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Preface

Operations Research (OR), which began as an interdisciplinary activity to solve complex
problems in the military during World War II, has grown in the last 50 years to a full-fledged
academic discipline. Now OR is viewed as a body of established mathematical models and
methods to solve complex management problems. OR provides a quantitative analysis of
the problem from which management can make an objective decision. OR has drawn upon
skills from mathematics, engineering, business, computer science, economics, and statistics
to contribute to a wide variety of applications in business, industry, government, and mil-
itary. Operations Research and Management Science (OR/MS) methodologies and their
applications continue to grow and flourish in a number of decision-making fields.

The objective of this handbook is to provide a comprehensive overview of OR/MS mod-
els, methods, and applications in a single volume. The handbook is not an OR textbook or
a research monograph. The intent is that the handbook becomes the first resource a prac-
titioner would reach for when faced with an OR/MS problem or question. The key features
of the handbook are the following:

• Single source guide in OR/MS
• Comprehensive resource, but concise
• Covers all topics in OR/MS
• Quick reference guide to students, researchers, and practitioners
• Bridges theory and practice
• References to computer software availability
• Designed and edited with non-experts in mind
• Unified and up-to-date coverage ideal for ready reference

The handbook is divided into two parts. Part I contains 14 chapters that cover the funda-
mental OR/MS models and methods. Each chapter gives an overview of a particular OR/MS
model and its solution methods, illustrates successful applications, and provides references
to computer software availability. Each chapter in Part I is devoted to a topic listed below:

• Linear programming
• Nonlinear programming
• Integer programming
• Network optimization
• Multiple criteria decision making
• Decision analysis
• Dynamic programming
• Stochastic processes
• Queueing theory
• Inventory control
• Complexity and large-scale networks
• Simulation
• Metaheuristics
• Robust optimization

xiii
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xiv Preface

Part II of the handbook contains 11 chapters discussing the OR/MS applications in
specific areas. They include:

• Airlines
• E-commerce
• Energy systems
• Finance
• Military
• Production systems
• Project management
• Quality control
• Reliability
• Supply chain management
• Water resources

Part II ends with a chapter on the future of OR/MS applications.
The handbook is an ideal reference book for OR/MS practitioners in business, industry,

government, and academia. It can also serve as a supplemental text in undergraduate and
graduate OR/MS courses at the university level.

A. Ravi Ravindran
University Park, Pennsylvania
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History of Operations
Research and

Management Science

A. Ravi Ravindran
Pennsylvania State University

Origin of Operations Research

To understand what operations research (OR) is today, one must know something of its
history and evolution. Although particular models and techniques of OR can be traced
back to much earlier origins, it is generally agreed that the discipline began during World
War II. Many strategic and tactical problems associated with the Allied military effort were
simply too complicated to expect adequate solutions from any one individual, or even a
single discipline. In response to these complex problems, groups of scientists with diverse
educational backgrounds were assembled as special units within the armed forces. These
teams of scientists started working together, applying their interdisciplinary knowledge and
training to solve such problems as deployment of radars, anti-aircraft fire control, deploy-
ment of ships to minimize losses from enemy submarines, and strategies for air defense.
Each of the three wings of Britain’s armed forces had such interdisciplinary research teams
working on military management problems. As these teams were generally assigned to the
commanders in charge of military operations, they were called operational research (OR)
teams. The nature of their research came to be known as operational research or operations
research.

The work of these OR teams was very successful and their solutions were effective in
military management. This led to the use of such scientific teams in other Allied nations,
in particular the United States, France, and Canada. At the end of the war, many of the
scientists who worked in the military operational research units returned to civilian life in
universities and industries. They started applying the OR methodology to solve complex
management problems in industries. Petroleum companies were the first to make use of
OR models for solving large-scale production and distribution problems. In the universities
advancements in OR techniques were made that led to the further development and appli-
cations of OR. Much of the postwar development of OR took place in the United States.

An important factor in the rapid growth of operations research was the introduction of
electronic computers in the early 1950s. The computer became an invaluable tool to the
operations researchers, enabling them to solve large problems in the business world.

The Operations Research Society of America (ORSA) was formed in 1952 to serve the
professional needs of these operations research scientists. Due to the application of OR in
industries, a new term called management science (MS) came into being. In 1953, a national
society called The Institute of Management Sciences (TIMS) was formed in the United
States to promote scientific knowledge in the understanding and practice of management.
The journals of these two societies, Operations Research and Management Science, as well
as the joint conferences of their members, helped to draw together the many diverse results
into some semblance of a coherent body of knowledge. In 1995, the two societies, ORSA

xxi
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and TIMS, merged to form the Institute of Operations Research and Management Sciences
(INFORMS).

Another factor that accelerated the growth of operations research was the introduction
of OR/MS courses in the curricula of many universities and colleges in the United States.
Graduate programs leading to advanced degrees at the master’s and doctorate levels were
introduced in major American universities. By the mid-1960s many theoretical advances
in OR techniques had been made, which included linear programming, network analysis,
integer programming, nonlinear programming, dynamic programming, inventory theory,
queueing theory, and simulation. Simultaneously, new applications of OR emerged in service
organizations such as banks, health care, communications, libraries, and transportation. In
addition, OR came to be used in local, state, and federal governments in their planning and
policy-making activities.

It is interesting to note that the modern perception of OR as a body of established models
and techniques—that is, a discipline in itself—is quite different from the original concept of
OR as an activity, which was preformed by interdisciplinary teams. An evolution of this kind
is to be expected in any emerging field of scientific inquiry. In the initial formative years,
there are no experts, no traditions, no literature. As problems are successfully solved, the
body of specific knowledge grows to a point where it begins to require specialization even
to know what has been previously accomplished. The pioneering efforts of one generation
become the standard practice of the next. Still, it ought to be remembered that at least a
portion of the record of success of OR can be attributed to its ecumenical nature.

Meaning of Operations Research

From the historical and philosophical summary just presented, it should be apparent that the
term “operations research” has a number of quite distinct variations of meaning. To some,
OR is that certain body of problems, techniques, and solutions that has been accumulated
under the name of OR over the past 50 years and we apply OR when we recognize a prob-
lem of that certain genre. To others, it is an activity or process, which by its very nature is
applied. It would also be counterproductive to attempt to make distinctions between “oper-
ations research” and the “systems approach.” For all practical purposes, they are the same.

How then can we define operations research? The Operational Research Society of Great
Britain has adopted the following definition:

Operational research is the application of the methods of science to com-
plex problems arising in the direction and management of large systems of men,
machines, materials and money in industry, business, government, and defense.
The distinctive approach is to develop a scientific model of the system, incor-
porating measurement of factors such as chance and risk, with which to predict
and compare the outcomes of alternative decisions, strategies or controls. The
purpose is to help management determine its policy and actions scientifically.

The Operations Research Society of America has offered a shorter, but similar,
description:

Operations research is concerned with scientifically deciding how to best design
and operate man–machine systems, usually under conditions requiring the allo-
cation of scarce resources.

In general, most of the definitions of OR emphasize its methodology, namely its unique
approach to problem solving, which may be due to the use of interdisciplinary teams or
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due to the application of scientific and mathematical models. In other words, each prob-
lem may be analyzed differently, though the same basic approach of operations research is
employed. As more research went into the development of OR, the researchers were able to
classify to some extent many of the important management problems that arise in practice.
Examples of such problems are those relating to allocation, inventory, network, queuing,
replacement, scheduling, and so on. The theoretical research in OR concentrated on devel-
oping appropriate mathematical models and techniques for analyzing these problems under
different conditions. Thus, whenever a management problem is identified as belonging to a
particular class, all the models and techniques available for that class can be used to study
that problem. In this context, one could view OR as a collection of mathematical mod-
els and techniques to solve complex management problems. Hence, it is very common to
find OR courses in universities emphasizing different mathematical techniques of operations
research such as mathematical programming, queueing theory, network analysis, dynamic
programming, inventory models, simulation, and so on.

For more on the early activities in operations research, see Refs. 1–5. Readers interested
in the timeline of major contributions in the history of OR/MS are referred to the excellent
review article by Gass [6].
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7 Dynamic Programming José A. Ventura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Introduction • Deterministic Dynamic Programming Models • Stochastic Dynamic
Programming Models • Conclusions

8 Stochastic Processes Susan H. Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Introduction • Poisson Processes • Discrete-Time Markov Chains • Continuous-
Time Markov Chains • Renewal Theory • Software Products Available for Solving
Stochastic Models

© 2008 by Taylor & Francis Group, LLC



S001.tex 23/10/2007 10: 23 Page

Operations Research and Management Science Handbook

9 Queueing Theory Natarajan Gautam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Introduction • Queueing Theory Basics • Single-Station and Single-Class Queues
• Single-Station and Multiclass Queues • Multistation and Single-Class Queues •

Multistation and Multiclass Queues • Concluding Remarks

10 Inventory Control Farhad Azadivar and Atul Rangarajan . . . . . . . . . . . . 10-1
Introduction • Design of Inventory Systems • Deterministic Inventory Systems •

Stochastic Inventory Systems • Inventory Control at Multiple Locations • Inventory
Management in Practice • Conclusions • Current and Future Research

11 Complexity and Large-Scale Networks Hari P. Thadakamalla,
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1.1 Brief History of Algorithms for Solving Linear
Equations, Linear Inequalities, and LPs

The study of mathematics originated with the construction of linear equation models for real
world problems several thousand years ago. As an example we discuss an application that
leads to a model involving a system of simultaneous linear equations from Murty (2004).

1-1
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Example 1.1: Scrap Metal Blending Problem

A steel company has four different types of scrap metal (SM-1 to SM-4) with the following
compositions (Table 1.1).

The company needs to blend these four scrap metals into a mixture for which the com-
position by weight is: Al—4.43%, Si—3.22%, C—3.89%, and Fe—88.46%. How should they
prepare this mixture? To answer this question, we need to determine the proportions of the
four scrap metals SM-1 to SM-4 in the blend to be prepared. �

The most fundamental idea in mathematics that was discovered more than 5000 years ago
by the Chinese, Indians, Iranians, Babylonians, and Greeks is to represent the quantities
that we wish to determine by symbols, usually letters of the alphabet like x, y, z, and then
express the relationships between the quantities represented by these symbols in the form
of equations, and finally use these equations as tools to find out the true values represented
by the symbols. The symbols representing the unknown quantities to be determined are
nowadays called unknowns or variables or decision variables. The process of representing
the relationships between the variables through equations or other functional relationships
is called modeling or mathematical modeling.

This process gradually evolved into algebra, one of the chief branches of mathematics.
Even though the subject originated more than 5000 years ago, the name algebra itself
came much later; it is derived from the title of an Arabic book Al-Maqala fi Hisab al-jabr
w’almuqabalah written by Al-Khawarizmi around 825 AD. The term “al-jabr” in Arabic
means “restoring” in the sense of solving an equation. In Latin translation the title of this
book became Ludus Algebrae, the second word in this title surviving as the modern word
“algebra” for the subject, and Al-Khawarizmi is regarded as the father of algebra. The
earliest algebraic systems constructed are systems of linear equations.

In the scrap metal blending problem, the decision variables are: xj = proportion of SM-j
by weight in the mixture, for j = 1–4. Then the percentage by weight of the element Al in
the mixture will be 5x1 + 7x2 + 2x3 + x4, which is required to be 4.43. Arguing the same
way for the elements Si, C, and Fe, we find that the decision variables x1 to x4 must satisfy
each equation in the following system of linear equations to lead to the desired mixture:

5x1 + 7x2 + 2x3 + x4 = 4.43
3x1 + 6x2 + x3 + 2x4 = 3.22
4x1 + 5x2 + 3x3 + x4 = 3.89

88x1 + 82x2 + 94x3 + 96x4 = 88.46
x1 + x2 + x3 + x4 = 1

The last equation in the system stems from the fact that the sum of the proportions of
various ingredients in a blend must always be equal to 1. This system of equations is the
mathematical model for our scrap metal blending problem; it consists of five equations

TABLE 1.1 Scrap Metal Composition Data

% of element by weight, in type

Type Al Si C Fe

SM-1 5 3 4 88
SM-2 7 6 5 82
SM-3 2 1 3 94
SM-4 1 2 1 96
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in four variables. It is clear that a solution to this system of equations makes sense for
the blending application only if all the variables in the system have nonnegative values
in it. The nonnegativity restrictions on the variables are linear inequality constraints. They
cannot be expressed in the form of linear equations, and as nobody knew how to handle
linear inequalities at that time, they ignored them.

Linear algebra dealing with methods for solving systems of linear equations is the classical
subject that initiated the study of mathematics a long time ago. The most effective method
for solving systems of linear equations, called the elimination method, was discovered by the
Chinese and the Indians over 2500 years ago and this method is still the leading method in
use today. This elimination method was unknown in Europe until the nineteenth century
when the German mathematician Gauss rediscovered it while calculating the orbit of the
asteroid Ceres based on recorded observations in tracking it. The asteroid was lost from
view when the Sicilian astronomer Piazzi tracking it fell ill. Gauss used the method of least
squares to estimate the values of the parameters in the formula for the orbit. It led to a
system of 17 linear equations in 17 unknowns that he had to solve, which is quite a large
system for mental computation. Gauss’s accurate computations helped in relocating the
asteroid in the skies in a few months’ time, and his reputation as a mathematician soared.
Another German, Wilhelm Jordan, popularized the algorithm in a late nineteenth-century
book that he wrote. From that time, the method has been popularly known as the Gauss–
Jordan elimination method. Another version of this method, called the Gaussian elimination
method, is the most popular method for solving systems of linear equations today.

Even though linear equations were resolved thousands of years ago, systems of linear
inequalities remained unsolved until the middle of the twentieth century. The following
theorem (Murty, 2006) relates systems of linear inequalities to systems of linear equations.

THEOREM 1.1 Consider the system of linear inequalities in variables x

Ai.x ≥ bi, i = 1, . . ., m (1.1)

where Ai. is the coefficient vector for the i-th constraint. If this system has a feasible solu-
tion, then there exists a subset P= {p1, . . ., ps} ⊂ {1, . . ., m} such that every solution of the
system of equations: Ai.x= bi, i∈P is also a feasible solution of the original system of linear
inequalities (Equation 1.1).

This theorem can be used to generate a finite enumerative algorithm to find a feasible
solution to a system of linear constraints containing inequalities, based on solving subsys-
tems in each of which a subset of the inequalities are converted into equations and the other
inequality constraints are eliminated. However, if the original system has m inequality con-
straints, in the worst case this enumerative algorithm may have to solve 2m systems of linear
equations before it either finds a feasible solution of the original system, or concludes that
it is infeasible. The effort required grows exponentially with the number of inequalities in
the system in the worst case.

In the nineteenth century, Fourier generalized the classical elimination method for solv-
ing linear equations into an elimination method for solving systems of linear inequalities.
The method called Fourier elimination, or the Fourier–Motzkin elimination method, is very
elegant theoretically. However, the elimination of each variable adds new inequalities to the
remaining system, and the number of these new inequalities grows exponentially as more
and more variables are eliminated. So this method is also not practically viable for large
problems.
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The simplex method for linear programming developed by Dantzig (1914–2005) in the
mid-twentieth century (Dantzig, 1963) is the first practically and computationally viable
method for solving systems of linear inequalities. This has led to the development of linear
programming (LP), a branch of mathematics developed in the twentieth century as an
extension of linear algebra to solve systems of linear inequalities. The development of LP is
a landmark event in the history of mathematics and its applications that brought our ability
to solve general systems of linear constraints (including linear equations, inequalities) to a
state of completion.

A general system of linear constraints in decision variables x= (x1, . . ., xn)T is of the form:
Ax ≥ b, Dx = d, where the coefficient matrices A, D are given matrices of orders m ×n,
p ×n, respectively. The inequality constraints in this system may include sign restrictions
or bounds on individual variables.

A general LP is the problem of finding an optimum solution for the problem of minimizing
(or maximizing) a given linear objective function z = cx say, subject to a system of linear
constraints.

Suppose there is no objective function to optimize, and only a feasible solution of a system
of linear constraints is to be found. When there are inequality constraints in the system, the
only practical method to even finding a feasible solution is to solve a linear programming
formulation of it as a Phase I linear programming problem. Dantzig developed this Phase I
formulation as part of the simplex method for LPs that he developed in the mid-twentieth
century.

1.2 Applicability of the LP Model: Classical
Examples of Direct Applications

LP has now become a dominant subject in the development of efficient computational
algorithms, the study of convex polyhedra, and in algorithms for decision making. But
for a short time in the beginning, its potential was not well recognized. Dantzig tells the
story of how when he gave his first talk on LP and his simplex method for solving it at a
professional conference, Hotelling (a burly person who liked to swim in the sea; the popular
story about him was that when he does, the level of the ocean rises perceptibly) dismissed
it as unimportant since everything in the world is nonlinear. But Von Neumann came to
the defense of Dantzig saying that the subject will become very important (Dantzig and
Thapa, 1997, vol. 1, p. xxvii). The preface in this book contains an excellent account of
the early history of LP from the inventor of the most successful method in OR and in the
mathematical theory of polyhedra.

Von Neumann’s early assessment of the importance of LP turned out to be astonishingly
correct. Today, the applications of LP in almost all areas of science are numerous. The LP
model is suitable for modeling a real world decision-making problem if

• All the decision variables are continuous variables
• There is a single objective function that is required to be optimized
• The objective function and all the constraint functions defining the constraints

in the problem are linear functions of the decision variables (i.e., they satisfy the
usual proportionality and additivity assumptions)

There are many applications in which the reasonableness of the linearity assumptions can
be verified and an LP model for the problem constructed by direct arguments. We present
some classical applications like this in this section; this material is from Murty (1995, 2005b).
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In all these applications you can judge intuitively that the assumptions needed to handle
them using an LP model are satisfied to a reasonable degree of approximation.

Of course LP can be applied to a much larger class of problems. Many important applica-
tions involve optimization models in which a nonlinear objective function that is piecewise
linear and convex is to be minimized subject to linear constraints. These problems can
be transformed into LPs by introducing additional variables. These transformations are
discussed in the next section.

1.2.1 Product Mix Problems

This is an extremely important class of problems that manufacturing companies face.
Normally the company can make a variety of products using the raw materials, machinery,
labor force, and other resources available to them. The problem is to decide how much
of each product to manufacture in a period, to maximize the total profit subject to the
availability of needed resources.

To model this, we need data on the units of each resource necessary to manufacture one
unit of each product, any bounds (lower, upper, or both) on the amount of each product
manufactured per period, any bounds on the amount of each resource available per period,
the expected demand for each product, and the cost or net profit per unit of each product
manufactured.

Assembling this type of reliable data is one of the most difficult jobs in constructing a
product mix model for a company, but it is very worthwhile. The process of assembling
all the needed data is sometimes called the input–output analysis of the company. The
coefficients, which are the resources necessary to make a unit of each product, are called
input–output (I/O) coefficients, or technology coefficients.

Example 1.2: The Fertilizer Product Mix Problem

As an example, consider a fertilizer company that makes two kinds of fertilizers called
Hi-phosphate (Hi-ph) and Lo-phosphate (Lo-ph). The manufacture of these fertilizers
requires three raw materials called RM 1, RM 2, and RM 3. At present their supply of
these raw materials comes from the company’s own quarry that is only able to supply max-
imum amounts of 1500, 1200, 500 tons/day, respectively, of RM 1, RM 2, and RM 3. Even
though there are other vendors who can supply these raw materials if necessary, at the
moment they are not using these outside suppliers.

They sell their output of Hi-ph and Lo-ph fertilizers to a wholesaler who is willing to buy
any amount that they can produce, so there are no upper bounds on the amounts of Hi-ph
and Lo-ph manufactured daily.

At the present rates of operation their Cost Accounting Department estimates that it is
costing the quarry $50, $40, and $60/ton respectively to produce and deliver RM 1, RM 2,
and RM 3 at the fertilizer plant. Also, at the present rates of operation, all other production
costs (for labor, power, water, maintenance, depreciation of plant and equipment, floor
space, insurance, shipping to the wholesaler, etc.) come to $7/ton to manufacture Hi-ph or
Lo-ph and deliver to the wholesaler.

The sale price of the manufactured fertilizers to the wholesaler fluctuates daily, but their
averages over the last one month have been $222 and $107 per ton, respectively, for Hi-Ph
and Lo-ph fertilizers. We will use these prices to construct the mathematical model. �

The Hi-ph manufacturing process needs as inputs 2 tons RM 1 and 1 ton each of RM 2
and RM 3 for each ton of Hi-ph manufactured. Similarly, the Lo-ph manufacturing process
needs as inputs 1 ton RM 1 and 1 ton of RM 2 for each ton of Lo-ph manufactured.
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So, the net profit/ton of fertilizer manufactured is $(222− 2 × 50 − 1 × 40 − 1 × 60 − 7) = 15
and (107− 1 × 50 − 1 × 40 − 7) = 10, respectively, for Hi-ph and Lo-ph.

There are clearly two decision variables in this problem; these are: x1 = the tons of Hi-ph
produced per day, x2 the tons of Lo-ph produced per day. Associated with each variable
in the problem is an activity that the decision maker can perform. The activities in this
example are: Activity 1: to make 1 ton of Hi-ph, Activity 2: to make 1 ton of Lo-ph. The
variables in the problem just define the levels at which these activities are carried out.

As all the data are given on a per ton basis, they provide an indication that the linearity
assumptions are quite reasonable in this problem. Also, the amount of each fertilizer man-
ufactured can vary continuously within its present range. So, LP is an appropriate model
for this problem.

Each raw material leads to a constraint in the model. The amount of RM 1 used is
2x1 + x2 tons, and it cannot exceed 1500, leading to the constraint 2x1 + x2 ≤ 1500. As
this inequality compares the amount of RM 1 used to the amount available, it is called a
material balance inequality. All goods that lead to constraints in the model for the problem
are called items. The material balance equations or inequalities corresponding to the various
items are the constraints in the problem. When the objective function and all the constraints
are obtained, the formulation of the problem as an LP is complete. The LP formulation of
the fertilizer product mix problem is given below.

Maximize p(x) = 15x1+ 10x2 Item
subject to 2x1+ x2 ≤ 1500 RM 1

x1+ x2 ≤ 1200 RM 2
x1 ≤ 500 RM 3
x1≥ 0, x2 ≥ 0

(1.2)

Real world product mix models typically involve large numbers of variables and con-
straints, but their structure is similar to that in this small example.

1.2.2 Blending Problems

This is another large class of problems in which LP is applied heavily. Blending is con-
cerned with mixing different materials called the constituents of the mixture (these may
be chemicals, gasolines, fuels, solids, colors, foods, etc.) so that the mixture conforms to
specifications on several properties or characteristics.

To model a blending problem as an LP, the linear blending assumption must hold for each
property or characteristic. This implies that the value for a characteristic of a mixture is
the weighted average of the values of that characteristic for the constituents in the mixture,
the weights being the proportions of the constituents. As an example, consider a mixture
consisting of four barrels of fuel 1 and six barrels of fuel 2, and suppose the characteristic
of interest is the octane rating (Oc.R). If linear blending assumption holds, the Oc.R of the
mixture will be equal to (4 times the Oc.R of fuel 1 + 6 times the Oc.R of fuel 2)/(4 + 6).

The linear blending assumption holds to a reasonable degree of precision for many impor-
tant characteristics of blends of gasolines, crude oils, paints, foods, and so on. This makes it
possible for LP to be used extensively in optimizing gasoline blending, in the manufacture
of paints, cattle feed, beverages, and so on.

The decision variables in a blending problem are usually either the quantities or the
proportions of the constituents in the blend. If a specified quantity of the blend needs to
be made, then it is convenient to take the decision variables to be the quantities of the
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various constituents blended; in this case one must include the constraint that the sum of
the quantities of the constituents is equal to the quantity of the blend desired.

If there is no restriction on the amount of blend made, but the aim is to find an optimum
composition for the mixture, it is convenient to take the decision variables to be the propor-
tions of the various constituents in the blend; in this case one must include the constraint
that the sum of all these proportions is 1.

We provide a gasoline blending example. There are more than 300 refineries in the United
States processing a total of more than 20 million barrels of crude oil daily. Crude oil is a
complex mixture of chemical components. The refining process separates crude oil into its
components that are blended into gasoline, fuel oil, asphalt, jet fuel, lubricating oil, and
many other petroleum products. Refineries and blenders strive to operate at peak economic
efficiencies, taking into account the demand for various products. To keep the example sim-
ple, we consider only one characteristic of the mixture, the Oc.R of the blended fuels in this
example. In actual application there are many other characteristics to be considered also.

A refinery takes four raw gasolines and blends them to produce three types of fuel. The
company sells raw gasoline not used in making fuels at $38.95/barrel if its Oc.R is >90,
and at $36.85/barrel if its Oc.R is ≤90. The cost of handling raw gasolines purchased and
blending them into fuels or selling them as is is estimated to be $2 per barrel by the Cost
Accounting Department. Other data are given in Table 1.2.

The problem is to determine how much raw gasoline of each type to purchase, the blend
to use for the three fuels, and the quantities of these fuels to make to maximize total daily
net profit.

We will use the quantities of the various raw gasolines in the blend for each fuel as the
decision variables, and we assume that the linear blending assumption holds for the Oc.R.
Let

RGi = raw gasoline type i to purchase/day, i = 1–4

xij =
{

barrels of raw gasoline type i used in making fuel
type j per day, i = 1 to 4, j = 1, 2, 3

yi = barrels of raw gasoline type i sold as is/day
Fj = barrels of fuel type j made/day, j = 1, 2, 3

So, the total amount of fuel type 1 made daily is F1 = x11 + x21 + x31 + x41. If this is >0, by
the linear blending assumption its Oc.R will be (68x11 + 86x21 + 91x31 + 99x41)/F1. This
is required to be ≥95. So, the Oc.R. constraint on fuel type 1 can be represented by the
linear constraint: 68x11 + 86x21 + 91x31 + 99x41 − 95F1 ≥ 0. Proceeding in a similar manner,
we obtain the following LP formulation for this problem.

TABLE 1.2 Data for the Fuel Blending Problem
Raw gas Octane rating Available daily Price per
type (Oc.R) (barrels) barrel

1 68 4000 $31.02
2 86 5050 33.15
3 91 7100 36.35
4 99 4300 38.75

Fuel Minimum Selling price
type Oc.R ($) (barrel) Demand

1 95 47.15 At most 10,000 barrels/day
2 90 44.95 No limit
3 85 42.99 At least 15,000 barrels/day
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Maximize 47.15F1 + 44.95F2 + 42.99F3 + y1(36.85 − 31.02)
+ y2(36.85 − 33.15) + y3(38.95 − 36.35) + y4(38.95
− 38.75) − (31.02 + 2)RG1 − (33.15 + 2)RG2

− (36.35 + 2)RG3 − (38.75 + 2)RG4
subject to RGi = xi1 + xi2 + xi3 + yi, i = 1, . . ., 4

0 ≤ (RG1, RG2, RG3, RG4) ≤ (4000, 5050, 7100, 4300)
Fj = x1j + x2j + x3j + x4j , j = 1, 2, 3
0 ≤ F1 ≤ 10, 000
F3 ≤ 15, 000
68x11 + 86x21 + 91x31 + 99x41 − 95F1 ≥ 0
68x12 + 86x22 + 91x32 + 99x42 − 90F2 ≥ 0
68x13 + 86x23 + 91x33 + 99x43 − 85F3 ≥ 0
F2 ≥ 0, xij , yi ≥ 0, for all i, j

Blending models are economically significant in the petroleum industry. The blending of
gasoline is a very popular application. A single grade of gasoline is normally blended from
about 3 to 10 individual components, none of which meets the quality specifications by
itself. A typical refinery might have 20 different components to be blended into four or
more grades of gasoline and other petroleum products such as aviation gasoline, jet fuel,
and middle distillates, differing in Oc.R and properties such as pour point, freezing point,
cloud point, viscosity, boiling characteristics, vapor pressure, and so on, by marketing region.

1.2.3 The Diet Problem

A diet has to satisfy many constraints; the most important is that it should be palatable (i.e.,
be tasty) to the one eating it. This is a very difficult constraint to model mathematically,
particularly if the diet is for a human individual. So, early publications on the diet problem
have ignored this constraint and concentrated on meeting the minimum daily requirement
(MDR) of each nutrient identified as being important for the individual’s well-being. Also,
these days most of the applications of the diet problem are in the farming sector, and farm
animals and birds are usually not very fussy about what they eat.

The diet problem is one among the earliest problems formulated as an LP. The first paper
on it was by Stigler (1945). Those were the war years, food was expensive, and the problem
of finding a minimum cost diet was of more than academic interest. Nutrition science was
in its infancy in those days, and after extensive discussions with nutrition scientists, Stigler
identified nine essential nutrient groups for his model. His search of the grocery shelves
yielded a list of 77 different available foods. With these, he formulated a diet problem that
was an LP involving 77 nonnegative decision variables subject to 9 inequality constraints.

Stigler did not know of any method for solving his LP model at that time, but he obtained
an approximate solution using a trial and error search procedure that led to a diet meeting
the MDR of the nine nutrients considered in the model at an annual cost of $39.93 at
1939 prices! After Dantzig developed the simplex method for solving LPs in 1947, Stigler’s
diet problem was one of the first nontrivial LPs to be solved by the simplex method on a
computer, and it gave the true optimum diet with an annual cost of $39.67 at 1939 prices.
So, the trial and error solution of Stigler was very close to the optimum.

The Nobel prize committee awarded the 1982 Nobel prize in economics to Stigler for his
work on the diet problem and later work on the functioning of markets and the causes and
effects of public regulation.
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TABLE 1.3 Data on the Nutrient Content of Grains
Nutrient units/kg

of grain type MDR of nutrient
Nutrient 1 2 in units

Starch 5 7 8
Protein 4 2 15
Vitamins 2 1 3

Cost ($/kg.) of food 0.60 0.35

The data in the diet problem consist of a list of nutrients with the MDR for each; a list
of available foods with the price and composition (i.e., information on the number of units
of each nutrient in each unit of food) of every one of them; and the data defining any other
constraints the user wants to place on the diet. As an example we consider a very simple
diet problem in which the nutrients are starch, protein, and vitamins as a group; the foods
are two types of grains with data given in Table 1.3.

The activities and their levels in this model are: activity j: to include 1 kg of grain type j in
the diet, associated level = xj , for j = 1, 2. The items in this model are the various nutrients,
each of which leads to a constraint. For example, the amount of starch contained in the diet
x is 5x1 + 7x2, which must be ≥8 for feasibility. This leads to the formulation given below.

Minimize z(x) = 0.60x1 +0.35x2 Item
subject to 5x1 + 7x2 ≥ 8 Starch

4x1 + 2x2 ≥ 15 Protein
2x1 + x2 ≥ 3 Vitamins
x1 ≥0, x2≥ 0

Nowadays almost all the companies in the business of making feed for cattle, other farm
animals, birds, and the like use LP extensively to minimize their production costs. The
prices and supplies of various grains, hay, and so on are constantly changing, and feed
makers solve the diet model frequently with new data values, to make their buy-decisions
and to formulate the optimum mix for manufacturing the feed. �

Once I met a farmer at a conference discussing commercial LP software systems. He
operates reasonable size cattle and chicken farms. He was carrying his laptop with him. He
told me that in the fall harvest season, he travels through agricultural areas extensively.
He always has his laptop with LP-based diet models for the various cattle and chicken feed
formulations inside it. He told me that before accepting an offer from a farm on raw materials
for the feed, he always uses his computer to check whether accepting this offer would reduce
his overall feed costs or not, using a sensitivity analysis feature in the LP software in his
computer. He told me that this procedure has helped him save his costs substantially.

1.2.4 The Transportation Model

An essential component of our modern life is the shipping of goods from where they are
produced to markets worldwide. Nationally, within the United States alone transportation
of goods is estimated to cost over 1 trillion/year. The aim of this problem is to find a way
of carrying out this transfer of goods at minimum cost. Historically, it was among the first
LPs to be modeled and studied. The Russian economist L. V. Kantorovitch studied this
problem in the 1930s and developed the dual simplex method for solving it, and published
a book on it, Mathematical Methods in the Organization and Planning of Production, in
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TABLE 1.4 Data for the Transportation Problem
cij (cents/ton)

Availability at
j = 1 2 3 mine (tons) daily

Mine i = 1 11 8 2 800
2 7 5 4 300

Requirement at
plant (tons) daily 400 500 200

Russian in 1939. In the United States, (Hitchcock, 1941) developed an algorithm similar to
the primal simplex algorithm for finding an optimum solution to the transportation prob-
lem. And (Koopmans, 1949) developed an optimality criterion for a basic solution to the
transportation problem in terms of the dual basic solution (discussed later on). The early
work of L. V. Kantorovitch and T. C. Koopmans in these publications was part of their
effort for which they received the 1975 Nobel prize for economics.

The classical single commodity transportation problem is concerned with a set of nodes
or places called sources that have a commodity available for shipment, and another set
of places called sinks or demand centers or markets that require this commodity. The
data consists of the availability at each source (the amount available there to be shipped
out), the requirement at each market, and the cost of transporting the commodity per unit
from each source to each market. The problem is to determine the quantity to be trans-
ported from each source to each market so as to meet the requirements at minimum total
shipping cost.

As an example, we consider a small problem where the commodity is iron ore, the sources
are mines 1 and 2 that produce the ore, and the markets are three steel plants that require
the ore. Let cij = cost (cents per ton) to ship ore from mine i to steel plant j, i= 1, 2, j = 1,
2, 3. The data are given in Table 1.4. To distinguish between different data elements, we
show the cost data in normal size letters, and the supply and requirement data in bold face
letters.

The decision variables in this model are: xij = ore (in tons) shipped from mine i to
plant j. The items in this model are the ore at various locations. We have the following LP
formulation for this problem.

Minimize z(x) = 11x11 + 8x12 + 2x13 + 7x21 + 5x22 + 4x23 Item
Ore at

subject to x11 + x12 + x13 = 800 mine 1
x21 + x22 + x23 = 300 mine 2

x11 + x21 = 400 plant 1
x12 + x22 = 500 plant 2

x13 + x23 = 200 plant 3

xij ≥ 0 for all i = 1, 2, j = 1, 2, 3

Let G denote the directed network with the sources and sinks as nodes, and the various
routes from each source to each sink as the arcs. Then this problem is a single commod-
ity minimum cost flow problem in G. So, the transportation problem is a special case of
single commodity minimum cost flow problems in directed networks. Multicommodity flow
problems are generalizations of these problems involving two or more commodities.

The model that we presented for the transportation context is of course too simple. Real
world transportation problems have numerous complicating factors, both in the constraints
to be satisfied and the objective functions to optimize, that need to be addressed. Starting
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with this simple model as a foundation, realistic models for these problems are built by
modifying it, and augmenting as necessary.

1.2.5 Multiperiod Production Planning, Storage, Distribution
Problems

The LP model finds many applications for making production allocation, planning, storage,
and distribution decisions in companies. Companies usually like to plan ahead; when they
are planning for one period, they usually like to consider also a few periods into the future.
This leads to multiperiod planning problems.

To construct a mathematical model for a multiperiod horizon, we need reliable data on
the expected production costs, input material availabilities, production capacities, demand
for the output, selling prices, and the like in each period. With economic conditions changing
rapidly and unexpectedly these days, it is very difficult to assemble reliable data on such
quantities beyond a few periods from the present. That is why multiperiod models used in
practice usually cover the current period and a few periods following it, for which data can
be estimated with reasonable precision.

For example, consider the problem of planning the production, storage, and marketing
of a product whose demand and selling price vary seasonally. An important feature in this
situation is the profit that can be realized by manufacturing the product in seasons during
which the production costs are low, storing it, and putting it in the market when the selling
price is high. Many products exhibit such seasonal behavior, and companies and businesses
take advantage of this feature to augment their profits. A linear programming formulation
of this problem has the aim of finding the best production-storage-marketing plan over
the planning horizon, to maximize the overall profit. For constructing a model for this
problem we need reasonably good estimates of the demand and the expected selling price of
the product in each period of the planning horizon; availability and cost of raw materials,
labor, machine times, etc. necessary to manufacture the product in each period; and the
availability, and cost of storage space.

As an example, we consider the simple problem of a company making a product subject
to such seasonal behavior. The company needs to make a production plan for the coming
year, divided into six periods of 2 months each, to maximize net profit (= sales revenue –
production and storage costs). Relevant data are in Table 1.5. The production cost there
includes the cost of raw material, labor, machine time, and the like, all of which fluctuate
from period to period. And the production capacity arises due to limits on the availability
of raw material and hourly labor.

Product manufactured during a period can be sold in the same period, or stored and sold
later on. Storage costs are $2/ton of product from one period to the next. Operations begin
in period 1 with an initial stock of 500 tons of the product in storage, and the company
would like to end up with the same amount of the product in storage at the end of period 6.

TABLE 1.5 Data for the 6-Period Production Planning Problem
Total Production Production Demand Selling

Period cost ($/ton) capacity (tons) (tons) price ($/ton)

1 20 1500 1100 180
2 25 2000 1500 180
3 30 2200 1800 250
4 40 3000 1600 270
5 50 2700 2300 300
6 60 2500 2500 320
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The decision variables in this problem are, for period j = 1–6

xj = product made (tons) during period j

yj = product left in storage (tons) at the end of period j

zj = product sold (tons) during period j

In modeling this problem the important thing to remember is that inventory equations
(or material balance equations) must hold for the product for each period. For period j this
equation expresses the following fact.

Amount of product in storage
at the beginning of period j +
the amount manufactured
during period j

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎨
⎩

Amount of product sold during
period j + the amount left in
storage at the end of period j

The LP model for this problem is given below:

Maximize 180(z1 + z2) + 250z3 + 270z4 + 300z5 + 320z6
− 20x1 − 25x2 − 30x3 − 40x4 − 50x5 − 60x6
− 2(y1 + y2 + y3 + y4 + y5 + y6)

subject to xj , yj , zj ≥ 0 for all j = 1 to 6
x1 ≤ 1500, x2 ≤ 2000, x3 ≤ 2200, x4 ≤ 3000, x5 ≤ 2700, x6 < 2500
z1 ≤ 1100, z2 ≤ 1500, z3 ≤ 1800, z4 ≤ 1600, z5 ≤ 2300, z6 ≤ 2500

500 + x1 − (y1 + z1) = 0
y1 + x2 − (y2 + z2) = 0
y2 + x3 − (y3 + z3) = 0
y3 + x4 − (y4 + z4) = 0
y4 + x5 − (y5 + z5) = 0
y5 + x6 − (y6 + z6) = 0

y6 = 500

Many companies have manufacturing facilities at several locations, and usually make
and sell several different products. Production planning at such companies involves produc-
tion allocation decisions (what products will each facility manufacture) and transportation-
distribution decisions (plan to ship the output of each facility to each market) in addition
to the material balance constraints of the type discussed in the example above for each
product and facility.

1.3 LP Models Involving Transformations of Variables

In this section, we will extend the range of application of LP to include problems that can
be modeled as those of optimizing a convex piecewise linear objective function subject to
linear constraints. These problems can be transformed easily into LPs in terms of additional
variables. This material is from Murty (under preparation).

Let θ(λ) be a real valued function of a single variable λ ∈R1. θ(λ) is said to be a piecewise
linear (PL) function if it is continuous and if there exists a partition of R1 into intervals
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TABLE 1.6 The PL Function θ(λ)
Interval for λ Slope Value of θ(λ)

λ ≤ λ1 c1 c1λ
λ1 ≤ λ ≤ λ2 c2 θ(λ1) + c2(λ − λ1)
λ2 ≤ λ ≤ λ3 c3 θ(λ2) + c3(λ − λ2)

...
...

...

λ ≥ λr cr+1 θ(λr) + cr+1(λ − λr)

of the form [−∞, λ1] = {λ ≤λ1}, [λ1, λ2], . . ., [λr−1, λr], [λr,∞] (where λ1 < λ2 < · · · < λr

are the breakpoints in this partition) such that inside each interval the slope of θ(λ) is
a constant. If these slopes in the various intervals are c1, c2, . . . , cr+1, the values of this
function at various values of λ are tabulated in Table 1.6.

This PL function is said to be convex if its slope is monotonic increasing with λ, that is, if
c1 < c2 · · ·< cr+1. If this condition is not satisfied it is nonconvex. Here are some numerical
examples of PL functions of the single variable λ (Tables 1.7 and 1.8).

Example 1.3: PL Function θ(λ)

TABLE 1.7 PL Convex Function θ(λ)
Interval for λ Slope Value of θ(λ)

λ ≤ 10 3 3λ
10 ≤ λ ≤ 25 5 30 + 5(λ − 10)

λ ≥ 25 9 105 + 9(λ − 25)

Example 1.4: PL Function g(λ)

TABLE 1.8 Nonconvex PL Function θ(λ)
Interval for λ Slope Value of θ(λ)

λ ≤ 100 10 10λ
100 ≤ λ ≤ 300 5 1000 + 5(λ − 100)
300 ≤ λ ≤ 1000 11 2000 + 11(λ − 300)

λ ≥ 1000 20 9700 + 20(λ − 1000)

Both functions θ(λ), g(λ) are continuous functions and PL functions. θ(λ) is convex
because its slope is monotonic increasing, but g(λ) is not convex as its slope is not monotonic
increasing with λ.

A PL function h(λ) of the single variable λ ∈R1 is said to be a PL concave function
iff −h(λ) is a PL convex function; that is, iff the slope of h(λ) is monotonic decreasing as
λ increases.

PL Functions of Many Variables

Let f(x) be a real valued function of x= (x1, . . ., xn)T . f(x) is said to be a PL (piecewise lin-
ear) function of x if there exists a partition of Rn into convex polyhedral regions K1, . . ., Kr

such that f(x) is linear within each Kt, for t = 1 to r; and a PL convex function if it is
also convex. It can be proved mathematically that f(x) is a PL convex function iff there
exists a finite number, r say, of linear (more precisely affine) functions ct

0 + ctx, (where ct
0,
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and ct ∈Rn are the given coefficient vectors for the t-th linear function) t = 1 to r such that
for each x∈Rn

f(x) = Maximum{ct
0 + ctx : t = 1, . . ., r} (1.3)

A function f(x) defined by Equation 1.3 is called the pointwise maximum (or supremum)
function of the linear functions ct

0 + ctx, t = 1 to r. PL convex functions of many variables
that do not satisfy the additivity hypothesis always appear in this form (Equation 1.3) in
real world applications.

