otherwise, the DM may inter-
actively apply the models with different trade-offs and learn how they affect the
resulting A-efficient set.

3.3 Application to Tractor–Trailer Design

Preference Model 2 is now applied to the design of a tractor–trailer vehicle for op-
timum dynamic behaviour. This engineering problem has been selected to demon-
strate a standard difficulty in engineering optimization. The design problem is for-
mulated as an optimization problem that, due to modelling limitations, can only be
solved with numerical simulation rather than conventional mathematical optimiza-
tion. Additionally, we assume that the DM is not willing to come up with specific
allowable trade-offs and will engage in the interactive learning process.

The tractor–trailer is a six-axle articulated heavy vehicle and is optimized for
a standard manoeuvre, namely, the single lane change manoeuvre [2]. Twenty-one
design variables representing physical parameters of the vehicle include, among
others, the tire stiffness, the locations of the centres of gravity (COG) of the tractor
and the trailer, the wheel-base length, and the track widths as illustrated in Fig. 3.

We consider three criteria (or performance indices) to be minimized, namely, the
rearward amplification factor (RWA), the load transfer ratio (LTR), and the high-
speed friction demand (FD). RWA is the ratio of the peak lateral acceleration of
the mass centre of the trailer to that developed at the mass centre of the tractor
during the manoeuvre. LTR corresponds to the ratio of the absolute value of the
difference between the sum of the right wheel loads and the sum of the left wheel
loads to the sum of all the wheel loads. Finally, FD measures the force utilized by
the tractor drive axle to overcome the trailer aligning moment for the total drive axle
tire adhesion force during the manoeuvre without reaching the full skid condition
of the drive axle. These three criteria are generally in conflict, making the design
problem challenging to designers. The numerical model used in this research is the
ArcSim tractor–trailer model developed at the University of Michigan [1].

In place of mathematical optimization, a Latin hypercube sampling is used to
solve the resulting multi-criteria optimization problem. The sampling of the feasible
space produces 1,000 well distributed points located within +/− 40% of a baseline
design. For each point, a time-dependent numerical simulation is performed, upon

Reference
point

Tractor wheel base
Trailer wheel base

Trailer
COG

YCOGYCOG

XCOG

Tractor
COG

XCOG

Fig. 3 Illustration of a tractor–trailer and design parameters
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Fig. 4 Pareto non-dominated outcomes for the tractor–trailer design problem

⎡
⎣ 1 a12 a13

0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

a21 1 a23
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
a31 a32 1

⎤
⎦

Fig. 5 Matrices At , t = 1 (left), 2 (centre), 3 (right) for Model 2

which the criterion functions are computed and then normalized to avoid numerical
difficulties caused by differences in scale. The two-step method is used to find A-
non-dominated outcomes. Within the 1,000 points, 22 outcomes are determined to
be Pareto non-dominated and used as an approximation of the actual Pareto-non-
dominated set. Figure 4 depicts these outcomes in the normalized objective space.

The preferences are defined by three matrices At , t = 1,2,3, each constructed by
a pair of allowable tradeoffs (a12,a13),(a21,a23),(a31,a32), respectively, as shown
in Fig. 5.

Figure 6 depicts two views of three piecewise linear surfaces representing the
number of A-non-dominated outcomes after the corresponding preference has been
applied. Each of the surfaces is generated when the allowable tradeoffs in one of the
three matrices are independently varied between 0 and 1. Figure 6 also shows the
impact of each preference (with normalized values ai j) on the reduction of the set
of Pareto non-dominated outcomes. In this example, matrix A1 leads to the largest
reduction, while matrix A3 leads to the smallest reduction.
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Fig. 6 Number of At -non-dominated outcomes after applying Model 2 with various allowable
trade-off values to 2the trailer design problem

Table 1 Dominating and dominated outcomes for tractor–trailer design (ai j = 1.0)
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Table 1 provides information about which outcomes are A-dominated by other
outcomes for a given preference. The 22 Pareto non-dominated outcomes corre-
spond to the rows and columns of the table. An entry (p,r), p,r = 1, . . . ,22, in the
table may assume a value of v(p,r) = t, t = 1,2,3 indicating that the outcome p is At -
dominated by the outcome r. For each preference, all allowable tradeoffs not spec-
ified are assumed to be equal to 10, we note that outcome 10 is not At -dominating
any other outcome, and is therefore referred to as weak. Similarly, based on row
4, we observe that outcome 4 is not At -dominated by any other outcome, and is
therefore referred to as strong. This strong outcome could become a final preferred
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Table 2 Dominating and dominated outcomes for tractor–trailer design (ai j = 0.4)
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design. However, if the designer preferred to obtain a short list of strong outcomes
for further consideration rather than one strong outcome, the coefficients ai j = 1
should be reduced. In Table 2, that provides the same information as Table 1 but
for all ai j = 0.4, there are 11 weak outcomes (2, 3, 6, 9, 10, 12, 14, 17, 20, 21, 22)
and 5 strong outcomes (4, 5, 13, 18, 19) from which a preferred outcome could be
selected as the proposed design. For the application of Model 1 to the same design
problem, the reader is referred to [12].