Similarly, a PL function h(x) of x= (x1, . . ., xn)T is said to be a PL concave function if
there exist a finite number s of affine functions dt

0 + dtx, t = 1 to s, such that h(x) is their
pointwise infimum, that is, for each x∈Rn

h(x) = Minimum{dt
0 + dtx : t = 1, . . ., s}

Now we show how to transform various types of problems of minimizing a PL convex
function subject to linear constraints into LPs, and applications of these transformations.

Minimizing a Separable PL Convex Function Subject to Linear Constraints

A real valued function z(x) of variables x= (x1, . . ., xn)T is said to be separable if it satisfies
the additivity hypothesis, that is, if it can be written as the sum of n functions, each
one involving only one variable as in: z(x) = z1(x1) + z2(x2) + · · · + zn(xn). Consider the
following general problem of this type:

Minimize z(x) = z1(x1) + · · · + zn(xn)
subject to Ax = b (1.4)

x ≥ 0

where each zj(xj) is a PL convex function with slopes in intervals as in Table 1.9, rj + 1 is
the number of different slopes cj1 < cj2 < · · ·< cj,rj+1 of zj(xj), and �j1, �j2, . . ., �j,rj+1 are
the lengths of the various intervals in which these slopes apply.

As the objective function to be minimized does not satisfy the proportionality assumption,
this is not an LP. However, the convexity property can be used to transform this into an LP
by introducing additional variables. This transformation expresses each variable xj as a sum
of rj + 1 variables, one associated with each interval in which its slope is constant. Denot-
ing these variables by xj1, xj2, . . ., xj,rj+1, the variable xj becomes = xj1 + · · ·+ xj,rj+1 and
zj(xj) becomes the linear function cj1xj1 + · · ·+ cj,rj+1xj,rj+1 in terms of the new variables.
The reason for this is that as the slopes are monotonic (i.e., cj1 < cj2 < · · ·< cj,rj+1), for
any value of x̄j ≥ 0, if (x̄j1, x̄j2, . . ., x̄j,rj+1) is an optimum

Minimize cj1xj1 + · · · + cj,rj+1xj,rj+1

Subject to xj1 + · · · + xj,rj+1 = x̄j

0 ≤ xjt < �jt, t = 1, . . ., rj + 1

TABLE 1.9 The PL Function Zj(xj)
Interval Slope in interval Value of zj(xj) Length of interval

0 ≤ xj ≤ kj1 cj1 cj1xj �j1 = kj1
kj1 ≤ xj ≤ kj2 cj2 zj(kj1) + cj2(xj − kj1) �j2 = kj2 − kj1

...
...

...
...

kj,rj
≤ xj cj,rj+1 zj(kj,rj

) + cj,rj+1(xj − kj,rj
) �j,rj+1 = ∞
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x̄j,t+1 will not be positive unless x̄jk = �jk for k = 1 to t, for each t = 1 to rj . Hence the
optimum objective value in this problem will be equal to zj(xj). This shows that our original
problem (Equation 1.4) is equivalent to the following transformed problem which is an LP.

Minimize
j=n∑
j=1

t=rj+1∑
t=1

cjtxjt

subject to xj =
t=rj+1∑

t=1

xjt, j = 1, . . ., n

Ax=b
0 ≤ xjt ≤ �jt, t = 1, . . ., rj + 1; j = 1, . . . , n

x≥0.

The same type of transformation can be used to transform a problem involving the
maximization of a separable PL concave function subject to linear constraints into an LP.

Example 1.5

A company makes products P1, P2, P3 using limestone (LI), electricity (EP), water (W),
fuel (F), and labor (L) as inputs. Labor is measured in man hours, and other inputs in
suitable units. �

Each input is available from one or more sources. The company has its own quarry for
LI, which can supply up to 250 units/day at a cost of $20/unit. Beyond that, LI can be
purchased in any amounts from an outside supplier at $50/unit. EP is only available from
the local utility. Their charges for EP are: $30/unit for the first 1000 units/day, $45/unit for
up to an additional 500 units/day beyond the initial 1000 units/day, $75/unit for amounts
beyond 1500 units/day. Up to 800 units/day of water is available from the local utility at
$6/unit; beyond that they charge $7/unit of water/day. There is a single supplier for F who
can supply at most 3000 units/day at $40/unit; beyond that there is currently no supplier
for F. From their regular workforce they have up to 640 man hours of labor/day at $10/man
hour; beyond that they can get up to 160 man hours/day at $17/man hour from a pool of
workers.

They can sell up to 50 units of P1 at $3000/unit/day in an upscale market; beyond that
they can sell up to 50 more units/day of P1 to a wholesaler at $250/unit. They can sell
up to 100 units/day of P2 at $3500/unit. They can sell any quantity of P3 produced at a
constant rate of $4500/unit.

Data on the inputs needed to make the various products are given in Table 1.10. Formulate
the product mix problem to maximize the net profit/day at this company.

Maximizing the net profit is the same as minimizing its negative, which is = (the costs
of all the inputs used/day)− (sales revenue/day). We verify that each term in this sum

TABLE 1.10 I/O Data
Input units/unit made

Product LI EP W F L

P1
1
2

3 1 1 2

P2 1 2
1
4

1 1

P3
3
2

5 2 3 1
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is a PL convex function. So, we can model this problem as an LP in terms of variables
corresponding to each interval of constant slope of each of the input and output quantities.

Let LI, EP , W , F , L denote the quantities of the respective inputs used/day; and P1,
P2, P3 denote the quantities of the respective products made and sold/day. Let LI1 and LI2
denote the units of limestone used daily from own quarry and outside supplier. Let EP1,
EP2, and EP3 denote the units of electricity used/day at $30, 45, 75/unit, respectively. Let
W1 and W2 denote the units of water used/day at rates of $6, 7/unit, respectively. Let L1
and L2 denote the man hours of labor used/day from regular workforce, pool, respectively.
Let P11 and P12 denote the units of P1 sold at the upscale market and to the wholesaler,
respectively.

Then the LP model for the problem is:
Minimize z = 20LI1 + 50LI2 + 30EP1 + 45EP2 + 75EP3 + 6W1 + 7W2 + 40F + 10L1

+ 17L2 − 3000P11 − 250P12 − 3500P2 − 4500P3
subject to

(1/2)P1 + P2 + (3/2)P3 = LI

3P1 + 2P2 + 5P3 = EP

P1 + (1/4)P2 + 2P3 = W

P1 + P2 + 3P3 = F

2P1 + P2 + P3 = L

LI1 + LI2 = LI, W1 + W2 = W

EP1 + EP2 + EP3 = EP

L1 + L2 = L, P11 + P12 = P1, all variables ≥ 0

(LI1, EP1, EP2, W1) ≤ (250, 1000, 500, 800)
(F, L1, L2) ≤ (3000, 640, 160)

(P11, P12, P2) ≤ (50, 50, 100).

1.3.1 Min–Max, Max–Min Problems

As discussed above, a PL convex function in variables x= (x1, . . ., xn)T can be expressed
as the pointwise maximum of a finite set of linear functions. Minimizing a function like
that is appropriately known as a min–max problem. Similarly, a PL concave function in x
can be expressed as the pointwise minimum of a finite set of linear functions. Maximizing
a function like that is appropriately known as a max–min problem. Both min–max and
max–min problems can be expressed as LPs in terms of just one additional variable.

If the PL convex function f(x) = min{ct
0 + ctx : t = 1, . . ., r}, then −f(x) = max{−ct

0 −
ctx : t = 1, . . ., r} is PL concave and conversely. Using this, any min–max problem can be
posed as a max–min problem and vice versa. So, it is sufficient to discuss max–min problems.
Consider the max–min problem

max z(x) = min{c1
0 + c1x, . . ., cr

0 + crx}
subject to Ax = b

x ≥ 0

To transform this problem into an LP, introduce the new variable xn+1 to denote the
value of the objective function z(x) to be maximized. Then the equivalent LP with additional

© 2008 by Taylor & Francis Group, LLC



CH001.tex 22/10/2007 13: 57 Page 1-17

Linear Programming 1-17

linear constraints is:
max xn+1
subject to xn+1 ≤ c1

0 + c1x
xn+1 ≤ c2

0 + c2x
...

xn+1 ≤ cr
0 + crx

Ax= b
x≥ 0

The fact that xn+1 is being maximized and the additional constraints together imply
that if (x̄, x̄n+1) is an optimum solution of this LP model, then x̄n+1 = min{c1

0 + c1x̄, . . ., cr
0 +

crx̄} = z(x̄), and that x̄n+1 is the maximum value of z(x) in the original max–min problem.

Example 1.6: Application in Worst Case Analysis

Consider the fertilizer maker’s product mix problem with decision variables x1 and x2 (Hi-
ph, Lo-ph fertilizers to be made daily in the next period) discussed in Example 1.2, Sec-
tion 1.2. There we discussed the case where the net profit coefficients c1 and c2 of these
variables are estimated to be $15 and $10, respectively. In reality, the prices of fertilizers
are random variables that fluctuate daily. Because of unstable conditions, and new agri-
cultural research announcements, suppose market analysts have only been able to estimate
that the expected net profit coefficient vector (c1, c2) is likely to be one of {(15, 10),
(10, 15), (12, 12)} without giving a single point estimate. So, here we have three possible
scenarios. In scenario 1, (c1, c2) = (15, 10), expected net profit = 15x1 + 10x2; in scenario
2, (c1, c2) = (10, 15), expected net profit = 10x1 + 15x2; in scenario 3 (c1, c2) = (12, 12),
expected net profit = 12x1 + 12x2. Suppose the raw material availability data in the prob-
lem is expected to remain unchanged. The important question is: which objective function
to optimize for determining the production plan for the next period. �

Irrespective of which of the three possible scenarios materializes, at the worst the minimum
expected net profit of the company will be p(x) = min {15x1 + 10x2, 10x1 + 15x2, 12x1 +
12x2} under the production plan x= (x1, x2)T . Worst case analysis is an approach that
advocates determining the production plan to optimize this worst case net profit p(x) in
this situation. This leads to the max–min model: maximize p(x) = min {15x1 + 10x2, 10x1 +
15x2, 12x1 + 12x2} subject to the constraints in Equation 1.2. The equivalent LP model cor-
responding to this is:

max p

subject to p ≤ 15x1 + 10x2

p ≤ 10x1 + 15x2

p ≤ 12x1 + 12x2

2x1 + x2 ≤ 1500
x1 + x2 ≤ 1200

x1 ≤ 500, x1, x2 ≥ 0

1.3.2 Minimizing Positive Linear Combinations of Absolute Values
of Affine Functions

Consider the problem

min z(x) = w1|c1
0 + c1x| + · · · + wr|cr

0 + crx|
subject to Ax ≥ b
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where the weights w1, . . ., wr are all strictly positive. In this problem the objective func-
tion to be minimized, z(x), is a PL convex function; hence this problem can be trans-
formed into an LP. To transform, define for each t = 1 to r two new nonnegative variables
u+

t = max {0, ct
0 + ctx}, u−

t = −min {0, ct
0 + ctx}. u+

t is called the positive part of ct
0 + ctx,

and u−
t its negative part. It can be verified that (u+

t )(u−
t ) is zero by definition, and because of

this we have: ct
0 + ctx= (u+

t ) − (u−
t ) and |ct

0 + ctx| = (u+
t ) + (u−

t ). Using this, we can trans-
form the above problem into the following LP:

min w1[(u+
1 ) + (u−

1 )] + · · · + wr[(u+
r ) + (u−

r )]
subject to c1

0 + c1x = (u+
t ) − (u−

t )
...

...
cr
0 + crx = (u+

r ) − (u−
r )

Ax ≥ b
(u+

t ), (u−
t ) ≥ 0, t = 1, . . ., r

Using the special structure of this problem it can be shown that the condition (u+
t )(u−

t ) = 0
for all t = 1 to r will hold at all optimum solutions of this LP. This shows that this trans-
formation is correct.

An application of this transformation is discussed in the next section. This is an important
model that finds many applications.

1.4 Intelligent Modeling Essential to Get Good
Results, an Example from Container Shipping

To get good results from a linear programming application, it is very important to develop
a good model for the problem being solved. There may be several ways of modeling the
problem, and it is very important to select the one most appropriate to model it intelligently
to get good results. Skill in modeling comes from experience; unfortunately there is no theory
to teach how to model intelligently. We will now discuss a case study of an application
carried out for routing trucks inside a container terminal to minimize congestion. Three
different ways of modeling the problem have been tried. The first two approaches lead to
(1) an integer programming model and (2) a large-scale multicommodity flow LP model,
respectively. Both these models gave very poor results. The third and final model developed
uses a substitute objective function technique; that is, it optimizes another simpler objective
function that is highly correlated to the original, because that other objective function is
much easier to control. This approach led to a small LP model, and gives good results.

Today most of the nonbulk cargo is packed into steel boxes called containers (typically
of size 40 × 8 × 9 in feet) and transported in oceangoing vessels. A container terminal in a
port is the place where these vessels dock at berths for unloading of inbound containers and
loading of outbound containers. The terminals have storage yards for the temporary storage
of these containers. The terminal’s internal trucks (TIT) transport containers between the
berth and the storage yard (SY). The SY is divided into rectangular areas called blocks, each
served by one or more cranes (rubber tired gantry cranes, or RTGC) to unload/load con-
tainers from/to trucks. Customers bring outbound containers into the terminal in their own
trucks (called external trucks, or XT), and pick up from the SY and take away their inbound
containers on these XT. Each truck (TIT or XT) can carry only one container at a time.

The example (from Murty et al., 2005a,b) deals with the mathematical modeling of the
problem of routing the trucks inside the terminal to minimize congestion. We represent
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the terminal road system by a directed network G = (N ,A) where N is the set of nodes
(each block, berth unloading/loading position, road intersection, terminal gate is a node),
A is the set of arcs (each lane of a road segment joining a pair of nodes is an arc). Each
(berth unloading/loading position, block), (block, berth unloading/loading position), (gate,
block), (block, gate) is an origin–destination pair for trucks that have to go from the origin
to the destination; they constitute a separate commodity that flows in G. Let T denote the
number of these commodities. Many terminals use a 4-hour planning period for their truck
routing decisions.

Let f = (fr
ij) denote the flow vector of various commodities on G in the planning

period, where fr
ij = expected number of trucks of commodity r passing through arc (i, j)

in the planning period for r = 1 to T , and (i, j) ∈ A. Let θ = max
{∑T

r=1 fr
ij : (i, j) ∈ A

}
,

µ= min
{∑T

r=1 fr
ij : (i, j) ∈ A

}
. Then either θ or θ −µ can be used as measures of conges-

tion on G during the planning period, to optimize.
As storage space allocation to arriving containers directly determines how many trucks

travel between each origin–destination pair, the strategy used for this allocation plays a
critical role in controlling congestion. This example deals with mathematical modeling of
the problem of storage space allocation to arriving containers to minimize congestion.

Typically, a block has space for storing 600 containers, and a terminal may have 100
(some even more) blocks. At the beginning of the planning period, some spaces in the
SY would be occupied by containers already in storage, and the set of occupied storage
positions changes every minute; it is very difficult to control this change. Allocating a specific
open storage position to each container expected to arrive in the planning period has been
modeled as a huge integer program, which takes a long time to solve. In fact, even before
this integer programming model is entered into the computer, the data change. So these
traditional integer programming models are not only impractical but also inappropriate for
the problem.

So a more practical way is to break up the storage space allocation decision into two stages:
Stage 1 determines only the container quota xi, for each block i, which is the number of
newly arriving containers that will be dispatched to block i for storage during the planning
period. Stage 1 will not determine which of the specific arriving containers will be stored
in any block; that decision is left to Stage 2, which is a dispatching policy that allocates
each arriving container to a specific block for storage at the time of its arrival, based on
conditions prevailing at that time. So, Stage 2 makes sure that by the end of the planning
period the number of new containers sent for storage to each block is its quota number
determined in Stage 1, while minimizing congestion at the blocks and on the roads.

Our example deals with the Stage 1 problem. The commonly used approach is based on a
batch-processing strategy. Each batch consists of all the containers expected to arrive/leave
at each node during the planning period. At the gate, this is the number of outbound
containers expected to arrive for storage. At a block it is the number of stored containers
expected to be retrieved and sent to each berth or the gate. At each berth it is the number
of inbound containers expected to be unloaded to be sent for storage to SY. With this
data, the problem can be modeled as a multicommodity network flow problem. It is a large-
scale LP with many variables and thousands of constraints. However, currently available
LP software systems are fast; this model can be solved using them in a few minutes of
computer time.

But the output from this model turned out to be poor, as the model is based solely on
the total estimated workload during the planning period. Such a model gives good results
for the real problem only if the workload in the terminal (measured in number of containers
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handled/unit time) is distributed more or less uniformly over time during the planning
period. In reality the workload at terminals varies a lot over time. At the terminal where
we did this work, the number of containers handled per hour varied from 50 to 400 in a
4-hour planning period.

Let fi(t) denote the fill ratio in block i at time point t, which is equal to (number of
containers in storage in block i at time point t)/(number of storage spaces in block i).
We observed that the fill ratio in a block is highly positively correlated with the number
of containers being moved in and out of the block/minute. So, maintaining fill ratios in
all the blocks nearly equal, along with a good dispatching policy, will ensure that the
volumes of traffic in the neighborhoods of all the blocks are nearly equal, thus ensuring
equal distribution of traffic on all the terminal roads and hence minimizing congestion. This
leads to a substitute-objective-function technique for controlling congestion indirectly. For
the planning period, we define the following:

xi = The container quota for block i= number of containers arriving in this period
to be dispatched for storage to block i, a decision variable.

ai = The number of stored containers that will remain in block i at the end of
this period if no additional containers are sent there for storage during this
period, a data element.

N = The number of new containers expected to arrive at the terminal in this
period for storage, a data element.

B,A = The total number of blocks in the storage yard, the number of storage posi-
tions in each block, data elements.

The fill-ratio equalization policy determines the decision variables xi to make sure that
the fill ratios in all the blocks are as nearly equal as possible at one time during the period,
namely the end of the period. The fill ratio in the whole yard at the end of this period will
be F = (N +

∑
i ai)/(A ×B). If the fill ratios in all the blocks at the end of this period are

all equal, they will all be equal to F . Thus, this policy determines xi to guarantee that the
fill ratio in each block will be as close to F as possible by the end of this period. Using the
least sum of absolute deviations measure, this leads to the following model to determine xi.

Minimize
B∑

i=1

|ai + xi − AF |

subject to
B∑

i=1

xi = N

xi ≥ 0 for all i

Transforming this we get the following LP model to determine xi

Minimize
B∑

i=1

(u+
i + u−

i )

subject to
B∑

i=1

xi = N

ai + xi − AF = u+
i − u−

i for all i

xi, u
+
i , u−

i ≥ 0 for all i

This is a much simpler and smaller LP model with only B + 1 constraints. Using its special
structure, it can be verified that its optimum solution can be obtained by the following
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combinatorial scheme: Rearrange the blocks in increasing order of ai from top to bottom.
Then begin at the top and determine xi one after the other to bring ai + xi to the level AF
or as close to it as possible until all the N new containers expected to arrive are allocated.

We will illustrate with a small numerical example of an SY with B = 9 blocks, A = 600
spaces in each block, with N = 1040 new containers expected to arrive during the plan-
ning period. Data on ai already arranged in increasing order are given in the following
table. So, the fill ratio in the whole yard at the end of the planning period is expected
to be F = (N +

∑
iai)/(AB) = 3547/5400 ≈ 0.67, and so the average number of containers

in storage/block will be AF ≈ 400. So, the LP model for determining xi for this planning
period to equalize fill ratios is

Minimize
9∑

i=1

(u+
i + u−

i )

subject to
9∑

i=1

xi = 1040

ai + xi − u+
i + u−

i = 400 for all i

xi, u
+
i , u−

i ≥ 0 for all i

The optimum solution (xi) of this model obtained by the above combinatorial scheme is
given in Table 1.11. ai + xi is the expected number of containers in storage in block i at
the end of this planning period; it can be verified that its values in the various blocks are
nearly equal.

Stage 1 determines only the container quota numbers for the blocks, not the identities
of containers that will be stored in each block. The storage block to which each arriving
container will be sent for storage is determined by the dispatching policy discussed in
Stage 2. Now we describe Stage 2 briefly.

Regardless of how we determine the container quota numbers xi, if we send a consecutive
sequence of arriving container trucks to the same block in a short time interval, we will
create congestion at that block. To avoid this possibility, the dispatching policy developed
in Stage 2 ensures that the yard crane in that block has enough time to unload a truck
we send there before we send another. For this we had to develop a system to monitor
continuously over time: wi(t) = the number of trucks waiting in block i to be served by the
yard cranes there at time point t. As part of our work on this project, the terminal where we
did this work developed systems to monitor wi(t) continuously over time for each block i.

TABLE 1.11 Optimum Solution xi
Block i ai xi ai + xi

1 100 300 400
2 120 280 400
3 150 250 400
4 300 100 400
5 325 75 400
6 350 35 385
7 375 0 375
8 400 0 400
9 450 0 450

Total 2570 1040
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They also developed a dispatching cell that has the responsibility of dispatching each truck
in the arriving stream to a block; this cell gets this wi(t) information continuously over
time.

As time passes during the planning period, the dispatching cell also keeps track of how
many containers in the arriving stream have already been sent to each block for storage.
When this number becomes equal to the container quota number for that block, they will
not send any more containers for storage to that block during the planning period. For each
block i, let xR

i (t) = xi − (number of new containers sent to block i for storage up to time
t in the planning period) = remaining container quota number for block i at time t in the
planning period.

This policy dispatches each truck arriving (at the terminal gate, and at each berth) at time
point t in the period to a block i satisfying: wi(t) = Min{wj(t) : j satisfying xR

i (t) > 0}, that
is, a block with a remaining positive quota that has the smallest number of trucks waiting
in it.

This strategy for determining the quota numbers for blocks, xi described above, along
with the dynamic dispatching policy to dispatch arriving container trucks using real time
information on how many trucks are waiting in each block, turned out to be highly effective.
It reduced congestion and helped reduce truck turnaround time by over 20%.

In this work, our first two mathematical models for the problem turned out to be ineffec-
tive; the third one was not only the simplest but a highly effective one. This example shows
that to get good results in real world applications, it is necessary to model the problems
intelligently. Intelligent modeling + information technology + optimization techniques is a
powerful combination for solving practical problems.

1.5 Planning Uses of LP Models

When LP is the appropriate technique to model a real world problem, and the LP model is
constructed, we discuss here what useful information can be derived using the model (from
[Murty, 1995, 2005b]).

1.5.1 Finding the Optimum Solutions

Solving the model gives an optimum solution, if one exists. The algorithms can actually
identify the set of all the optimum solutions if there are alternate optimum solutions. This
may be helpful in selecting a suitable optimum solution to implement (one that satisfies some
conditions that may not have been included in the model, but which may be important).

Solving the fertilizer product mix problem, we find that the unique optimum solution for
it is to manufacture 300 tons Hi-ph and 900 tons Lo-ph, leading to a maximum daily profit
of $13,500.

1.5.2 Infeasibility Analysis

We may discover that the model is infeasible (i.e., it has no feasible solution). If this hap-
pens, there must be a subset of constraints that are mutually contradictory in the model
(maybe we promised to deliver goods without realizing that our resources are inadequate
to manufacture them on time). In this case the algorithms can indicate how to modify the
constraints to make the model feasible. For example, suppose the system of constraints in
the original LP is: Ax = b, x≥ 0, where A is an m ×n matrix and b = (bi) ∈Rm, and the
equality constraints are recorded so that b ≥ 0. The Phase I problem for finding an initial
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feasible solution for this problem is

Minimize w(t) =
m∑

i=1

ti

subject to Ax + It = b
x, t≥ 0

where I is the unit matrix of order m, and t = (t1, . . ., tm)T is the vector of artificial variables.
Suppose the optimum solution of this Phase I problem is (x, t). If t = 0, x is a feasible solution
of the original LP that can now be solved using it as the initial feasible solution. If t �= 0,
the original LP is infeasible. Mathematically there is nothing more that can be done on the
original model. But the real world problem for which this model is constructed does not
go away; it has to be tackled somehow. So, we have to investigate what practically feasible
changes can be carried out on the model to modify it into a feasible system. Infeasibility
analysis is the study of such changes (see Murty, 1995; Murty et al., 2000; Brown and
Graves, 1977; Chinnek and Dravineks, 1991).

Sometimes it may be possible to eliminate some constraints to make the model feasi-
ble. But the most commonly used technique to make the model feasible is to modify some
data elements in the model. Making changes in the technology coefficient matrix A involves
changing the technological processes used in the system; hence these changes are only con-
sidered rarely in practice. Data elements in the RHS constants vector b represent things
like resource quantities made available, delivery commitments made, and so on; these can
be modified relatively easily. That’s why most often it is the RHS constants in the model
that are changed to make the model feasible.

One simple modification that will make the model feasible is to change the RHS constants
vector b into b = b − t. Then the constraints in the modified model are Ax = b, x≥ 0; x is a
feasible solution for it. Starting with x, the modified model can be solved. As an example,
consider the system

2x1 +3x2 + x3 − x4 = 10
x1 +2x2 − x3 +x5 = 5
x1 + x2 + 2x3 = 4

xj ≥ 0 for all j

The Phase I problem to find a feasible solution of this system is

Minimize t1 + t2 + t3

subject to 2x1 +3x2 + x3 −x4 + t1 = 10
x1 +2x2 − x3 +x5 + t2 = 5
x1 + x2 +2x3 + t3 = 4

xj , ti ≥ 0 for all j, i

An optimum solution of this Phase I problem is (x, t), where x= (3, 1, 0, 0, 0)T , t =
(1, 0, 0)T , so the original system is infeasible. To make the original system feasible we can
modify the RHS constants vector in the original model b = (10, 5, 4)T to b − t = (9, 5, 4)T .
For the modified system, x is a feasible solution.

This modification only considers reducing the entries in the RHS constants vector in the
original model; also it gives the decision maker no control on which RHS constants bi are
changed to make the system feasible. Normally there are costs associated with changing the
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value of bi, and these may be different for different i. To find a least costly modification of
the b-vector to make the system feasible, let

c+
i , c−

i = cost per unit increase, decrease respectively in the value of bi

pi, qi = maximum possible increase, decrease allowed in the value of bi

Then the model to minimize the total cost of all the changes to make the model feasible
is the LP

Minimize
m∑

i=1

(c+
i u+

i + c−
i u−

i )

subject to Ax + Iu+ − Iu− = b
u+ ≤ q, u− ≤ p

x, u+, u− ≥ 0

where u+ = (u+
1 , . . ., u+

m)T , u− = (u−
1 , . . ., u−

m)T , p = (pi), q = (qi), and I is the unit matrix
of order m. If (x, u+, u−) is an optimum solution of this LP, then b′ = b − u+ + u− is the
optimum modification of the original RHS vector b under this model; and x is a feasible
solution of the modified model (Brown and Graves, 1977; Chinnek and Dravineks, 1991).

1.5.3 Values of Slack Variables at an Optimum Solution

The values of the slack variables corresponding to inequality constraints in the model provide
useful information on which supplies and resources will be left unused and in what quantities,
if that solution is implemented.

For example, in the fertilizer product mix problem, the optimum solution is x̂= (300, 900).
At this solution, RM 1 slack is x̂3 = 1500− 2x̂1 − x̂2 = 0, RM 2 slack is x̂4 = 1200− x̂1 − x̂2 =
0, and RM 3 slack x̂5 = 500− x̂1 = 200 tons.

Thus, if this optimum solution is implemented, the daily supply of RM 1 and RM 2 will
be completely used up, but 200 tons of RM 3 will be left unused. This shows that the
supplies of RM 1 and RM 2 are very critical to the company, and that there is currently an
oversupply of 200 tons of RM 3 daily that cannot be used in the optimum operation of the
Hi-ph and Lo-ph fertilizer processes.

This also suggests that it may be worthwhile to investigate if the maximum daily profit
can be increased by lining up additional supplies of RM 1 and RM 2 from outside vendors or
if additional capacity exists in the Hi-ph, Lo-ph manufacturing processes. A useful planning
tool for this investigation is discussed next.

1.5.4 Marginal Values, Dual Variables, and the Dual
Problem, and Their Planning Uses

Each constraint in an LP model is the material balance constraint of some item, the RHS
constant in that constraint being the availability or the requirement of that item. The
marginal value of that item (also called the marginal value corresponding to that constraint)
is defined to be the rate of change in the optimum objective value of the LP, per unit change
in the RHS constant in the constraint. This marginal value associated with a constraint is
also called the dual variable corresponding to that constraint.

Associated with every LP there is another LP called its dual problem; both share the
same data. In this context, the original problem is called the primal problem. The variables
in the dual problem are the marginal values or dual variables defined above; each of these
variables is associated with a constraint in the primal. Given the primal LP, the derivation of
its dual problem through marginal economic arguments is discussed in many LP books; for
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example, see Dantzig (1963), Gale (1960), and Murty (1995, 2005b). For an illustration, let
the primal be

Minimize z = cx
subject to Ax= b

x≥ 0

where x= (x1, . . ., xn)T is the vector of primal variables, and A is of order m ×n. Denoting
the dual variable associated with the i-th constraint in Ax = b by πi, the vector of dual
variables associated with these constraints is the row vector π = (π1, . . ., πm). Let the dual
variable associated with the nonnegativity restriction xj ≥ 0 be denoted by cj for j = 1 to n,
and let c = the row vector (c1, . . ., cn). Then the dual problem is

Maximize v = πb
subject to πA + c = c

c ≥ 0

The dual variables c associated with the nonnegativity constraints x≥ 0 in the primal
are called relative or reduced cost coefficients of the primal variables. Given π we can get c
from c = c−πA. Hence, commonly people omit c, and refer to π itself as the dual solution.

When the optimum solution of the dual problem is unique, it is the vector of marginal
values for the primal problem. All algorithms for linear programming have the property
that when they obtain an optimum solution of the primal, they also produce an optimum
solution of the dual; this is explained in Section 1.6. Also, most software packages for LP
provide both the primal and dual optimum solutions when they solve an LP model.

For the fertilizer product mix problem (Equation 1.2) discussed in Example 1.2
(Section 1.2), the dual optimum solution π = (π1, π2, π3) = (5, 5, 0) is unique; hence it
is the vector of marginal values for the problem. As the objective function in the problem is
in units of net profit dollars, this indicates that the marginal values of raw materials RM 1
and RM 2 are both $5/ton in net profit dollars. As the current price of RM 1 delivered to the
company is $50/ton, this indicates that as long as the price charged by an outside vendor
per ton of RM 1 delivered is ≤$50 + 5 = 55/ton, it is worth getting additional supplies of
RM 1 from that vendor. $55/ton delivered is the breakeven price for acquiring additional
supplies of RM 1 for profitability.

In the same way, as the current price of RM 2 delivered to the company is $40/ton, we
know that the breakeven price for acquiring additional supplies of RM 2 for profitability is
$40 + 5 = $45/ton delivered.

Also, since the marginal value of RM 3 is zero, there is no reason to get additional supplies
of RM 3, as no benefit will accrue from it.

This type of analysis is called marginal analysis. It helps companies to determine what
their most critical resources are and how the requirements or resource availabilities can be
modified to arrive at much better objective values than those possible under the existing
requirements and resource availabilities.

1.5.5 Evaluating the Profitability of New Products

Another major use of marginal values is in evaluating the profitability of new products.
It helps to determine whether they are worth manufacturing, and if so at what level they
should be priced so that they are profitable in comparison with existing product lines.

We will illustrate this again using the fertilizer product mix problem. Suppose the com-
pany’s research chemist has come up with a new fertilizer that he calls lushlawn. Its man-
ufacture requires per ton, as inputs, 3 tons of RM 1, 2 tons of RM 2, and 2 tons of RM 3.
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At what rate/ton should lushlawn be priced in the market, so that it is competitive in
profitability with the existing Hi-ph and Lo-ph that the company currently makes?

To answer this question, we computed the marginal values RM 1, RM 2, RM 3 to be
π1 = 5, π2 = 5, π3 = 0.

So, the input packet of (3, 2, 2)T tons of (RM 1, RM 2, RM 3)T needed to manufacture
one ton of lushlawn has value to the company of 3π1 + 2π2 + 2π3 = 3 × 5 + 2 × 5 + 2 × 0 = $25
in terms of net profit dollars. On the supply side, the delivery cost of this packet of raw
materials is 3 × 50 + 2 × 40 + 2 × 60 = $350.

So, clearly, for lushlawn to be competitive with Hi-ph and Lo-ph, its selling price in the
market/ton should be ≥$25 + 350 + (its production cost/ton). The company can conduct
a market survey and determine whether the market will accept lushlawn at a price ≥ this
breakeven level. Once this is known, the decision whether to produce lushlawn would be
obvious.

By providing this kind of valuable planning information, the LP model becomes a highly
useful decision making tool.

1.6 Brief Introduction to Algorithms for Solving
LP Models

1.6.1 The Simplex Method

The celebrated simplex method developed by George B. Dantzig in 1947 is the first compu-
tationally viable method for solving LPs and systems of linear inequalities (Dantzig, 1963).
Over the years the technology for implementing the simplex method has gone through many
refinements, with the result that even now it is the workhorse behind many of the successful
commercial LP software systems.

Before applying the simplex method, the LP is transformed into a standard form through
simple transformations (like introducing slack variables corresponding to inequality con-
straints, etc.). The general step in the simplex method is called a pivot step. We present
the details of it for the LP in the most commonly used standard form, which in matrix
notation is:

Minimize z
subject to Ax= b

cx − z = 0
x≥ 0

(1.5)

where A is a matrix of order m ×n of full rank m. A basic vector for this problem is a vector
of m variables among the xj , and then −z, of the form (xB , −z) where xB = (xj1, . . ., xjm),
satisfying the property that the submatrix B consisting of the column vectors of these basic
variables is a basis, that is, a nonsingular square submatrix of order m + 1. Let xD denote
the remaining vector of nonbasic variables. The primal basic solution corresponding to this
basic vector is given by

xD = 0,

(
xB

−z

)
= B−1

(
b
0

)
=

⎛
⎜⎜⎜⎝

b
...

bm

−z

⎞
⎟⎟⎟⎠ (1.6)

The basic vector (xB , −z) is said to be a primal feasible basic vector if the values of
the basic variables in xB in the basic solution in Equation 1.6 satisfy the nonnegativity
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restrictions on these variables, primal infeasible basic vector otherwise. The basic solution
in Equation 1.6 is called a basic feasible solution (BFS) for Equation 1.5 if (xB , −z) is a
primal feasible basic vector.

There is also a dual basic solution corresponding to the basic vector (xB , −z). If that
dual basic solution is π, then the last row of B−1 will be (−π, 1), so the dual basic solution
corresponding to this basic vector can be obtained from the last row of B−1.

A pivot step in the simplex method begins with a feasible basic vector (xB , −z), say
associated with the basis B, dual basic solution π, and primal BFS given in Equation 1.6.
c = c−πA is called the vector of relative cost coefficients of (xj) corresponding to this basic
vector. The optimality criterion is: c≥ 0; if it is satisfied the BFS in Equation 1.6 and π are
optimum solutions of the primal LP and its dual; and the method terminates.

If c �≥ 0, any variable xj associated with a cj < 0 will be a nonbasic variable which is
called a variable eligible to enter the present basic vector to obtain a better solution than
the present BFS. One such eligible variable, xs say, is selected as the entering variable. Its
updates column: (a1s, . . ., ams, cs)T = B−1 (column vector of xs in Equation 1.5) is called
the pivot column for this pivot step. The minimum ratio in this pivot step is defined to be

θ = min {bi/ais : 1 ≤ i ≤ m such that ais > 0}

where (bi) are the values of the basic variables in the present BFS. If the minimum ratio
is attained by i= r, then the r-th basic variable in (xB , −z) will be the dropping variable
to be replaced by xs to yield the next basic vector. The basis inverse corresponding to the
new basic vector is obtained by performing a Gauss–Jordan pivot step on the columns of
the present B−1 with the pivot column and row r as the pivot row. The method goes to
the next step with the new basic vector, and is continued the same way until termination
occurs.

We will illustrate with the fertilizer problem (Equation 1.2) formulated in Example 1.2.
Introducing slack variables x3, x4, x5 corresponding to the three inequalities, and putting
the objective function in minimization form, the standard form for the problem in a detached
coefficient tableau is as shown in Table 1.12.

It can be verified that (x1, x3, x4, −z) is a feasible basic vector for the problem. The
corresponding basis B and its inverse B−1 are

B =

⎛
⎜⎜⎝

2 1 0 0
1 0 1 0
1 0 0 0

−15 0 0 1

⎞
⎟⎟⎠ , B−1 =

⎛
⎜⎜⎝

0 0 1 0
1 0 −2 0
0 1 −1 0
0 0 15 1

⎞
⎟⎟⎠

So the corresponding primal BFS is given by: x2 = x5 = 0, (x1, x3, x4, −z)T = B−1(1500,
1200, 500, 0)T = (500, 700, 500, 7500)T .

From the last row of B−1 we see that the corresponding dual basic solution is π =
(0, 0, −15).

TABLE 1.12 Original Tableau for Fertilizer Problem
x1 x2 x3 x4 x5 −z RHS

2 1 1 0 0 0 1500
1 1 0 1 0 0 1200
1 0 0 0 1 0 500

−15 −10 0 0 0 1 0

xj ≥ 0 for all j, min z
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TABLE 1.13 Pivot Step to Update B−1

B−1 PC

0 0 1 0 0
1 0 −2 0 1
0 1 −1 0 1
0 0 15 1 −10
0 0 1 0 0
1 −1 −1 0 0
0 1 −1 0 1
0 10 5 1 0

So, the relative cost vector is c = (0, 0, 15, 1)(the matrix consisting of columns of x1 to x5
in Table 1.12) = (0, −10, 0, 0, 0) �≥ 0. So, x2 is the only eligible variable to enter; we select it
as the entering variable. The pivot column = updated column of x2 = B−1(orginal column
of x2) = (0, 1, 1,−10)T .

The minimum ratio θ = min {700/1,500/1} = 500, attained for r = 3. So the third basic
variable in the present basic vector, x4, is the dropping variable to be replaced by x2. So,
the next basic vector will be (x1, x3, x2, −z). To update the basis inverse we perform the
pivot step with the pivot element enclosed in a box. PC = pivot column (Table 1.13).

So the bottom matrix on the left is the basis inverse associated with the new basic vector
(x1, x3, x2, −z). It can be verified that the BFS associated with this basic vector is given
by: x4 = x5 = 0, (x1, x3, x2, −z) = (500, 200, 500, 12,500).

Hence, in this pivot step the objective function to be minimized in this problem, z, has
decreased from −7500 to −12,500. The method now goes to another step with the new basic
vector, and repeats until it terminates.

The method is initiated with a known feasible basic vector. If no feasible basic vector
is available, a Phase I problem with a known feasible basic vector is set up using artificial
variables; solving the Phase I problem by the same method either gives a feasible basic
vector for the original problem, or concludes that it is infeasible.

1.6.2 Interior Point Methods for LP

Even though a few isolated papers have discussed some interior point approaches for LP as
early as the 1960s, the most explosive development of these methods was triggered by the
pioneering paper by Karmarkar (1984). In it he developed a new interior point method for
LP, proved that it is a polynomial time method, and outlined compelling reasons why it
has the potential to be also practically efficient and likely to beat the simplex method for
large-scale problems. In the tidal wave that followed, many different interior point methods
were developed. Computational experience has confirmed that some of them do offer an
advantage over the simplex method for solving large-scale sparse problems.

We will briefly describe a popular method known as the primal-dual path following interior
point method from Wright (1996). It considers the primal LP: minimize cT x, subject to
Ax = b, x≥ 0; and its dual in which the constraints are: AT y + s = c, s≥ 0, where A is a
matrix of order m ×n and rank m (in Section 1.5, we used the symbol c to denote s). The
system of primal and dual constraints put together is:

Ax= b
AT y + s = c

(x, s) ≥ 0
(1.7)

In LP literature, a feasible solution (x, y, s) to Equation 1.7 is called an interior feasible
solution if (x, s) > 0. Let F denote the set of all feasible solutions of Equation 1.7, and F0 the
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set of all interior feasible solutions. For any (x, y, s) ∈ F0 define X = diag (x1, . . ., xn), the
square diagonal matrix of order n with diagonal entries x1, . . ., xn; and S = diag (s1, . . ., sn).

The Central Path

This path, C, is a nonlinear curve in F0 parametrized by a positive parameter τ > 0. For
each τ > 0, the point (xτ , yτ , sτ ) ∈ C satisfies: (xτ , sτ ) > 0 and

AT yτ + sτ = cT

Axτ = b
xτ

j sτ
j = τ, j = 1, . . ., n

If τ = 0, the above equations define the optimality conditions for the LP. For each τ > 0,
the solution (xτ , yτ , sτ ) is unique, and as τ decreases to 0 the central path converges to
the center of the optimum face of the primal, dual pair of LPs.

Optimality Conditions

For the primal, dual pair of LPs under discussion, an (xr = (xr
j); yr = (yr

i ), sr = (sr
j)) of pri-

mal and dual feasible solutions is an optimum solution pair for the two problems iff xr
js

r
j = 0

for all j. These conditions are called complementary slackness optimality conditions.
We will use the symbol e to denote the column vector consisting of all 1s in Rn. From

optimality conditions, solving the LP is equivalent to finding a solution (x, y, s) satisfying
(x, s) ≥ 0, to the following system of 2n + m equations in 2n + m unknowns.

F (x, y, s) =

⎡
⎣AT y + s − c

Ax − b
XSe

⎤
⎦= 0 (1.8)

This is a nonlinear system of equations because of the last equation.

The General Step in the Method

The method begins with an interior feasible solution to the problem. If no interior feasible
solution is available to initiate the method, it could be modified into an equivalent problem
with an initial interior feasible solution by introducing artificial variables.

Starting with an interior feasible solution, in each step the method computes a direction
to move at that point, and moves in that direction to the next interior feasible solution,
and continues from there the same way.

Consider the step in which the current interior feasible solution at the beginning is (x, y, s).
So, (x, s) > 0. Also, the variables in y are unrestricted in sign in the problem.

Once the direction to move from the current point (x, y, s) is computed, we may move
from it only a small step length in that direction, and since (x, s) > 0, such a move in any
direction will take us to a point that will continue satisfying (x, s) > 0. So, in computing
the direction to move at the current point, the nonnegativity constraints (x, s) ≥ 0 can
be ignored. The only remaining conditions to be satisfied for attaining optimality are the
equality conditions (Equation 1.8). So the direction finding routine concentrates only on
trying to satisfy Equation 1.8 more closely.

Equation 1.8 is a square system of nonlinear equations; (2n + m) equations in (2n + m)
unknowns. It is nonlinear because the third condition in Equation 1.8 is nonlinear. Expe-
rience in nonlinear programming indicates that the best directions to move in algorithms
for solving nonlinear equations are either the Newton direction or some modified Newton
direction. So, this method uses a modified Newton direction to move. To define that, two
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parameters are used: µ (an average complementary slackness property violation measure) =
xT s/n, and σ ∈ [0,1] (a centering parameter). Then the direction for the move denoted by
(∆x, ∆y, ∆s) is the solution to the following system of linear equations

⎛
⎝0 AT I

A 0 0
S 0 X

⎞
⎠

⎛
⎝∆x

∆y
∆s

⎞
⎠ =

⎛
⎝ 0

0
−XSe + σµe

⎞
⎠

where 0 in each place indicates the appropriate matrix or vector of zeros, I the unit matrix
of order n, and e indicates the column vector of order n consisting of all 1s. If σ = 1, the
direction obtained will be a centering direction, which is a Newton direction toward the
point (xµ, yµ, sµ) on C at which the products xjsj of all complementary pairs in this
primal, dual pair of problems are =µ. Many algorithms choose σ from the open interval
(0,1) to trade off between twin goals of reducing µ and improving centrality.

Then take the next point to be (x̂, ŷ, ŝ) = (x, y, s) + α(∆x, ∆y, ∆s), where α is a positive
step length selected so that (x̂, ŝ) remains > 0.

With (x̂, ŷ, ŝ) as the new current interior feasible solution, the method now goes to the
next step.

It has been shown that the sequence of interior feasible solutions obtained in this method
converges to a point in the optimum face.

A Gravitational Interior Point Method for LP

This is a new type of interior point method discussed recently in Murty (2006). We will
describe the main ideas in this method briefly. It considers LP in the form: minimize
z(x) = cx subject to Ax ≥ b, where A is a matrix of order m ×n. Let K denote the set
of feasible solutions, and K0 its interior = {x:Ax > b}. Let Ai. denote the i-th row vector of
A; assume ||c||= ||Ai.||= 1 for all i.

This method also needs an interior feasible solution for initiating the method. Each iter-
ation in the method consists of two steps. We will discuss each of these steps.

Step 1: Centering step: Let x0 be the current interior feasible solution. The orthogonal
distance of the point x0 to the boundary hyperplane defined by the equation Ai.x= bi is
Ai.x

0 − bi for i= 1 to n. The minimum value of these orthogonal distances is the radius of
the largest sphere that can be constructed within K with x0 as center; hence its radius is
δ0 = min{Ai.x

0 − bi : i= 1, . . ., m}.

This step tries to move from x0 to another interior feasible solution on the objective
plane H0 = {x : cx = cx0} through x0, to maximize the radius of the sphere that can be
constructed within K with the center in H0 ∩K0. That leads to another LP: max δ subject
to δ ≤Ai.x− bi, i= 1, . . ., m, and cx = cx0.

In the method, this new LP is solved approximately using a series of line searches on
H0 ∩K0 beginning with x0. The directions considered for the search are orthogonal projec-
tions of normal directions to the facetal hyperplanes of K on the hyperplane {x : cx = 0},
which form the set: P = {P.i = (I − cT c)AT

i. : i= 1, . . ., m}. There are other line search direc-
tions that can be included in this search, but this set of directions has given excellent results
in the limited computational testing done so far.

Let xr be the current center. At xr, P.i ∈P is a profitable direction to move (i.e., this
move leads to a better center) only if all the dot products At.P.i for t ∈T have the same sign,
where T = {t : t ties for the minimum in {Aq.x

r − bq : q = 1, . . ., m}}. If P.i is a profitable
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direction to move at xr, the optimum step length is the optimum α in the following LP
in two variables θ, α: Max θ subject to θ −αAt.P.i ≤At.x

r − bt, t = 1, . . ., m, which can be
solved very efficiently by a special algorithm.

The line searches are continued either until a point is reached where none of the directions
in P are profitable, or the improvement in the radius of the sphere in each line search
becomes small.

Step 2: Descent Step: Let x be the final center in H0 ∩K0 selected in the centering step.
At x two descent directions are available, −cT and x− x̃, where x̃ is the center selected
in the previous iteration. Move from x̃ in the direction among these two that gives the
greatest decrease in the objective value, to within ∈ of the boundary, where ∈ is a tolerance
for interiorness.

If x∗ is the point obtained after the move, go to the next iteration with x∗ as the new
current interior feasible solution.

It has been proved that this method takes no more than O(m) iterations if the centering
step is carried out exactly in each iteration. The method with the approximate centering
strategy is currently undergoing computational tests. The biggest advantage of this method
over the others is that it needs no matrix inversions, and hence offers a fast descent method
to solve LPs whether they are sparse or not. Also, the method is not affected by any
redundant constraints in the model.

1.7 Software Systems Available for Solving LP Models

There are two types of software. Solver software takes an instance of an LP model as input
and applies one or more solution methods and outputs the results. Modeling software does
not incorporate solution methods; it offers a computer modeling language for expressing
LP models, features for reporting, model management, and application development, in
addition to a translator for the language. Most modeling systems offer a variety of bundled
solvers.

The most commonly talked about commercial solvers for LP are CPLEX, OSL, MATLAB,
LINDO, LOQO, EXCEL, and several others. The most common modeling software systems
are AMPL, GAMS, MPL, and several others.

Detailed information about these systems and their capabilities and limitations can be
obtained from the paper by Fourer (2005), and the Web sites for the various software systems
and their vendors are also given there.

Also, users can submit jobs to the NEOS server maintained by Argonne National Labo-
ratory and retrieve job results. See the Web site http://www-neos.mcs.anl.gov/for details.
You can see a complete list of currently available solvers and detailed information on each of
them at the Optimization Software Guide Web site (http://www-fp.mcs.anl.gov/otc/Guide/
SoftwareGuide/Categories/linearprog.html).

1.8 Multiobjective LP Models

So far we have discussed LP models for problems in which there is a well-defined single
objective function to optimize. But many real world applications involve several objec-
tive functions simultaneously. For example, most manufacturing companies are intensely
interested in attaining large values for several things, such as the company’s net profit, its
market share, and the public’s recognition of the company as a progressive organization.
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In all such applications, it is extremely rare to have one feasible solution that simulta-
neously optimizes all of the objective functions. Typically, optimizing one of the objective
functions has the effect of moving another objective function away from its most desirable
value. These are the usual conflicts among the objective functions in multiobjective models.
Under such conflicts, a multiobjective problem is not really a mathematically well-posed
problem unless information on how much value of one objective function can be sacrificed for
unit gain in the value of another is given. Such tradeoff information is usually not available,
but when it is available, it makes the problem easier to analyze.

Because of the conflicts among the various objective functions, there is no well-accepted
concept of optimality in multiobjective problems. Concepts like Pareto optima, or nondom-
inated solutions, or efficient points, or equilibrium solutions have been defined, and math-
ematical algorithms to enumerate all such solutions have been developed. Usually there
are many such solutions, and there are no well-accepted criteria to select one of them for
implementation, with the result that all this methodology remains unused in practice.

The most practical approach, and one that is actually used by practitioners is the goal
programming approach, originally proposed by Charnes and Cooper (1961, 1977), which
we will now discuss. This material is based on the section on goal programming in Murty
(2005b and manuscript under preparation).

Let c1x, . . ., ckx be the various objective functions to be optimized over the set of feasible
solutions of Ax = b, x≥ 0. The goal programming approach has the added conveniences that
different objective functions can be measured in different units, and that it is not necessary
to have all the objective functions in the same (either maximization or minimization) form.
So, some of the objective functions among c1x, . . ., ckx may have to be minimized, others
maximized.

In this approach, instead of trying to optimize each objective function, the decision maker
is asked to specify a goal or target value that realistically is the most desirable value for that
function. For r = 1 to k, let gr be the specified goal for crx.

At any feasible solution x, for r = 1 to k, we express the deviation in the r-th objective
function from its goal, crx− gr, as a difference of two nonnegative variables

crx − gr = u+
r − u−

r

where u+
r , u−

r are the positive and negative parts of the deviation crx− gr, that is,

u+
r =

{
0 if crx − gr ≤ 0

crx − gr if crx − gr > 0

u−
r =

{
0 if crx − gr ≥ 0

−(crx − gr) if crx − gr < 0

The goal programming model for the original multiobjective problem will be a single
objective problem in which we try to minimize a linear penalty function of these deviation
variables of the form

∑k
1 (αru

+
r + βru

−
r ), where αr, βr ≥ 0 for all r. We now explain how

the coefficients αr, βr are to be selected.
If the objective function crx is one which is desired to be maximized, then feasible solu-

tions x which make u−
r = 0 and u+

r ≥ 0 are desirable, while those which make u+
r = 0 and

u−
r > 0 become more and more undesirable as the value of u−

r increases. In this case u+
r mea-

sures the (desirable) excess in this objective value over its specified target, and u−
r measures

the (undesirable) shortfall in its value from its target. To guarantee that the algorithm seeks
solutions in which u−

r is as small as possible, we associate a positive penalty coefficient βr

with u−
r , and include a term of the form αru

+
r + βru

−
r (where αr = 0, βr > 0) in the penalty

function that the goal programming model tries to minimize. βr > 0 measures the loss or
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penalty per unit shortfall in the value of crx from its specified goal of gr. The value of βr

should reflect the importance attached by the decision maker for attaining the specified goal
on this objective function (higher values of βr represent greater importance). The coefficient
αr of u+

r is chosen to be 0 in this case because our desire is to see u+
r become positive as

far as possible.
If the objective function crx is one which is desired to be minimized, then positive values

for u−
r are highly desirable, whereas positive values for u+

r are undesirable. So, for these r
we include a term of the form αru

+
r + βru

−
r , where αr > 0 and βr = 0 in the penalty function

that goal programming model minimizes. Higher values of αr represent greater importance
attached by the decision maker to the objective functions in this class.

There may be some objective functions cr(x) in the original multiobjective problem for
which both positive and negative deviations are considered undesirable. For objective func-
tions in this class we desire values that are as close to the specified targets as possible. For
each such objective function we include a term αru

+
r + βru

−
r , with both αr and βr > 0, in

the penalty function that the goal programming model minimizes.
So, the goal programming model is the following single objective problem.

Minimize
k∑
1

(αru
+
r + βru

−
r )

subject to crx − gr = u+
r − u−

r , r = 1 to k

Ax= b

x, u+
r , u−

r ≥ 0, r = 1 to k

As this model is a single objective function linear program it can be solved by the algo-
rithms discussed earlier. Also, as all αr and βr ≥ 0, and from the manner in which the
values for αr, βr are selected, (u+

r )(u−
r ) will be zero for all r in an optimum solution of this

model; that is, u+
r = maximum{crx− gr, 0}, u−

r = minimum{0, −(crx− gr)} will hold for
all r. Hence solving this model will try to meet the targets set for each objective function,
or deviate from them in the desired direction as far as possible.

The optimum solution of this goal programming model depends critically on the goals
selected and on the choice of the penalty coefficients α = (α1, . . ., αk), β = (β1, . . ., βk).
Without any loss of generality we can assume that the vectors α, β are scaled so that∑k

r=1 (αr + βr) = 1. Then the larger an αr or βr, the more the importance the decision
maker places on attaining the goal set for cr(x). Again, there may not be universal agree-
ment among all the decision makers involved on the penalty coefficient vectors α, β to be
used; it has to be determined by negotiations among them. Once α and β are determined,
an optimum solution of the goal programming model is the solution to implement. Solving
it with a variety of penalty vectors α and β and reviewing the various optimum solutions
obtained may make the choice in selecting one of them for implementation easier. One can
also solve the goal programming model with different sets of goal vectors for the various
objective functions. This process can be repeated until at some stage, an optimum solu-
tion obtained for it seems to be a reasonable one for the original multiobjective problem.
Exploring with the optimum solutions of this model for different goal and penalty coeffi-
cient vectors in this manner, one can expect to get a practically satisfactory solution for
the multiobjective problem.

Example 1.7

As an example, consider the problem of the fertilizer manufacturer to determine the best
values for x1, x2, the tons of Hi-ph and Lo-ph fertilizer to manufacture daily, discussed in
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Example 1.2 (Section 1.2). There we considered only the objective of maximizing the net
daily profit, c1x= $(15x1 + 10x2).

Suppose the fertilizer manufacturer is also interested in maximizing the market share of
the company, which is usually measured by the total daily fertilizer sales of the company,
c2x= (x1 + x2) tons.

In addition, suppose the fertilizer manufacturer is also interested in maximizing the pub-
lic’s perception of the company as being one on the forefront of technology, measured by
the Hi-ph tonnage sold by the company daily, c3x= x1tons. So, we now have three objective
functions c1x, c2x, c3x, all to be maximized simultaneously, subject to the constraints in
Equation 1.2.

Suppose the company has decided to set a goal of g1 = $13,000 for daily net profit;
g2 = 1150 tons for total tonnage of fertilizer sold daily; and g3 = 400 tons for Hi-ph ton-
nage sold daily. Also, suppose the penalty coefficients associated with shortfalls in these
goals are required to be 0.5, 0.3, 0.2, respectively. With this data, the goal programming
formulation of this problem, after transferring the deviation variables to the left-hand side, is

Minimize 0.5u−
1 + 0.3u−

2 + 0.2u−
3

subject to 15x1 + 10x2 + u−
1 − u+

1 = 13, 000
x1 + x2 + u−

2 − u+
2 = 1150

x1 + u−
3 − u+

3 = 400
2x1 + x2 ≤ 1500
x1 + x2 ≤ 1200
x1 ≤ 500
x1, x2, u−

1 , u+
1 , u−

2 , u+
2 u−

3 , u+
3 ≥ 0

�

An optimum solution of this problem is x̂= (x̂1, x̂2)T = (350, 800)T . x̂ attains the goals
set for net daily profit and total fertilizer tonnage sold daily, but falls short of the goal on
the Hi-ph tonnage sold daily by 50 tons. x̂ is the solution for this multiobjective problem
obtained by goal programming, with the goals and penalty coefficients given above.
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2.1 Introduction

Nonlinear programming is the study of problems where a nonlinear function has to be
minimized or maximized over a set of values in R

n delimited by several nonlinear equal-
ities and inequalities. Such problems are extremely frequent in engineering, science, and
economics. Since World War II, mathematicians have been engaged to solve problems of
resource allocation, optimal design, and industrial planning involving nonlinear objective
functions as well as nonlinear constraints. These problems required the development of new
algorithms that have been benefited with the invention of digital computers. This chapter
is concentrated on presenting the fundamentals of deterministic algorithms for nonlinear
programming. Our purpose is to present a summary of the basic algorithms of nonlinear
programming. A pseudocode for each algorithm is also presented. We believe that our pre-
sentation in terms of a fast cookbook for nonlinear programming algorithms can benefit the
practitioners of operations research and management science.

The chapter is organized as follows. In Section 2.1.1, the definition of the general nonlinear
programming problem is discussed. In Section 2.1.2, optimization techniques are discussed.
In Section 2.2, nonlinear deterministic techniques for unconstrained optimization are dis-
cussed. Constrained optimization techniques are discussed in Section 2.3. Finally, Section 2.4
concludes the chapter.

2.1.1 Problem Statement

Let X ⊆ R
n with n ∈ N*. Consider the following optimization problem with equality and

inequality constraints:

minimize
x ∈ X

f(x)

subject to g(x) ≤ 0
h(x) = 0

(2.1)

2-1
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where f : X → R
m, g: X → R

p, and h: X → R
q with (m, p, q) ∈ N

3. The vector function f is
called the objective function, the vector function g is called the inequality constraint function,
and the vector function h is called the equality constraint function. The vector x∈ X is called
the optimization variable. If x is such that the constraints of problem (2.1) hold, then x is
called a feasible solution. Some problems generalize the above formulation and consider f,
g, and h to be random vectors. In this case, we have a stochastic optimization problem. By
opposition we may say that problem (2.1) is a deterministic optimization problem.

The categories of problems vary with the choices of X, m, p, and q. If p = q = 0 then
we say that we have an unconstrained optimization problem. Conversely, if one of q or p
is nonzero then we say that we have a constrained optimization problem. The categories of
problems when m varies are the following:

• If m = 0 we have a feasibility problem.
• If m = 1 we have a classical optimization problem. The space of feasible solutions

is called the feasible set. If a vector x is a feasible solution such that f(x) ≤ f(x)
for every x∈ X, then x is called optimal solution and f(x) is called optimal value.
If X is continuous and if the objective function is convex then we have a convex
optimization problem that belongs to a very important category of optimization
problems.

• If m ≥ 2 then the above problem is a multiobjective optimization problem where
the space of feasible solutions is called decision space. The optimality notion in
the case m = 1 is replaced by the Pareto optimality and “optimal” solutions are
said to be Pareto optimal. A feasible solution x is Pareto optimal if for every x
in the decision space we have fi(x) ≤ fi(x) for every i∈ [1, m].

If X⊆ Z
n then we have an integer optimization problem. If only some of the components of

the optimization variables are integers then we have a mixed-integer optimization problem.
In the other cases we have a continuous optimization problem.

Most of the optimization problems found in the literature deal with the case m = 1 for
deterministic optimization problems. From now on, we will always consider this case in all of
the following discussions. In this class of optimization problems we have many subcategories
that depend on the choice of f and the choice of the constraint functions. The most common
cases are:

• The objective function f and the constraint functions g and h are linear. In this
case we have a linear optimization problem.

• The objective function f is quadratic and the constraint functions g and h are
linear. In this case we have a quadratic optimization problem.

• The objective function f is quadratic and the constraint functions g and h are
quadratic. In this case we have a quadratically constrained quadratic optimization
problem.

• The objective function f is linear and subject to second-order cone constraints
(of the type ||Ax+b||2 ≤ 〈c ·x〉 + d). In this case we have a second-order cone
optimization problem.

• The objective function f is linear and subject to a matrix inequality. In this case
we have a semidefinite optimization problem.
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• The objective function f and the constraint functions g and h are nonlinear. In
this case we have a nonlinear optimization problem.

We will be dealing with the latter case in this chapter.

2.1.2 Optimization Techniques

There are three major groups of optimization techniques in nonlinear optimization.
These techniques are summarized in the following list:

Deterministic techniques: These methods are commonly used in convex optimiza-
tion. Convex nonlinear optimization problems have been extensively studied in
the last 60 years and the literature is now thriving with convergence theorems
and optimality conditions for them. The backbone of most of these methods is the
so-called descent algorithm. The steepest descent method, the Newton method,
the penalty and barrier methods, and the feasible directions methods fall in this
group.

Stochastic techniques: These methods are based on probabilistic meta-algorithms.
They seek to explore the feasibility region by moving from feasible
solutions to feasible solutions in directions that minimize the objective value.
They have been proved to converge toward local minima by satisfying certain
conditions. Simulated annealing is an example of a stochastic technique (see
Refs. [30,36,47]).

Heuristic strategies: These methods are based on heuristics for finding good feasible
solutions to very complicated optimization problems. They may not work for
some problems and their behavior is not yet very well understood. They are
used whenever the first two groups of techniques fail to find solutions or if these
techniques cannot be reasonably used to solve given problems. Local searches
and swarm intelligence are some of the numerous heuristic techniques introduced
in the past few years (see Refs. [9,12,20,21,47]).

2.2 Unconstrained Optimization

In this section, several common algorithms for continuous nonlinear convex optimization are
reviewed for the cases where no constraints are present. Section 2.2.1 reviews the most usual
line searches and Section 2.2.2 presents methods for optimizing convex functions on R

n.

2.2.1 Line Searches

The purpose of line searches is to locate a minimum of real-valued functions over an interval
of R. They are extremely fundamental procedures that are frequently used as subroutines
in other optimization algorithms based on descent directions. The objective function f is
required to be strictly unimodal over a specified interval [a, b] of R; that is, there exists a
x that minimizes f over [a, b] and for every (x1, x2) ∈ [a, b]2 such that x1 < x2 we have that
x≤x1 ⇒ f(x1) < f(x2) and x2 ≤x⇒ f(x2) < f(x1). Depending on the line search method,
f may need to be differentiable.
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There are at least three types of line searches:

• Line searches based on region elimination. These methods exploit the assumption
of strict unimodality to sequentially shrink the initial interval until it reaches a
negligible length. The Fibonacci search and the bisection search are very suc-
cessful line search methods (see the sections “Fibonacci Search” and “Bisection
Search”).

• Lines searches based on curve fitting. These methods try to exploit the shape of
the objective function to accelerate the bracketing of a minimum. The quadratic
fit line search and the cubic fit line search are very popular curve fitting line
searches (see the section “Quadratic Fit Search”).

• Approximated line searches. Contrary to the above line searches, these methods
try to find acceptable “minimizers” with the minimum function evaluations pos-
sible. This is often necessary when it is computationally difficult to evaluate the
objective function. The backtracking search is an approximated line search that
is adapted with a different set of stopping rules (notably the popular Armijo’s
rule). See Algorithm 2.5.

Bracketing of the Minimum

Line searches often require an initial interval containing a minimum to be provided before
starting the search. The following technique provides a way to bracket the minimum of a
strictly unimodal function defined over an open interval of R. It starts from an initial point
belonging to the domain of definition of the objective function and exploits the strict uni-
modality assumption to gradually expand the length of an inspection interval by following
the decreasing slope of the function. It stops if the initial point does not belong to the
domain of definition or whenever the slope of the function increases.

Algorithm 2.1 is a modified version of a method credited to Swann [52]. This vari-
ant can handle strictly unimodal functions that are defined on an open interval of R

with the supplementary assumption that their values are ∞ outside this interval. Such
modification is quite useful when this bracketing technique is used with barrier func-
tions (see the section “Sequential Unconstrained Minimization Techniques”). This method
requires only functional evaluations and a positive step parameter δ. It starts from an
initial point x, determines the decreasing slope of the function (lines 1–11), and then
detects a change in the slope by jumping successively on the domain of definition by a
step length of δ times a power of 2 (lines 12–18). If the current test point is feasible,
then the step length at the next iteration will be doubled. Otherwise the step length will
be halved.

Fibonacci Search

The Fibonacci line search is a derivative-free line search based on the region elimination
scheme that finds the minimizer of a strictly unimodal function on a closed bounded interval
of R. This method is credited to Kiefer [29]. As the objective function is strictly unimodal,
it is possible to eliminate successively parts of the initial interval by knowing the objective
function value at four different points of the interval. The ways to manage the locations
of the test points vary with the region-elimination-based line searches but the Fibonacci
search is specially designed to reduce the initial interval to a given length with the minimum
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Algorithm 2.1: Modified Swann’s bracketing method.

Input: function f , starting point x, step parameter δ > 0.
Output: interval bracketing the minimum.
k ← 1, fail← k, δa ← δ, δb ← δ, if f(x) = ∞ then return Ø;1

repeat2

ak ← x− δa, if f(ak) = ∞ then δa ← δa/2, fail← k + 1;3

until f(ak) <∞;4

repeat5

bk ← x+ δb, if f(bk) = ∞ then δb ← δb/2, fail← k + 1;6

until f(bk) <∞;7

if f(x) ≤ f(ak) and f(x) ≤ f(bk) then return [ak, bk];8

ak+1 ← x;9

if f(x) ≤ f(bk) then bk+1 ← ak, δ ← δa, σ ← −1;10

else bk+1 ← bk, δ ← δb, σ ← 1;11

while f(bk+1) < f(ak+1) do12

k ← k + 1, ak+1 ← bk, if fail = k then δ ← δ/2 else δ ← 2δ;13

repeat14

bk+1 ← bk + σδ, if f(bk+1) = ∞ then δ ← δ/2, fail← k + 1;15

until f(bk+1) <∞;16

end17

if σ > 0 then return [ak, bk+1] else return [bk+1, ak];18

number of functional evaluations. The Fibonacci search is notably slightly better than the
golden section search for reducing the search interval.

As its name suggests, the method is based on the famous Fibonacci sequence (Fn)n∈N

defined by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn for n ∈ N. The test points are chosen such
that the information about the function obtained at the previous iteration is used in the
next. In this way the search requires only a single functional evaluation per iteration in its
main loop. Contrary to the golden section search with which the Fibonacci search is almost
identical, the reduction interval ratio at each iteration varies.

Algorithm 2.2 implements the Fibonacci search. The method requires only functional
evaluations and an initial interval [a, b]. It is assumed that a termination scalar ε > 0 that
represents the maximum length of the final bracketing interval is given. It is suggested that
ε should be at least equal to the square root of the spacing of floating point numbers [46].
The algorithm determines first the needed number of iterations (line 1) of its main loop
(lines 3–10). Then it returns the mid-point of the final bracketing interval as an estimation
of the minimizer of the objective function (line 11). The region-elimination scheme is loosely
the following: if the functional values are greater on the left of the current interval (line 5),
then the leftmost part is deleted and a new test point is created on the right part (line 6).
Conversely, if the functional values are greater on the right (line 7) then the rightmost part
is deleted and a new test point on the left is created (line 8). Naturally this scheme works
only for strictly unimodal functions.

Bisection Search

Like the Fibonacci search, the bisection search is based on the region elimination scheme.
Unlike the Fibonacci search, it requires the objective function to be differentiable and
performs evaluations of the derivative of f . The bisection search, which is sometimes referred
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Algorithm 2.2: Fibonacci search.

Input: function f , initial interval [a, b].
Output: approximated minimum.
Data: termination parameter ε.
k ← 0, determine n > 2 such that Fn > (b − a)/ε;1

u ← a + (Fn−2/Fn)(b − a), v ← a + (Fn−1/Fn)(b − a);2

while k < n − 2 do3

k ← k + 1;4

if f(u) > f(v) then5

a← u, u ← v, v ← a + (Fn−k−1/Fn−k)(b − a);6

else7

b ← v, v ← u, u ← a + (Fn−k−2/Fn−k)(b − a);8

end9

end10

if f(u) > f(u + ε/2) then return (u + b)/2 else return (a + u)/2;11

to as the Bolzano search, is one of the oldest line searches. It finds the minimizer of a pseu-
doconvex function on a closed bounded interval [a, b] of R. A differentiable function is said
to be pseudoconvex on an open set X of R

n if for every (x1, x2) ∈X2 such that 0 ≤ ∇f(x1)t

(x2 −x1), we have f(x1) ≤ f(x2). A pseudoconvex function is strictly unimodal. In our case
n = 1, therefore, a real-valued function f is pseudoconvex if for every (x1, x2) ∈ (a, b)2 such
that 0 ≤ df(x1)(x2 −x1) we have f(x1) ≤ f(x2).

Algorithm 2.3 implements the bisection search. This search uses the information conveyed
by the derivative function to sequentially eliminate portions of the initial bracketing interval
[a, b]. The algorithm determines first the needed number of iterations (line 1) of its main loop
(lines 2–8). Then it returns the mid-point of the final bracketing interval as an estimation
of the minimizer of the objective function (line 9). The main loop works like the main loop
of the Fibonacci search: if the derivative value at the mid-point is strictly positive then the
rightmost part of the current interval is deleted; otherwise if the derivative value is strictly
negative then the leftmost part is deleted (line 6). In the case where the derivative value at
the mid-point is null then the algorithm stops as it has reached optimality (line 4).

Algorithm 2.3: Bisection search.

Input: derivative function df, initial interval [a, b].
Output: approximated minimum.
Data: termination parameter ε.
k ← 0, determine n ≥ 0 such that 2n ≥ (b − a)/ε;1

while k < n do2

k ← k + 1, u← (a + b)/2;3

if df (u) = 0 then return u;4

else5

if df (u) > 0 then b ← u else a← u;6

end7

end8

return (a + b)/2;9
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Quadratic Fit Search

The quadratic fit search tries to interpolate the location of the minimum of a strictly
unimodal function at each iteration and refines in this way the location of the true minimizer.
In a way, this method tries to guess the shape of the function to fasten the search for the
minimizer. This method requires only functional evaluations. Nevertheless, it is sometimes
used in conjunction with the bisection search when the derivative of the objective function
is available. Another curve fitting line search based on the cubic interpolation of f is also
available. However, this method requires f to be differentiable and may sometimes face
severe ill-conditioning effects.

The implementation of the quadratic fit search is shown in Algorithm 2.4. Using three
starting points x1 < x2 < x3 with f(x2) ≤ f(x1) and f(x2) ≤ f(x3), the method finds a min-
imizer of the quadratic interpolation function (lines 2–4), then corrects its position (lines
5–8) and updates the values of x1, x2, and x3 with some sort of region-elimination scheme
(lines 9–13). Once the main loop is completed (lines 1–14), the minimizer is estimated by
x2 (line 15).

Algorithm 2.4: Quadratic fit search.

Input: function f , starting points x1 < x2 < x3 with f(x2) ≤ f(x1) and f(x2) ≤ f(x3).
Output: approximated minimum.
Data: termination parameter ε.
while x3 −x1 > ε do1

a1 ← x2
2 −x2

3, a2 ← x2
3 −x2

1, a3 ← x2
1 −x2

2;2

b1 ← x2 −x3, b2 ← x3 −x1, b3 ← x1 −x2;3

x← (a1f(x1) + a2f(x2) + a3f(x3))/(2(b1f(x1) + b2f(x2) + b3f(x3)));4

if x= x2 then5

if x3 −x2 ≤x2 −x1 then x← x2 − ε/2 else x← x2 + ε/2;6

end7

if x > x2 then8

if f(x) ≥ f(x2) then x3 ← x else x1 ← x2, x2 ← x;9

else10

if f(x) ≥ f(x2) then x1 ← x else x3 ← x2, x2 ← x;11

end12

end13

return x2;14

Backtracking Search

The backtracking search is an approximated line search that aims to find acceptable (and
positive) scalars that will give low functional values while trying to perform the least num-
ber of functional evaluations possible. It is often used when a single functional evaluation
requires non-negligible computational resources. This line search does not need to be started
with an initial interval bracketing the minimum. Instead it just needs a (positive) guess value
x1 that belongs to the domain of definition of the objective function. It is important to notice
that this approach will look for acceptable scalars that have the same sign of the initial guess.

The backtracking line search has many different stopping criteria. The most famous one
is Armijo’s condition [1] that uses the derivative of f to check that the current test scalar
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x is giving “enough” decrease in f . Armijo’s condition is sometimes coupled with a supple-
mentary curvature condition on the slope of f at x. These two conditions are better known
as the Wolfe conditions (see Ref. [39]). There exist many refinements for the backtracking
search, notably safeguard steps that ensure that the objective function is well defined at
the current test scalar. These safeguard steps are useful whenever barrier functions are used
(see the section “Sequential Unconstrained Minimization Techniques”).

Algorithm 2.5 is a straightforward implementation of the backtracking search with
Armijo’s condition. Depending on whether Armijo’s condition is satisfied or not (line 2),
the initial guess is sequentially doubled until Armijo’s condition does not hold any longer
(line 3). This loop actually tries to avoid the solution to be too close to zero. Once the loop
is over, the previous solution is returned (line 4). Conversely, if Armijo’s condition does not
hold for the initial guess, the current scalar is sequentially halved until Armijo’s condition
is restored (line 6). It is important to note that the sequence generated by this algorithm
consists only of positive scalars.

Algorithm 2.5: Backtracking search with Armijo’s condition.

Input: function f , derivative df, initial guess x1 > 0.
Output: acceptable step length.
Data: parameters 0 < c < 1 (usually c = 0.2).
k ← 0;1

if f(xk+1) ≤ f(0) + cxk+1 df (0) then2

repeat k ← k + 1, xk+1 ← 2xk until f(xk+1) > f(0) + cxk+1 df (0);3

return xk;4

else5

repeat k ← k + 1, xk+1 ← xk/2 until f(xk+1) ≤ f(0) + cxk+1 df (0);6

return xk+1;7

end8

2.2.2 Multidimensional Optimization

There exist several strategies for optimizing a convex function f over R
n. Some of them

require derivatives, while others do not. However, almost all of them require a line search
inside their main loop. They can be categorized by the following:

• Methods without derivatives:

– Simplex Search method or S2 method: see the section “Simplex Search Method.”
– Pattern search methods: see the section “The Method of Hooke and Jeeves.”
– Methods with adaptive search directions: see the section “The Method of

Rosenbrock” and “The Method of Zangwill.”

• Methods with derivatives:

– Steepest descent method: see the section “Steepest Descent Method.”
– Conjugate directions methods: see the section “Method of Fletcher and Reeves”

and “Quasi-Newton Methods.”
– Newton-based methods: see the section “Levenberg–Marquardt Method.”

Concerning recent works on methods without derivatives, the reader might be interested in
the paper of Lewis et al. [33] and the article of Kolda et al. [31].
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Simplex Search Method or S2 Method

The original simplex search method (which is different from the simplex method used in
linear programming) is credited to Spendley et al. [51]. They suggested sequentially trans-
forming a nondegenerate simplex in R

n by reflecting one of its vertices through the centroid
at each iteration and by re-initializing this simplex if it remains unchanged for a certain
number of iterations. In this way it takes at most n + 1 iterations to find a downhill direction.
Nelder and Mead [37,38] proposed a variant where operations like expansion and contraction
are allowed.

Algorithm 2.6 implements the simplex search of Nelder and Mead. First, with the help
of a scalar c > 0, a simplex S is created from a base point x1 ∈ R

n (lines 1–3). Then while
the size of the simplex S is greater than some critical value (line 4), the extremal functional
values at the vertex of S are taken (line 5). The vertex with the maximum functional value
is identified as xM and the vertex with the lowest functional value is identified as xm. Then
the centroid x of the polyhedron S\{xM} is computed and the reflexion of xm through x,
denoted by xr, is computed (line 6). If the functional value at the reflexion point is smaller
than the smallest functional value previously computed (line 7), then the expansion of the
centroid x through the reflexion point is computed and stored in xe. Then the vertex xM

is replaced by the expansion point if the functional value at the expansion point is less
than the functional value at the reflexion point. Otherwise the vertex xM is replaced by the
reflexion point (line 8). If line 7 is incorrect then the vertex xM is replaced by the reflexion
point if the functional value at that point is smaller than the greatest functional value at
S\{xM} (line 10). Otherwise a contraction point xc is computed (line 12) and the simplex S

Algorithm 2.6: Nelder and Mead simplex search method.

Input: function f , starting point x1 ∈ R
n, simplex size c > 0.

Output: approximated minimum.
Data: termination parameter ε, coefficients α > 0 (reflexion), 0< β < 1 (contraction),

γ > 1 (expansion) (α = 1, β = 0.5, γ = 2).
a← c(

√
n + 1 +n − 1)/(n

√
2), b ← c(

√
n + 1 − 1)/(n

√
2);1

for i∈ [1, n] do di ← b1n, (di)i ← a, xi+1 ← x1 +di;2

S = {x1, . . ., xn+1};3

while size(S) ≥ critical value(ε) do4

xm = argminx∈Sf(x), xM = argmaxx∈Sf(x);5

x← 1
n

∑n+1
i=1,i �=M xi,xr ←x+ α(x−xM );6

if f(xm) > f(xr) then7

xe ←x+ γ(xr −x), if f(xr) > f(xe) then xM ←xe else xM ←xr;8

else9

if maxi∈[1,n+1],i �=Mf(xi) ≥ f(xr) then xM ←xr;10

else11

x̂= argminx∈{xr,xM }f(x), xc ←x+ β(x̂−x);12

if f(xc) > f(x̂) then for i∈ [1, n + 1] do xi ←xi + (xm −xi)/2;13

else xM ←xc;14

end15

end16

end17

return 1
n + 1

∑n+1
i=1 xi;18
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is either contracted (line 13) or the vertex xM is replaced by the contraction point (line 14).
Once the main loop is completed, the centroid of the simplex is returned as an estimation
of the minimum of f (line 18).

The Method of Hooke and Jeeves

The method of Hooke and Jeeves [27] is a globally convergent method that embeds a pattern
search that tries to guess the shape of the function f to locate an efficient downhill direction.

Algorithm 2.7 implements a variant of the method of Hooke and Jeeves, found in Ref. [2],
which uses line searches that are used at different steps. Line 3 implements the pattern
search: after calculating a downhill direction d, a line search minimizes the functional value
from the current test point xk+1 along the direction d. The result is stored at the point z1
(line 4). Then, starting from z1, a cyclic search along each coordinate direction iteratively
locates a minimizer of f and updates the elements of the sequence (zi)i∈[1,n+1] (line 5). This
step is an iteration of the cyclic coordinate method (see Ref. [2]). The Hooke and Jeeves
method is a combination of a pattern search (line 3) with the cyclic coordinate method
(lines 4–6).

Algorithm 2.7: Method of Hooke and Jeeves.

Input: function f , starting point x1 ∈ R
n.

Output: approximated minimum.
Data: termination parameter ε, coordinate directions (e1, . . ., en).
k ← 0, xk ←0;1

repeat2

d←xk+1 −xk, if k = 0 then λ ← argminλ∈R f(xk+1 + λd) else λ ← 0;3

k ← k + 1, z1 ←xk + λd;4

for i∈ [1, n] do λ ← argminλ∈Rf(zi + λei), zi+1 ← zi + λei;5

xk+1 ← zn+1;6

until ||xk+1 −xk||∞ < ε;7

return xk+1;8

The Method of Rosenbrock

The method of Rosenbrock [48] bears a similarity to the method of Hooke and Jeeves: it
uses the scheme of the cyclic coordinate method in conjunction with a step that optimizes
the search directions. At each step the set of search directions is rotated to best fit the shape
of function f . Like the method of Hooke and Jeeves, the method of Rosenbrock is globally
convergent in convex cases. This method is also considered to be a good minimization
technique in many cases.

Algorithm 2.8 implements a variant of the method of Rosenbrock, found in Ref. [2], which
uses line searches. Lines 11–13 are almost identical to lines 4–6 of the method of Hooke and
Jeeves: this is the cyclic coordinate method. Lines 3–10 implement the Gram–Schmidt
orthogonalization procedure to find a new set of linearly independent and orthogonal direc-
tions adapted to the shape of the function at the current point.

The Method of Zangwill

The method of Zangwill [53] is a modification of the method of Powell [42], which originally
suffered from generating dependent search directions in some cases. The method of Zangwill
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Algorithm 2.8: Method of Rosenbrock.

Input: function f , starting point x1 ∈ R
n.

Output: approximated minimum.
Data: termination parameter ε, coordinate directions (e1, . . ., en).
k ← 0;1

repeat2

if k = 0 then3

for i∈ [1, n] do4

if λi = 0 then ai ← ei else ai ←
∑n

�=i λ�e�;5

if i= 1 then bi ←ai else bi ←ai −
∑i=1

�=1 (at
id�)d�;6

di ←bi/||bi||;7

end8

for i∈ [1, n] do ei ←di;9

end10

k ← k + 1, z1 ←xk;11

for i∈ [1, n] do λi ← argminλ∈ Rf(zi + λei), zi+1 ← zi + λiei;12

xk+1 ← zn+1;13

until ||xk+1 −xk||∞ < ε;14

return xk+1;15

uses steps of the method of Hooke and Jeeves in its inner loop and, like the method of
Rosenbrock, it is sequentially modifying the set of search directions in order to best fit the
shape of the function f at the current point. This method is globally convergent in the
convex cases and is considered to be a quite good minimization method.

Algorithm 2.9 is implementing the method of Zangwill. In the main loop (lines 2–15), a
set of n linearly independent search directions are generated at each iteration (lines 4–13).
To generate a new search direction, a pattern search similar to the one of the method of
Hooke and Jeeves is completed (lines 5–6). The first search direction is discarded and the
pattern direction is inserted in the set of search directions (lines 8–9). Then to avoid the
generation of dependent search directions, the starting point of the next pattern search is
moved away by one iteration of the cyclic coordinate method (lines 9–11). After n iterations
of the inner loop (lines 4–13), a set of n independent search directions adapted to the shape
of f is generated and the last point generated by the last pattern search is the starting
point of a new iteration of the main loop (line 14).

Steepest Descent Method

The steepest descent method is a globally convergent method and an elementary minimiza-
tion technique that uses the information carried by the derivative of f to locate the steepest
downhill direction. Algorithm 2.10 implements the steepest descent method. Note that the
line search requires the step length to be positive. In this case approximate line searches
with Wolfe’s conditions can be used.

The steepest descent method is prone to severe ill-conditioning effects. Its convergence
rate can be extremely slow in some badly conditioned cases. It is known for producing
zigzagging trajectories that are the source of its bad convergence rate. To get rid of the
drawback of the steepest descent method, the other methods based on the derivative of
f correct the values of the gradient of f at the current point of the iteration by a linear
operation (also called deflection of the gradient).
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Algorithm 2.9: Method of Zangwill.

Input: function f , starting point x1 ∈ R
n.

Output: approximated minimum.
Data: termination parameter ε, coordinate directions (e1, . . ., en).
k ← 0, for i∈ [1, n] do di ← ei;1

repeat2

k ← k + 1, y1 ←xk, z1 ←xk;3

for i∈ [1, n] do4

for j ∈ [1, n] do λ ← argminλ∈R f(zj + λdj), zj+1 ← zj + λdj ;5

d← zn+1 − z1, λ ← argminλ∈R f(zn+1 + λd), yi+1 ← zn+1 + λd;6

if i < n then7

for j ∈ [1, n − 1] do dj ←dj+1;8

dn ←d, z1 ←yi+1;9

for j ∈ [1, n] do λ ← argminλ∈Rf(zj + λej), zj+1 ← zj + λej ;10

z1 ← zn+1;11

end12

end13

xk+1 ←yn+1;14

until ||xk+1 −xk||∞ < ε;15

return xk+1;16

Algorithm 2.10: Steepest descent method.