4 Solution Approaches

To develop optimality concepts and related solution approaches to MSMOP we
consider another simplified version of this formulation and assume that the pref-
erence cones of all MOPs of MSMOP are identical, Cs = C for all s ∈ S. Let
F = [ f 1, f 2, . . . , f N ] be the overall vector objective. In this case, the concept of
optimality for MSMOP is defined as to find efficient solutions E(X ,F,C) in X with
respect to the overall vector objective F and the preference cone C.

4.1 All-in-One Approach

The all-in-one (AiO) approach, in which MSMOP is converted to a large-scale
AiO-MOP of the form

(X ,F = [ f 1, f 2, . . . , f N ],C), (3)



Multi-scenario Multi-objective Optimization with Applications in Engineering Design 293

is a natural way to find E(X ,F,C). Although this approach seems to be straight-
forward, it has major drawbacks. The significantly increased number of objective
functions makes the physical and geometrical perception of the problem and analy-
ses of tradeoffs between the criteria more difficult. Since a solution that is efficient
for AiO-MOP may not be efficient for a single-scenario MOP [17], the lack of effi-
ciency of that solution for the single-scenario problems is not easily controlled.

4.2 Scenario-Oriented Approach

To eliminate the limitations of the AiO approach, and in the future allow for different
preference cones among the scenarios, we propose a scenario-oriented approach.
The original MSMOP is decomposed into a collection of K sub-problems MOPi,
i = 1, . . . ,K, with a smaller number m(i) of criteria in each (m(i) )< m(s)). The
collection is given as

{(X , f i = [ fi1(x), . . . , fim(i)(x)],C), i = 1, . . . ,K} (4)

and m(i) is typically equal to 2, 3, or at most 4. This decomposition should be con-
text or application related, that is, the choice of sub-problems should result from spe-
cific features of the problem so that the DM will be able to make trade-off decisions
independently for each sub-problem. For example, a criterion may be duplicated in
two different sub-problems if trade-offs with the participation of that criterion are
of significance.

While the decomposition into sub-problems gives a convenient way to handle
and reveal trade-offs within every sub-problem, the trade-off between different sub-
problems is to be accomplished by a coordinating mechanism. Without loss of gen-
erality, consider a collection of two sub-problems denoted as MOPi and MOP j,
i 	= j. Let xi be a currently preferred efficient solution of the MOPi selected by the
DM, i.e., xi ∈ E(X , f i,C). If this solution is also in E(X , f j,C), then it might be
the final preferred solution depending on DMs approval. However, in the presence
of trade-offs between the sub-problems, this case is very unlikely and the values of
criterion functions of MOP j at xi may need significant improvement before they are
accepted by the DM. To find another feasible solution at which the MOP js criteria
have better values, the DM has to give up some of the performance of the criteria in
MOPi. To coordinate the improvement in MOP j with the deterioration in MOPi, the
former is modified into the so-called coordination problem COP j of the form

(X(ε i), f j,C). (5)

Its feasible set X(ε i) is a subset of X and includes additional ε-constraints

X(ε i) = {x ∈ X : fi1(x) ≤ fi1(xi)+ εi1, . . . , fim(i)(x) ≤ fim(i)(x
i)+ εim(i)}, (6)
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where the components of ε i = [εi1, . . . ,εim(i)]≥ 0 are tolerances specified by the DM.
The following results describe relationships between (weakly) efficient solutions of
AiO-MOP, MOPi, and MOP j.

Theorem 3 ( [3]).

(a) If x∗ ∈ E(X(ε i), f j,C) then x∗ ∈ ε-E(X , f i,C)
(b) If x∗ ∈ E(X(ε i), f j,C) then x∗ ∈ w-E(X ,F,C)
(c) If x∗ ∈ E(X ,F,C) then there exists ε∗ ≥ 0 such that x∗ ∈ E(X(ε∗), f j,C)

The proofs make use of the concept of epsilon-efficiency [4, 5], which in the
literature has accounted for modelling limitations or computational inaccuracies
and therefore has been tolerable rather than desirable. Interestingly, the scenario-
oriented approach is a method in which epsilon-efficiency is of high significance.
We first find ε-efficient solutions of the sub-problems as the efficient solutions of
the coordination problems, and then use these ε-efficient solutions to reach every
(weakly) efficient solution of AiO-MOP. In other words, we deal with smaller-size
sub-problems and generate their solutions but, at the same time, visit and exam-
ine (weakly) efficient solutions of AiO-MOP in order to arrive at a final preferred
efficient solution of MSMOP.

Based on the above discussion we propose the following interactive procedure to
find a solution to MSMOP:

Interactive Procedure for MSMOP

Initialization:

(a) Decompose MSMOP into a collection of K multi-criteria sub-problems MOPk,
k = 1, . . . ,K.