Input: function f , gradient ∇f , starting point x.
Output: approximated minimum.
Data: termination parameter ε.
while ||∇f(x)|| ≥ ε do1

d← −∇f(x), λ ← argmin λ∈R+ f(x+ λd),x←x+ λd;2

end3

return x;4

The Method of Fletcher and Reeves

The method of the conjugate gradient of Fletcher and Reeves [19] is based on the mecha-
nisms of the steepest descent method and implements a technique of gradient deflection. It
was derived from a method proposed by Hestenes and Stiefel [26].

This method uses the notion of conjugate directions. In other words, given an n ×n
symmetric positive definite matrix H, the n linearly independent directions d1, . . .,dn of
R

n are H-conjugate if dt
iHdj = 0 for every i = j. In the quadratic case, if d1, . . .,dn are

conjugate directions with the Hessian matrix H, the function f at any point of R
n can

be decomposed into the summation of n real-valued functions on R. Then n line searches
along the conjugate directions are sufficient to obtain a minimizer of f from any point of
R

n. The method of Fletcher and Reeves iteratively constructs conjugate directions while
at the same time it deflects the gradient. In the quadratic case, the method should stop
in at most n iterations. Nevertheless, while this technique may not be as efficient as oth-
ers, it requires modest memory resources and therefore it is suitable for large nonlinear
problems.
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The method of Fletcher and Reeves is implemented in Algorithm 2.11. While the increase
of f at the current point is still non-negligible (line 2), a procedure that has some similarities
with the cyclic coordinate method is repeated (lines 3–8). The method goes on by producing
a sequence of points that minimize f along each conjugate direction (line 3) and the next
conjugate direction that deflects the gradient is computed at line 5. As in the steepest
descent method, the line search at line 3 requires the step length to be positive. In this case
approximate line searches with Wolfe’s conditions can be used. Then whenever n consecutive
conjugate directions are generated, the method is restarted (line 7).

Algorithm 2.11: Method of the conjugate gradient of Fletcher and Reeves.

Input: function f , gradient ∇f , starting point x.
Output: approximated minimum.
Data: termination parameter ε.
i← 1, zi ←x, di ← −∇f(zi);1

while ||∇f(zi)|| ≥ ε do2

λ ← argminλ∈R+f(zi + λdi), zi+1 ← zi + λdi;3

if i < n then4

α ← ||∇f(zi+1)||2/||∇f(zi)||2, di+1 ← −∇f(zi+1) + αdi, i← i+ 1;5

else6

x← zn+1, i← 1, zi ←x, di ← −∇f(zi);7

end8

end9

return x;10

Other conjugate gradient methods have been derived from Hestenes and Stiefel. Variants
of the method of Fletcher and Reeves have different restart procedures (and, consequently,
a slightly different gradient deflection). The reader should refer to Beale [3] and Powell [44]
for further details on restart procedures. There exist different gradient updates, notably in
the method of Polak and Ribiere [40], in the method of Polyak [41], and in the method of
Sorenson [50]. The Polak and Ribiere update is usually deemed to be more efficient than
the Fletcher and Reeves update. Using the above notations, the update is:

α ← (∇f(zi+1) − ∇f(zi))t∇f(zi+1)
∇f(zi)t∇f(zi)

Quasi-Newton Methods

Quasi-Newton methods, like the method of Fletcher and Reeves, are based on the notion of
conjugate directions. However, the deflection of the gradient is made differently. The original
method is credited to Davidson [11]. It has been improved by Fletcher and Powell [18], and
simultaneously refined by Broyden [6,7], Fletcher [15], Goldfarb [22], and Shanno [49]. In
these methods, the negative of the gradient at x, −∇f(x), is deflected by multiplying it by
a positive definite matrix A that is updated at each iteration (this matrix evolves toward
the inverse of the Hessian matrix in the quadratic case). These methods are like the steepest
descent method with an affine scaling. Those are referred as quasi-Newton methods and, like
the nonglobally convergent Newton method, perform an affine scaling to deflect the gradient.
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Note that Newton’s method uses the inverse of the Hessian at the current iteration point
(assuming that the Hessian exists and is positive definite).

Algorithm 2.12 implements a quasi-Newton method with both Davidson-Fletcher-Powell
(DFP) updates and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates. The user may
switch between these two updates by choosing the value of a parameter φ. If φ = 0 the
method is using DFP updates that produce sometimes numerical problems. If φ = 1 the
method is using BFGS updates that are deemed to exhibit a superior behavior. Other
values for φ are fine too; however, some negative values may lead to degenerate cases.
As in the steepest descent method, the line search at line 3 requires the step length to
be positive. In this case approximate line searches with Wolfe’s conditions can be used.
However, inexact line searches may corrupt the positive definiteness of the matrices Ai and
some quasi-Newton methods are proposing a varying φ that counters this phenomenon.
Sometimes the matrices Ai are multiplied by a strictly positive scalar updated at each
iteration to avoid some ill-conditioning effects when minimizing nonquadratic functions.
For further information, the reader should refer to Fletcher [17].

Algorithm 2.12: A Quasi-Newton method.

Input: function f , gradient ∇f , starting point x.
Output: approximated minimum.
Data: termination parameter ε, parameter φ, positive definite matrix A1 (or A1 = I).
i← 1, zi ←x;1

while ||∇f(zi)|| ≥ ε do2

d← −Ai∇f(zi), λ ← argminλ∈R+f(zi + λd), zi+1 ← zi + λd;3

if i < n then4

u← λd, v ← ∇f(zi+1) −∇f(zi);5

B1 ←uut/utv −Aivvt Ai/vtAiv;6

B2 ← ((1 +vtAiv/utv)uut −Aivut −uvtAi)/utv;7

Ai+1 ←Ai + (1 −φ)B1 + φB2, i← i+ 1;8

else x← zn+1, i← 1, zi ←x;9

end10

return x;11

Levenberg–Marquardt Method

The Levenberg–Marquardt method [32,35] is a globally convergent modification of Newton’s
method. Like the quasi-Newton methods, the Levenberg–Marquardt method is an adapta-
tion of the steepest descent method with an affine scaling of the gradient as a deflection
technique. The positive definite matrix that multiplies the gradient is the summation of the
Hessian of f at the current point (this is the approach of the Newton method) and a scaled
identity matrix cI (almost like in the steepest descent method) that enforces the positive
definiteness.

Algorithm 2.13 implements the Levenberg–Marquardt method. While the increase of f at
the current point is still non-negligible (line 2), a Choleski decomposition of ckI+H(xk) is
repeated until success (lines 3–11). The decomposition gives ckI+H(xk) =LLt. Lines 12–
13 solve the linear system LLtd= −∇f(xk) and the descent direction d is obtained. Line
14 performs a line search and the next point xk+1 is computed. As in the steepest descent
method, the line search requires the step length to be positive. In this case approximate line
searches with Wolfe’s conditions can be used. Line 15 computes the ratio ρ of the actual
decrease over the predicted decrease. If the actual decrease is not enough, then the scale
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Algorithm 2.13: Levenberg–Marquardt method.

Input: function f , gradient∇f , Hessian H, starting point x1 ∈ R
n.

Output: approximated minimum.
Data: termination parameter ε, parameter c1 (usually c1 ∈ {0.25, 0.75, 2, 4}),

parameters 0 < ρ1 < ρ2 < 1 (usually ρ1 = 0.25 and ρ2 = 0.75).
k ← 1;1

while ||∇f(xk)|| ≥ ε do2

repeat3

fail← 0, A← ckI+H(xk);4

for i∈ [1, n], j ∈ [i, n] do5

S ← aji −
∑i−1

�=1 aj�ai�;6

if i= j then7

if S ≤ 0 then ck ← 4ck, fail← 1, break else lii ←
√

S;8

else lji ← S/lii;9

end10

until fail = 0;11

for i∈ [1, n] do S ← −(∇f(xk))i −
∑i−1

� = 1 li�y�, yi ← S/lii;12

for i∈ [0, n − 1] do S ← yn−i −
∑n

�=n−i+1 l�,n−id�,dn−i ← S/lii;13

λ ← argminλ ∈ R+ f(xk + λd), xk + 1 ← xk + λd;14

ρ ← (f(xk + 1) − f(xk))/(λ∇f(xk)td+ λ
2
dtH(xk)d/2);15

if ρ < ρ1 then ck+1 ← 4ck;16

else17

if ρ2 < ρ then ck+1 ← ck/2 else ck+1 ← ck;18

end19

if ρ ≤ 0 then xk+1 ←xk;20

k ← k + 1;21

end22

return xk;23

parameter is quadrupled (line 16). Otherwise the scale parameter is halved if the actual
decrease is too big (line 18). If the ratio ρ is negative, then the method is re-initialized (20).
The operations at lines 15–20 are similar to the operations of the trust region methods.

2.3 Constrained Optimization

In this section, we review some techniques of minimization in the case where equality and
inequality constraints are present. A lot of algorithms are specialized in cases where only
one kind of constraint is present or in cases where the constraints are linear. We will review
globally convergent algorithms for the general convex case. There exist at least two types
of approaches that solve this kind of problem:

• The transformation methods. These techniques transform the objective function
to incorporate the constraints and therefore transform a constrained problem
into a sequence of unconstrained problems. Thus any unconstrained minimization
algorithm in Section 2.2 can be used to solve the constrained problem.

• The direction finding methods. These techniques converge toward a minimizer by
moving from feasible points to feasible points and determining feasible directions
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and feasible step lengths at each iteration. The methods described in this section
are globally convergent and use first or second order approximations of f , g,
and h.

2.3.1 Direction Finding Methods

Penalty Successive Linear Programming Method

The penalty successive linear programming (PSLP) method is credited to Zhang et al.
[54]. It is the first globally convergent form of the successive linear programming (SLP)
approach introduced by Griffith and Stewart [23]. A variant of the SLP approach that
includes quadratic approximations has been proposed by Fletcher [16]. At each iteration,
the method finds feasible directions by solving a linear programming problem based on the
first-order approximations of the objective function and constraint functions, and on some
constraints on the direction components. In this method, the linear equality and inequality
constraints Ax≤b are separated and treated differently than the purely nonlinear con-
straints g(x) ≤0 and h(x) =0. This method will converge quadratically if the optimal solu-
tion is close to a vertex of the feasible region. Otherwise the convergence can be very slow.

The PSLP method is implemented in Algorithm 2.14. It needs a trust region vector d
greater than a vector λ >0 that gives the maximum admissible values for the components of
the search directions. Line 12 uses a linear programming solver to obtain an optimal solution

Algorithm 2.14: PSLP method.

Input: function f , nonlinear constraint functions g and h, gradients ∇f , ∇gi for
i∈ [1, p] and ∇hi for i∈ [1, q], feasible starting point x1 for the linear
constraints Ax≤b.

Output: approximated minimum.
Data: lower bound vector 0< λ ∈ R

n, trust region vector d≥λ, scalars
0 < ρ0 < ρ1 < ρ2 < 1 (usually ρ0 = 10−6, ρ1 = 0.25, ρ2 = 0.75), multiplier α
(usually α = 2), penalty parameters 0< µ∈ R

p, 0< η ∈ R
q; function

Dxk
f : x �→ f(xk) + ∇f(xk)t(x−xk); function π: (x, µ, η) �→

∑p
i=1 µi max

(gi(x), 0) +
∑q

i=1 ηi|hi(x)|; function δxk
π : (x, µ, η) �→

∑p
i=1 µi max

(Dxk
gi(x), 0) +

∑q
i=1 ηi|Dxk

hi(x)| function θ:(x, µ, η) �→ f(x) + π (x, µ, η);
function δxk

θ : (x, µ, η) �→ Dxk
f(x) + δxk

π(x, µ, η).
k ←1;1

repeat2

if k = 1 then3

ρ ← (θ(xk, µ, η) − θ (x, µ, η))/(θ(xk, µ, η) − δxk
θ(xk+1, µ, η));4

if ρ < ρ0 then d← max(d/α, λ);5

else6

if 0 ≤ ρ < ρ1 then d←d/α;7

if ρ2 < ρ then d← αd;8

d← max(d, λ),xk+1 ←x, k ← k + 1;9

end10

end11

x← argminx∈Rn{δxk
θ(x, µ, η) : Ax ≤ b,−d ≤ x−xk ≤ d};12

until x=xk;13

return x;14
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of the first order approximation problem. It can be initialized by xk if xk is feasible for the
linear constraints; otherwise a feasibility step must be introduced. Line 4 calculates the ratio
of the decrease of the penalty function over the predicted decrease of the penalty function.
If the ratio ρ is negligible or negative, then the trust region is contracted and the method
is re-initialized (line 5). Otherwise the region is contracted if ρ is too small, and expanded
if ρ is large (lines 7–8). This part of the algorithm is similar to the trust region methods.

Merit Successive Quadratic Programming Method

The following method was presented in Ref. [2] and is based on the same ideas as the
PSLP method. Bazaraa et al. give credits to Han [24] and Powell [45] for this method. At
each iteration, the method finds feasible directions by solving a quadratic programming
problem based on the second-order approximations of the objective function and the first-
order approximations of the constraint functions. This method is quite demanding in terms
of computational power; however, it does not have the drawbacks of the PSLP method.

The merit successive quadratic programming method is implemented in Algorithm 2.15.
Since the function θ at line 4 is not differentiable, only an exact line search can be used to
find an optimal λ. Line 7 uses a quadratic programming solver to determine the next descent
direction. It can be initialized by xk if xk is feasible; otherwise a feasibility step must be
introduced. The matrix B can be updated at line 5, provided that it always remains positive
definite. As suggested by Bazaraa et al. [2], an update of B based on a quasi-Newton scheme
can be used but it is not necessary.

Algorithm 2.15: Merit successive quadratic programming method.

Input: function f , nonlinear constraint functions g and h, gradients ∇f , ∇gi for
i∈ [1, p] and ∇hi for i∈ [1, q], feasible starting point x1, positive definite
matrix B.

Output: approximated minimum.
Data: penalty parameters 0< µ∈ R

p,0< η ∈ R
q; function

π : (x, µ, η) �→
∑p

i=1 µi max(gi(x), 0) +
∑q

i=1 ηi|hi(x)|; function
θ : (x, µ, η) �→ f(x) + π(x, µ, η); function Dxk

f : x �→ f(xk) + ∇f(xk)t

(x−xk); function Qxk
: x �→ Dxk

f(x) + (x−xk)t B(x−xk)/2.
k ← 1;1

repeat2

if k = 1 then3

λ ← argminλ∈R+
θ(xk + λ(x−xk), µ, η);4

xk+1 ←xk + λ(x−xk), k ← k + 1;5

end6

x← argminx∈Rn{Qxk
(x) : Dxk

gi(x) ≤ 0|pi=1Dxk
hi(x) = 0|qi=1};7

until x=xk;8

return x;9

2.3.2 Transformation Methods

Sequential Unconstrained Minimization Techniques

The sequential unconstrained minimization techniques (SUMT) were developed by Fiacco
and McCormick [13,14] to solve constrained nonlinear convex optimization problems by
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transforming them into a sequence of unconstrained problems using penalty and barrier
functions. The introduction of penalty functions for solving constrained problems is credited
to Courant [10], while the use of barrier functions is credited to Caroll [8].

Algorithms 2.16 and 2.17 implement two different SUMT. Algorithm 2.16 is a parametrized
SUMT in which parameter µ > 0 is progressively increased at each iteration to give more
weight to the penalty part of the unconstrained objective function. As µ increases, the solu-
tion x moves toward a feasible point. For µ sufficiently large, x becomes close enough to an
optimal solution of the constrained problem. However, it is not recommended to start this
method with a large µ as it might slow down the convergence and trigger ill-conditioning
effects. Algorithm 2.17 tries to overcome these difficulties by removing the parameter µ.
However, a scalar a < inf{f(x) : g(x) <0,h(x) =0} must be determined before the compu-
tation starts.

Algorithm 2.16: SUMT.

Input: see unconstrained optimization method (starting point x).
Output: approximated minimum.
Data: termination parameter ε, penalty parameter µ > 0, scalar α > 1, penalty

function π : x �→
∑p

i=1 πg(gi(x)) +
∑q

i=1 πh(hi(x)) with πg and πh continuous,
πg(z) = 0 if z ≤ 0, πg(z) > 0 otherwise, and πh(z) = 0 if z = 0, πh(z) > 0
otherwise.

while µπ(x) ≥ εdo1

x← argminx∈Rn{f(x) + µπ(x) : x starting point}, µ← αµ;2

end3

return x;4

Algorithm 2.17: Parameter-free SUMT.

Input: see unconstrained optimization method (starting point x).
Output: approximated minimum.
Data: termination parameter ε, scalar a < inf{f(x) : g(x) <0, h(x) =0},

π : (x, a) �→ max2(f(x) − a, 0) +
∑p

i=1 max2(gi(x), 0) + ‖h(x)‖2
2.

while π(x, a) ≥ ε do1

x← argminx∈Rn{π(x, a) : x starting point}, a← f(x);2

end3

return x;4

Algorithm 2.18 implements a method proposed by Fiacco and McCormick in 1968 [14]
that mixes a penalty function with a barrier function. The penalty function π is aimed for the
equality constraints and the barrier function β is aimed for the inequality constraints. Note
that the line searches that are used by the unconstrained optimization subroutines must
provide a safeguard technique to avoid the computational difficulties induced by the domain
of definition of barrier functions. Lines 1–8 compute a feasible point for the inequality
constraints. If such a point cannot be found, the algorithm is stopped and no solution is
returned (line 7). Using the feasible starting point x, the mixed penalty-barrier solves the
constrained problem (lines 10–13).
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Algorithm 2.18: Mixed penalty-barrier method.

Input: see unconstrained optimization method (starting point x).
Output: approximated minimum.
Data: termination parameter ε, barrier parameter µ0 > 0, penalty parameter η > 0,

scalars 0 < c1 < 1 and c2 > 1; penalty function π : x �→
∑q

i=1 πh(hi(x)) with
πh continuous, πh(z) = 0 if z= 0, πh(z) > 0 otherwise; barrier function
βI : x �→

∑
i∈I βg(gi(x)) with I ⊆ [1, p], βg continuous over R

∗
−, βg(z) ≥ 0 if

z < 0 and limz→0+βg(z) = ∞. Note: β = β[1,p].
I ← {i∈ [1, p]: gi(x) < 0};1

while I = [1, p] do2

Select j ∈ [1, p]\I, µ← µ0;3

while µβI/(x) ≥ ε do4

x← argminx∈Rn{gj(x) + µβI(x) : x starting point}, µ← c1µ;5

end6

if gj(x) ≥ 0 then return ∅ else I ← {i∈ [1, p] : gi(x) < 0};7

end8

µ← µ0;9

while µβ(x) + ηπ(x) ≥ ε do10

x← argminx∈Rn{f(x)+ µβ(x) + ηπ(x) : x starting point};11

µ← c1µ, η ← c2η;12

end13

return x;14

Method of Multipliers

The method of multipliers (MOM) was introduced independently by Hestenes [25] and
Powell [43] in 1969. It uses Lagrange multipliers with a penalty function in a SUMT scheme.

Algorithm 2.19 implements the MOM. The algorithm iterates until the violation of the
constraints is small enough (line 2). In line 3, the penalty function is minimized with
an unconstrained optimization method and the result is stored at point xk+1. Then the
Lagrange multipliers are updated if the violation function shows some improvements at
the new iterate xk+1; k is incremented and a new iteration begins (lines 4–12). Otherwise
the penalty parameters are increased and the method is restarted (lines 13–18).

2.4 Conclusion

In this chapter, we have discussed several common algorithms on deterministic optimization
for convex nonlinear problems. However, formal explanations on the construction and the
convergence of the mentioned methods have not been discussed. Useful references were given
for each algorithm, and the most important features were briefly reviewed. For further details
on nonlinear optimization, the reader might consult Bazaraa et al. [2], Bertsekas [4], Boyd
and Vandenberghe [5], Corne et al. [9], Fletcher [17], Horst et al. [28], Luenberger [34], and
Reeves [47]. Owing to limitations of space we did not discuss heuristic and evolutionary opti-
mization techniques such as tabu search [21]. Nonlinear programming techniques are used
in several areas of engineering and are powerful tools in the arsenal of operations research.

Please note that the reader of this chapter should be warned about the different ways of
implementing each algorithm. It is important to note that within the scope of this quick
introduction we did not assess problems related to numerical instabilities that can arise
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Algorithm 2.19: MOM.

Input: see unconstrained optimization method (starting point x1).
Output: approximated minimum.
Data: termination parameter ε, penalty parameters 0< µ∈ R

p, 0< η ∈ R
q, initial

multipliers 0≤u∈ R
p and v ∈ R

q, scalars 0 < c < 1, αµ, αη > 1 (usually
c = 0.25, αµ = αη = 10), violation function ϕ : x �→ max(||h(x)||∞,
maxi∈[1,p](gi(x), 0)), penalty functions πg and πh such that πg(x,u, µ) =∑p

i=1

(
µi max2

(
gi(x) + ui

2µi
, 0

)
− u2

i

4µi

)
and πh(x,v,η) =∑q

i=1 (vihi(x) + ηih
2
i (x)).

k ← 1;1

while ϕ(xk) ≥ ε do2

xk+1 ← argminx∈Rn{f(x)+ πg(x, u, µ) + πh(x, v, η) : xk starting point};3

if k = 1 then4

for i∈ [1, p] do ui ← ui + max(2µigi(xk+1), −ui);5

for i∈ [1, q] do vi ← vi + 2ηihi(xk+1);6

k ← k + 1;7

else8

if ϕ(xk+1) ≤ cϕ(xk) then9

for i∈ [1, p] do ui ← ui + max(2µigi(xk+1), −ui);10

for i∈ [1, q] do vi ← vi + 2ηihi(xk+1);11

k ← k + 112

else13

for i∈ [1, p] do14

if max(gi(xk+1), 0) > cϕ(xk) then µi ← αµµi;15

end16

for i∈ [1, q] do if |hi(xk+1)|> cϕ(xk) then ηi ← αηηi;17

end18

end19

end20

return xk ;21

from round-off errors and truncation errors in every implementation. For further discussion
about the algorithmic properties of these techniques, the reader may refer to the NEOS
Guide which is an online portal to the optimization community that provides links to stable
solvers for different platforms. The NEOS Guide can be found at the following address:
http://www-fp.mcs.anl.gov/otc/Guide/index.html.
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3.1 Introduction

An integer programming (IP) problem is a mathematical (linear or nonlinear) programming
problem in which some or all of the variables are restricted to assume only integer or discrete
values. If all variables take integer values, then the problem is called a pure IP. On the other
hand, if both integer and continuous variables coexist, the problem is called a mixed integer
program (MIP). In addition, if the objective function and all constraints are linear functions
of all variables, such a problem is referred to as a pure integer linear programming (ILP) or
mixed integer linear programming (MILP) model. The term linear may be omitted unless
it is necessary to contrast these models with nonlinear programming problems.

With the use of the matrix notation, an ILP problem can be written as follows:

(ILP) minimize dy

subject to By≥b

y≥0 and integer

where y represents the vector of integer variables, d is the coefficient vector of the objective
function, and B and b are the coefficient matrix and right-hand-side vector of the con-
straints, respectively. All elements of d, B, and b are known constants. Some constraints
may be equations and of the type “≤.” For an ILP with k variables and m constraints,
y = k × 1 vector, d= 1 × k vector, B= m × k matrix, and b= m × 1 vector.

3-1
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Similarly, an MILP is generally written as follows

(MILP) minimize cx + dy

subject to Ax + By ≥ b

x ≥ 0

y ≥ 0, and integer

where the additional notation x represents the vector of continuous variables, c is the
coefficient vector for x in the objective function, and A the coefficient matrix for x in the
constraints.

Note that any variable in y above can assume any nonnegative integer, as long as all
constraints are satisfied. One special case is that all integer variables are restricted to be
binary (i.e., either 0 or 1). Such an IP problem is referred to as a binary ILP (BILP) or
binary MILP (BMILP). In this case, the constraint set (y ≥0, and integer) is replaced by
y ∈ {0,1}.

Although several solution methods have been developed for ILP or MILP, none of these
methods is totally reliable in view of computational efficiency, particularly as the number
of integer variables increases. In fact, most methods can be classed as either enumeration
techniques, cutting-plane techniques, or a combination of these. Unlike LP, where problems
with millions of variables and thousands of constraints can be solved in a reasonable time,
computational experience with ILP or MILP remains elusive.

If all the integer restrictions on all the variables are omitted (i.e., allow an integer variable
to assume continuous values), an ILP becomes an LP, called its LP relaxation. It is obvious
that the feasible region of an ILP is a subset of the feasible region of its LP relaxation,
and therefore, the optimal objective value of an ILP is always no better than that of its
LP relaxation. In general, the optimal solution to the LP relaxation will not satisfy all the
integer restrictions. There is one exception: For an ILP, if matrix B is totally unimodular,
then the optimal solution to its LP relaxation is guaranteed to be integer-valued and there-
fore, is optimal to the ILP. Unfortunately, this is generally not the case for most ILPs. For a
minimization ILP, the optimal objective value of its LP relaxation is a lower bound for the
ILP optimal objective. Due to the computational difficulty associated with solving an ILP
or MILP, LP relaxation is often used in developing solution techniques for solving them.

Once the optimal solution to the LP relaxation is obtained, one may round the noninteger
values of integer variables to the closest integers. However, there is no guarantee in such
rounding that the resulting rounded solution would be feasible to the underlying ILP. In
fact, it is generally true that if the original ILP has one or more equality constraints, the
rounded solution will not satisfy all the constraints and would be infeasible to the ILP. The
infeasibility created by rounding may be tolerated in two aspects. One aspect is that, in
general, the (estimated) parameters of the problems may not be exact. But there are typical
equality constraints in integer problems where the parameters are exact. For example, the
parameters in the multiple-choice constraint y1 + y2 + · · ·+ yn = p (where p is the integer,
and yj = 0 or 1, for all j) are exact. The other aspect is that an integer variable can assume
large values and rounding up or rounding down will not lead to a significant economic or
social impact. It is most likely unacceptable, however, to use rounding as an approximation
if an integer variable represents, for example, a one-time purchase of major objects such as
large ships and jumbo jets, or a decision to finance or not to finance a major project.

Before discussing solution techniques for solving an ILP or MILP in detail, we first
describe the formulation of several typical IP problems.
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3.2 Formulation of IP Models

Similar to LP, there are three basic steps in formulating an IP model: (1) identifying and
defining all integer and continuous decision variables; (2) identifying all restrictions and for-
mulating all corresponding constraints in terms of linear equations or inequalities; and
(3) identifying and formulating the objective as a linear function of the decision variables to
be optimized (either minimized or maximized). The remainder of this section illustrates a
variety of modeling techniques for constructing ILPs or MILPs via some sample problems.

3.2.1 Capital Budgeting Problem

Six projects are being considered for execution over the next 3 years. The expected returns
in net present value and yearly expenditures of each project as well as funds available per
year are tabulated below (all units are million dollars):

Annual Expenditures

Project Year 1 Year 2 Year 3 Returns

1 5 2 8 20
2 9 7 9 40
3 4 6 3 15
4 7 4 4 21
5 3 5 2 12
6 8 4 9 28
Available Funds 26 22 25

The problem seeks to determine which projects should be executed over the next 3 years
such that at the end of the 3-year period, the total returns of the executed projects are at
the maximum, subject to the availability of funds each year.

1. Identify the decision variables. Each project is either executed or rejected. There-
fore, the problem reduces to a “yes-no” decision for each project. Such a decision
can be represented as a binary variable, where the value 1 means “yes” and 0
means “no.” That is,

yj = 1, if project j is selected to execute; and 0, otherwise, for j = 1, 2, . . ., 6.

2. Formulate the constraints. In this problem, the constraints are that total annual
expenditures of the selected projects do not exceed funds available for each year.
These constraints can be mathematically expressed as follows:

5y1 + 9y2 + 4y3 + 7y4 + 3y5 + 8y6 ≤ 26, for year 1

2y1 + 7y2 + 6y3 + 4y4 + 5y5 + 4y6 ≤ 22, for year 2

8y1 + 9y2 + 3y3 + 4y4 + 2y5 + 9y6 ≤ 25, for year 3

3. Formulate the objective function. The objective of this problem is to maximize
the total returns of the selected projects at the end of the 3-year planning period.
The total returns are given mathematically as

Z = 20y1 + 40y2 + 15y3 + 21y4 + 12y5 + 28y6
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The ILP model for this capital budgeting problem is

maximize Z = 20y1 + 40y2 + 15y3 + 21y4 + 12y5 + 28y6

subject to 5y1 + 9y2 + 4y3 + 7y4 + 3y5 + 8y6 ≤ 26
2y1 + 7y2 + 6y3 + 4y4 + 5y5 + 4y6 ≤ 22
8y1 + 9y2 + 3y3 + 4y4 + 2y5 + 9y6 ≤ 25
y1, y2, y3, y4, y5, y6 = 0 or 1

Using matrix notation, this ILP can be written as

(ILP) minimize dy

subject to By ≥ b

y ≥ 0, and binary

where d= (20 40 15 21 12 28), y = (y1 y2 y3 y4 y5 y6)T ,

B =

⎡
⎣ 5 9 4 7 3 8

2 7 6 4 5 4
8 9 3 4 2 9

⎤
⎦, and b=

⎛
⎝ 26

22
25

⎞
⎠

The optimal solution to the LP relaxation, obtained by imposing the upper bounds xj ≤ 1,
for all j, is y1 = y2 = y5 = 1, y3 = 0.7796, y4 = 0.7627, and y6 = 0.0678 with an objective value
of $101.61 million. This solution has no meaning to the ILP, and rounding to the closest inte-
ger values leads to an infeasible solution. The optimal integer solution is y1 = y2 = y3 = y4 = 1
and y5 = y6 = 0 with Z = $96 million.

The capital budgeting problem has a special case: the set-covering problem. There are
k potential sites for new facilities and the cost associated with selecting a facility at site j
is dj . Each facility can service (or cover) a subset of m areas. For example, a facility may
represent a fire station and the areas represent all sections of a city. The objective is to
select the least-cost subset of all the potential sites such that each and every area is covered
by at least one selected facility. Then the corresponding ILP can be written as above, except
that all elements in matrix B are either 0 or 1.

If the planning horizon is reduced to a one-year period, then there is a single constraint,
and the one-constraint capital budgeting problem is called the 0–1 knapsack problem. In
addition, if each integer variable can assume any nonnegative discrete values, we get the
so-called general knapsack problem.

3.2.2 The Fixed-Charge Problem

In a typical production planning problem involving n products, the production cost for
product j may consist of a variable per-unit cost cj , and a fixed cost (charge) Kj(>0), which
occurs only if product j is produced. Thus, if xj = the production level of product j, then
its production cost Cj(xj) is

Cj(xj) =
{

Kj + cjxj , xj > 0
0, xj = 0

This cost function is depicted in Figure 3.1. The objective would be to minimize
Z =

∑
jCj(xj). This objective function is nonlinear in variables xj due to the disconti-

nuity at the origin, and can be converted into a linear function by introducing additional
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xj

Cj ( xj)

kj

0

FIGURE 3.1 Fixed-charge cost function.

binary variables as follows. Define

yj =
{

1, xj > 0
0, xj = 0

This condition can then be expressed as a single linear constraint as

xj ≤Myj

where M(>0) is sufficiently large to guarantee that constraint xj ≤M is redundant whenever
yj = 1. On the other hand, the minimization of the linear objective function Z =

∑
j(cjxj +

Kjyj) assures that yj = 0, whenever xj = 0.

3.2.3 Either-Or Constraints

There are practical instances when at least one of two constraints must be satisfied, and
it may be impossible to satisfy both constraints simultaneously. For example, consider the
following restriction

|xj − 50| ≥ 5

This restriction means that xj has to deviate from 50 by at least 5. This constraint is
nonlinear and can be replaced by the following two conflicting linear constraints: xj − 50 ≥ 5
(i.e., 55 −xj ≤ 0), and 50 −xj ≥ 5 (i.e., xj − 45 ≤ 0). In this case, it is obvious that both
cannot be satisfied simultaneously. This conflict can be resolved by defining a binary variable
as follows:

yj =
{

1, xj ≥ 55
0, xj ≤ 45

Then the restriction |xj − 50| ≥ 5 can be replaced by

55 −xj ≤ M(1 − y)

xj − 45 ≤ My

where M(>0) is a sufficiently large constant. These two constraints guarantee that either
xj ≥ 55 or xj ≤ 45 (but not both) will hold.

Another typical either-or application concerns job sequencing on a processor: either job
A proceeds job B, or job B proceeds job A, but not both.

© 2008 by Taylor & Francis Group, LLC



CH003.tex 22/10/2007 13: 58 Page 3-6

3-6 Operations Research and Management Science Handbook

In general, the either-or constraints can be described as follows: at least one of the two
constraints g(x) ≤ b and h(x) ≤ e must be satisfied and the other constraint may or may
not be satisfied. This can be modeled by using a binary variable y as

g(x) ≤ b + M(1 − y)
h(x) ≤ e + My

The either-or constraints can be extended to the case of satisfying at least p out of m(>p)
constraints. Suppose that p of the following m constraints must be satisfied.

g1(x) ≤ b1

g2(x) ≤ b2

:
gm(x) ≤ bm

Define binary variable yi for constraint gi(x) ≤ bi as follows.

yj =
{

1, constraint i is satisfied
0, otherwise

Then the following guarantees that at least p constraints will be satisfied.

g1(x) ≤ b1 + M(1 − y1)
g2(x) ≤ b2 + M(1 − y2)

:
gm(x) ≤ bm + M(1 − ym)∑

i

yi ≥ p

Replacing the last constraint
∑

iyi ≥ p by
∑

iyi = p and
∑

iyi ≤ p models, respectively,
exactly and at most p out of m constraints must be satisfied.

In many investment, production, or distribution problems, there might be minimum pur-
chase or production requirements that must be met. For example, an investment opportunity
might require a minimum investment of $100,000, or the introduction of a new product might
be required to produce a minimum of 2000 units. Let x represent the continuous decision
variable and C the minimum requirement. Then either x= 0 or x≥C, and both cannot be
met simultaneously. Define a binary variable y, and this restriction can be modeled simply
by the following two constraints.

x≤My

x≥Cy

3.2.4 If-Then Constraints

There are situations where one constraint must be met if another constraint is to be satisfied.
For example, two projects, 1 and 2, are considered. If project 1 is selected, then project 2
must also be selected. This case can easily be handled as follows. Let yj = 1 if project j
is selected, and 0 if not, j = 1 and 2. Then constraint y2 ≥ y1 does the trick. Note that, if
project 1 is not selected, there is no restriction on the selection of project 2 (i.e., project 2
may or may not be selected).
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In general, the if-then constraints can be described as follows. If constraint g1(x) ≤ b is
met, then constraint g2(x) ≤ e must also be satisfied. But if constraint g1(x) ≤ b is not met,
there is no restriction on the satisfaction of constraint g2(x) ≤ e. This can be modeled by
using two binary variables y1 and y2 as follows:

g1(x) ≤ b + M(1 − y1)

g2(x) ≤ e + M(1 − y2)

y2 ≥ y1

If y1 = 1, y2 must also be 1, and the first two constraints above reduce to their original
forms, which means that the if-then requirement is satisfied.

On the other hand, if y1 = 0, g1(x) ≤ b + M will hold for any x, since M is so large. This
effectively eliminates the original constraint g1(x) ≤ b. In addition, y2 ≥ y1 reduces to y2 ≥ 0,
and, therefore, g2(x) ≤ e may or may not be satisfied.

3.2.5 Functions with N Possible Values

Consider the situation that a function f(x) is required to take on exactly one of N given
values. That is, f(x) = b1, b2, . . ., bN−1, or bN. This requirement can be modeled by

f(x) =
∑

bjyj∑
yj = 1

yj binary, for j = 1, 2, . . .,N

3.3 Branch and Bound Method

In this section, we discuss in detail the branch and bound (B&B) method. Without loss of
generality, it is assumed that the objective function is to be minimized. That is, the ILP is
a minimization problem.

As mentioned earlier, total enumeration is not practical to solve ILPs with a large number
of variables. However, the B&B method, which is an implicit enumeration approach, is
the most effective and widely used technique for solving large ILPs. The B&B method
theoretically allows one to solve any ILP by solving a series of LP relaxation problems
(called subproblems).

The B&B method starts with solving the LP relaxation (problem). If the optimal solution
to the relaxed LP is integer-valued, the optimal solution to the LP relaxation is also optimal
to the ILP, and we are done. However, it is most likely that the optimal solution to the
LP relaxation does not satisfy all the integrality restrictions. See, for instance, the optimal
solution to the relaxed LP of the capital budgeting problem in Section 3.2.1. In this case, we
partition the ILP into a number of subproblems that are generally smaller in size or easier
to solve than the original problem. This process of partitioning any given problem into two
or more smaller or easier subproblems is commonly called branching, and each subproblem
is called a branch. The B&B method is then repeated for each subproblem.

As mentioned earlier, the optimal solution to the LP relaxation is a lower bound on the
optimal solution to the corresponding ILP. Let Z be the best known objective function value
for the original ILP. For any given subproblem, let Zrelax be the optimal objective value to its
LP relaxation. This means that the optimal integer solution to this subproblem is no better
than Zrelax. If Zrelax ≥Z, then this subproblem (branch) cannot yield a feasible integer
solution better than Z and can be eliminated from further consideration. This process
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FIGURE 3.2 The complete search tree.

of eliminating a branch from further consideration is usually called fathoming. However, if
Zrelax < Z, then a conclusion cannot be reached and further branching from this subproblem
is needed. This process continues until all branches are fathomed, and the best integer
solution is optimal to the original ILP.

The B&B method can be represented by a search tree that has many levels (Figure 3.2).
The original ILP is the root, the first level consists of all the subproblems branched from the
original ILP, the second level consists of all the subproblems branched from all the first
level subproblems that have not been fathomed, and so on. We now discuss in more detail
each of the three key components of the B&B method: branching, computing bounds, and
fathoming.

3.3.1 Branching

For convenience, let P0 denote a given ILP or MILP. The set of all subproblems branched
from P0 must represent all of P0 to find an optimal solution to P0. In addition, it is an
approximation that any two subproblems are mutually exclusive. For example, let
q1, q2, . . ., qr be all the possible values that integer variable yj can assume. Let Pi rep-
resent the subproblem obtained by fixing yj at qi, for i= 1, 2, . . ., r. If P0 is partitioned into
P1, P2, . . ., Pr, then

{P0} = {P1} ∪ {P2} ∪ . . . ∪ {Pr}, and

{Pi} ∩ {Ps} = Ø, for all i �= s

Note that each subproblem Pi has one fewer integer variable since yj now is a fixed constant.
If yj is a binary variable, there are only two obvious branches with yj = 0 and yj = 1.

Among all binary variables, yj should be selected as one that does not equal to 0 or 1
in the optimal solution to the LP relaxation. In the capital budgeting problem given in
Section 3.2.1, any of y3, y4, and y5 can be chosen as yj.

If yj is a general integer variable, it may require a lot of effort to find all its possible
feasible integer values. A more effective way is to derive two branches: yj ≤ t and yj ≥ t + 1,
where t is a nonnegative integer. Again, one of the variables whose values are not an integer
in the optimal solution to the LP relaxation should be selected and t is the largest integer
smaller than the corresponding variable value.

As one can see, the branching process is essentially to add additional restrictions to
form subproblems. Therefore, the optimal solution to any subproblem is no better than the
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branching subproblem. In particular, for minimization, the optimal solution to any subprob-
lem is always greater than or equal to the optimal solution to the branching subproblem and
thus to the original ILP. As we move further from the root in the search tree, the optimal
objective values of subproblems increase or remain the same for minimization ILPs.

3.3.2 Computing Lower and Upper Bounds

Let Zbest be the objective function value of a known integer solution. Then the optimal
objective value Z∗ is at least as good as Zbest. That is, Zbest is an upper bound on Z∗ for a
minimization ILP. If a feasible integer solution with an objective value strictly better than
Zbest is found, then replace Zbest by the new solution. In doing so, the upper bound Zbest
remains the smallest upper bound and the corresponding feasible integer solution is called
the incumbent solution (i.e., the best known integer solution). If no integer solutions have
been identified yet, Zbest is set to be ∞.

For any subproblem Pj in the B&B search, we attempt to find a lower bound ZL on
the optimal objective value of Pj . That is, the optimal solution of Pj cannot be better
than ZL. If ZL > Zbest (the objective value of the incumbent integer solution), then the
subproblem Pj can be discarded from further consideration, and the corresponding branch
is then fathomed. However, if ZL ≤Zbest, then a conclusion cannot be reached and the
subproblem Pj needs to be branched further.

In general, it is no easy task to find a lower bound for an optimization problem. Recall,
however, that for any ILP, the optimal objective value associated with its LP relaxation
provides a lower bound on the optimal objective value of the ILP.

3.3.3 Fathoming

In the B&B search, the ILP (the root) is branched into two or more level-1 subproblems; each
level-1 subproblem is either fathomed or branched into two or more level-2 subproblems;
and each level-2 subproblem is either fathomed or further branched into two or more level-3
subproblems, and so on. If all subproblems (branches) are fathomed, the search stops and
the incumbent integer solution is optimal to the ILP.

A subproblem may be fathomed in one of the following three ways:

1. An optimal integer solution is found. In this case, further branching from this
subproblem is unnecessary and the incumbent solution may be updated.

2. The subproblem is found to be infeasible.
3. The optimal objective value ZL to its LP relaxation is strictly greater than Zbest.

3.3.4 Search Strategies

During the B&B searching process, there are generally many subproblems (at different
levels) that remain to be further branched. The question is which remaining subproblem
should be selected to branch next? That is, what search strategy should be used?

Width-first and depth-first searches are commonly used search strategies. In width-first
search, all subproblems at a level are examined before any subproblem at the next level
will be considered, and the search always moves forward from one level to the next. In
depth-first search, an arbitrary subproblem at the newest level is examined first, and the
search may move backwards. Since depth-first search can yield a feasible solution faster,
which can be used to fathom, it is computationally more efficient than width-first search.
However, width-first strategy generally requires less computer memory. Another commonly
used strategy is best-bound first, where the sub-problem with the best bound is branched
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first. For minimization, the subproblem with the smallest lower bound is branched. In doing
so, it is likely to generate a good integer solution early in the searching process and therefore
speed up the search process.

In the next section, we present a B&B algorithm using the bound-first search strategy.

3.3.5 A Bound-First B&B Algorithm for Minimization
(Maximization)

Step 1: Solve the LP relaxation. If the optimal solution happens to be integer-valued,
then stop; and this is the optimal solution to the ILP. Otherwise, set Zbest = ∞(= −∞),
define the ILP as the candidate problem P , and go to Step 2.

Step 2: Let yj be a variable whose value in the optimal solution to the LP relaxation
of P is not integer, and let t be the noninteger value of yj in the solution. Branch P into
two subproblems by adding two constraints yj ≤ int(t) and yj ≥ int(t) + 1, where int(t) is
the integer part of t. If yj is binary, let yj = 0 and yj = 1. Solve the LP relaxation problems.
If a subproblem is infeasible, fathom it. Otherwise, proceed to Step 3.

Step 3: If an integer solution is found, fathom the corresponding subproblem, and replace
Zbest by the new feasible objective value if it is strictly smaller (greater) than Zbest.

Step 4: If a noninteger solution is found, fathom it if the optimal objective value Zrelax
is strictly greater (smaller) than the current solution, Zbest.

Step 5: If all subproblems are fathomed, then stop; an optimal integer solution has been
found with the optimal objective value Zbest.

Step 6: Replace the candidate subproblem P by the remaining subproblem with the
smallest (largest) bound Zrelax, and go to Step 2.

3.3.6 An Example

This section presents an example to illustrate the use of the B&B method. For simplicity, a
BILP problem is considered. In particular, we use the capital budgeting problem presented
in Section 3.2.1. We denote this ILP P0.

Since this is a maximization ILP, set Zbest = −∞. The optimal solution to the LP relax-
ation of P0 is y1 = y2 = y5 = 1, y3 = 0.7796, y4 = 0.7627, and y6 = 0.0678 with an objective
value Zrelax = 101.61. This is a non-integer solution. Choose, for example, y3 as yj . Fixing
y3 at 0 and 1 respectively yields the following two sub-problems that have only five variables.

P1: maximize Z = 20y1+ 40y2 + 21y4 + 12y5 + 28y6

subject to 5y1 + 9y2 + 7y4 + 3y5 + 8y6 ≤ 26
2y1 + 7y2 + 4y4 + 5y5 + 4y6 ≤ 22
8y1 + 9y2 + 4y4 + 2y5 + 9y6 ≤ 25
y1, y2, y4, y5, y6 = 0 or 1

P2: maximize Z = 20y1+ 40y2 + 21y4 + 12y5 + 28y6 + 15
subject to 5y1 + 9y2 + 7y4 + 3y5 + 8y6 ≤ 22

2y1 + 7y2 + 4y4 + 5y5 + 4y6 ≤ 16
8y1 + 9y2 + 4y4 + 2y5 + 9y6 ≤ 22
y1, y2, y4, y5, y6 = 0 or 1
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The optimal relaxed LP solutions are

P1: y2 = y4 = y5 = 1, y1 = 0.8947, and y6 = 0.3158 with an objective value Zrelax = 99.74.

P2: y1 = y2 = 1, y4 = 0.767, y5 = 0.7476, and y6 = 0.0485 with an objective value Zrelax =
101.44.

Since P2 has the largest lower bound Zrelax = 101.44, it is selected to branch from the
next. Let us choose to set y4 = 0 and y4 = 1. This will lead to two subproblems with only
four decision variables y1, y2, y5, and y6: P3(y4 = 0) and P4(y4 = 1). The two relaxed LP
solutions are

P3: y2 = y6 = 1, y1 = 0.2778, and y5 = 0.8889 with Zrelax = 92.22.

P4: y1 = y2 = 1, y6 = 0, and y5 = 0.3333 with Zrelax = 100.

Of the three remaining subproblems P1, P3, and P4, P4 is selected to branch next by
setting y5 = 0(P5) and y5 = 1(P6).

P5: y2 = 1, y1 = 0.9474, and y6 = 0.1579 with Zrelax = 99.37.

P6: y1 = 1, y2 = 0.6, and y6 = 0.2 with Zrelax = 97.6.

Among the four remaining subproblems P1, P3, P5, and P6, P1 is branched next by fixing
y1 = 0(P7) and y1 = 1(P8).

P7: y2 = y5 = y6 = 1, and y4 = 0.8571 with Zrelax = 98.

P8: y2 = y4 = y5 = 1, and y6 = 0.2222 with Zrelax = 99.22.

Of P3, P5, P6, P7, and P8, the subproblem P5 is the next one to branch from. Choose y1
to be fixed at 0 and 1.

P9: y2 = 1, y6 = 0.75 with Zrelax = 97.

P10: y2 = 1, y6 = 0.1111 with Zrelax = 99.11.

We next branch from subproblem P8 and set y6 equal to 0 and 1.

P11: y2 = y4 = y5 = 1 with Zrelax = 93. This is an integer solution. Since Zrelax >
Zbest = −∞, reset Zbest = 93. P11 becomes the first incumbent solution. Fathom P11.

P12: y4 = y5 = 1, and y2 = 0.2222 with Zrelax = 89.89.

Since Zrelax < Zbest for subproblems P3 and P12, fathom both P3 and P12. Of the four
remaining subproblems P6, P7, P9, and P10, we branch from P10 next and fix y6.

P13: y2 = 1 with Zrelax = 96. Again, this is an integer solution. Since Zrelax > Zbest = 93,
reset Zbest = 96, replace the current incumbent solution P11 by P13, and fathom P13.

P14: y2 = 0 with Zrelax = 84. This solution is all integer-values, and simply fathom P14
since Zrelax < Zbest = 96.

There are three subproblems P6, P7, and P9 that remain to be examined. We now branch
from P7 and fix y4 at 0 and 1.

P15: y2 = y5 = y6 = 1 with Zrelax = 80. Fathom P15.

P16: y2 = y5 = 1 and y6 = 0.875 with Zrelax = 97.5. Fathom P15.
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There still are three subproblems P6, P9, and P16 left. Branch from P6 by fixing y2 at 0
and 1.

P17: y1 = 1 and y6 = 0.875 with Zrelax = 92.6. P17 is fathomed since Zrelax < Zbest = 96.

P18: y1 = 0 and y6 = 0 with Zrelax = 88. P18 is fathomed since the solution is all integer-
valued with Zrelax < Zbest = 96.

There are only two subproblems remaining. Branch from P16 leads to the following:

P19: y2 = y5 = 1 with Zrelax = 73. Fathom P19.

P20: y2 = 1 and y5 = 2/3 with Zrelax = 97.

Both the remaining subproblems P9 and P20 have the same Zrelax = 97. Branching from
both leads to four subproblems that will be fathomed since their relaxed LP solutions are all
strictly worse than Zbest. Now all subproblems have been fathomed, and the B&B search
stops with the current incumbent solution P13(y1 = y2 = y3 = y4 = 1 and y5 = y6 = 0 with
Zbest = 96) being the optimal solution to the ILP.

This ILP has six binary variables. Since each variable can assume either 0 or 1, the
total enumeration will have to evaluate a total of 26 = 64 solutions (many of them may be
infeasible). In the above B&B search, a total of only 25 subproblems are evaluated—over
60% reduction of computational effort. As the number of variables increases, computational
effort reduction can become more significant. This is especially true when the number of
variables that equal 1 in an optimal integer solution is a small portion of all the binary
integer variables.

In the B&B search, the number of possible subproblems at least doubles as the level
increases by 1. At the final level, for an ILP with k integer variables, there are at least
2k possible sub-problems. For a small k = 20, 2k > 1 million, and k = 30, 2k > 1 billion.
Too many subproblems! One way to reduce the search effort is to limit the number of
subproblems to branch further to some constant (e.g., 50). Such a search method is called
a beam search, and the constant is the beam size. Beam search may quickly find an integer
solution that may be good, but its optimality is not guaranteed.

3.4 Cutting Plane Method

Recall that the feasible region of any LP is a convex set, and each solution found by the
simplex method corresponds to an extreme point of the feasible region. In other words,
the simplex method only searches the extreme points of the feasible region in identifying an
optimal solution. In general, the optimal extreme point associated with the optimal solution
may not be all integer-valued. If the coefficient matrix B in an ILP is totally unimodular,
then each extreme point of the feasible region is guaranteed to have all integer variable
values, and therefore, the relaxed LP solution is guaranteed to be all integer-valued. But
this is generally not true for most ILPs. However, if only the optimal extreme point of
the relaxed LP feasible region is all integer-valued, then the LP relaxation solution is also
optimal to the ILP. This is the underlying motivation for a cutting-plane method.

The basic idea is to change the boundaries of the convex set of the relaxed LP feasible
region by adding “cuts” (additional linear constraints) so that the optimal extreme point
becomes all-integer when all such cuts are added. The added cuts will slice off some off
the feasible region of the LP relaxation (around the current noninteger optimal extreme
point), but will not cut off any feasible integer solutions. That is, the areas sliced off from
the feasible region of the LP relaxation do not include any of the integer solutions feasible
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to the original ILP. When enough such cuts are added, the new optimal extreme point of
the sliced feasible region becomes all-integer, and thus is optimal to the ILP.

We first describe in detail the dual fractional cutting-plane method for pure ILPs and
then extend it to MILPs.

3.4.1 Dual Fractional Cut (The Gomory Cuts) for Pure IPs

Consider a maximization ILP, where all coefficients are integer and all constraints are equal-
ities. Its LP relaxation is

(LP Relaxation) maximize dy

subject to By = b

y ≥ 0

The optimal simplex solution to the LP relaxation can be expressed as follows:

yB + S−1NyN = S−1b

where yN =0, and yB =S−1b(≥0) are respectively the vectors of non-basic and basic vari-
ables, and S and N consist of columns of coefficients in the constraints corresponding to
basic and non-basic variables, respectively. The square matrix S is commonly called a basis.

Let aj denote the column of constraint coefficients of variable yj . Then the above equation
can be rewritten as follows:

yB +
∑

non-basic j

ujyj = v

where u=S−1aj and v =S−1b. If v is all-integer, then this solution is also optimal to the
ILP. Otherwise, v has at least one noninteger element. Let vr be a noninteger element in v.
A cut will be constructed based on the rth equation in the above vector equation, which
can be explicitly written as follows:

yB,r +
∑

non-basic j

ur,jyj = vr

Since vr is noninteger and positive, it can be expressed as vr = int(vr) + fr, where int(vr)
is the integer rounded down from vr, and fr is the non-integer part of vr. Clearly, 0< fr < 1.
Similarly, we can write ur,j = int(vr,j) + fr,j , where 0≤ fr,j < 1, for all non-basic variable yj .
Substituting vr and ur,j into the above equation yields

yB,r +
∑

non-basic j

[
int(ur,j) + fr,j

]
yj = int(vr) + fr

The above equation can be rewritten as

∑
non-basic j

fr,jyj − fr = int(vr) −
[
yB,r +

∑
non-basic j

int(ur,j)yj

]

Since the right-hand side of this equation is always integer for any feasible integer solution,
the left-hand side must also be integer-valued for all feasible integer solutions. In addition,
the first term

∑
non-basic j fu,jyj is nonnegative for any nonnegative solutions. Therefore,

∑
non-basic j

fu,jyj − fr = y
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where y is some nonnegative integer. Adding this as an additional constraint to the ILP will
not reduce any feasible solution. This cut is referred to as a Gomory cut (Gomory, 1960).
In addition, the ILP remains a pure IP after adding this cut.

Resolve the LP relaxation of the ILP with the added cuts. If an all-integer solution is
obtained, it is optimal to the original ILP and therefore stop. Otherwise, repeat.

The following algorithm outlines the basic steps of the dual fractional cutting-plane
approach.

3.4.2 Dual Fractional Cutting-Plane Algorithm for ILP

Step 1: Start with an all-integer simplex tableau and solve it as an LP (i.e., the LP
relaxation). If it is infeasible, so is the ILP and stop. If the optimal solution is all-integer,
it is also optimal to the ILP, and stop. Otherwise, proceed to Step 2.

Step 2: In the optimal simplex tableau, identify a row (say, row r) associated with a
non-integer basic variable. Use this row to construct a cut as follows.∑

non-basic j

fu,jyj − fr = y

where y is an additional nonnegative integer variable. Add this new constraint to the bottom
of the current optimal simplex tableau, and go to Step 3.

Step 3: Reoptimize the new LP relaxation, using the dual simplex method. If the new
LP relaxation is infeasible, so is the original ILP, and stop. If the optimal solution to the
new LP relaxation is all-integer, it is also optimal to the original ILP, and stop. Otherwise,
go to Step 2.

3.4.3 An Example

The following example is considered to illustrate the use of Gomory cuts.

maximize Z = 7y1 + 9y2
subject to −y1 + 3y2 + y3 = 6

7y1 + y2 + y4 = 35
y1, y2, y3, y4 ≥ 0, and integer

The optimal solution to the LP relaxation is (y1, y2, y3, y4) = (9/2, 7/2, 0, 0) with Z = 63.
The equation associated with noninteger basic variable y2 in the final optimal simplex
tableau is y2 + (7/22)y3 + (1/22)y4 = 7/2 which can be rewritten as

y2 +
(

0 +
7
22

)
y3 +

(
0 +

1
22

)
y4 = 3 +

1
2

Thus, the resulting Gomory cut is
7
22

y3 +
1
22

y4 − 1
2

= y5

Solve the LP relaxation and we get the optimal solution y = (32/7, 3, 11/7, 0, 0) with
Z = 59. The equation associated with non-basic variable y1 is y1 + (1/7)y4 + (−1/7)y5 =
32/7; this yields the following Gomory cut:

71
y4

+
6
7
y5 − 4

7
= y6

Again, solving the new LP relaxation yields the optimal solution y = (4, 3, 1, 4, 0, 0) with
Z = 55. This solution is all integer-valued. Therefore, it is also optimal to the original ILP,
and stop.
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3.4.4 Dual Fractional Cut (The Gomory Cuts) for MILPs

The cutting-plane algorithm for ILPs presented in Section 3.4.1 can be extended to deal
with MILPs. Again, the intent is to whittle the feasible region down to an optimal extreme
point that has integer values for all of the integer variables by adding cuts. Let row r
correspond to an integer variable whose value is noninteger in the optimal solution to the
LP relaxation. Then the cut takes the following form:

∑
non-basic j

gu,jyj − fr = y

where y is a nonnegative integer variable, and gu,j =

1. ur,j , if ur,j > 0 and yj is a continuous variable,
2. [fr/(fr − 1)]uv,j , if uv,j < 0 and yj is a continuous variable,
3. fr,j , if fr,j ≤ fr and yj is an integer variable,
4. [fr/(1 − fr)](1− fr,j), if fr,j ≤ fr and yj is an integer variable.

3.4.5 Dual Fractional Cutting-Plane Algorithm for MILP

Step 1: Solve the LP relaxation. If it is infeasible, so is the MILP and stop. If the
optimal solution satisfies all integer requirements, it is also optimal to the MILP, and stop.
Otherwise, proceed to Step 2.

Step 2: In the optimal simplex tableau, identify a row (say, row r) which contains an
integer basic variable whose value is not integer. Use this row to construct a cut as follows:

∑
non-basic j

gu,jyj − fr = y

where y is an additional nonnegative integer variable. Add this new constraint to the bottom
of the current optimal simplex tableau, and go to Step 3.

Step 3: Reoptimize the new LP relaxation, using the dual simplex method. If the new
LP relaxation is infeasible, so is the original MILP, and stop. If the optimal solution to the
new LP relaxation satisfies all integer restrictions, it is also optimal to the original MILP,
and stop. Otherwise, go to Step 2.

3.5 Other Solution Methods and Computer Solution

In LP, the simplex method is based on recognizing that the optimum occurs at an extreme
point of the convex feasible region defined by the linear constraints. This powerful result
reduces the search for the optimum from an infinite number of many solutions to a finite
number of extreme point solutions. On the other hand, pure ILPs with a bounded feasible
region are guaranteed to have just a finite number of feasible solutions. It may seem that
ILPs should be relatively easy to solve. After all, LPs can be solved extremely efficiently
and the only difference is that ILPs have far fewer solutions to be considered.

Unfortunately, this is not the case. While LPs are polynomially solvable via the interior
point methods (Bazarra et al., 1990), ILPs are NP-hard. The NP-hardness of ILPs can be
established since every instance of the generalized assignment problem which is NP-hard
is an ILP (for more discussion on computational complexity, refer to Garey and Johnson,
1979). Therefore, ILPs are, in general, much more difficult to solve than LPs. The integer
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nature of the variables makes it difficult to devise an efficient algorithm that searches directly
among the integer points of the feasible region. In view of this difficulty, researchers have
developed solution procedures (e.g., B&B search and cutting-plane methods) that are based
on exploiting the tremendous success in solving LPs. A more detailed discussion of B&B
search and cutting-plane methods can be found in, for example, Salkin and Mathur (1989)
and Schrijver (1986). Other classical methods include, for example, partitioning algorithms
(Benders, 1962) and group theoretic algorithms (Gomory, 1967).

More recently, local search methods have been developed to find heuristic solutions to
ILPs. Glover and Laguna (1997) give excellent discussion of tabu search in integer program-
ming. Heuristic search algorithms based on simulated annealing and genetic algorithms can
be found in Aarts and Korst (1990) and Rayward et al. (1996).

There are many sophisticated software packages for ILPs or MILPs that build on recent
improvements in integer programming. For example, the developers of the powerful math-
ematical programming package CPLEX have an ongoing project to further develop a fully
state-of-the-art IP module. The inclusion of the Solver in Microsoft EXCEL has certainly
revolutionized the practical use of computer software in solving ILPs. Refer to Fourer (2005)
for an excellent survey of commercial software packages.
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4.1 Introduction

Communication on the Internet or via phones, satellites, or landlines; distribution of goods
over a supply chain; transmission of blood through veins; movement of traffic on roads,
connection of towns by roads, connection of yards by railroads, flight of planes between
airports, and the like, have something in common: all can be modeled as networks. Taha
(2002) reported that as much as 70% of the real-world mathematical programming prob-
lems can be represented by network-related models. These models are widely utilized in real
life for many reasons. First, networks are excellent visualization tools and easy to under-
stand as problems can be presented pictorially over networks. Second, network models have
several computationally efficient and easy-to-implement algorithms that take advantage of
the special structure of networks, thus providing a key advantage for researchers to handle
large-size real-life combinatorial problems. Furthermore, network flow problems appear as
subproblems when mathematical programming techniques such as decomposition, column
generation, or Lagrangian relaxation are utilized to solve large-scale complex mathemati-
cal models. This is a key advantage because using efficient network algorithms results in

4-1
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faster convergence when the above-mentioned techniques are utilized. For example, shortest
path problems, one of the simplest network flow models that can be solved quite efficiently,
appear in many networks: transportation, communication, logistics, supply chain manage-
ment, Internet routing, molecular biology, physics, sociology, and so on.

In this chapter, our goal is not to focus on the details of network flow theory, but instead
to describe the general problem and provide a mathematical formulation for each problem.
For most of the fundamental network problems presented in this chapter, we will describe
an algorithm and illustrate how it can be applied to a sample network flow problem. We
will also provide a variety of problems for some of the network models presented.

The organization of this chapter is as follows: First, the notation utilized in this chapter
is presented. Next, the minimum cost flow problem is introduced. The special cases of this
problem, the shortest path problem, maximum flow problem, and the assignment problem
are then presented. The multicommodity flow problem and the minimum spanning tree
problem are also studied in this chapter.

4.2 Notation

A directed network (or a directed graph) is defined as G = (N,A), where N is the node set
(i.e., N = {1, 2, 3, 4, 5, 6, 7}), and A is the arc set whose elements are ordered pairs of distinct
nodes (i.e., A = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 6), (4, 5), (4, 7), (5, 2), (5, 3), (5, 7), (6, 7)}). An
arc (i, j) starts with a tail node i and ends with a head node j, where nodes i and j are the
endpoints of arc (i, j). In Figure 4.1, arcs (1,2) and (1,4) are directed arcs. An arc adjacency
list A(i) of a node i is the set of arcs emanating from node i, that is, A(i) = {(i, j) : (i, j) ∈A}.
For example, in the figure below, A(4) = {(4, 5), (4,7)}. The indegree of a node is the number
of incoming arcs of that node, and the outdegree of a node is the number of outgoing arcs.
The degree of a node is the sum of its indegree and outdegree. For example, node 5 has
an indegree of 1 and outdegree of 3. As a result, the degree of node 5 is 4. Consequently,∑

i∈N |A(i)| = |N |.
A walk in a directed graph G is a subgraph of G consisting of a sequence of nodes and

arcs. This also implies that the subgraph is connected. A directed walk is an “oriented” walk
such that for any two consecutive nodes ik and ik+1, (ik, ik+1) is an arc in A. For example,
1,2,5,7,4,2 is a walk but not a directed walk. 1,2,4,7 is a directed walk. A path is a walk
without any repetition of nodes (e.g., 1,2,5,7), and a directed path is a directed walk without
any repetition of nodes. For example, in the directed graph below, 1,2,4,5 is a directed path,
but 1,2,4,5,2 is not. A cycle is a closed path that begins and ends at the same node (e.g.,
4,5,7,4). A directed cycle is a directed closed path that begins and ends at the same node
(e.g., 2,4,5,2). A network is called acyclic if it does not contain any directed cycle. A tree is
a connected acyclic graph. A spanning tree on a given undirected graph is a subgraph of G
that is a tree and spans (touches) all nodes. A graph G = (N,A) is a bipartite graph if we

1

2

3

4

5

6

7

FIGURE 4.1 A directed network.
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can partition the nodes in this graph into two disjoint subsets N1 and N2 so that for every
arc (i, j) ∈A, i∈N1 and j ∈N2, or vice versa.

An undirected network is defined as G = (N, A), where N is the node set and A is the arc
set whose elements are unordered pairs of distinct nodes. An arc in an undirected network is
similar to a two-way street (i.e., flow is allowed in both directions), while an arc in a directed
network allows flow in one direction only. An undirected network can be transformed into
a directed network by replacing an undirected arc (i, j) with two directed arcs (i, j) and
(j, i). Consequently, node i is adjacent to node j, and node j is adjacent to node i. Thus,∑

i∈N |A(i)| = 2|N |. The definitions above hold for undirected networks, except that there
is no distinction between a cycle and a directed cycle, a path and a directed path, and a
walk and a directed walk.

4.3 Minimum Cost Flow Problem

The minimum cost flow problem is one of the most fundamental network flow problems,
where the goal is to send flow from supply nodes to demand nodes using arcs with capaci-
ties and involve the minimum total cost of transportation given availability of supply and
demand in a directed network (if the network is undirected, an undirected arc between
nodes i and j is replaced with two directed arcs, (i, j) and (j, i), with the same cost and
capacity as the undirected arc to obtain a directed network).

A minimum cost flow problem has several applications: distribution of a product from
manufacturing plants to warehouses, or from warehouses to retailers; flow of raw materi-
als and intermediate goods through stations in a production line; routing of automobiles
through a street network; and routing of calls through a telephone system.

4.3.1 Linear Programming Formulation

Let xij denote the amount of flow on arc (i, j). The minimum cost flow problem can be
formulated as follows:

Minimize:
∑

(i,j)∈A

cijxij (4.1)

Subject to:
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i,)∈A}

xji = bi i ∈ N (4.2)

lij ≤ xij ≤ uij (i, j) ∈ A (4.3)

xij ≥ 0 (i, j) ∈ A (4.4)

where cij is the cost of arc (i, j) ∈A and bi is the supply/demand at node i. If node i is a
supply node, then bi > 0, whereas bi < 0 for a demand node, and bi = 0 for a transshipment
node. To have a feasible solution,

∑
i∈N bi = 0. The objective here is to minimize the cost

of transporting the commodity from supply nodes to demand nodes. Equation 4.2 is the
mass balance (flow balance or conservation of flow) constraints: the difference between the
total flow emanating from node i (outflow, the first term in Equation 4.2) and entering
node i (inflow, the second term in Equation 4.2) is equal to the demand/supply at that
node. Equation 4.3 states that flow on any arc (i, j) should be between the allowable range,
that is, between the lower (lij) and upper bounds (uij) of flow on arc (i, j), where lij ≤ 0
or lij > 0, and uij <∞. When uij = ∞ for all arcs (i.e., there is no upper bound on the
arc capacity), the problem becomes an uncapacitated network flow problem. Note that the
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above formulation has |A| nonnegative variables, lower and upper bound constraints, and
|N | mass balance constraints.

The basic feasible solution of the equation system defined by Equations 4.2 to 4.3 are
integer-valued if all bi’s are integer-valued. In other words, when the right-hand side for all
constraints (i.e., the supply and demand) is an integer, the network flow models provide
integer solutions.

The above problem can be solved using linear programming techniques such as the sim-
plex algorithm. For network problems, calculations of the simplex tableau values become
easier. The specialized simplex algorithm to solve network problems is defined as the network
simplex method. In the network simplex algorithm, a feasible spanning tree structure is suc-
cessively transformed into an improved spanning tree structure until optimality is achieved.

Minimum cost flow problems have several special cases. For example, in transportation
problems, the network is bipartite. Each node is either a supply or a demand node. Supply
nodes are connected to demand nodes via arcs without capacities. The goal is to minimize
the overall transportation cost. In a transportation problem, when the supply and demand
at each node is equal to one, and the number of supply nodes is equal to the number of
demand nodes, an assignment problem is obtained. Other special cases of minimum cost
flow problems include shortest path problems and maximum flow problems.

4.4 Shortest Path Problem

Shortest path problems involve a general network structure in which the only relevant
parameter is cost. The goal is to find the shortest path (the path with minimum total
distance) from the origin to the destination. Computationally, finding the shortest path from
an origin to all other nodes (often also known as a shortest path tree problem) is not any
more difficult than determining the shortest path from an origin to a single destination. Note
that a shortest path problem is a specialized minimum cost flow problem, where the origin
ships one unit of flow to every other node on the network (thus, a total of m − 1 units of flow).

Shortest path problems arise in a variety of practical settings, both as stand-alone prob-
lems or as subproblems of more complex settings. Applications include finding a path of
minimum time, minimum length, minimum cost, or maximum reliability. The shortest path
problem arises in a transportation network where the goal is to travel the shortest dis-
tance between two locations, or in a telecommunication problem where a message must be
sent between two nodes in the quickest way possible. Other applications include equipment
replacement, project scheduling, project management, cash flow management, workforce
planning, inventory planning, production planning, DNA sequencing, solving certain types
of differential equations, and approximating functions. Shortest path problems appear as
subproblems in traffic assignment problems, in multicommodity flow problems, and network
design problems. More detailed descriptions of some of the problems that can be modeled
as shortest path problem are provided below:

The maximum reliability path problem determines a directed path of maximum reliability
from the source node to every other node in the network where each arc is associated with
a reliability measure or probability of that arc being operational. The reliability of a path
can be calculated by the product of reliabilities of each arc on that path. To solve this
problem using a shortest path algorithm, one can take the cost of each arc as the logarithm
of its reliability and convert the maximization problem into a minimization problem by
multiplying the objective function by −1.

In an equipment replacement problem, the input is the total cash inflow/outflow for pur-
chasing the equipment using the equipment for a certain period of time, and finally selling
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the equipment. This data can be transformed into a network structure by assuming that the
nodes represent the timeline and that the arcs represent an equipment replacement decision.
The cost of an arc between two nodes separated by k years is the total cost of buying, keep-
ing, and then selling the equipment for k years. The goal in an equipment replacement prob-
lem is to determine the best equipment replacement policy over a T -year planning horizon,
which is equivalent to solving a shortest path problem over the network described above.

4.4.1 Linear Programming Formulation

The objective in a shortest path problem is to minimize the total cost of travel from an
origin node s (i.e., a source node) to all other nodes in a directed network where the cost of
traversing arc (i, j) is given by cij . The shortest path problem can be considered a minimum
cost flow problem with the goal of sending one unit of flow from the source node s to every
other node in the network. Let xij be the amount of flow on arc (i, j). The shortest path
problem can be formulated as follows:

Minimize:
∑

(i,j)∈A

cijxij (4.5)

Subject to:
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i,)∈A}

xji = (n − 1), i = s (4.6)

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i,)∈A}
xji = −1 i = N − {s} (4.7)

xij ≥ 0 (i, j) ∈ A (4.8)

In the above formulation, the objective function, Equation 4.5, minimizes the total cost
of sending (n − 1) units of flow node s to all other nodes on the network. Equation 4.6 is
the mass balance constraint (node balance, conservation of flow constraint) for the origin.
Equation 4.7 is the mass balance constraint for all other nodes. The above formulation has
|A| variables and |N | constraints. The shortest path problem can be solved utilizing sev-
eral specialized, very efficient algorithms. We will describe one of the most famous network
optimization algorithms, Dijkstra’s algorithm, to solve a shortest path problem in the fol-
lowing. In the presence of negative cycles, the optimal solution of the shortest path problem
is unbounded.

4.4.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a widely used, simple-to-implement algorithm to solve shortest path
problems. Dijkstra’s algorithm is a label-setting algorithm: Initially, all nodes are assigned
tentative distance labels (temporary shortest path distances), and then iteratively, the short-
est path distance to a node or set of nodes at each step is determined. In the Dijkstra’s
implementation described below, d(j) is the (temporary) distance label of node j (shortest
path distance, or minimum cost directed path from the source node s to node j). Distance
labels are upper bounds on shortest path distances. Pred(j) is the immediate predecessor
of node j on the shortest path tree. LIST is a data structure in which candidate nodes that
have been assigned temporary shortest distances are stored. A(j) is the arc adjacency list.
The efficiency of the algorithm depends on the structure of the network (e.g., acyclic net-
works, arcs with nonnegative lengths, integer-valued arc costs, etc.) and how the LIST data
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structure is implemented (e.g., Dial’s implementation, and heap implementations such as
Fibonacci heap, radix heap, d-heap, etc.). Below is a description of the Dijkstra’s algorithm:

Step 1: For the source node, let d(s) = 0 and pred(s) = 0. For all other nodes (i.e.,
j ∈N − {s}), d(j) = ∞, pred(j) = |N | + 1. Set LIST := {s};

Step 2: Permanently label the node i with d(i) = min {d(j) : j ∈LIST}. Remove node
i from the LIST;

Step 3: For each (i, j) ∈A(i), do a distance update: if d(j) > d(i) + cij , then d(j) := d(i) +
cij , pred(j) := i, and if j /∈LIST , then add j to LIST;

Step 4: If LIST �= Ø, then go to Step 2.

In the above implementation of Dijkstra’s algorithm, we assumed that the network is
directed. In an undirected network, to satisfy this assumption, each undirected arc (i, j)
with cost cij can be replaced by two directed arcs, arc (i, j) and arc (j, i) with costs cij . It
is also assumed that the network contains a directed path from the origin (the source node)
to every other node in the network, and the cost cij for arc (i, j) ∈A is nonnegative.

We apply the Dijkstra’s algorithm to the network depicted in Figure 4.2. The iterations
of the algorithm are presented in Table 4.1. In the initialization stage, all distance labels
other than the origin (d(s) = 0) are set to infinity. At each iteration, a node is permanently
labeled (i.e., the distance from the origin, node s, to that node is determined) and distance
labels of all nodes that are accessible from the permanently labeled node are updated. In
Table 4.1, shaded columns indicate nodes that have been permanently labeled. Below, we
will describe a couple of iterations of the Dijkstra’s algorithm.

At the first iteration, initially, the LIST contains only node 1 (the origin). Thus, node 1,
the node with the shortest distance from the origin, is permanently labeled and removed
from the LIST. Nodes 2 and 3 are added to the list, as the distance for those nodes through
node 1 is less than their current temporary distance labels of infinity. In the second iteration,
node 2 is the node with the shortest distance from the origin. Thus, node 2 is permanently
labeled and removed from the LIST. Distance labels of nodes 4, 5, and 6 are updated and
added to the LIST. The predecessor of these nodes is node 2. Dijkstra’s algorithm takes six
iterations to permanently label all nodes on the network. The shortest path from node 1 to
node 6 is 1-2-4-5-6, with a total distance of 60. In Table 4.1, the distance labels and prede-

For more generalized networks (including networks with negative arc lengths), shortest
path problems can be solved using label-correcting algorithms. Label-correcting algorithms
determine the shortest path distance at the time the algorithm terminates (i.e., all of the
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FIGURE 4.2 Shortest path example: the goal is to determine the shortest path from node 1 to all
other nodes.
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TABLE 4.1

Initialization LIST =

Node

1 2 3 4 5 6

d(j) 0 ∞ ∞ ∞ ∞ ∞
Pred (j) 0 7 7 7 7 7

Iteration 1 Permanently labeled node = 1 LIST =

Node

1 2 3 4 5 6

d(j) 0 20 25 ∞ ∞ ∞
Pred (j) 0 1 1 7 7 7

LIST =

Iteration 2 Permanently labeled node = 2 LIST =

Node

1 2 3 4 5 6

d(j) 0 20 25 40 55 75

Pred (j) 0 1 1 2 2 2

LIST = 3,4,5,6

Iteration 3 Permanently labeled node = 3 LIST = 4,5,6

Node

1 2 3 4 5 6

d(j) 0 20 25 40 55 75

Pred (j) 0 1 1 2 2 2

LIST = 4,5,6

Iteration 4 Permanently labeled node = 4 LIST = 5,6

Node

1 2 3 4 5 6

d(j) 20 25 40 50 65

Pred (j) 1 1 2 4 4

LIST = 5,6

Iteration 5 Permanently labeled node = 5 LIST = 6

Node

2 3 4 5 6

d(j) 20 25 40 50 60

Pred (j) 1 1 2 4 5

LIST = 6

Iteration 6 Permanently labeled node = 6 LIST = TERMINATE

Node

2 3 4 5 6

d(j) 20 25 40 50 60

Pred (j) 1 1 2 4 5

0

0

1

0

0

1

0

0
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FIGURE 4.3 Shortest path tree for the network in Figure 4.2.

distance labels are temporary until the termination). Label-setting algorithms can also be
viewed as a special case of label-correcting algorithms.

Some of the generalizations of the shortest path problems can be listed as follows: The
constrained shortest path problem finds the shortest distance from an origin to all other
nodes while keeping the traversal time of that path below a predetermined amount. The
traversal time between nodes can be different from the distance between the given nodes.
In the k shortest path problem, one determines not only the shortest path but also the 2nd,
3rd, . . ., (k− 1)st, and kth shortest paths from an origin to every other node. The multi-
criteria shortest path problem intends to determine a path that minimizes simultaneously
all the criteria (i.e., distance, time, cost, reliability) under consideration. The multicriteria
shortest path problem finds nondominated paths, that is, paths for which there is no other
path with better values for all criteria. In the all pair shortest path problem, the shortest
path between all pairs of nodes is found.

4.5 Maximum Flow Problem

In a capacitated network, often, sending a maximum amount of flow from an origin (source)
node to a destination (sink) node might be advantageous. In many situations, links on the
network can be considered as having capacity that limits the quantity of a product that may
be shipped through the arc. Often in these situations, knowledge of the overall capacity of
the network might provide an advantage over competitors. This can be achieved by finding
the maximum flow that can be shipped on the network. The objective in a maximum flow
problem is to determine a feasible pattern of flow through the network that maximizes the
total flow from the supply node (source, origin) to the destination node (sink). The max-
imum flow problem is a special case of a minimum cost flow problem. Any maximum flow
problem can be transformed into a minimum cost flow problem using the following trans-
formation: add an arc with −1 cost and ∞ capacity between the sink node and source node
(i.e., add arc (d, s)). All other arcs on the network have a cost of zero. As the objective in a
minimum cost flow problem is to minimize total cost, the maximum possible flow is delivered
to the sink node when the minimum cost flow problem is solved for the new network.

Maximum flow problems have several applications. For example, consider a pipeline that
transports water from lakes (sources) to a residential area (sinks) via a pipeline (arcs on
the network). Water has to be transported via pipes with different capacities. Intermedi-
ate pumping stations (transshipment nodes) are installed at appropriate distances. Before
being available for consumption, the water has to be treated at treatment plants. The inter-
mediate pumping stations and treatment plants are transshipment nodes. The goal is to
determine the maximum capacity of this pipeline (i.e., the maximum amount that can be

© 2008 by Taylor & Francis Group, LLC



CH004.tex 22/10/2007 13: 59 Page 4-9

Network Optimization 4-9

pumped from sources to sinks). Similar problems exist in crude oil and natural gas pipelines.
Other examples of maximum flow problems are staff scheduling, airline scheduling, tanker
scheduling, and so on. In summary, maximal flow problems play a vital role in the design
and operation of water, gas, petroleum, telecommunication, information, electricity, and
computer networks like the Internet and company intranets.

4.5.1 Linear Programming Formulation

Let f represent the amount of flow in the network from source node s to sink node d (this
is equivalent to the flow on arc (d, s)). Then the maximal flow problem can be stated as
follows:

Maximize: f (4.9)

Subject to:
∑

{j:(i,j)∈A}
xij = f i = s (4.10)

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = 0 i = N\{s, d} (4.11)

−
∑

{j:(j,i)∈A}
xji = −f i = d (4.12)

xij ≤ uij (i, j) ∈ A (4.13)

xij ≥ 0 (i, j) ∈ A (4.14)

The objective is to maximize the total flow sent from origin (node s) to destination
node d. Equations 4.10 through 4.12 are conservation of flow (mass balance) constraints.
At the origin and destination, the net inflow and outflow are f and −f , respectively. The
mathematical program has |A| + 1 variables, |A| capacity constraints, and |N | node balance
constraints. Maximum flow problems can be solved using the network simplex method.
However, algorithms such as the augmented path algorithm, the preflow-push algorithm,
and excess scaling algorithms can be utilized to solve large-scale maximum flow problems
efficiently. Below we present an augmenting path algorithm.

A special case of the maximum flow problem (thus, the minimum cost flow problem) is
the circulation problem, in which the objective is to determine if the network flow problem is
feasible, that is, if there is a solution in which the flow on each arc is between the lower and
upper bounds of that arc. The circulation problem does not have any supply or demand
nodes (i.e., all nodes are transshipment nodes, thus, bi = 0 for all i∈N). A circulation
problem can be converted to a minimum cost flow problem by adding an arc with −1 cost
and ∞ capacity between the sink node and source node (i.e., add arc (d, s)). All other arcs
on the network have a zero cost.

4.5.2 Augmenting Path Algorithm

In an augmenting path algorithm, the flow along the paths from source node to destination
node is incrementally augmented. This algorithm maintains mass balance constraints at
every node of the network other than the origin and destination. Furthermore, instead
of the original network, a residual network is utilized to determine the paths from origin
(supply node) to destination (demand node) where there can be a positive flow. The residual
network is defined as follows: For each arc (i, j), an additional arc (j, i) is defined. When
there is a flow of eij on arc (i, j), the remaining capacity of arc (i, j) is cij − eij , whereas
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the remaining capacity of arc (j, i) is increased from 0 to eij . Whenever some amount of
flow is added to an arc, that amount is subtracted from the residual capacity in the same
direction and added to the capacity in the opposite direction. An augmented path between
an origin–destination pair is a directed path for which every arc on the path has strictly
positive residual capacity. The minimum of these residual capacities of the augmented path
is the residual capacity (c∗) of the residual path. Then the remaining capacities on arcs
((i, j), (j, i)) are modified along the path to either (cij − eij − c∗, eij + c∗) or (cij − eij + c∗,
eij − c∗), depending on whether the flow is on arc (i, j) or (j, i). The augmenting path
algorithm can be stated as follows:

Step 1: Modify the original network to obtain the residual network.
Step 2: Identify an augmenting path (i.e., a directed path from source node to sink

node) with positive residual capacity.
Step 3: Determine the maximum amount of flow that can be sent over the augmenting

path (suppose this is equal to c∗). Increase the flow on this path by c∗, i.e., total flow = total
flow + c∗.

Step 4: Decrease the residual capacity on each arc of the augmenting path by c∗,
and increase residual capacity on each arc in the opposite direction on the augmenting
path by c∗.

Step 5: If there is an augmented path from source to sink with positive residual capacity,
then go to step 3.

We apply the augmenting path algorithm to the network shown in Figure 4.4a. The
residual network is obtained after initialization. In Figure 4.4b, the residual capacity of
each arc is listed above/below the header (arrow/orientation) of each arc. For example,
initially the remaining capacity on arc (2,4) is 20 (that is the capacity of this arc) and (4,2)
is 0. The augmented paths and updates in flows are given in Table 4.2. Initially, all of the
newly added reverse arcs carry zero flow. At iteration 1, 10 units of flow are sent on path
1-2-5-6 (the minimum residual arc capacity on this path). The shaded cells are the arcs on
this path for which there is a change in the residual arc capacity. For example, arc (5,6)
can no longer carry any flow, while its reverse arc, (6,5), has 10 units of residual capacity.
In iteration 2, the bottleneck (the arc with minimum capacity) occurs at arc (5,2). As a
result, 10 units of flow are transferred on path 1-3-5-2-4-6. Finally, after 10 units of flow
are sent on path 1-2-4-6, there is no more augmenting path with strictly positive residual
capacity from node 1 to node 6 (see Figure 4.4c for the flows on paths and the residual arc
capacities). As a result, the maximum flow on this network is 30 units.