(b) Find a preferred efficient solution xi to MOPi for some i ∈ {1, . . . ,K}.
(c) Evaluate criterion values at xi in all MOPk, k = 1, . . . ,K.
(d) If xi is acceptable for all MOPk, k = 1, . . . ,K, then xi is a preferred solution for

MSMOP. Otherwise go to the main step.

Main Step:

(a) Given that xi is not acceptable for MOP j, j ∈ {1, . . . ,K}, specify tolerances ε i

and solve a coordination problem COP j for x j, j 	= i.
(b) Evaluate criterion values at x j in all MOPk, k = 1, . . . ,K.
(c) If x j is acceptable for all MOPk, k = 1, . . . ,K, then x j is a preferred solution for

MSMOP. Otherwise i ← j and go to step 1.

Output:

x j that is acceptable for all MOPk, k = 1, . . . ,K, and (weakly) efficient for AiO-MOP.
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In the sequentially performed main step of the procedure, the coordination prob-
lems solved in Step 1 account for additional tolerances imposed by the DM. This is
reflected in ε-constraints added to the feasible set of COP j to coordinate trade-offs
between the sub-problem MOP j currently examined and the sub-problems coordi-
nated so far.

4.3 Example

We illustrate the interactive procedure on the following bi-scenario bi-objective pro-
gram (BSBOP):

{(X , f 1 = [ f11, f12],CPar),(X , f 2 = [ f21, f22],CPar)}, (7)

where f11(x1,x2) = (x1 −2)2 +(x2 −1)2, f12(x1,x2) = x2
1 +(x2 −3)2, f21(x1,x2) =

(x1 − 1)2 + (x2 + 1)2, f22(x1,x2) = (x1 + 1)2 + (x2 − 1)2 and X = {x ∈ R
2 : (x2

1 −
x2 ≤ 0,x1 + x2 ≤ 2,x − 1 ≤ 0}. We maintain the scenario structure and solve
BOP1 = (X , f 1 = [ f11, f12],CPar) for a preferred x1 ∈ E(X , f 1,CPar). Let x1 =
(x11,x12) = (0.5;1.5) which yields the criterion values [ f11(x1), f12(x1)] = [2.5,2.5]
and [ f21(x1), f22(x1)] = [6.5,2.5]. The DM intends to improve the performance
of x1 in BOP2, specifies the tolerances ε21 = 1 and ε22 = 2, and solves COP2
= (X(ε2), f 2 = [ f21, f22],CPar) with the feasible set X(ε2) = {x ∈ X : f11(x) ≤
f11(x1)+ ε21, f21(x) ≤ f21(x1)+ ε22} for an x2, a preferred Pareto efficient solution
of COP2. If x2 is acceptable for both sub-problems, it is the final preferred solution
for the BSBOP. Otherwise, the DM changes the tolerances and solves COP2 again.
Figures 7 and 8 show the objective space of BOP1 and BOP2, respectively. Figure
7 (8) depicts the Pareto non-dominated set of BOP1 (BOP2) and the image of the
Pareto efficient set of BOP2 (BOP1), which would not be generated in practice. Each
figure also depicts the outcomes generated by the interactive procedure from which
the DM might choose a final solution of BSBOP.

All depicted outcomes in both figures are (weakly) non-dominated for AiO-MOP
related to BSBOP.

The example illustrates that the procedure results in bringing to the DM’s atten-
tion certain (weakly) Pareto non-dominated outcomes of AiO-MOP from among all
the Pareto non-dominated outcomes of that problem. The outcome of the procedure
depends on DMs trade-off decisions made for the sub-problems.

5 Conclusion

In this paper, motivated by many applications in engineering design, we have for-
malized the concept of scenario and proposed multi-scenario multi-objective opti-
mization as a new tool for complex decision making problems with multiple and
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Fig. 7 Non-dominated outcomes of BOP1 (lower left curve); images of efficient solutions of BOP2
(upper right curve); outcomes generated by the procedure (curve drawn with increasing circles)
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Fig. 8 Non-dominated outcomes of BOP2 (lower left curve); images of efficient solutions of BOP1
(upper right curve); outcomes generated by the procedure (curve drawn with decreasing circles)

conflicting criteria. In general, a scenario is understood as a decision situation mod-
elled by an MOP while the overall decision problem of interest requires the consid-
eration of a variety of decision situations or scenarios.
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The formulation makes use of a collection of multi-objective programs that, in
general, may differ from one another in types and numbers of criterion functions
and/or in DMs preferences. We have examined each of these two cases indepen-
dently of the other, namely, have studied preference modification and implementa-
tion for the same criterion vector in every scenario, and have also presented solution
approaches to a collection of scenarios with various criterion vectors but one com-
mon preference. Since applications have been a driving force for this research, we
will continue to apply the models and approaches developed so far to engineering
and other real-life problems. Our future work will also encompass the most general
case of multiple scenarios with different criterion vectors and preferences.
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