The maximum flow problem can also be solved using the minimum cut algorithm. A cut
in a connected network defines the set of directed arcs, which, if removed from the network,
would make it impossible to travel from the source/origin to the sink/destination. In other
words, a cut should include at least one arc from every directed path from the source
node to the sink node to prevent flow going from origin to destination. The capacity of
a cut is the sum of the capacities of the arcs in the cut. The goal in the minimum cut
problem is to determine the cut with the lowest capacity. To determine a cut, we first
partition all nodes into two subsets where origin and destination cannot be in the same
subset, that is, N = N1 ∪N2, where origin∈N1 and destination∈N2. The cut is a set of all
forward arcs that connects the subset that contains the origin and the other subset with
destination. For example, suppose N1 = {1, 2} and N2 = {3, 4, 5, 6}. Then the cut includes
arcs (1,3), (2,4), (2,5) and (2,6) and the cut capacity is u13 + u24 + u25 + u26 = 135. The
minimum cut problem is the dual of the maximum flow problem. Thus, any feasible solution
to the minimum cut problem provides an upper bound to the maximum flow problem and
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FIGURE 4.4 Application of the augmenting path algorithm on a network. (a) Original network.
(b) Transformed network with residual arcs. (c) Paths and flows on the network after the augmenting
flow algorithm is run to determine the maximum flows.

at optimality the minimum cut capacity is equal to the maximum flow. As a result, the
maximum flow problem can be solved using the following algorithm:

Step 1: Identify all the cuts of the network.
Step 2: Determine the capacities of the cuts.
Step 3: Select the cut with the minimum capacity.

Note that if all possible cuts are not identified, then this algorithm may not identify the
maximum flow. For the network in Figure 4.4a, if the nodes are partitioned as N1 = {1, 3, 5}
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TABLE 4.2 Application of Augmenting Path Algorithm to the Network in Figure 4.4a

Residual Arc Capacity

Iteration Path Flow (1,2) (2,1) (1,3) (3,1) (2,4) (4,2) (2,5) (5,2) (2,6) (6,2) (3,5) (5,3) (4,5) (5,4) (4,6) (6,4) (5,6) (6,5)

0 20 0 25 0 20 0 35 0 55 0 35 0 10 0 25 0 10 0

1 1-2-5-6 10 10 10 25 0 20 0 25 10 55 0 35 0 10 0 25 0 0 10

2 1-3-5-2-4-6 10 10 10 15 10 10 10 35 0 55 0 25 10 10 0 15 10 0 10

3 1-2-4-6 10 0 20 15 10 0 20 35 0 55 0 25 10 10 0 5 20 0 10
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and N2 = {2, 4, 6}, then the cut capacity is u12 + u56 = 20 + 10 = 30, which is equal to the
maximum flow in the network.

4.6 Assignment Problem

In the assignment problem, on a weighted bipartite graph G = (N,A), where for every
(i, j) ∈A, i∈N1 and j ∈N2, or vice versa, one seeks to pair nodes in N1 and N2 in such
a way that the total cost of this pairing is minimized. In other words, given two sets of
objects, the best, most efficient, least-cost pairing is sought.

There are several applications of assignment problems: For example, assigning professors
to classes; matching people to jobs, rooms, events, machines, projects, or to each other;
assigning crews to flights, jobs to machines, and so on. Each assignment has a value, and
we want to make the assignments to minimize the sum of these values.

4.6.1 Linear Programming Formulation

Given a weighted bipartite network G = (N1 ∪N2, A) with |N1| = |N2| and arc weights of
cij , the assignment problem can be formulated as follows:

Minimize:
∑

(i,j)∈A

cijxij (4.15)

Subject to:
∑

{j:(i,j)∈A}
xij = 1 i ∈ N1 (4.16)

∑
{i:(i,j)∈A}

xij = 1 j ∈ N2 (4.17)

xij ≥ 0 (i, j) ∈ A (4.18)

where xij takes a value of 1 if node i and node j are paired. The objective is to achieve the
minimum cost pairing. Equation 4.16 guarantees that each node in N1 is assigned to exactly
one node in N2. Similarly, Equation 4.17 assures that any node in N2 is assigned exactly to
one node in N1. The mathematical program has |N1|2 variables and 2|N1| constraints.

Note that the assignment problem is a special case of a minimum cost flow problem on
a bipartite graph, with N1 and N2 as disjoint node sets. Supply at each node in N1 is one
unit, and demand at each node in N2 is one unit. The cost on each arc is cij .

4.6.2 The Hungarian Algorithm

The assignment problem can be solved using the Hungarian algorithm. The input for the
Hungarian algorithm is an |N1| × |N1| cost matrix. The output is the optimal pairing of
each element. The Hungarian algorithm can be described as follows:

Step 1: Find the minimum element in each row, and subtract the minimums from the
cells of each row to obtain a new matrix. For the new matrix, find the minimums in each col-
umn. Construct a new matrix (called the reduced cost matrix) by subtracting the minimums
from the cells of each column.
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TABLE 4.3 Setup Time in Hours
Job 1 Job 2 Job 3

Machine 1 5 1 1
Machine 2 1 3 7
Machine 3 1 5 3

Step 2: Draw the minimum number of lines (horizontal or vertical) that are needed to
cover all zeroes in the reduced cost matrix. If m lines are required, an optimal solution is
available among the covered zeroes in the matrix. Go to step 4. If fewer than m lines are
needed, then the current solution is not optimal, and proceed to step 3.

Step 3: Find the smallest uncovered element (say, k) in the reduced cost matrix. Subtract
k from each uncovered element in the reduced cost matrix, and add k to each element that
is covered by two lines. Return to step 2.

Step 4: When the optimal solution is found in step 2, the next step is determining the
optimal assignment. While making the assignments, start with the rows or columns that
contain a single zero-valued cell. Once a cell with 0 value is chosen, eliminate the row and
the column that the cell belongs to from further considerations. If no row or column is found
with only one cell with 0 value, then check if there are rows/columns with a successively
higher number of cells with 0 values, and choose arbitrarily from the available options. Note
that, if there are several zeros at multiple locations, alternative optimal solutions might
exist.

4.6.3 Application of the Algorithm Through an Example

EFGH Manufacturing has three machines and three jobs to be completed. Each machine
must complete one job. The time required to set up each machine for completing each job is
shown in Table 4.3. EFGH Manufacturing wants to minimize the total setup time required
to complete all three jobs by assigning each job to a machine.

The Hungarian algorithm is applied to the EFGH example as follows: After the row and
column minimums are subtracted from each cell in the cost matrix, two lines are required
to cover all zeros in the modified matrix in Table 4.4.c, which implies the nonoptimality of
the current solution. The minimum value of all uncovered cells is 2. As a result, subtract 2
from each uncovered cell, and add 2 to the cell that is covered by two lines (i.e., first row,
first column) to obtain the matrix in Figure 4.5d. For this modified matrix, the minimum
number of lines required to cover is three, and thus, the optimal solution can be obtained.
The optimal assignment is job 1 to machine 3, job 2 to machine 2, and job 3 to machine 1,
with a total setup time (cost) of 5.

4.7 Minimum Spanning Tree Problem

In a connected, undirected graph, a spanning tree, T , is a subgraph that connects all nodes
on the network. Given that each arc has a weight cij , the length (or cost) of the spanning
tree is equal to the sum of the weights of all arcs on that tree, that is,

∑
(i,j)∈T cij . The

minimum spanning tree problem identifies the spanning tree with the minimum length. In
other words, a minimum spanning tree is a spanning tree with a length less than or equal to
the length of every other spanning tree. The minimum spanning tree problem is similar to
the shortest path problem discussed in Section 4.4, with the following differences: In shortest
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TABLE 4.4 Solving an Assignment Problem Using the Hungarian Method

2 0 �4

6 0 �0
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5 1 1 1
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1 5 3 1

4 0 0

0 2 6

0 4 2

Column Minimum

Row Minimum

0 0 0

(a) Subtracttherowminimum (b) Subtract the column minimum

Uncovered minimum�2

4 �0 �0

0 2 6

0 4 2

(c)Minimum number of lines to cover zerosis�
     two, thus not optimal

(d) Minimum number of lines to cover zeros is�
      three, thus optimal

6 0 0

2 0 4

0 2 0

5 1 1

1 3 7

1 5 3

(e) Assignment of jobs to machines on the�
      modified cost matrix

(f) Assignment of jobs to machines on the orignal�
      cost matrix, total cost � 5

1 3 7

path problems, the objective is to determine the minimum total cost of a set of links (or
arc) that connect source to sink. In minimum spanning tree problems, the objective is to
select a minimum total cost set of links (or arcs) such that all the nodes are connected and
there is no source or sink node. The optimal shortest path tree from an origin to all other
nodes is a spanning tree, but not necessarily a minimum spanning tree.

Minimum spanning tree problems have several applications, specifically in network design.
For example, the following problems can be optimized by minimum spanning tree algo-
rithms: connecting different buildings on a university campus with phone lines or high-speed
Internet lines while minimizing total installation costs; connecting different components on
a printed circuit board to minimize the length of wires, capacitance, and delay line effects;
and constructing a pipeline network connecting a number of towns to minimize the total
length of pipeline.
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4.7.1 Linear Programming Formulation

Let A(S) ⊆A denote the set of arcs induced by the node set S, that is, if (i, j) ∈A(S) then
i∈S and j ∈S. The linear programming formulation can be stated as follows:

Minimize:
∑

(i,j)∈A

cijxij (4.19)

Subject to:
∑

(i,j)∈A

xij = |N | − 1 (4.20)

∑
(i,j)∈A(S)

xij = |S| − 1 S ⊆ N (4.21)

xij ∈ {0, 1} (i, j) ∈ A (4.22)

In this formulation, xij is the decision variable that identifies if arc (i, j) should be included
in the spanning tree. The objective is to minimize the total cost of arcs included in the
spanning tree. In a network with |N | nodes, |N | − 1 arcs should be included in the tree
(Equation 4.20). Using Equation 4.21, we ensure that there are no cycles on the minimum
spanning tree subgraph. Note that when A(S) = A, Equations 4.20 and 4.21 are equivalent.

4.7.2 Kruskal’s Algorithm

Kruskal’s algorithm builds an optimal spanning tree by adding one arc at a time. By defining
LIST as the set of arcs that is chosen as part of a minimum spanning tree, Kruskal’s
algorithm can be stated as follows:

Step 1: Sort all arcs in non-decreasing order of their costs to obtain the set A′.
Step 2: Set LIST = Ø.
Step 3: Select the arc with the minimum cost, and remove this arc from A′.
Step 4: Add this arc to the LIST if its addition does not create a cycle.
Step 5: If the number of arcs in the list is |LIST| = |N | − 1, then stop; arcs in the LIST

form a minimum spanning tree. Otherwise, go to step 3.

In the example below, a network design problem is considered. In this problem, Wichita
State University has six buildings that are planned to be connected via a gigabit network.
The cost of connecting the buildings (in thousands) for which there can be a direct con-

the gigabit network for Wichita State University is determined. First, all arcs are sorted
in nondecreasing order of their costs: (5,6), (4,5), (1,2), (2,4), (4,6), (1,3), (2,5), (3,5), and
(2,6). In the first four iterations, arcs (5,6), (4,5), (1,2), and (2,4) are added, that is, the
LIST = {(5,6), (4,5), (1,2), (2,4)} (see Figure 4.5b–e). In the fifth iteration, arc (4,6) cannot
be added as it creates the cycle 4-5-6 (see Figure 4.5f). Finally, when arc (1,3) is added to
the LIST, all nodes on the network are connected, that is, the minimum spanning tree is
obtained. As shown in Figure 4.5g, the minimum spanning tree is LIST = {(5,6), (4,5), (1,2),
(2,4),(1,3)}, and the total cost of the minimum cost tree is 10 + 10 + 20 + 20 + 25 = 85.

Other types of minimum spanning tree problems (Garey and Johnson 1979) are as follows:
A degree-constrained spanning tree is a spanning tree where the maximum vertex degree
is limited to a certain constant k. The degree-constrained spanning tree problem is used
to determine if a particular network has such a spanning tree for a particular k. In the
maximum leaf spanning tree problem, the goal is to determine if the network has at least
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FIGURE 4.5 Application of Kruskal’s algorithm to determine the minimum spanning tree for the net-
work shown in Figure 4.5a. (a) Original network. (b) Arc (5,6) is added. (c) Arc (4,5) is added. (d) Arc
(1,2) is added. (e) Arc (2,4) is added. (f) Arc (4,6) cannot be added as it creates a cycle. (g) Arc (1,3) is
added. Algorithm terminates.
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k nodes having a degree 1, where k < |N |. In the shortest total path length spanning tree
problem, the goal is to ensure that the distance between any two nodes on the minimum
spanning tree is less than a constant B.

4.8 Minimum Cost Multicommodity Flow Problem

The minimum cost multicommodity network flow problem (MCMNF) is a generalization of
a minimum cost flow problem that considers a single commodity. In MCMNF, the goal is to
minimize the shipping cost of several commodities from supply nodes to demand nodes while
sharing a fixed arc capacity on the network. The commodities in a multicommodity flow
problem can be differentiated by physical characteristics or by origin/destination pairs. The
decision of assigning a percentage of each arc’s capacity to different commodities to minimize
the overall cost increases the complexity of this problem significantly when compared with
other network flow problems such as the shortest path and maximum flow problems.

Multicommodity network flow problems have several applications: in communication net-
works, packets from different origin destination pairs share the same capacity. Further-
more, the same network might transfer several types of data, such as cable TV, phone, and
video conferencing, which might have different service requirements simultaneously. A sim-
ilar observation can be made for transportation networks if commodities are defined with
respect to origin–destination pairs or different types of transportation such as cars, busses,
trucks, and the like. In distribution networks, commodities can be defined as different types
of products that must be transferred from plants to warehouses and then from warehouses
to customers.

In aviation networks, passengers from different origins are transferred through hubs to
travel to their destinations. Passengers must travel on planes with different types of capacity.
Furthermore, airports have limited capacity, which restricts the number of planes that can
park at the airport at any time. The goal is to minimize the total cost of transportation on
this network.

4.8.1 Linear Programming Formulation

In minimum cost multicommodity flow problems, the objective is to minimize the overall
cost of transportation of |K| commodities from origins to destinations. Let ck

ij be the cost
of transporting a unit of commodity k on arc (i,j). The decision variable xk

ij is the amount
of commodity k transported on arc (i,j). The mathematical programming formulation for
a minimum cost multicommodity flow problem can be stated as follows:

Minimize:
∑
k∈K

∑
(i,j)∈A

ck
ijx

k
ij (4.23)

Subject to:
∑

{j:(i,j)∈A}
xk

ij −
∑

{j:(j,i,)∈A}
xk

ji = bk
i i ∈ N, k ∈ K (4.24)

∑
k∈K

xk
ij ≤ uij (i,j) ∈ A (4.25)

xk
ij ≥ 0 (i,j) ∈ A (4.26)

In the above formulation, the mass balance constraint for each commodity (Equation 4.24)
ensures the conservation of flow at each node for that commodity. Equation 4.25 is the
capacity constraint on each arc. This mathematical model has |K||A| variables, |K||N |

© 2008 by Taylor & Francis Group, LLC



CH004.tex 22/10/2007 13: 59 Page 4-19

Network Optimization 4-19

node balance constraints, and |A| capacity constraints. Note that all of the network models
described in this chapter, except the minimum spanning tree problem, are a special case
of the minimum cost multicommodity flow problem. In the literature, this problem has
been solved using methods like Lagrangian relaxation, column generation approaches, and
Dantzig–Wolfe decomposition.

4.9 Conclusions

Network optimization is a very popular tool to solve large-scale real-life problems. Because
of the availability of very fast network optimization methods, researchers can tackle very
complex real-life problems efficiently. All of the network flow models presented in this chap-
ter, except the minimum spanning tree problem, assume that some sort of flow must be sent
through a network; thus, one has to decide how this can be achieved using the algorithms
presented in this chapter to optimize the operations in a network. On the other hand, the
minimum spanning tree problem can be used to optimize the design of a network.

This chapter presents some very basic models and solution procedures. More detailed
analysis of these network models can be found in the network flow literature. The bibliogra-
phy below provides a selected list of books in operations research and network optimization.
The introduction to operations research texts by Hillier and Lieberman (2005), Jensen and
Bard (2003), and Winston (2005) contain overviews of network flow models similar to those
presented here at the elementary level. The two best comprehensive references on network
models are by Ahuja, Magnanti, and Orlin (1993) and Bertsekas (1991). The notation used
in this chapter is similar to the former.

Below is a short list of websites that contain either freely available software or datasets
related to network optimization:

• NEOS Guide, a repository about optimization
http://www-fp.mcs.anl.gov/otc/GUIDE/

• Andrew Goldberg’s codes for shortest path and minimum cost flow algorithms
http://www.avglab.com/andrew/#library

• Dmitri Bertsekas Network Optimization Codes
http://web.mit.edu/dimitrib/www/noc.htm

• GOBLIN-C++ Object for network optimization
http://www.math.uni-augsburg.de/opt/goblin.html

• J E Beasley OR library: data sets for OR problems
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

• C++ code for multicommodity flow problems
http://www.di.unipi.it/di/groups/optimize/

Network problems can also be solved using professional LP/MIP solvers. For example,
ILOG/CPLEX, SUNSET SOFTWARE/XA, and DASH/XPRESS are powerful solvers that
take into account the network structure of large-scale problems to determine a solution in
a reasonable amount of time.
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Decision problems often exhibit these characteristics: the presence of multiple, conflicting
criteria for judging the alternatives and the need for making compromises or trade-offs
regarding the outcomes of alternate courses of action. This chapter covers some of the
practical methods available for helping make better decisions for these types of problems.

5-1
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A multiple criteria decision making (MCDM) problem can be represented by the following
generalized model:

Maximize [C1(x), C2(x), . . ., Ck(x)] (5.1)
x ∈ X

where
x is any specific alternative,
X is a set representing the feasible region or available alternatives, and
C1 is the lth evaluation criterion.

MCDM problems can be broadly classified as “selection problems” or “mathematical
programming problems.” The focus of multiple criteria selection problems (MCSP) is on
selecting the best or preferred alternative(s) from a finite set of alternatives, and the alter-
natives are usually known a priori. The MCDM methods that help in identifying the “best”
alternative for such problems will be referred to as the multiple criteria methods for finite
alternatives (MCMFA). The MCSP is also referred to in the literature as multiple attribute
decision making (MADM) problem [1]. MCSP are often represented in terms of a pay-off
table. Table 5.1 shows a general format of a pay-off table, where θij is the outcome of
alternative i with respect to evaluation criterion j.

The focus of multiple criteria mathematical programming (MCMP) problems is to fashion
or create an alternative when the possible number of alternatives is high (or infinite) and
all alternatives are not known a priori. MCMP problems are usually modeled using explicit
mathematical relationships, involving decision variables incorporated within constraints and
objectives. The MCDM methods for identifying the “best” alternative in a MCMP will
be referred to in this book as the multiple criteria mathematical programming methods
(MCMPM). The MCMP problem is also known in the literature as a multiple objective
decision making (MODM) problem or a vector optimization problem. MCMP problems are
usually formulated as

Max[f1(x), f2(x), . . ., fk(x)] (5.2)

Subject to: gj(x) ≤ 0, j = 1, 2, . . ., m and x = {xi| i = 1, 2, . . . , n}

where
fl(x) = lth objective function, l = 1, 2, . . ., k

gj(x) = jth constraint function, j = 1, 2, . . ., m

TABLE 5.1 Pay-Off Table

Criteria

Alternatives C1 C2 . . . Cj . . . Ck

A1 =x1 θ11 θ12 θ1j θ1k

A2 =x2 θ21 θ22 θ2j θ2k

. . .

Ai =xi θi1 θi2 θij θik

. . .

Am =xm θm1 θm2 θmj θmk
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5.1 Some Definitions

To provide a common understanding of the MCDM problem and its solution methods, we
provide definitions of critical terms and concepts used in this chapter. In the literature of
MCDM, these terms have special meaning and some are used interchangeably. Most of the
definitions provided here are based on those given in Refs. [1,2].

Alternatives: Alternatives are the possible courses of action in a decision problem.

Alternatives are at the heart of decision making. In many decision situations, particularly
for MCSP, alternatives can be prespecified. In such cases, it is important that every attempt
is made for the development of all alternatives. Failure to do so may result in selecting an
alternative for implementation that is inferior to other unexplored ones. In other situations,
usually in MCMP, prespecification is not possible. In problems where prespecification of
alternatives is not possible, alternatives are defined implicitly through mathematical rela-
tionships between decision variables. The challenge here is to define appropriate decision
variables and to develop the mathematical relations involving these variables.

Attributes: These are the traits, characteristics, qualities, or performance parameters
of the alternatives.

For example, if the decision situation is one of choosing the “best” car to purchase, then the
attributes could be color, gas mileage, attractiveness, size, and the like. Attributes, from the
decision making point of view, are the descriptors of the alternatives. For MCSP, attributes
usually form the evaluation criteria.

Objectives: These are the directions of improvement or to do better, as perceived by
the decision maker (DM).

For example, considering the same example of choosing the “best” car, an objective may be
to “maximize gas mileage.” This objective indicates that the DM prefers higher gas mileage,
the higher the better. For MCMP, objectives form the evaluation criteria.

Goals: These are specific (or desired) status of attributes or objectives. Goals are
targets or thresholds of objective or attribute values that are expected to be
attained by the “best” alternative.

For example, in choosing the “best” car, a goal may be to buy a car that achieves an average
gas mileage of 20 mpg or more; another example, buy a “4-door car.”

(Evaluation) Criteria: These are the rules of acceptability or standards of judg-
ment for the alternatives. Therefore, criteria encompass attributes, goals, and
objectives.

Criteria may be true or surrogate. When a criterion is directly measurable, it is called a true
criterion. An example of a true criterion is “the cost of the car,” which is directly measured
by its dollar price. When a criterion is not directly measurable, it may be substituted by
one or more surrogate criteria. A surrogate criterion is used in place of one or more others
that are more expressive of the DM’s underlying values but are more difficult to measure
directly. An example may be using “headroom for back seat passengers” as a surrogate
for “passenger comfort.” “Passenger comfort” is more expressive as a criterion, but is very
difficult to measure. “Headroom for back seat passengers” is, however, easier to measure
and can be used as one of the surrogate criteria for representing “passenger comfort.”
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5.2 The Concept of “Best Solution”

In single criterion decision problems, the “best” solution is defined in terms of an “optimum
solution” for which the criterion value is maximized (or minimized) when compared to any
other alternative in the set of all feasible alternatives. In MCDM problems, however, as the
optimum of each criterion do not usually point to the same alternative, a conflict exists. The
notion of an “optimum solution” does not usually exist in the context of conflicting, multiple
criteria. Decision making in a MCDM problem is usually equivalent to choosing the best
compromise solution. The “best solution” of an MCDM problem may be the “preferred (or
best compromise) solution” or a “satisficing solution.” In the absence of an optimal solution,
the concepts of dominated and nondominated solutions become relevant. In the MCDM
literature, the terms “nondominated solution,” “Pareto optimal solution,” and “efficient
solution” are used interchangeably. In addition, concepts of “ideal solution” and “anti-ideal
solution” are relevant in many MCDM methods.

Satisficing Solution: It is a feasible solution that meets or exceeds the DM’s mini-
mum expected level of achievement (or outcomes) of criteria values.

Nondominated Solution: A feasible solution (alternative) x1 dominates another
feasible solution (alternative) x2 if x1 is at least as good as (i.e., as preferred
as) x2 with respect to all criteria and is better than (i.e., preferred to) x2 with
respect to at least one criterion. A nondominated solution is a feasible solution
that is not dominated by any other feasible solution. That is, for a nondominated
solution an increase in the value of any one criterion is not possible without some
decrease in the value of at least one other criterion. Mathematically, a solution
x1 ∈X is nondominated if there is no other x∈X such that Ci(x) ≥Ci(x1),
i= 1,2, . . ., k, and Ci(x) �= Ci(x1).

Ideal Solution: An ideal solution H∗ is an artificial solution, defined in criterion
space, each of whose elements is the maximum (or optimum) of a criterion’s
value for all x∈X. That is, the ideal solution consists of the upper bound of the
criteria set.

The ideal solution is also known as positive-ideal solution or the utopia solution. Mathe-
matically, the ideal solution for Equation 5.1 is obtained by

H∗ = {H∗
i = Max Ci(x)|x ∈ X, i = 1, 2, . . ., k} (5.3)

In all nontrivial MCDM problems, the ideal solution is an infeasible solution.

Anti-Ideal Solution: The anti-ideal solution, L∗ consists of the lower bound of the
criteria set.

This solution is also known as the negative-ideal solution or the nadir solution. One math-
ematical definition of the anti-ideal solution for Equation 5.1 is

L∗ = {Li∗ = Min Ci(x∗
j )| j = 1, 2, . . ., m; i = 1, 2, . . ., k} (5.4)

That is, the minimum values in each column of the pay-off table constitute the anti-ideal
solution. This definition works well for problems where all the alternatives are prespecified.
In problem (5.2) where all alternatives are never identified, this can cause a problem. This
situation can be avoided by solving the following i= 1, 2, . . ., k single criterion minimization
problems:

Min fi(x) (5.5)
Subject to x ∈ X
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For simplicity, the pay-off table is commonly used to identify the anti-ideal solution. How-
ever, with this simplification, we run the risk of being far off from the real anti-ideal.

5.3 Criteria Normalization

A common problem in multiple criteria decision making with the use of differing units
of evaluation measures is that relative rating of alternatives may change merely because
the units of measurement have changed. This issue can be addressed by normalization.
Normalization allows intercriterion comparison. In the following discussion of normalization,
assume that a benefit criterion is one in which the DM prefers more of it (i.e., more is better)
and a cost criterion is one in which the DM prefers less of it (i.e., less is better). In general,
a cost criterion can be transformed mathematically to an equivalent benefit criterion by
multiplying by −1 or by taking the inverse of it.

5.3.1 Linear Normalization

Linear normalization converts a measure to a proportion of the way along the allowed range,
where the allowed range is transformed to that between 0 and 1. A measure Cj(xi), outcome
in criterion j for alternative xi, is normalized to rij as follows:

rij =
Cj(xi) − Lj∗

H∗
j − Lj∗

(for benefit criterion)
(5.6)

rij =
Lj∗ − Cj(xi)

Lj∗ − H∗
j

(for cost criterion)

where

Lj∗ = Max {Cj(xi), i = 1, 2, . . ., m} for cost criterion j and Min {Cj(xi),
i = 1, 2, . . ., m} for benefit criterion j

H∗
j = Min {Cj(xi), i = 1, 2, . . ., m} for cost criterion j and Max {Cj(xi),

i = 1, 2, . . ., m} for benefit criterion j

Note that, after normalization, all criteria are transformed to benefit criteria (i.e., to be
maximized).

A less common form of linear normalization works as follows:

rij =
H∗

j − Cj(xi)
H∗

j

(5.7)

This form of normalization considers the distance of the ideal value of a criterion from the
origin as a unit distance. Note that, after such normalization, all the criteria are transformed
to cost criteria (i.e., they are to be minimized).

5.3.2 Vector Normalization

In vector normalization, each criterion outcome Cj(xi) is divided by a norm Lpj as defined
below:

rij =
Cj(xi)

Lpj
(5.8)

Lpj =

(
i=n∑
i=1

∣∣Cj(xi)
∣∣p

)1/p

, 1 ≤ p ≤ ∞ (5.9)
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The usual values of p are 1, 2, or ∞ and the corresponding Lp norms are:

L1j =
i=n∑
i=1

∣∣Cj(xi)
∣∣ (5.10)

L2j =

(
i=n∑
i−1

∣∣Cj(xi)
∣∣2

)1/2

(5.11)

L∞j = Max{
∣∣Cj(xi)

∣∣, i = 1, 2, . . ., n} (5.12)

5.3.3 Use of 10 Raised to Appropriate Power

This method, suggested by Steuer [3], rescales outcomes across all criteria to make them
comparable. This is achieved by multiplying each Cj(xi), i= 1, 2, . . ., n, by 10 raised to an
appropriate power that makes all outcomes of the same order of magnitude:

rij = Cj(xi) × 10qj (5.13)

where qj is an appropriate number that will make criterion j outcomes similar in magnitude
to the other criteria outcomes.

5.3.4 Use of Range Equalization Factor

This approach, also suggested by Steuer [3], tries to make the range of variation of the
achievement values for all criteria comparable. This is done by first computing a range
equalization factor, πj , for criterion j and then multiplying each jth criterion outcome by
this factor:

πj =
1

∆j

(
l=k∑
l=1

1
∆l

)−1

(5.14)

rij = Cj(xi) × πj (5.15)

where ∆j = |H∗
j −Lj∗|.

5.4 Computing Criteria Weights

Many MCDM methods require the use of relative importance weights of criteria. Many of
these methods require ratio-scaled weights proportional to the relative value of unit changes
in criteria value functions.

5.4.1 Weights from Ranks

This is a simple and commonly used method in which only the rank order of the criteria
is used for developing the weights. First, the DM ranks the criteria in order of increasing
relative importance; the highest ranked criterion gets a rank of 1. Let ri represent the rank
of the ith criterion. Next, determine criterion weight, λi, as follows:

λi =
k − ri + 1∑j=k

j=1 (k − rj + 1)
(5.16)

where k is the number of criteria. This method produces an ordinal scale but does not
guarantee the correct type of criterion importance because ranking does not capture the
strength of preference information.
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When a large number of criteria are considered, it may be easier for the DM to provide
pairwise ranking instead of complete ranking. Assuming consistency in pairwise ranking
information, k(k − 1)/2 such comparisons can be used to derive the complete rank order. The
number of times criterion i is ranked higher than all other criteria (in pairwise comparisons)
is used to generate the rank order. If cij indicates the comparison of criterion Ci with
criterion Cj , then cij = 1 if Ci is preferred over Cj and cij = 0 if Ci is not preferred over Cj .
Note: cii = 1. Next, find criterion totals, ti =

∑j=k
j=1 cij and criteria weights λi = ti∑i=k

i=1 ti
.

5.4.2 Rating Method

The method works as follows: first, an appropriate rating scale is agreed to (e.g., from 0 to
10). The scale should be clearly understood to be used properly. Next, using the selected
scale, the DM provides rating for each criterion, ri, judgmentally. Finally, normalize the
ratings to determine weights:

λi =
ri∑j=k

j=1 rj

(5.17)

This method fails to assure a ratio scale and may not even provide the appropriate
importance.

5.4.3 Ratio Weighing Method

In this method, originally proposed by Saaty [4], the DM compares two criteria at a time
and indicates aij , which is the “number of times criterion Ci, is more important than
criterion Cj .” At least (k − 1) pairwise evaluations are needed. As inconsistency is expected
in a large number of pairwise comparisons, many such methods require more than (k − 1)
comparisons. Saaty has proposed a method for determining criteria weights based on the
principal eigenvector of the pairwise comparison matrix. Let matrix A represent the pairwise
comparisons (note that aii = 1).

A =

⎡
⎢⎢⎣

1 a12 . . . a1k

a21 1 . . . a2k

ak1 ak2 . . . 1

⎤
⎥⎥⎦

If aij = 1/aji, aij = ail × alj , and aij > 0, then A is called a positive reciprocal matrix. With
(k − 1) comparisons, the rest of the matrix can be filled by using the above relations. The
principal eigenvector of A, π, can be found by finding the largest eigenvalue, αmax, for the
following set of equations:

Aπ = αmaxπ (5.18)

Weights are simply the normalized principal eigenvector values:

λi =
πi∑j=k

j=1 πj

(5.19)

An easy way of computing the principal eigenvector and the weights is given by Harker [5].
He recursively computes the ith estimate πi as follows:

πi =
Aie

eTAie
(5.20)

Note: A1 = A, Ai = (Ai−1A) and eT = (1, 1, . . ., 1). Saaty also provides a measure for checking
the consistency of A; see the section on AHP for details. This method assures a ratio scale.
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5.5 Multiple Criteria Methods for Finite
Alternatives

All methods discussed in this section are appropriate for the following general MCDM
problem:

Max[C1(x), C2(x), . . ., Ck(x)] (5.21)
Subject to x ∈ X

In the context of an MCSP,
C1(x) = the lth attribute for alternative x, θl(x)
x ∈ X = the set of available alternatives

x = any alternative

θjl = θl(xj) = lth attribute value for jth alternative

5.5.1 Max–Min Method

This method is based on the assumption that the DM is very pessimistic in his/her outlook
and wants to maximize, over the decision alternatives, the achievement in the weakest crite-
rion. Alternatives are characterized by the minimum achievement among all of its criterion
values. It, thus, uses only a portion of the available information by ignoring all other crite-
rion values. To make intercriterion comparison possible, all criterion values are normalized.
Geometrically, this method maximizes the minimum normalized distance from the anti-ideal
solution along each criterion for all available alternatives.

Mathematically, this method works as follows (assuming linear normalization):

Max
[
Min

{
Cl(x) − Ll∗
H∗

l − Ll∗

}
, l = 1, 2, . . ., k

]
(5.22)

Subject to x ∈ X

where
H∗

l = ideal solution value for the lth criterion
Ll∗ = anti-ideal solution value for the lth criterion

5.5.2 Min–Max (Regret) Method

In this method, it is assumed that the DM wants to minimize the maximum opportunity
loss. Opportunity loss is defined as the difference between the ideal (solution) value of a
criterion and the achieved value of that criterion in an alternative. Thus, the Min–Max
method tries to identify a solution that is close to the ideal solution. Geometrically, this
method finds a solution that minimizes the maximum normalized distance from the ideal
solution along each criterion for all available alternatives.

Mathematically, this method is represented by the following problem,

Min
[
Max

{
H∗

l − Cl(x)
H∗

l − Ll∗

}
, l = 1, 2, . . ., k

]
(5.23)

Subject to x ∈ X

where
H∗

l = ideal solution value for the lth criterion
Ll∗ = anti-ideal solution value for the lth criterion
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5.5.3 Compromise Programming

Compromise programming (CP) identifies the preferred solution (alternative) that is as
close to the ideal solution as possible. That is, it identifies the solution whose distance from
the ideal solution is minimum. Distance is measured with one of the metrics, Mp, defined
below. Distance is usually normalized to make it comparable across criteria units. Note that
CP is also known as the global criterion method. Mathematically, compromise programming
involves solving the following problem:

Min Mp(x) (5.24)
Subject to x ∈ X

where the metric Mp is defined (using linear normalization) as follows:

Mp(x) =

(
i=k∑
i=1

∣∣∣∣H
∗
i − Ci(x)
H∗

i − Li∗

∣∣∣∣
p
)1/p

, 1 ≤ p ≤ ∞ (5.25)

As H∗
i ≥Ci(x) is always true for Equation 5.25, the CP problem formulation can be restated

as follows:

Min Mp(x) =

(
i=k∑
i=1

(
H∗

i − Ci(x)
H∗

i − Li∗

)p
)1/p

, 1 ≤ p ≤ ∞ (5.26)

Subject to x ∈ X

Using Equation 5.26 is simpler and it is the form commonly used in compromise
programming.

Note that geometrically, the distance measures in a CP problem have different meanings
depending on the value of p chosen. For p = 1, M1(x) measures the “city-block” or “Man-
hattan block” distance (sum of distances along all axes) from H∗; for p = 2, M2(x) measures
the straight-line distance from H∗; for p = ∞, M∞(x) measures the maximum of the axial
distances from H∗.

5.5.4 TOPSIS Method

TOPSIS (technique for order preference by similarity to ideal solution) was originally pro-
posed by Hwang and Yoon [2] for the MCSP. TOPSIS operates on the principle that the
preferred solution (alternative) should simultaneously be closest to the ideal solution, H∗,
and farthest from the negative-ideal solution, L∗. TOPSIS does not require the specifica-
tion of a value (utility) function but it assumes the existence of monotonically increasing
value (utility) function for each (benefit) criterion. The method uses an index that combines
the closeness of an alternative to the positive-ideal solution with its remoteness from the
negative-ideal solution. The alternative that maximizes this index value is the preferred
alternative. In TOPSIS, the pay-off matrix is first normalized as follows:

rij =
θij[(∑

i θ2
ij

)]1/2 i = 1, . . ., m; j = 1, . . ., k (5.27)

Next, the weighted pay-off matrix, Q, is computed:

qij = λjrij i = 1, 2, . . ., m; j = 1, 2, . . ., k (5.28)

where λj is the relative importance weight of the jth attribute; λj ≥ 0 and
∑

λj = 1.
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Using the weighted pay-off matrix, ideal and negative-ideal solutions (H∗ and L∗) are
identified as follows:

H∗ = {q∗
j , j = 1, 2, . . ., k} = {Max qij , for all i; j = 1, 2, . . ., k}

(5.29)
L∗ = {q∗j , j = 1, 2, . . ., k} = {Min qij , for all i; j = 1, 2, . . ., k}

Based on these solutions, separation measures for each solution (alternative) are calculated:

P ∗
i =

[∑
j
(qij − q∗

j )2
]1/2

, i = 1, 2, . . ., m

(5.30)
P∗i =

[∑
j
(qij − q∗j)

2
]1/2

, i = 1, 2, . . ., m

where P ∗
i is the distance of the ith solution (alternative) from the ideal solution and P∗i

is the distance of the same solution from the negative-ideal solution. TOPSIS identifies
the preferred solution by minimizing the similarity index, D, defined below. Note that all
the solutions can be ranked by their index values; a solution with a higher index value is
preferred over that with index values smaller than its value.

Di = P∗i/(P ∗
i + P∗i), i = 1, 2, . . ., m (5.31)

Note that 0≤Di ≤ 1; Di = 0 when the ith alternative is the negative-ideal solution and
Di = 1 when the ith alternative is the ideal solution.

5.5.5 ELECTRE Method

ELECTRE method, developed by Roy [6], falls under the category called outranking
methods. It compares two alternatives at a time (i.e., uses pairwise comparison) and attempts
to build an outranking relationship to eliminate alternatives that are dominated using the
outranking relationship. Six successive models of this method have been developed over
time. They are: ELECTRE I, II, III, IV, Tri, and IS. Excellent overviews of the history
and foundations of ELECTRE methods are given by Roy [6,7] and Rogers et al. [8]. We
will explain only ELECTRE I in this section. The outcome of ELECTRE I is a (smaller
than original) set of alternatives (called the kernel) that can be presented to the DM for
the selection of “best solution.” Complete rank ordering of the original set of alternatives
is possible with ELECTRE II.

An alternative Ai outranks another alternative Aj (i.e., Ai → Aj) when it is realistic to
accept the risk of regarding Ai as at least as good as (or not worse than) Aj , even when Ai

does not dominate Aj mathematically. This outranking relationship is not transitive. That
is, it is possible to have Ap → Aq, Aq → Ar but Ar → Ap. Each pair of alternatives (Ai,Aj) is
compared with respect to two indices: a concordance index, c(i,j), and a discordance index,
d(i,j). The concordance index c(i,j) is a weighted sum of the number of criteria in which
Ai is better than Aj . The discordance index d(i,j) is the maximum weighted difference in
criterion levels among criteria for which Ai is worse than Aj .

Let θip = pth criterion achievement level for alternative Ai

λp = relative importance weight of criterion p;
∑k

p=1 λp = 1 and λp > 0
rip = pth criterion achievement level (normalized) for Ai; use any appropriate

normalization scheme to derive rip from θip (see previous section)
qip = λp rip
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g is the criterion index for which qip > qjp

l is the criterion index for which qip < qjp

e is the criterion index for which qip = qjp

s is the index of all criteria (s = g + l + e)

Then,

c(i, j) =
∑
p∈g

λp +
∑
p∈e

ϕpλp (5.32)

d(i, j) =
Max|qip − qjp|,∀l

Max|qip − qjp|,∀s

where ϕp is usually set equal to 0.5.
ELECTRE assumes that criterion levels are measurable on an interval scale for the dis-

cordance index. Ordinal measures are acceptable for the concordance index. Weights should
be ratio scaled and represent relative importance to unit changes in criterion values. Two
threshold values, α and β, are used and these are set by the DM. Sensitivity analysis with
respect to α and β is needed to test the stability of the outranking relationship.

Alternative Ai outranks alternative Aj iff c(i,j) ≥α and d(i,j) ≤β. Based on the outrank-
ing relation developed, the preferred set of alternatives, that is, a kernel (K), is defined by
the following conditions:

1. Each alternative in K is not outranked by any other alternative in K.
2. Every alternative not in K is outranked by at least one alternative in K.

5.5.6 Analytic Hierarchy Process

The analytic hierarchy process (AHP) method was first proposed by Saaty [4,9]. AHP is
applicable only for MCSP. With AHP, value (utility) function does not need to be evaluated,
nor does it depend on the existence of such a function. To use this method, the decision
problem is first structured in levels of a hierarchy. At the top level is the goal or overall
purpose of the problem. The subsequent levels represent criteria, subcriteria, and so on.
The last level represents the decision alternatives.

After the problem has been structured in the form of a hierarchy, the next step is to seek
value judgments concerning the alternatives with respect to the next higher level subcriteria.
These value judgments may be obtained from available measurements or, if measurements
are not available, from pairwise comparison or preference judgments. The pairwise compar-
ison or preference judgments can be provided using any appropriate ratio scale. Saaty has
proposed the following scale for providing preference judgment.

Scale value Explanation

1 Equally preferred (or important)
3 Slightly more preferred (or important)
5 Strongly more preferred (or important)
7 Very strongly more preferred (or important)
9 Extremely more preferred (or important)
2, 4, 6, 8 Used to reflect compromise between scale values
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After the value judgments of alternatives with respect to subcriteria and relative impor-
tances (or priorities) of the sub-criteria and criteria have been received (or computed),
composite values indicating overall relative priorities of the alternative are then determined
by finding weighted average values across all levels of the hierarchy.

AHP is based on the following set of four axioms. The description of the axioms is based
on Harker [5].

Axiom 1: Given two alternatives (or subcriteria) Ai and Aj , the DM can state θij , the
pairwise comparison (or preference judgment), with respect to a given criterion
from a set of criteria such that θji = 1/θij for all i and j. Note that θij indicates
how strongly alternative Ai is preferred to (or better than) alternative Aj .

Axiom 2: When judging alternatives Ai and Aj , the DM never judges one alternative
to be infinitely better than another, that is, θij �= ∞ with respect to any criterion.

Axiom 3: One can formulate the decision problem as a hierarchy.
Axiom 4: All criteria and alternatives that impact the decision problem are repre-

sented in the hierarchy (i.e., it is complete).

When relative evaluations of subcriteria or alternatives are obtained through pairwise
comparison, Saaty [9] has proposed a methodology (the eigenvector method) for computing
the relative values of alternatives (and relative weights of subcriteria). With this method,
the principal eigenvector is computed as follows:

θv = λmaxv (5.33)

where v = vector of relative values (weights) and λmax = maximum eigenvalue.
According to Harker [5], the principal eigenvector can be determined by raising the matrix

θ to increasing powers k and then normalizing the resulting system:

v = lim
k→∞

(θke)
(eTθke)

(5.34)

where eT = (1, 1, . . ., 1, 1). The v vector is then normalized to the w vector, such that∑i=n
i=1 wi = 1. See Equation 5.20 for an easy heuristic proposed by Harker [5] for estimating v.

Once the w vector has been determined, λmax can be determined as follows:

λmax =

(∑j=n
j=1 θ1jwj

)
w1

(5.35)

As there is scope for inconsistency in judgments, the AHP method provides for a measure of
such inconsistency. If all the judgments are perfectly consistent, then λmax = n (where n is
the number of subcriteria or alternatives under consideration in the current computations);
otherwise, λmax > n. Saaty defines consistence index (CI) as follows:

CI =
(λmax − n)

(n − 1)
(5.36)

For different sizes of comparison matrix, Saaty conducted experiments with randomly gen-
erated judgment values (using the 1–9 ratio scale discussed before). Against the means of
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the CI values of these random experiments, called random index (RI), the computed CI
values are compared, by means of the consistency ratio (CR):

CR =
CI
RI

(5.37)

As a rule of thumb, CR ≤ 0.10 indicates acceptable level of inconsistency.
The experimentally derived RI values are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

After the relative value vectors, w, for different sub-elements of the hierarchy have been
computed, the next step is to compute the overall (or composite) relative values of the
alternatives. A linear additive function is used to represent the composite relative evaluation
of an alternative. The procedure for determining the composite evaluation of alternatives is
based on maximizing the “overall goal” at the top of the hierarchy. When multiple DMs are
involved, one may take geometric mean of the individual evaluations at each level. For more
on AHP, see Saaty [9]. An excellent tutorial on AHP is available in Forman and Gass [10].

5.5.7 PROMETHEE Method

The preference ranking organization method of enrichment evaluations (PROMETHEE)
methods have been developed by Brans and Mareschal [11] for solving MCSP.
PROMETHEE I generates a partial ordering on the set of possible alternatives, while
PROMETHEE II generates a complete ordering of the alternatives. The PROMETHEE
methods seek to enrich the usual dominance relation to generate better solutions for the
general selection type problem. Only PROMETHEE I will be summarized in this section.

We assume that there exists a set of n possible alternatives, A= [A1, A2, . . ., An], and
k criteria, C= [C1, C2, . . ., Ck], each of which is to be maximized. In addition, we assume
that the relative importance weights, λ = [λ1, λ2, . . ., λk], associated with the k criteria, are
known in advance. We further assume that the criteria achievement matrix θ is normalized,
using any appropriate method, to R so as to eliminate all scaling effects.

Traditionally, alternative A1 is said to dominate alternative A2 iff θ1j ≥ θ2j , ∀j and
θ1j > θ2j , for at least one j. However, this definition does not work very well in situa-
tions where A1 is better than A2 with respect to the first criteria by a very wide margin
while A2 is better than A1 with respect to the second criteria by a very narrow margin or
A1 is better than A2 with respect to criterion 1 by a very narrow margin and A2 is better
than A1 with respect to criterion 2, again by a very narrow margin, or A1 is marginally
better than A2 with respect to both criteria.

To overcome such difficulties associated with the traditional definition of dominance, the
PROMETHEE methods take into consideration the amplitudes of the deviations between
the criteria. For each of the k criteria, consider all pairwise comparisons between alternatives.
Let us define the amplitude of deviation, di, between alternative a and alternative b with
respect to criterion i as

di = Ci(a) − Ci(b) = θai − θbi
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The following preference structure summarizes the traditional approach:
If di > 0 then a is preferred to b and we write aPb.
If di = 0 then a is indifferent to b and we write aIb.
If di < 0 then b is preferred to a and we write bPa.

In PROMETHEE a preference function for criteria i, Pi(a, b), is introduced to indicate
the intensity of preference of alternative a over alternative b with respect to criterion i.
(Note: Pi(b, a) gives the intensity of preference of alternative b over alternative a.) Pi(a, b)
is defined such that 0 ≤Pi(a, b) ≤ 1 and

Pi(a, b) = 0 if di ≤ 0 (equal to or less than 0), indicating “no preference” between a
and b

Pi(a, b) ≈ 0 if di > 0 (slightly greater than 0), indicating “weak preference” of a over b

Pi(a, b) ≈ 1 if di >> 0 (much greater than 0), indicating “strong preference” of a over b

Pi(a, b) = 1 if di >>> 0 (extremely greater than 0), indicating “strict preference” of a
over b

Next function Ei(a,b) is defined, which can be of six forms. The most commonly used form
is the Gaussian (or normal distribution); we will use this in this section. For each criterion,
the decision maker and the analyst must cooperate to determine the parameter s where
0 < s < 1. This parameter is a threshold delineating the weak preference area from the strong
preference area. Once this parameter is established the values are calculated as follows:

Ei(a, b) =

⎧⎨
⎩

1 − e− (di)
2

2s2 , di ≥ 0

0, di < 0
(5.38)

If Ei(a, b) > 0, then a is preferred to b with respect to criterion i. π(a, b), preference index
function, is defined next as follows:

π(a, b) =
j=k∑
j=1

λjEj(a, b) (5.39)

where λj is the weight of criterion j. The preference index function expresses the global
preference of alternative a over alternative b. Note:
π(a, a) = 0
0 ≤π(a, b) ≤ 1
π(a, b) ≈ 0 implies a weak global preference of a over b

π(a, b) ≈ 1 implies a strong global preference of a over b

π(a, b) expresses intensity of dominance of a over b

π(b, a) expresses intensity of dominance of b over a

Using π(a, b), positive-outranking flow, ϕ+(a), and negative-outranking flow, ϕ−(a), are
calculated as follows. Positive-outranking expresses how alternative “a” outranks all other
alternatives and, therefore, the higher the value the better the alternative is. The negative-
outranking expresses how “a” is outranked by all other alternatives and, therefore, the lower
the value the better the alternative is.

ϕ+(a) =
i=n∑
i=1

π(a, Ai) (5.40)

ϕ−(a) =
i=n∑
i=1

π(Ai, a) (5.41)
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The following function is defined to assist in ordering the preference of the alternatives:
⎧⎨
⎩

a S+b, ϕ+(a) > ϕ+(b)

a I+b, ϕ+(a) = ϕ+(b)
(5.42)

⎧⎨
⎩

a S−b, ϕ−(a) < ϕ−(b)

a I−b, ϕ−(a) = ϕ−(b)
(5.43)

The PROMETHEE I partial relation is the intersection of these two pre-orders. There are
three possible conclusions when making pairwise comparisons between alternatives.

Conclusion I : a outranks b

a P I b if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a S+ b and a S− b

a S+ b and a I− b

a I+ b and a S− b

(5.44)

In this case the positive flow exceeds or is equal to the positive flow of b and the negative flow
of b exceeds or is equal to the negative flow of a. The flows agree and the information is sure.

Conclusion II : a indifferent to b

a II b if a I+ b and a I− b (5.45)

In this case the positive and negative flows of the two alternatives are equal. The alternatives
are concluded to be roughly equivalent.

Conclusion III : a incomparable to b
This will generally occur if alternative a performs well with respect to a subset of the criteria
for which b is weak while b performs well on the criteria for which a is weak.

5.6 Multiple Criteria Mathematical Programming
Problems

In the previous sections, our focus was on solving MCDM problems with a finite number
of alternatives, where each alternative is measured by several conflicting criteria. These
MCDM problems were called multiple criteria selection problems (MCSP). The methods we
discussed earlier helped in identifying the best alternative or rank order all the alternatives
from the best to the worst.

In this and the subsequent sections, we will focus on MCDM problems with an infinite
number of alternatives. In other words, the feasible alternatives are not known a priori
but are represented by a set of mathematical (linear/nonlinear) constraints. These MCDM
problems are called multicriteria mathematical programming (MCMP) problems.

MCMP Problem

Max F(x) = {f1(x), f2(x), . . ., fk(x)}

Subject to gj(x) ≤ 0 for j = 1, . . ., m

(5.46)
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where x is an n-vector of decision variables and fi(x), i= 1, . . ., k are the k criteria/objective
functions.

Let S = {x/gj(x) ≤ 0, for all “j”}
Y = {y/F(x)=y for some x∈S}
S is called the decision space and Y is called the criteria or objective space in MCMP.

A solution to MCMP is called a superior solution if it is feasible and maximizes all the
objectives simultaneously. In most MCMP problems, superior solutions do not exist as the
objectives conflict with one another.

5.6.1 Definitions

Efficient, Non-Dominated, or Pareto Optimal Solution: A solution xo ∈S to
MCMP is said to be efficient if fk(x) > fk(xo) for some x∈S implies that fj(x) <
fj(xo) for at least one other index j. More simply stated, an efficient solution
has the property that an improvement in any one objective is possible only at
the expense of at least one other objective.

A Dominated Solution is a feasible solution that is not efficient.

Efficient Set: The set of all efficient solutions is called the efficient set or efficient frontier.

Note: Even though the solution of MCMP reduces to finding the efficient set, it is not
practical because there could be an infinite number of efficient solutions.

Example 5.1

Consider the following bi-criteria linear program:

Max Z1 = 5x1 + x2

Max Z2 = x1 + 4x2

Subject to: x1 ≤ 5

x2 ≤ 3

x1 + x2 ≤ 6

x1, x2 ≥ 0

The decision space and the objective space are given in Figures 5.1 and 5.2, respectively.
Corner Points C and D are efficient solutions whereas corner points A, B, and E are domi-
nated. The set of all efficient solutions is given by the line segment CD in both figures.

An ideal solution is the vector of individual optima obtained by optimizing each
objective function separately ignoring all other objectives.

In Example 5.1, the maximum value of Z1, ignoring Z2, is 26 and occurs at point D.
Similarly, maximum Z2 of 15 is obtained at point C. Thus the ideal solution is (26,15) but
is not feasible or achievable.

Note: One of the popular approaches to solving MCMP problems is to find an efficient solu-
tion that comes “as close as possible” to the ideal solution. We will discuss these approaches
later. �
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FIGURE 5.2 Objective space (Example 5.1).

5.6.2 Determining an Efficient Solution [12]

For the MCMP problem given in Equation 5.46, consider the following single objective
optimization problem, called the Pλ problem.

Max Z =
k∑

i=1

λifi(x)

Subject to: x ∈ S

k∑
i=1

λi = 1

λi ≥ 0

(5.47)
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THEOREM 5.1(Sufficiency) Let λi > 0 for all i be specified. If xo is an optimal solution
for the Pλ problem (Equation 5.47), then xo is an efficient solution to the MCMP problem.

In Example 5.1, if we set λ1 = λ2 = 0.5 and solve the Pλ problem, the optimal solution
will be at D, which is an efficient solution.

The Pλ problem (Equation 5.47) is also known as the weighted objective problem.
Warning: Theorem 5.1 is only a sufficient condition and is not necessary. For example, there
could be efficient solutions to MCMP that could not be obtained as optimal solutions to the
Pλ problem. Such situations occur when the objective space is not a convex set. However,
for MCMP problems, where the objective functions, and constraints are linear, Theorem 5.1
is both necessary and sufficient.

5.6.3 Test for Efficiency

Given a feasible solution x ∈ S for MCMP, we can test whether it is efficient by solving the
following single objective problem.

Max W =
k∑

i=1

di

Subject to: fi(x) ≥ fi(x) + di for i = 1, 2, . . ., k

x ∈ S

di ≥ 0

THEOREM 5.2

1. If Max W > 0, then x is a dominated solution.
2. If Max W = 0, then x is an efficient solution.

Note: If Max W > 0, then at least one of the di’s is positive. This implies that at least one
objective can be improved without sacrificing on the other objectives.

5.6.4 Classification of MCMP Methods

In MCMP problems, often there are an infinite number of efficient solutions and they are not
comparable without the input from the DM. Hence, it is generally assumed that the DM has
a real-valued preference function defined on the values of the objectives, but it is not known
explicitly. With this assumption, the primary objective of the MCMP solution methods is
to find the best compromise solution, which is an efficient solution that maximizes the DM’s
preference function.

In the last two decades, most MCDM research have been concerned with developing solu-
tion methods based on different assumptions and approaches to measure or derive the DM’s
preference function. Thus, the MCMP methods can be categorized by the basic assumptions
made with respect to the DM’s preference function as follows:

1. When complete information about the preference function is available from the DM.
2. When no information is available.
3. Where partial information is obtainable progressively from the DM.
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In the following sections we will discuss MCMP methods such as goal programming, com-
promise programming and interactive methods as examples of categories 1, 2, and 3 type
approaches.

5.7 Goal Programming

One way to treat multiple criteria is to select one criterion as primary and the other crite-
ria as secondary. The primary criterion is then used as the optimization objective function,
while the secondary criteria are assigned acceptable minimum or maximum values depending
on whether the criterion is maximum or minimum and are treated as problem constraints.
However, if careful consideration is not given while selecting the acceptable levels, a fea-
sible design that satisfies all the constraints may not exist. This problem is overcome by
goal programming, which has become a practical method for handling multiple criteria.
Goal programming [13] falls under the class of methods that use completely prespecified
preferences of the decision maker in solving the MCMP problem.

In goal programming, all the objectives are assigned target levels for achievement and
relative priority on achieving these levels. Goal programming treats these targets as goals to
aspire for and not as absolute constraints. It then attempts to find an optimal solution that
comes as “close as possible” to the targets in the order of specified priorities. In this section,
we shall discuss how to formulate goal programming models and their solution methods.

Before we discuss the formulation of goal programming problems, we should discuss the
difference between the terms real constraints and goal constraints (or simply goals) as used
in goal programming models. The real constraints are absolute restrictions on the decision
variables, whereas the goals are conditions one would like to achieve but are not mandatory.
For instance, a real constraint given by

x1 + x2 = 3

requires all possible values of x1 + x2 to always equal 3. As opposed to this, a goal requiring
x1 + x2 = 3 is not mandatory, and we can choose values of x1 + x2 ≥ 3 as well as x1 + x2 ≤ 3.
In a goal constraint, positive and negative deviational variables are introduced as follows:

x1 + x2 + d−
1 − d+

1 = 3 d+
1 , d−

1 ≥ 0

Note that if d−
1 > 0, then x1 + x2 < 3, and if d+

1 > 0, then x1 + x2 > 3.
By assigning suitable weights w−

1 and w+
1 on d−

1 and d+
1 in the objective function, the

model will try to achieve the sum x1 + x2 as close as possible to 3. If the goal were to satisfy
x1 + x2 ≥ 3, then only d−

1 is assigned a positive weight in the objective, while the weight on
d+
1 is set to zero.

5.7.1 Goal Programming Formulation

Consider the general MCMP problem given in Section 5.6 (Equation 5.46). The assump-
tion that there exists an optimal solution to the MCMP problem involving multiple criteria
implies the existence of some preference ordering of the criteria by the DM. The goal pro-
gramming (GP) formulation of the MCMP problem requires the DM to specify an acceptable
level of achievement (bi) for each criterion fi and specify a weight wi (ordinal or cardinal)
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to be associated with the deviation between fi and bi. Thus, the GP model of an MCMP
problem becomes:

Minimize Z =
k∑

i=1

(w+
i d+

i + w−
i d−

i ) (5.48)

Subject to: fi(x) + d−
i − d+

i = bi for i = 1, . . ., k (5.49)

gj(x) ≤ 0 for j = 1, . . ., m (5.50)

xj , d
−
i , d+

i ≥ 0 for all i and j (5.51)

Equation 5.48 represents the objective function of the GP model, which minimizes the
weighted sum of the deviational variables. The system of equations (Equation 5.49) repre-
sents the goal constraints relating the multiple criteria to the goals/targets for those criteria.
The variables, d−

i and d+
i , in Equation 5.49 are called deviational variables, representing

the under achievement and over achievement of the ith goal. The set of weights (w+
i and

w−
i ) may take two forms:

1. Prespecified weights (cardinal)
2. Preemptive priorities (ordinal).

Under prespecified (cardinal) weights, specific values in a relative scale are assigned to
w+

i and w−
i representing the DM’s “trade-off” among the goals. Once w+

i and w−
i are spec-

ified, the goal program represented by Equations. 5.48 to 5.51 reduces to a single objective
optimization problem. The cardinal weights could be obtained from the DM using any of
the methods discussed in Sections 5.1 to 5.5 including the AHP method. However, for this
method to work, the criteria values have to be scaled or normalized using the methods given
in Section 5.3.

In reality, goals are usually incompatible (i.e., incommensurable) and some goals can be
achieved only at the expense of some other goals. Hence, preemptive goal programming,
which is more common in practice, uses ordinal ranking or preemptive priorities to the
goals by assigning incommensurable goals to different priority levels and weights to goals at
the same priority level. In this case, the objective function of the GP model (Equation 5.48)
takes the form

Minimize Z =
∑

p

Pp

∑
i

(w+
ipd

+
i + w−

ipd
−
i ) (5.52)

where Pp represents priority p with the assumption that Pp is much larger then Pp+1 and
w+

ip and w−
ip are the weights assigned to the ith deviational variables at priority p. In this

manner, lower priority goals are considered only after attaining the higher priority goals.
Thus, preemptive goal programming is essentially a sequential single objective optimization
process, in which successive optimizations are carried out on the alternate optimal solutions
of the previously optimized goals at higher priority.

The following example illustrates the formulation of a preemptive GP problem.

Example 5.2

Suppose a company has two machines for manufacturing a product. Machine 1 makes 2 units
per hour, while machine 2 makes 3 units per hour. The company has an order for 80 units.
Energy restrictions dictate that only one machine can operate at one time. The company
has 40 hours of regular machining time, but overtime is available. It costs $4.00 to run
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machine 1 for 1 hour, while machine 2 costs $5.00/hour. The company’s goals, in order of
importance, are as follows:

1. Meet the demand of 80 units exactly.
2. Limit machine overtime to 10 hours.
3. Use the 40 hours of normal machining time.
4. Minimize costs. �

Formulation. Letting xj represent the number of hours machine j is operating, the goal
programming model is

Minimize Z = P1(d−
1 + d+

1 ) + P2d
+
3 + P3(d−

2 + d+
2 ) + P4d

+
4

Subject to: 2x1 + 3x2 + d−
1 − d+

1 = 80 (5.53)

x1 + x2 + d−
2 − d+

2 = 40 (5.54)

d+
2 + d−

3 − d+
3 = 10 (5.55)

4x1 + 5x2 + d−
4 − d+

4 = 0 (5.56)

xi, d
−
i , d+

i � 0 for all i

where P1, P2, P3, and P4 represent the preemptive priority factors such that P1 >> P2 >>
P3 >> P4. Note that the target for cost is set at an unrealistic level of zero. As the goal is
to minimize d+

4 , this is equivalent to minimizing the total cost of production.
In this formulation, Equation 5.55 does not conform to the general model given by Equa-

tions 5.49 to 5.51, where no goal constraint involves a deviational variable defined earlier.
However, if d+

2 > 0, then d−
2 = 0, and from Equation 5.54 we get

d+
2 = x1 + x2 − 40

which, when substituted into Equation 5.55, yields

x1 + x2 + d−
3 − d+

3 = 50 (5.57)

Thus Equation 5.57 can replace Equation 5.55 and the problem fits the general model,
where each deviational variable appears in only one goal constraint and has at most one
positive weight in the objective function.

5.7.2 Partitioning Algorithm for Preemptive Goal Programs

Linear Goal Programs

Linear goal programming problems can be solved efficiently by the partitioning algorithm
developed by Arthur and Ravindran [14,15]. It is based on the fact that the definition of
preemptive priorities implies that higher order goals must be optimized before lower order
goals are even considered. Their procedure consists of solving a series of linear programming
subproblems by using the solution of the higher priority problem as the starting solution
for the lower priority problem.

The partitioning algorithm begins by solving the smallest subproblem S1, which is com-
posed of those goal constraints assigned to the highest priority P1 and the corresponding
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FIGURE 5.3 Flowchart of the partitioning algorithm.

terms in the objective function. The optimal tableau for this subproblem is then examined
for alternate optimal solutions. If none exist, then the present solution is optimal for the
original problem with respect to all the priorities. The algorithm then substitutes the values
of the decision variables into the goal constraints of the lower priorities to calculate their
attainment levels, and the problem is solved. However, if alternate optimal solutions do
exist, the next set of goal constraints (those assigned to the second highest priority) and
their objective function terms are added to the problem. This brings the algorithm to the
next largest subproblem in the series, and the optimization resumes. The algorithm contin-
ues in this manner until no alternate optimum exists for one of the subproblems or until all
priorities have been included in the optimization. The linear dependence between each pair
of deviational variables simplifies the operation of adding the new goal constraints to the
optimal tableau of the previous subproblem without the need for a dual-simplex iteration.

When the optimal solution to the subproblem Sk−1 is obtained, a variable elimination
step is preformed prior to the addition of goal constraints of priority k. The elimination
step involves deleting all nonbasic columns that have a positive relative cost (Cj > 0) in the
optimal tableau of Sk−1 from further consideration. This is based on the well-known linear
programming (LP) result that a nonbasic variable with a positive relative cost in an optimal
tableau cannot enter the basis to form an alternate optimal solution. Figure 5.3 gives a
flowchart of the partitioning algorithm.
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TABLE 5.2 Solution to Subproblem S1

P1 : cj 0 0 1 1
cB Basis x1 x2 d−

1 d+
1 b

1 d+
1 2 3 1 −1 80

P1 : c Row −2 −3 0 2 Z1 = 80

0 x2
2
3

1
1
3

−
1
3

80
3

P1 : c Row 0 0 1 1 Z1 = 0

TABLE 5.3 Solution to Subproblem S2

P2 : cj 0 0 0 1

cB Basis x1 x2 d−
3 d+

3 b

0 x2
2
3

1 0 0
80
3

0 d−
3

1
3

0 1 −1
70
3

P2 : c Row 0 0 0 1 Z2 = 0

We now illustrate the partitioning algorithm using Example 5.2. The subproblem S1 for
priority P1 to be solved initially is given below:

S1: Minimize Z1 = d−
1 + d+

1

Subject to: 2x1 + 3x2 + d−
1 − d+

1 = 80

x1, x2, d
−
1 , d+

1 � 0

The solution to subproblem S1 by the simplex method is given in Table 5.2. However,
alternate optima exist to subproblem S1 (the nonbasic variable x1 has a relative cost of
zero). As the relative costs for d+

1 and d−
1 are positive, they cannot enter the basis later;

else they destroy the optimality achieved for priority 1. Hence, they are eliminated from the
tableau from further consideration.

We now add the goal constraint assigned to the second priority (Equation 5.57):

x1 + x2 + d−
3 − d+

3 = 50

Since x2 is a basic variable in the present optimal tableau (Table 5.2), we perform a row
operation on the above equation to eliminate x2, and we get

1
3
x1 + d−

3 − d+
3 =

70
3

(5.58)

Equation 5.58 is now added to the present optimal tableau after deleting the columns cor-
responding to d−

1 and d+
1 . This is shown in Table 5.3. The objective function of subproblem

S2 is given by
Minimize Z2 = d+

3

As the right-hand side of the new goal constraint (Equation 5.57) remained nonnegative
after the row reduction (Equation 5.58), d−

3 was entered as the basic variable in the new
tableau (Table 5.3). If, on the other hand, the right-hand side had become negative, the row
would be multiplied by −1 and d+

3 would become the new basic variable. Table 5.3 indicates
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TABLE 5.4 Solution to Subproblem S3

P3 : cj 0 0 0 1 1

cB Basis x1 x2 d−
3 d−

2 d+
2 b

0 x2
2
3

1 0 0 0
80
3

0 d−
3

1
3

0 1 0 0
70
3

1 d−
2

1
3

0 0 1 −1
40
3

P3 : c̄ Row −
1
3

0 0 0 2

0 x2 0 1 0 −2 2 0

0 d−
3 0 0 1 −1 1 10

0 x1 1 0 0 3 3 40

P3 : c̄ Row 0 0 0 1 1 Z3 = 0

that we have found an optimal solution to S2. As alternate optimal solutions exist, we add
the goal constraint and objective corresponding to priority 3. We also eliminate the column
corresponding to d+

3 . The goal constraint assigned to P3, given by

x1 + x2 + d−
2 − d+

2 = 40

is added after elimination of x2. This is shown in Table 5.4. Now x1 can enter the basis
to improve the priority 3 goal, while maintaining the levels achieved for priorities 1 and 2.
Then d−

2 is replaced by x1 and the next solution becomes optimal for subproblem S3 (see
Table 5.4). Moreover, the solution obtained is unique. Hence, it is not possible to improve
the goal corresponding to priority 4, and we terminate the partitioning algorithm. It is only
necessary to substitute the values of the decision variables (x1 = 40 and x2 = 0) into the
goal constraint for P4 (Equation 5.56) to get d+

4 = 160. Thus, the cost goal is not achieved
and the minimum cost of production is $160.

Integer Goal Programs

Arthur and Ravindran [16] show how the partitioning algorithm for linear GP problems
can be extended with a modified branch and bound strategy to solve both pure and mixed
integer GP problems. The variable elimination scheme used in the PAGP algorithm is not
applicable for integer goal programs. They demonstrate the applicability of the branch and
bound algorithm with constraint partitioning for integer goal programs with a multiple
objective nurse scheduling problem [17].

Nonlinear Goal Programs

Saber and Ravindran [18] present an efficient and reliable method called the partitioning gra-
dient based (PGB) algorithm for solving nonlinear GP problems. The PGB algorithm uses
the partitioning technique developed for linear GP problems and the generalized reduced
gradient (GRG) method to solve single objective nonlinear programming problems. The
authors also present numerical results by comparing the PGB algorithm against a modified
pattern search method for solving several nonlinear GP problems. The PGB algorithm found
the optimal solution for all test problems proving its robustness and reliability, whereas the
pattern search method failed in more than half the test problems by converging to a nonop-
timal point.
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Kuriger and Ravindran [19] have developed three intelligent search methods to solve
nonlinear GP problems by adapting and extending the simplex search, complex search, and
pattern search methods to account for multiple criteria. These modifications were largely
accomplished by using partitioning concepts of goal programming. The paper also includes
computational results with several test problems.

5.7.3 Other Goal Programming Models

In addition to the preemptive and non-preemptive goal programming models, other
approaches to solving MCMP problems using goal programming have been proposed. In
both preemptive and non-preemptive GP models, the DM has to specify the targets or
goals for each objective. In addition, in the preemptive GP models, the DM specifies a
preemptive priority ranking on the goal achievements. In the non-preemptive case, the DM
has to specify relative weights for goal achievements.

To illustrate, consider the following bi-criteria linear program (BCLP):

Example 5.3: BCLP

Max f1 = x1 + x2

Max f2 = x1

Subject to: 4x1 + 3x2 ≤ 12
x1, x2 ≥ 0

Maximum f1 occurs at x= (0, 4) with (f1, f2) = (4, 0). Maximum f2 occurs at x= (3, 0)
with (f1, f2) = (3, 3). Thus the ideal values of f1 and f2 are 4 and 3, respectively, and the
bounds on (f1, f2) on the efficient set will be:

3 ≤ f1 ≤ 4
0 ≤ f2 ≤ 3

Let the DM set the goals for f1 and f2 as 3.5 and 2, respectively. Then the GP model
becomes:

x1 + x2 + d−
1 − d+

1 = 3.5 (5.59)

x1 + d−
2 − d+

2 = 2 (5.60)

4x1 + 3x2 ≤ 12 (5.61)

x1, x2, d
−
1 , d+

1 , d−
2 , d+

2 ≥ 0 (5.62)

Under the preemptive GP model, if the DM indicates that f1 is much more important than
f2, then the objective function will be

Min Z = P1d
−
1 + P2d

−
2

subject to the constraints (Equations 5.59 to 5.62), where P1 is assumed to be much larger
than P2.

Under the non-preemptive GP model, the DM specifies relative weights on the goal
achievements, say w1 and w2. Then the objective function becomes

Min Z = w1d
−
1 + w2d

−
2

subject to the same constraints (Equations 5.59 to 5.62).
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Tchebycheff (Min–Max) Goal Programming

In this GP model, the DM only specifies the goals/targets for each objective. The model
minimizes the maximum deviation from the stated goal. To illustrate, the objective function
for the Tchebycheff goal program becomes:

Min Max (d−
1 , d−

2 ) (5.63)

subject to the same constraints (Equations 5.59 to 5.62).
Equation 5.63 can be reformulated as a linear objective by setting

Max (d−
1 , d−

2 ) = M ≥ 0

Then Equation 5.63 is equivalent to

Min Z = M

Subject to: M ≥ d−
1

M ≥ d−
2

and the constraints given by Equations 5.59 to 5.62.
The advantage of the Tchebycheff goal program is that there is no need to get preference

information (priorities or weights) about goal achievements from the DM. Moreover, the
problem reduces to a single objective optimization problem. The disadvantages are (1) the
scaling of goals is necessary (as required in nonpreemptive GP) and (2) outliers are given
more importance and could produce poor solutions.

Fuzzy Goal Programming

Fuzzy goal programming uses the ideal values as targets and minimizes the maximum
normalized distance from the ideal solution for each objective. The lower and upper bounds
on the objectives are used for scaling the objectives. This is similar to the Min–Max (Regret)
method discussed in Section 5.5.2.

To illustrate, consider Example 5.3 again. Using the ideal values of (f1, f2) = (4, 3) and
the bounds

3 ≤ f1 ≤ 4
0 ≤ f2 ≤ 3

the fuzzy goal programming formulation becomes:

Min Z = M

Subject to: M ≥ 4 − (x1 + x2)
4 − 3

M ≥ 3 − x1

3 − 0

4x1 + 3x2 ≤ 12

x1, x2 ≥ 0

For additional readings on the variants of fuzzy GP models, the reader is referred to Ignizio
and Cavalier [20], Tiwari et al. [21,22], Mohammed [23], and Hu et al. [24].

An excellent source of reference for goal programming methods and applications is the
textbook by Schniederjans [25].
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5.8 Method of Global Criterion and Compromise
Programming

5.8.1 Method of Global Criterion

The method of global criterion and compromise programming [1,26,27] fall under the class
of MCMP methods that do not require any preference information from the DM.

Consider the MCMP problem given by Equation 5.46. Let

S = {x/gj(x) ≤ 0, for all j}

Let the ideal values of the objectives f1, f2, . . ., fk be f∗
1 , f∗

2 , . . ., f∗
k . The method of global

criterion finds an efficient solution that is “closest” to the ideal solution in terms of the Lp

distant metric. It also uses the ideal values to normalize the objective functions. Thus the
MCMP reduces to:

Minimize Z =
k∑

i=1

(
f∗

i − fi

f∗
i

)p

Subject to: x∈S

The values of f∗
i are obtained by maximizing each objective fi subject to the constraints

x∈S, but ignoring the other objectives. The value of p can be 1, 2, 3, . . ., etc. Note that p = 1
implies equal importance to all deviations from the ideal. As p increases larger deviations
have more weight.

Example 5.4: [1]

Max f1 = 0.4x1 + 0.3x2

Max f2 = x1

Subject to: x1 + x2 ≤ 400 (5.64)

2x1 + x2 ≤ 500 (5.65)

x1, x2 ≥ 0 (5.66)

Let S represent the feasible region constrained by Equations 5.64 to 5.66. Figure 5.4 illus-
trates the feasible region. The method of global criterion has two steps:

Step 1: Obtain the ideal point.
Step 2: Obtain the preferred solutions by varying the value of p = 1, 2, . . ..

Step 1: Ideal Point: Maximizing f1(x) = 0.4x1 + 0.3x2 subject to x∈S gives the point
B as the optimal solution, with x∗ (100, 300) and f∗

1 = 130 (see Figure 5.4).
Minimizing f2(x) = x1 subject to x∈S gives the point C as the optimal solution, with x∗

(250, 0) and f∗
2 = 250 (see Figure 5.4). Thus, the ideal point (f∗

1 , f∗
2 ) = (130, 250).
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FIGURE 5.4 Illustration of the method of global criterion (Example 5.4).

Step 2: Obtain Preferred Solutions: A preferred solution is a nondominated or efficient
solution, which is a point on the line segment BC. In Figure 5.4 all points on the line
segment BC are efficient solutions.

Case 1: p = 1

Min Z

(
130 − (.4x1 + .3x2)

130

)
+

(
250 − x1

250

)

= 2 − .00708x1 − .00231x2

subject to: x ∈ S

The optimal solution to the LP problem when p = 1 is given by

x1 = 250, x2 = 0, f1 = 100, f2 = 250

This is point C in Figure 5.4.

Case 2: p = 2

Min Z

(
130 − (.4x1 + .3x2)

130

)2

+
(

250 − x1

250

)2

subject to: x ∈ S

This is a quadratic programming problem and the optimal solution is given by

x1 = 230.7, x2 = 38.6, f1 = 103.9, f2 = 230.7

This is point D in Figure 5.4.
The DM’s preferred solution should be one of the efficient points on BC (Figure 5.4). It

is possible that the solutions obtained for p = 1 and p = 2 may not satisfy the DM at all!
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5.8.2 Compromise Programming

Compromise programming [26,28] is similar in concept to the one discussed in Section 5.5.3
for MCSP and the method of global criterion. It finds an efficient solution by minimizing
the Lp distance metric from the ideal point as given below.

Min Lp =

[
k∑

i=1

λp
i (f

∗
i − fi)p

]1/p

(5.67)

Subject to x ∈ S and p = 1, 2, . . .,∞

where λi’s have to be specified or assessed subjectively. Note that λi could be set to 1/f∗
i .

THEOREM 5.3 Any point x∗ that minimizes Lp (Equation 5.67) for λi > 0 for all i,∑
λi = 1 and 1≤ p < ∞ is called a compromise solution. Zeleny [26] has proved that these

compromise solutions are non-dominated. As p → ∞, Equation 5.67 becomes

Min L∞ = Min Max
i

[λi(f∗
i − fi)]

and is known as the Tchebycheff Metric.

5.9 Interactive Methods

Interactive methods for MCMP problems rely on the progressive articulation of preferences
by the DM. These approaches can be characterized by the following procedure.

Step 1: Find a solution, preferably feasible and efficient.
Step 2: Interact with the DM to obtain his/her reaction or response to the obtained

solution.
Step 3: Repeat Steps 1 and 2 until satisfaction is achieved or until some other termina-

tion criterion is met.

When interactive algorithms are applied to real-world problems, the most critical factor is
the functional restrictions placed on the objective functions, constraints, and the unknown
preference function. Another important factor is preference assessment styles (hereafter
called interaction styles). Typical interaction styles are:

a. Binary pairwise comparison—the DM must compare a pair of two dimensional
vectors at each interaction.

b. Pairwise comparison—the DM must compare a pair of p-dimensional vectors and
specify a preference.

c. Vector comparison—the DM must compare a set of p-dimensional vectors and
specify the best, the worst, or the order of preference (note that this can be done
by a series of pairwise comparisons).

d. Precise local trade-off ratio—the DM must specify precise values of local trade-off
ratios at a given point. It is the marginal rate of substitution between objectives
fi and fj : in other words, trade-off ratio is how much the DM is willing to give
up in objective j for a unit increase in objective i at a given efficient solution.
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e. Interval trade-off ratio—the DM must specify an interval for each local trade-off
ratio.

f. Comparative trade-off ratio—the DM must specify his preference for a given
trade-off ratio.

g. Index specification and value trade-off—the DM must list the indices of objectives
to be improved or sacrificed, and specify the amount.

h. Aspiration levels (or reference point)—the DM must specify or adjust the values
of the objectives that indicate his/her optimistic wish concerning the outcomes
of the objectives.

Shin and Ravindran [29] provide a detailed survey of MCMP interactive methods. The
survey includes

• A classification scheme for all interactive methods.
• A review of methods in each category based on functional assumptions, inter-

action style, progression of research papers from the first publication to all its
extensions, solution approach, and published applications.

• A rating of each category of methods in terms of the DM’s cognitive burden, ease
of use, effectiveness, and handling inconsistency.

5.9.1 Classification of Interactive Methods

Shin and Ravindran [29] classify the interactive methods as follows:

1. Feasible region reduction methods
2. Feasible direction methods
3. Criterion weight space methods
4. Trade-off cutting plane methods
5. Lagrange multiplier methods
6. Visual interactive methods using aspiration levels
7. Branch-and-bound methods

We will describe each of the above approaches briefly here.

Feasible Region Reduction Methods

Each iteration of this approach generally consists of three phases: a calculation phase; a
decision phase; and a feasible region reduction phase. In the calculation phase, an efficient
solution that is nearest to the ideal solution, in the minimax sense for given weights, is
obtained. In the decision phase, the DM interacts with the method and his/her responses
are used to construct additional constraints in the feasible region reduction phase. The
method continues to perform the three phase iterations until the DM considers the current
solution to be the best compromise solution. Advantages of this method are that it can
terminate at a nonextreme point and extensions to integer and nonlinear cases are only
dependent on the single objective optimization method. However, the method may present
a dominated solution to the DM and it is an ad hoc procedure, as no preference function
concept is utilized. In addition, most methods in this category require a series of index
specifications and value trade-offs from the DM.

The first interactive approach in this category is the STEP method (STEM). It was
originally described as the progress orientation procedure in Benayoun et al. [30] and later
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elaborated by Benayoun et al. [31]. STEM guarantees convergence in no more than p (num-
ber of objectives) iterations. Fichefet [32] combined the basic features of goal programming
to form the goal programming STEM method. GPSTEM guides the DM to reach a com-
promise solution in fewer iterations than STEM. It also considers bimatrix games to allow
multiple DMs in the solution process.

Feasible Direction Methods

This approach is a direct extension of the feasible direction methods developed for solving
single objective nonlinear programming problems. It starts with a feasible solution and
iteratively performs two major steps: (1) to find a “usable direction” (along which the
preference of the DM appears to increase), called the direction finding step; and (2) to
determine the step-size from the current solution along the usable direction, called the line
search. In the direction finding step, the DM provides information about his preferences
in the neighborhood of the current solution by specifying values of local trade-offs among
criteria. This, when translated into an approximation of the gradient of the preference
function at that point, guides the selection of a new solution with higher preference.

The pioneering method in this category is the GDF procedure by Geoffrion et al. [33].
They modified the Frank–Wolfe method for solving single objective convex programs and
applied the GDF procedure to an academic planning problem. The major drawback of the
GDF procedure is the difficulty in providing precise local trade-off ratios and the necessity
of the line search.

Sadagopan and Ravindran [34] have extended the GDF procedure to nonlinear constraints
using the generalized reduced gradient (GRG) method for solving single objective problems.
They use “reduced gradients” to overcome the nonlinearity of the constraints. They also
employ interval trade-off estimates rather then precise local trade-offs and eliminate the
line search.

Criterion Weight Space Methods

When the decision space is a compact convex set and the objective functions to be maxi-
mized are concave, an efficient solution can be obtained by solving a single objective prob-
lem in which the objectives are combined using weights. (Recall the Pλ problem discussed
in Section 5.6.2.) The domain of the weights is defined as the criterion weight space,and
this approach reaches the best compromise solution by either searching for the optimal
weight space or successively reducing the space. This approach has been popular in practice,
but most methods are applicable to only multiple objective linear programming (MOLP)
problems.

The Zionts–Wallenius (ZW) method [35] is a typical criterion weight space method. The
method optimizes an LP problem for a given arbitrary set of weights on the objectives. Then
a set of trade-offs (reduced costs of the objectives), which are associated with the optimal
solution of the current LP problem, is presented to the DM. The DM’s responses include a
preference/nonpreference for a trade-off or indifference. The DM’s responses are then used
in reducing the criterion weight space by additional constraints on weights and generating a
new efficient solution. If the DM is satisfied with the new solution (i.e., he does not want any
trade-off), the procedure terminates. Malakooti and Ravindran [36] improve the ZW method
by employing the paired comparisons of alternatives and strength of preference. They claim
some advantages over the ZW method through a computational study. They also propose
an interesting approach to handle the problem of the DM’s inconsistent responses.

Steuer [37] proposes a procedure with interval criterion weights. Rather than obtain
a single efficient extreme point with fixed weights, a cluster of efficient extreme points is
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generated. By widening or narrowing the intervals corresponding to each objective, different
subsets of efficient extreme points can be generated. At each iteration, after interacting with
the DM, the intervals are successively reduced until the best compromise solution is reached.

Trade-Off Cutting Plane Methods

This approach can be viewed as another variation of the feasible direction method. The
methods of this class are unique in the way they isolate the best compromise solution. They
iteratively reduce the objective space (equivalent to the reduction of the feasible space)
by cutting planes and the line search is eliminated. The methods are applicable to general
nonlinear problems, but they require precise local trade-off ratios. This approach transforms
the MCMP problem through one-to-one functional mapping from decision space to objective
space.

Musselman and Talavage [38] use local trade-offs to develop a cutting plane that pro-
gressively eliminates a portion of the objective space. They use the “method of centers” to
locate the new solution point near the center of the remaining objective space, thus elim-
inating the line search requirement. The method was applied to storm drainage problem.
Shin and Ravindran [39] combined the direction finding step of Sadagopan and Ravindran
[34] and the cutting plane concept. The line search is optional in the method and a compu-
tational study using GRG2 was performed. Sadagopan and Ravindran [40] present a paired
comparison method (PCM) and a comparative trade-off method (CTM) for solving the
bicriterion problems. These methods also eliminate a certain portion of the objective space
at each iteration via interactions with the DM. The PCM was applied successfully to a
cardiovascular disease control problem in the U.S. Air Force [41].

Lagrange Multiplier Methods

The interactive methods that use Lagrange multipliers belong in this class. The interactive
surrogate worth trade-off method (ISWTM) of Chankong and Haims [42] is a Lagrange
multiplier method. It maximizes one objective subject to a varying set of bounded objec-
tives and uses the resulting Lagrange multipliers of the constraints for interacting with the
DM. The method first generates efficient solutions that form the trade-off functions in the
objective surface derived from the generalized Lagrangian problem, and then searches for
a preferred solution by interacting with the DM to generate shadow prices of all bounded
objectives. In the generation of a shadow price, the DM is asked interactively to assess the
indifference bounds to define a surrogate worth function. It must be pointed out that the
amount of work to determine a shadow price (surrogate worth function) might be cumber-
some, considering that it needs to be repeated at each step and for each objective.

Visual Interactive Methods

Most of the aforementioned approaches assume that the unknown DM’s preference function
remains unchanged during the interactive process. In an effort to relax the assumptions con-
cerning the DM’s behavior, Korhonen and Laakso [43] presented a graphic-aided interactive
approach. Theoretically, this method can be seen as an extension of the GDF procedure in
that the line search used is analogous to that on the GDF procedure. However, it deter-
mines new search directions using reference directions suggested by Wierzbicki [44], which
reflect the DM’s preference. At each iteration, the method generates a picture representing
a subset of the efficient frontier for interacting with the DM. By modifying the method,
“Pareto race” was developed by Korhonen and Wallenius [45] and it has been applied in
pricing alcoholic beverages [46]. Pareto Race enables the DM to control the entire efficient
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frontier through the interactive process. With the rapid advances in personal computer
technology, this type of approach is becoming popular.

Branch-and-Bound Method

The branch-and-bound method developed by Marcotte and Soland [47] divides the objective
space into subsets. Each subset is a branch from the original objective space. They further
branch into even smaller subsets if a branch is promising. At each subset they determine an
ideal solution and use this ideal solution to form an upper bound for each subset. Note that
the ideal solution of a subset dominates all the efficient points of that subset. Each subset
forms a node and at each node solutions are compared against the incumbent solution by
interacting with the DM. A node is fathomed if the ideal solution pertaining to that subset
is not preferred to the incumbent solution by the DM. This method is also applicable
to the discrete case and has a number of good properties, such as vector comparisons,
nondependence on the preference function, and termination at an efficient solution.

Raman [48] developed a branch-and-bound interactive method for solving bicriteria linear
integer programs. The author used the Tchebycheff’s norm for generating efficient solutions.
Eswaran et al. [49] implemented a weighted Tchebycheff’s norm to develop an interactive
method for solving bicriteria nonlinear integer programs with applications to quality control
problems in acceptance sampling.

5.9.2 Inconsistency of the DM

Interactive methods require the DM to respond to a series of questions at each iteration.
Therefore the consistency of the DM is one of the most important factors in the success
of the methods. Because DMs are very subjective, different starting solutions may lead
to different best compromise solutions. Moreover, different methods use different types of
questions or interaction styles and could guide the DM to different solutions. Nearly all
interactive methods require consistent responses from the DM to be successful. Thus, the
assumption of the DM’s consistency usually draws severe criticism and some researchers
underrate the abilities of the interactive methods due to this drawback.

There are generally two ways to reduce the DM’s inconsistency: (1) testing consistency
during the procedure; and (2) minimizing the DM’s cognitive burden. Testing whether the
DM’s responses are consistent with those to the previous questions has been used in trade-off
assessment schemes. Also, tests for recognizing the DM’s inconsistency have been developed
by Malakooti and Ravindran [36]. The DM’s inconsistency can be reduced by presenting
easy questions to the DM. In this way the DM has little confusion with questions and less
chance for making mistakes. Reducing the DM’s cognitive burden is one of the motivations
for new algorithmic developments in this area.

5.9.3 Computational Studies

There are only a few computational studies on interactive methods. Wallenius [50] describes
an evaluation of several MCMP methods, such as STEM and the GDF procedure, and
reports that none of the methods has been highly successful in practice. Klein et al. [51]
claim that interactive procedures are easier to use and achieve more satisfactory solutions
when compared to utility measurement methods. Their conclusions are based on simulated
study of a quality control problem with several students serving as DMs.

Most methods are generally presented without computational studies, probably due to
the difficulty of interacting with real DMs. Even if simulated preference functions are used,
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more computational study is needed to assess the usefulness of these methods. Also, the
preferences of practitioners with regard to interaction styles and methodological approaches
must be disclosed by comparative studies. This will help managers apply the interactive
methods to real problems.

5.10 MCDM Applications

One of the most successful applications of multi-criteria decision making has been in the
area of portfolio selection, an important problem faced by individual investors and finan-
cial analysts in investment companies. A portfolio specifies the amount invested in different
securities that may include bonds, common stocks, mutual funds, bank CDs, Treasury
notes, and others. Much of the earlier investment decisions were made by seat-of-the-pants
approaches. Markowitz [52] in the 1950s pioneered the development of the modern portfolio
theory, which uses bi-criteria mathematical programming models to analyze the portfo-
lio selection problem. By quantifying the trade-offs between risks and returns, he showed
how an investor can diversity portfolios such that the portfolio risk can be reduced with-
out sacrificing returns. Based on Markowitz’s work, Sharpe [53] introduced the concept of
the market risk, and developed a bi-criteria linear programming model for portfolio anal-
ysis. For their pioneering work in modern portfolio theory, both Markowitz and Sharpe
shared the 1990 Nobel Prize in Economics. The Nobel award was the catalyst for the rapid
use of the modern portfolio theory by Wall Street firms in the 1990s. A detailed discus-
sion of the mean-variance model of Markowitz is available in Part II of this handbook
(Chapter 21).

Among the MCDM models and methods, the goal programming models have seen the
most applications in industry and government. Chapter 4 of the textbook by Schniederjan
[25] contains an extensive bibliography (666 citations) on goal programming applications
categorized by areas—accounting, agriculture, economics, engineering, finance, government,
international, management, and marketing. Zanakis and Gupta [54] also have a categorized
bibliographic survey of goal programming applications.

Given below is a partial list of MCDM applications in practice:

• Academic planning [30,55–57]
• Accounting [58]
• Environment [59–61]
• Forest management [62–64]
• Health planning [17,40,41,65–67]
• Investment planning [52,53,68–70]
• Manpower planning [71–73]
• Metal cutting [74–76]
• Production planning and scheduling [77–82]
• Quality control [49,51,83–87]
• Reliability [88]
• Supply chain management [89–97]
• Transportation [98–101]
• Waste disposal [102]
• Water resources [38,103–107]
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5.11 MCDM Software

One of the problems in applying MCDM methods in practice is the lack of commercially
available software implementing these methods. There is some research software available.
Two good resources for these are:

http://www.terry.uga.edu/mcdm/
http://www.sal.hut.fi/

The first is the Web page of the International Society on multiple criteria decision making.
It has links to MCDM software and bibliography. A number of this software is available
free for research and teaching use. The second link is to the research group at Helsinki
University of Technology. It has links to some free downloads software, again for research
and instructional use.

Following are some links to commercially available MCDM software:

Method(s) Software
Utility/ValueTheory LogicalDecisions

http://www.logicaldecisions.com/

AHP ExpertChoice
http://www.expertchoice.com/software/

AHP/SMART CriteriumDecisionPlus
http://www.hearne.co.uk/products/decisionplus/

GoalProgramming LindoSystems
http://www.lindo.com

PROMETHEE Decision Lab
http://www.visualdecision.com/dlab.htm

ELECTRE LAMSADE Web page
http://l1.lamsade.dauphine.fr/english/software.html/

5.12 Further Readings

While a need for decision making in the context of multiple conflicting criteria has existed
for a very long time, the roots of the discipline of multiple criteria decision making (MCDM)
go back about half a century only. Development of the discipline has taken place along two
distinct tracks. One deals in problems with a relatively small number of alternatives, often
in an environment of uncertainty. A groundbreaking book that has influenced research and
application in this area is by Keeney and Raiffa [108]. It is called Decision Analysis or
Multi Attribute Decision Making. Chapter 6 of this handbook discusses decision analysis
in detail. The other track deals with problems where the intent is to determine the “best”
alternative utilizing mathematical relationships among various decision variables, called
multiple criteria mathematical programming (MCMP) or commonly MCDM problems.

MCDM Text Books
Two of the earliest books describing methods for MCDM problems are Charnes and Cooper
[109] and Ijiri [58]. Other books of significance dealing with the exposition of theories,
methods, and applications in MCDM include Lee [110], Cochran and Zeleny [111], Hwang
and Masud [1], Hwang and Yoon [2], Zeleny [25], Hwang and Lin [112], Steuer [3], Saaty [8],
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Kirkwood [113], Ignizio [114], Gal et al. [115], Miettinen [116], Olson [117], Vincke [118],
Figueira et al. [119], Ehrgott and Gandibleux [120], and Ehrgott [121].

MCDM Journal Articles
Recent MCDM survey articles of interest include Geldermann and Zhang [122], Kaliszewski
[123], Leskinen et al. [124], Osman et al. [125], Tamiz et al., [126], Vaidya and Kumar [127],
Alves and Climaco [128], Steuer and Na [129], and Zapounidis and Doumpos [130].

MCDM Internet Links
• Homepage of the International Society on Multiple Criteria Decision Making

http://www.terry.uga.edu/mcdm
• EURO Working Group on Multi-criteria Decision Aids

http://www.inescc.pt/∼ewgmcda/index.html
• EMOO web page by Carlos Coello

http://www.lania.mx/∼ccoello/EMOO
• Decision Lab 2000

http://www.visualdecision.com
• Kaisa Miettinen’s website

http://www.mit.jyu.fi/miettine/lista.html
• Decisionarium

http://www.decisionarium.hut.fi
• Vincent Mousseau’s MCDA database

http://www.lamsade.dauphine.fr/mcda/biblio/
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6.1 Introduction

Everyone engages in the process of making decisions on a daily basis. Some of these decisions
are quite easy to make and almost automatic. Other decisions can be very difficult to
make and almost debilitating. Likewise, the information needed to make a good decision
varies greatly. Some decisions require a great deal of information whereas others much less.
Sometimes there is not much if any information available and hence the decision becomes
intuitive, if not just a guess. Many, if not most, people make decisions without ever truly
analyzing the situation and the alternatives that exist. There is a subjective and intrinsic
aspect to all decision making, but there are also systematic ways to think about problems
to help make decisions easier. The purpose of decision analysis is to develop techniques to
aid the process of decision making, not replace the decision maker.

Decision analysis can thus be defined as the process and methodology of identifying,
modeling, assessing, and determining an appropriate course of action for a given decision
problem. This process often involves a wide array of tools and the basic approach is generally
to break the problem down into manageable and understandable parts that the decision
maker can comprehend and handle. It is then necessary to take these smaller elements
and reconstitute them into a proper solution for the larger original problem. Through this

6-1
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process, the decision maker should also gain insight into the problem and the implementation
of the solution. This should enable the decision maker to analyze complex situations and
choose a course of action consistent with their basic values and knowledge [1].

When analyzing the decision making process, the context or environment of the decision
to be made allows for a categorization of the decisions based on the nature of the problem
or the nature of the data or both. There are two broad categories of decision problems:
decision making under certainty and decision making under uncertainty. Some break decision
making under uncertainty down further in terms of whether the problem can be modeled by
probability distributions (risk) or not (uncertainty). There is also a break down of decision
type based on whether one is choosing an alternative from a list of alternatives (attribute
based) or allocating resources (objective based), or negotiating an agreement [2]. Decision
analysis is almost always in the context of choosing one alternative from a set of alternatives
and is the approach taken here.

Decision making under certainty means that the data are known deterministically or at
least at an estimated level the decision maker is comfortable with in terms of variation.
Likewise, the decision alternatives can be well defined and modeled. The techniques used
for these problem types are many and include much of what is included in this handbook
such as linear programming, nonlinear programming, integer programming, multiobjective
optimization, goal programming, analytic hierarchy process, and others.

Decision making under risk means that there is uncertainty in the data, but this uncer-
tainty can be modeled probabilistically. Note that there are some that do not use this
designation as they believe all probability is subjective; hence all decisions not known with
certainty are uncertain. However, we will use the common convention of referring to prob-
abilistic models as decision making under risk.

Decision making under uncertainty means the probability model for the data is unknown
or cannot be modeled probabilistically and hence the data are imprecise or vague.

Decisions made under risk and uncertainty are the focus of this chapter.

6.2 Terminology for Decision Analysis

There are many excellent works on decision analysis. This is a well-studied area with con-
tributions in a wide variety of fields including operations research, operations management,
psychology, public policy, leadership, and so on. With the wide variety of backgrounds
and works, it is necessary to have a common language. To that end and to help structure
the discussion the following terminology, adapted from Ravindran, Phillips, and Solberg
[1, Chapter 5], is used.

6.2.1 Terminology

Decision Maker The entity responsible for making the decision. This may be a single
person, a committee, company, and the like. It is viewed here as a single entity,
not a group.

Alternatives A finite number of possible decision alternatives or courses of action
available to the decision maker. The decision maker generally has control over
the specification and description of the alternatives. Note that one alternative to
always include is the action of doing nothing, which is maintaining the status quo.

States of Nature The scenarios or states of the environment that may occur but
are not under control of the decision maker. These are the circumstances under
which a decision is made. The states of nature are mutually exclusive events and
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exhaustive. This means that one and only one state of nature is assumed to occur
and that all possible states are considered.

Outcome Outcomes are the measures of net benefit, or payoff, received by the decision
maker. This payoff is the result of the decision and the state of nature. Hence,
there is a payoff for each alternative and outcome pair. The measures of payoff
should be indicative of the decision maker’s values or preferences. The payoffs
are generally given in a payoff matrix in which a positive value represents net
revenue, income, or profit and a negative value represents net loss, expenses,
or costs. This matrix yields all alternative and outcome combinations and their
respective payoff and is used to represent the decision problem.

6.2.2 An Investment Example

As an example, consider the common decision of determining where to invest money [3,4].
The example will be limited to choosing one form of investment, but similar approaches
exist for considering a portfolio. Assume you have $10,000 to invest and are trying to
decide between a speculative stock (SS, one that has high risk, but can generate substan-
tial returns), a conservative stock (CS, one that will perform well in any environment, but
doesn’t have the potential for large returns), bonds (B), and certificates of deposit (CD).
Data from the last several years have been collected and analyzed and estimated rates of
return for each investment have been determined. These rates, however, are dependent on
the state of the economy. From the analysis it has also been determined that there are three
basic states of the economy to consider; Strong—the economy is growing at a rate greater
than 5%, Stable—the economy is growing at a rate of 3%–4%, and Weak—the economy is
growing at a rate of 0%–2%.

The information available indicates that SS has an estimated rate of return of 18% if the
economy is strong, a rate of return of 10% if the economy is stable, and a rate of return
of −5% if the economy is weak. The CS has an estimated rate of return of 13% if the
economy is strong, a rate of return of 8% if the economy is stable, and a rate of return of
1% if the economy is weak. Bonds have an estimated return of 4% if the economy is strong,
a rate of 5% if the economy is stable, and a rate of return of 6% if the economy is weak.
CD have an estimated rate of return of 7% if the economy is strong, a rate of return of 3%
if the economy is stable, and a rate of return of 2% if the economy is weak. Lastly, there
is also the alternative of DN, that is of not investing the money, and that would yield 0%
return regardless of the state of the economy.

Note that for each combination of decision alternative and state of nature there is a
corresponding payoff. The payoff in this example is the expected rate of return. In general,
the payoff is some quantitative value used to measure a possible outcome. This measure is
generally given in terms of a monetary value, but any measure can be used. Likewise, the
value used is often a statistical estimate of the possible payoff. As the payoffs result from
a combination of alternatives and states of nature, they are easily represented by a payoff
matrix (Table 6.1). The payoff matrix for this example is given in Table 6.1.

6.3 Decision Making under Risk

Every business situation, as well as most life situations, involves a level of uncertainty. The
modeling of the uncertainty yields different approaches to the decision problem. One way
to deal with the uncertainty is to make the uncertain more certain. This can be done by
using probability to represent the uncertainty. That is, uncontrollable factors are modeled
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TABLE 6.1 Payoff Matrix for Investment Problem

State of Nature

Alternative Strong (%) Stable (%) Weak (%)

Speculative Stock (SS) 18 10 −5
Conservative Stock (CS) 13 8 1
Bonds (B) 4 5 6
Certificates of Deposit (CD) 7 3 2
Do Nothing (DN) 0 0 0

and estimated probabilistically. When this is possible, the uncertainty is characterized by a
probability distribution.

There is a wide spectrum of uncertainty to consider when analyzing a problem. At one end
of the spectrum is complete certainty of the data. At the other end is complete uncertainty.
What lies between is varying degrees of uncertainty in which the payoff for each alternative
and state of nature can be described by some probability distribution. This is what is termed
as decision making under risk in this chapter.

It should be noted that there are inherent difficulties with any approach related to uncer-
tainty. Uncertainty results from a lack of perfect information and a decision maker will often
need to determine whether more information is needed before a decision can be made. This
occurs at a cost, and may not yield a better decision. Additionally, the probability models
themselves may not truly reflect the situation or may be difficult to obtain. Therefore, the
decision maker must always keep in mind that the use of the probability models is to help
the decision maker avoid adverse decisions and to help better understand the risk involved
in any decision made. The probability models are decision support tools, not exact methods
for giving a solution. Human input is always needed.

One way to estimate probabilities is to use prior probabilities for given events. The prior
probabilities come from existing information about the possible states of nature that can be
translated into a probability distribution if the states of nature are assumed to be random.
These prior probabilities are often subjective and dependent on an individual’s experience
and need to be carefully determined. For more specific information on determining prior
probabilities see Hillier and Lieberman [5, chapter 15] and Merkhofer [6].

In the given investment example, assume that a probability distribution for the possible
states of nature can be determined based on the past data related to economic growth.
These prior probabilities are given in Table 6.2.

The advantage of prior probabilities is that they can be used to determine expected values
for different criteria. Expected values often give an acceptable estimate as to what is most
likely to happen and therefore give a good basis on which to help make a decision. Several
approaches based on expected value have been developed and are outlined below. Note,
however, that expected value is not always the best indicator and the decision maker’s
preferences and knowledge always need to be included in the process.

TABLE 6.2 Investment Problem with Prior Probabilities

State of Nature

Alternative Strong Stable Weak

SS 18% 10% −5%
CS 13% 8% 1%
B 4% 5% 6%
CD 7% 3% 2%
DN 0% 0% 0%
Prior Probability of State of Nature 0.1 0.6 0.3
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TABLE 6.3 Expected Values of Each Alternative

State of Nature

Alternative Strong Stable Weak Expected Value

SS 18% 10% −5% 6.3%
CS 13% 8% 1% 6.4%
B 4% 5% 6% 5.2%
CD 7% 3% 2% 3.1%
DN 0% 0% 0% 0%
Prior Probability 0.1 0.6 0.3

Another concept that can be included here is the concept of dominance. Dominance
implies that an alternative will never be chosen because there is another alternative that is
always better regardless of the state of nature. Hence, there is no reason to ever consider the
alternative that is dominated; it cannot give a reasonable course of action. In the investment
example the do nothing (DN) alternative is a dominated alternative. That is, there is at
least one other alternative that would always be chosen regardless of the state of nature
over do nothing. From Table 6.1 it can be seen that the alternatives, CS, B, and CD each
dominate DN. It is then reasonable to exclude the alternative DN from further consideration.
However, to illustrate this concept and to show that this alternative is never chosen, it is
left in the problem for now.

6.3.1 Maximum Likelihood

The idea behind maximum likelihood is that good things always happen. If the decision
maker is very optimistic about the future then why not choose the best possible outcome
assuming the best possible state of nature will occur.

To find the best choice by maximum likelihood, first find the state of nature with the
largest probability of occurring and then choose the alternative for that state of nature with
the maximum payoff.

ability is stable growth. For that state of nature, the SS has the largest rate of return.
Therefore, based on this criterion the decision would be to invest in SS.

6.3.2 Expected Value under Uncertainty

For a more balanced approach, a decision maker can assume that the prior probabilities give
an accurate representation of the chance of occurrence. Therefore, instead of being overly
optimistic the decision maker can compute the expected value for each alternative over the
states of nature and then choose based on those expected values.

To implement this approach, for each alternative determine its expected value based
on the probability of the state of nature and the payoff for that alternative and state of
nature. That is, for each row of the payoff matrix take the sum of each payoff times the
corresponding state of nature probability.

From Table 6.2, for the alternative SS, the expected value would be (0.1× 18%) + (0.6 ×
10%) + (0.3 × (−5%)) = 6.3%. The expected value for each alternative of the investment
example is given in Table 6.3.

Based on expected value the best decision would be to invest in CS.
Note that this type of analysis can easily be done in a spreadsheet, which affords the

opportunity to do a what-if analysis. As the prior probabilities are the most questionable
of the data, in a spreadsheet, it would be possible to adjust these values to see the impact
of different values for the prior probabilities. Likewise, it is also possible to do a sensitivity
analysis of the prior probabilities and determine ranges for the prior probabilities for which
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each alternative would be chosen. There exists software designed to help with this type of
analysis. One such package is called SensIt and is described in Ref. [5]. The Web address
for this software is given later.

6.3.3 Expected Opportunity Loss or Expected Regret

There are times when the actual payoffs and their expected values are not sufficient for
a decision maker. Many times when dealing with uncertainty, decision makers feel better
about a decision if they know they have not made an error that has cost them a great deal
in terms of opportunity that has been lost. This lost opportunity is generally called regret
and can be used to determine an appropriate decision.

After a decision is made and the actual state of nature becomes known, the opportunity
missed by the decision made can be determined. That is, for the investment example, if the
actual state of nature that occurred was stable growth, but it was decided that B were the
best investment, then the opportunity of going with SS was missed. Therefore, the missed
opportunity of having a 10% rate of return instead of the 5% chosen, results in a missed
opportunity (regret) of 10− 5 = 5%.

To avoid the possibility of having missed a large opportunity, expected opportunity loss
(EOL) looks to minimize the opportunity loss or regret. To do this, the possible opportunity
loss for each state of nature is determined for each alternative. This is done by taking
the largest payoff value in each column (state of nature) and then for each alternative
subtracting the payoff for that alternative from the largest payoff in the column. For the
investment example, the opportunity loss is computed for each alternative and state of
nature in Table 6.4. Once the opportunity losses are known, the EOL is determined for
each alternative (row) by using the prior probabilities. For example, in Table 6.4 the EOL
for alternative CS is given by (0.1 × 5%) + (0.6 × 2%) + (0.3 × 5%) = 3.2%.

The criterion then is to minimize the EOL. In this example, the best decision based on
this criterion would be to select CS.

6.3.4 Expected Value of Perfect Information

All the methods presented thus far were dependent on the given prior information. The
question then arises as to whether it would be advantageous to acquire additional infor-
mation to help in the decision making process. As information is never completely reliable,
it is not known if the additional information would be beneficial. Therefore, the question
becomes, what is the value of additional information? The expected value of perfect infor-
mation (EVPI) criterion gives a way to answer this question by measuring the improvement
of a decision based on new information.

The idea behind EVPI is that if the state of nature that will occur is known with certainty,
then the best alternative can be determined with certainty as well. This would give the best
value for the decision, which can then be compared to the value expected under current

TABLE 6.4 Expected Opportunity Loss (EOL) of Each Alternative

State of Nature

Alternative Strong Stable Weak EOL

SS 18 − 18 = 0% 10 − 10 = 0% 6 − (−5) = 11% 3.3%
CS 18 − 13 = 5% 10 − 8 = 2% 6 − 1 = 5% 3.2%
B 18 − 4 = 14% 10 − 5 = 5% 6 − 6 = 0% 4.4%
CD 18 − 7 = 11% 10 − 3 = 7% 6 − 2 = 4% 6.5%
DN 18 − 0 = 18% 10 − 0 = 10% 6 − 0 = 6% 9.6%
Prior Probability 0.1 0.6 0.3
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information. The difference between the two would give the value of additional information.
Based on this idea, there are two basic approaches to determining EVPI [1].

EVPI and Expected Value under Uncertainty

This approach gives a straightforward approach for computing EVPI. The value of EPVI is
just simply the expected value under certainty minus the expected value under uncertainty.
To compute the expected value under certainty simply take the best payoff under each state
of nature and multiply it by its prior probability and sum these.

For the investment example the expected value under certainty would be (0.1× 18%) +
(0.6 × 10%) + (0.3 × 6%) = 9.6%. The expected value under uncertainty is the best alterna-
tive value, which in this example comes from alternative CS that has an expected value of
6.4% from Table 6.3. With this information EVPI is computed as EVPI = 9.6%−
6.4% = 3.2%.

Therefore, if an investment of $10,000 is being planned, the most additional information
would be worth is $10,000 × 3.2% = $320.

EVPI and EOL

If the state of nature is known with certainty then there would be no opportunity loss. That
is, under certainty the best alternative would always be chosen so there would be no regret
or opportunity loss, it would always be zero. Hence, under uncertainty EOL gives the cost of
uncertainty that could be eliminated with perfect information and therefore, EPVI = EOL.
From Table 6.4 of EOL values, the best alternative is the one with the smallest EOL that
is given by the alternative CS with an EOL of 3.2%. This is also the value for EPVI found
above. Note that for each alternative its expected value plus its EOL is 9.6%, the expected
value under certainty found above.

6.3.5 Decision Trees

To help better understand the decision process it can be represented graphically by a com-
bination of lines and nodes called a decision tree. The purpose of the tree is to pictorially
depict the sequence of possible actions and outcomes [1,3–5,7]. There are two types of nodes
used in a decision tree. A square represents a decision point or fork, which is the action
(alternative) taken by the decision maker and a circle represents an event or chance fork,
which is the state of nature. The branches (lines) in the tree represent the decision path
related to alternatives and states of nature.

Decision trees are generally most helpful when a sequence of decisions must be made, but
they can also be used to illustrate a single decision. The decision tree in Figure 6.1 is for the
investment example. Note that each square node denotes the alternative chosen and each
circular node represents the state of nature and the numbers at the end of each decision
path (lines) are the payoffs for that course of action.

Figure 6.1 gives a pictorial view of the information contained in Table 6.2, the payoff
matrix. Notice that the same computations for expected value can be performed within
the tree. Starting at the right hand side of the tree, for each circle (level) the expected
value of that circle is computed by taking the probability on each branch times the payoff
associated with each branch. For example, the top circle would have an expected value of
(0.1 × 18%) + (0.6× 10%) + (0.3× (−5%)) = 6.3%. The expected value can then be added
to the tree as a value at each circle. Once the values are known at each circle, the value
for the square is given by taking the maximum value of the circles. The decision tree with
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FIGURE 6.1 Decision tree for investment problem.

this additional expected value information is given in Figure 6.2 and is the same as the
information given in Table 6.3.

This, however, represents a single decision. Decision trees are much more useful when
dealing with a sequence of alternatives and states of nature in which a series of decisions
must be made. These types of problems cannot be represented easily in matrix form and
thus decision trees become a powerful tool. Decision trees are useful for a wide variety of
scenarios and the interested reader is referred to Refs. [3–5,7] for additional examples.

6.3.6 Posterior Probabilities

As mentioned before, there is the possibility of gaining new knowledge to help in better
defining the probability of an occurrence of a state of nature. This can be done through
additional experimentation or sampling. The improved estimates of the probabilities are
called posterior probabilities or Bayes’ probabilities due to the use of Bayes’ theorem in
their computation.

To find posterior probabilities, additional information about the states of nature must be
acquired. This can be done by experimentation, which in this sense can refer to the use of
experts, analysts, or consultants as well as actual additional experimentation. Therefore, for
any of these forms, the additional information is viewed as being obtained by an experiment.

The experimentation will have a possible set of outcomes that will help determine which
alternative to select. Based on the outcomes of the experimentation and their probability
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FIGURE 6.2 Decision tree for investment problem with expected values.

of occurrence, Bayes’ theorem yields the posterior probability of a state of nature. The pos-
terior probability of the state of nature given the test outcome equals the prior probability
of the state of nature times the conditional probability of the outcome given the state of
nature divided by the sum of the conditional probabilities for all the states of nature and
outcomes. To state this mathematically, let Si be the state of nature i and Oj be outcome
j of the additional experimentation. Also let P (Si) be the prior probability of the state of
nature i. Then the posterior probability of the state of nature i given test outcome j is
P (Si|Oj). This is defined as:

P (Si|Oj) =
P (Si)P (Oj |Si)∑

k

P (Sk)P (Oj |Sk)

To help illustrate how to compute these values, assume for our investment problem that
financial analysts who spent 20 years working on Wall Street have been hired to give their
opinion on what investment to make. They state their opinion in terms of the possible
state of nature as a probability and their willingness to invest. This opinion is viewed as
a test outcome. That is, they might state that based on the past 20 years of investing
they have done, when the economic growth is strong (greater than 5%) they have invested
70% of the time, 10% of the time they have been neutral on investing, and 20% of the
time they have not invested. This could be written as P (Invest | Strong) = 0.7, P (Neutral |
Strong) = 0.1 and P (Do Not Invest | Strong) = 0.2. The financial analysts would also give
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TABLE 6.5 Conditional Probabilities for Financial
Analysts

Given State of Nature

Investment Opinion Strong Stable Weak

Invest 0.7 0.6 0.3
Neutral 0.1 0.3 0.3
Don’t Invest 0.2 0.1 0.4

similar probabilities for each possible state of nature in terms of investing. Table 6.5 gives
the conditional probabilities given by the analysts for the investment problem.

With these conditional probabilities and with the prior probabilities from Table 6.2, the
posterior probabilities are determined as follows:

P (Strong | Invest) = (0.1 × 0.7)/((0.1 × 0.7) + (0.6 × 0.6) + (0.3 × 0.3)) = 0.135
P (Strong |Neutral) = (0.1 × 0.1)/((0.1 × 0.1) + (0.6 × 0.3) + (0.3 × 0.3)) = 0.036

P (Strong |Don’t Invest) = (0.1 × 0.2)/((0.1 × 0.2) + (0.6 × 0.1) + (0.3 × 0.4)) = 0.1
P (Stable | Invest) = (0.6 × 0.6)/((0.1 × 0.7) + (0.6 × 0.6) + (0.3 × 0.3)) = 0.692

P (Stable |Neutral) = (0.6 × 0.3)/((0.1 × 0.1) + (0.6 × 0.3) + (0.3 × 0.3)) = 0.643
P (Stable |Don’t Invest) = (0.6 × 0.1)/((0.1 × 0.2) + (0.6 × 0.1) + (0.3 × 0.4)) = 0.3

P (Weak | Invest) = (0.3 × 0.3)/((0.1 × 0.7) + (0.6 × 0.6) + (0.3 × 0.3)) = 0.173
P (Weak |Neutral) = (0.3 × 0.3)/((0.1 × 0.1) + (0.6 × 0.3) + (0.3 × 0.3)) = 0.321

P (Weak |Don’t Invest) = (0.3 × 0.4)/((0.1 × 0.2) + (0.6 × 0.1) + (0.3 × 0.4)) = 0.6

Additionally, the probability of a given opinion from the analyst is given by the denomi-
nator of the posterior probability related to that opinion. Hence, P (Invest) = (0.1× 0.7) +
(0.6 × 0.6) + (0.3× 0.3) = 0.52, P (Neutral) = (0.1× 0.1) + (0.6× 0.3) + (0.3× 0.3) = 0.28,
P (Don’t Invest) = (0.1× 0.2) + (0.6× 0.1) + (0.3× 0.4) = 0.2.

Note that once the prior and conditional probabilities are known, the process of finding
the posterior probabilities can easily be done within a spreadsheet [5].

With the posterior probabilities, it is now possible to analyze the decision in terms of
this new information. This is done through the use of the decision tree by adding a chance
node at the beginning of the tree (left side) representing the opinion of the analyst and then
replacing the prior probabilities on each branch with the corresponding posterior probabili-
ties. Likewise, for each opinion the probability of that opinion can also be added to the tree
for those branches. The tree for the investment problem with posterior probabilities is given
in Figure 6.3. Note, however, that to simplify the tree the option of DN is not included as
it is a dominated alternative and would never be chosen.

For this tree, the analysis is done as before to determine expected values except now the
posterior probabilities are used and at each decision node the decision is based on the best
expected value for that node.

To do the analysis start at the right side of the tree and for each circle determine its
expected value. For example, for the neutral branch the expected value for the circle corre-
sponding to invest in SS is (0.036× 18%) + (0.643× 10%) + (0.321× (−5%)) = 5.47%. The
expected value for the circle corresponding to invest in CS is (0.036× 13%) + (0.643 × 8%) +
(0.321 × 1%) = 5.93%. The expected value for the circle corresponding to invest in bonds
is (0.036 × 4%) + (0.643 × 5%) + (0.321 × 6%) = 5.28%. Lastly, the expected value for the
circle corresponding to invest in CD is (0.036 × 7%) + (0.643× 3%) + (0.321× 2%) = 2.82%.
Therefore, the decision at the square on the neutral branch is given by the maximum
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FIGURE 6.3 Decision tree with posterior probabilities and expected values.
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expected value of the four circles associated with that decision square. The maximum value
is 5.93%, which corresponds to invest in CS.

From the decision tree the expected payoff at each decision (square) is given which yields
the decision of which stock to invest in. That is, if the analyst says to invest, then the best
investment choice would be in SS. If the analyst is neutral then the best investment would
be in CS and if the analyst says not to invest then the best investment would be in bonds.

Lastly, from the determined probabilities of each opinion the expected payoff for the entire
tree can be computed as (0.52 × 8.49%) + (0.28 × 5.93%) + (0.2 × 5.5%) = 7.18%. This value
yields what one would expect the return on the investment to be if they employed the
services of the analyst. Note that this is higher than the expected return of 6.4% from
Figure 6.2, when an analyst is not used.

6.3.7 Utility Functions

In the preceding discussion and example, it was assumed that the payoff was monetary even
though rates of return were used. For the investment example the return on investment could
easily be converted to monetary terms. The investment SS under strong (greater than 5%)
growth had a return of 18%. As $10,000 was being invested, the value $10,000× 18% = $1800
could have been used instead of the rate of return. Monetary values could have been used
in place of each rate of return and then the expected payoffs would have been in dollars
as well. Either approach is correct and the choice is dependent on the preference of the
decision maker.

Monetary value, however, is not always the best way to model a decision as the value of
money to a decision maker can fluctuate depending on the circumstances. For instance, let
us say you were going to play the lottery. The big payoff this week is $42 million. It costs
you just $1 to purchase a ticket. If you have $100 in your wallet you might think spending
$1 for a chance at $42 million is a good investment. Now, if you only have $5 in your wallet
and are hungry you might think playing the lottery is not a good idea as $5 will by you a
meal but $4 will not. That $1 for the ticket is viewed differently now than it was when you
had $100. This varying value of money is called the utility of the money. Utility is given in
terms of a utility function as the utility changes based on circumstances and time.

Another way of looking at this concept is to consider the following choice or lottery [5]:
(1) Flip a coin and if it comes up heads you win $10,000 and if it comes up tails you win
nothing or (2) accept $3,000. Which would you choose? Many people would choose the $3000.
This concept is used in many popular game shows. The question though is why would one
choose the $3000 when the expected payoff for the coin flip, (0.5 × $10,000) + (0.5 × $0) =
$5000, is more? The answer is that choices are not always made solely on expected monetary
gain, but also on the potential for loss and other circumstances. An individual’s view of
money may also change over time and with the different situations they face. That is the
utility of money.

When discussing utility, decision makers are usually classified into one of three classes:
risk-averse, risk-neutral, and risk-seeking. The risk-averse person has a decreasing marginal
utility for money. This means that the less money they have the more it is worth to them
(the more utility it has). That is, assume for $1 its utility is 10 and for $2 its utility is
15. The unit increase in the amount of money did not have an equivalent increase in the
utility. The utility of the additional dollar was only 5 instead of 10. As the number of dollars
increases, each additional dollar will have less utility for the decision maker. This can be
easily seen by graphing the utility of money versus the amount of money. This graph is
called the utility function. Let u(M) be the function representing the utility of $M . For a
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FIGURE 6.5 Risk-neutral and risk-seeker utility functions.

risk-averse person this function will always have a concave shape, representing decreasing
marginal utility, as shown in Figure 6.4.

In contrast, the risk-neutral person views money the same regardless of the amount or
circumstances. That is, if $1 has a utility of 10 then $2 will have a utility of 20; each dollar
added will have the same utility. This would result in a linear function for utility. When
the utility of money is not considered in a problem it is the same as if the decision maker is
assumed to be risk neutral. The risk-seeking person will have an increasing marginal utility
for money. That is, the more they have the more it is worth. The utility of each additional
dollar increases. If $1 has a utility of 10 then $2 could have a utility of 25. The additional
$1 had a higher utility (15) than the previous $1 (10). These decision makers are willing to
make risky decisions for the opportunity of more money. A risk-seeker would gladly give up
the $3000 for a 50–50 chance at $10,000. The utility function for a risk-seeker would be a
convex function, representing increasing marginal utility. Figure 6.5 gives utility functions
for both the risk-neutral and risk-seeking individual.

Most people do not always fit into one of the above three classifications. They tend to be
a mixture of the three depending on the circumstances and will generally change over time.
However, for a given point in time, it is assumed that a utility function for the decision
maker can be determined. Note that utility functions are unique to an individual decision
maker. Therefore, one might have two different decision makers looking at the same problem
and each will make a different decision based on their utility.
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Once a utility function for a decision maker has been determined, then the analysis
of the problem proceeds as it does when using monetary value. The only difference is that
the utility function value of the payoff amount is used in place of the monetary value and
the expected utility is found instead of the expected value. Decisions are then based on the
expected utility values.

How to determine or construct the utility function for a decision maker is then the fun-
damental aspect of applying utility functions. The keys to estimating a utility function for
an individual are the following two fundamental properties [5,7].

PROPERTY 6.1 Under the assumptions of utility theory, the decision maker’s utility
function for money has the property that the decision maker is indifferent between two
alternative courses of action if the two alternatives have the same expected utility.

PROPERTY 6.2 The utility of the worst outcome is always zero and the utility of the
best outcome is always one.

From these two properties it can be seen that the determination of an individual’s utility
function is based on the comparison of equivalent lotteries.

A lottery is just simply a choice between outcomes with a given probability. Lotteries are
generally denoted by trees where the branches of the tree represent outcomes. For example,
a lottery in which there is a 50–50 chance of receiving $5000 and losing $1000 would be
given by:

$5000 (0.5)

�$1000 (0.5)

A lottery that is certain has a probability of 1 and is represented by a single line.

$3000 (1)

To illustrate how to find a utility function, consider the following adaptation of the
investment problem. You are to determine how to invest $5000. There are two stocks from
which to choose. Stock HR is a high risk stock and will yield a return of $1000 if there is
strong economic growth. Stock LR is a low risk stock and will yield a return of $300 if there is
strong economic growth. However, if the economic growth is weak then the HR stock will lose
$500 and the LR stock will only yield $100. The payoff matrix for the two stocks HR and LR
and the states of nature, strong growth and weak growth, are given in Table 6.6. The prior
probabilities are a forecast of the possible state of the economy based on past economic data.

TABLE 6.6 Payoff Matrix for HR and LR Stocks

States of Nature

Alternative Strong Weak

HR 1,000 −500
LR 300 100
Prior Probability 0.4 0.6
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For this decision problem the best possible outcome is to make $1000 and the worst pos-
sible outcome is to lose $500. Let u(x) be the utility function. Then from properties 1 and 2,
the utility values are u(1000) = 1 and u(−500) = 0.

To construct the utility function, additional values of utility must be determined. This
is done by determining a lottery with a known utility value and then finding an equivalent
lottery. The equivalent lottery then has the same utility value.

In this example, $1000 and −$500 have known utility values. Therefore, the first step in
constructing the rest of the utility function is to find the value x for which the decision
maker is indifferent between the two lotteries below.

$1000 (0.5)

�$500(0.5)

andx (1.0)

Note that the lottery on the right has an expected utility of 1× (0.5) + 0 × (0.5) = 0.5. As
a result, the two lotteries are indifferent (equivalent) and the utility of x must be u(x) = 0.5.

Assume the decision maker states that the value x that makes these lotteries indifferent is
x= −$200. Hence, u(−200) = 0.5. With this value we can now compute the expected utility
of a 50–50 lottery of u(−200) and u(−500) which is 0.5 × (0.5) + 0 × (0.5) = 0.25. Therefore,
any lottery indifferent to this 50–50 lottery will have a utility of 0.25. That is, the value x
that makes the following lotteries indifferent has utility 0.25.

�$200 (.05) 

�$500 (0.5)

x  (1.0) and

Let x= −400 be the value that makes the lotteries indifferent. Then u(−400) = 0.25. This
gives four points of the utility function. To approximate the utility function, several more
points can be determined by repeating this process. This is given below.

Find x such that the following are indifferent.

$1000 (0.5)

�$200(0.5)

andx (1.0)

The lottery on the right has expected utility 1.0× (0.5) + 0.5 × (0.5) = 0.75. Let x= 300
be the value that makes the lotteries indifferent. Then u(300) = 0.75.

Next, find x such that the following are indifferent.

$1000 (0.5)

$300(0.5)

andx (1.0)

The lottery on the right has expected utility 1.0× (0.5) + 0.75 × (0.5) = 0.875. Let x= 600
be the value that makes the lotteries indifferent. Then u(600) = 0.875.
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Lastly, find x such that the following are indifferent.

$300 (0.5)

�$200(0.5)

andx (1.0)

The lottery on the right has expected utility 0.75× (0.5) + 0.5 × (0.5) = 0.625. Let x= 100
be the value that makes the lotteries indifferent. Then u(100) = 0.625.

From these values an approximate utility function can be plotted based on the points
(x, u(x)). For the example, the points are (−500, 0), (−400, 0.25), (−200, 0.5), (100, 0.625),
(300, 0.75), (600, 0.875), (1000, 1). The utility function’s approximate graph is given in
Figure 6.6.

Figure 6.7 gives the decision tree for this problem based on the information in Table 6.6
and the utility values determined above. The values at each circle are the expected utilities
and the value at the decision square is the expected utility of the tree, which indicates the
best choice would be to invest in LR stock.
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TABLE 6.7 Expected Payoff and Utility for HR and LR Stock
States of Nature

Strong Weak Expected Value

Alternative $ u(x) $ u(x) Monetary Utility

HR 1000 1 −500 0 100 0.4
LR 300 0.75 100 0.625 180 0.675
Prior Probability 0.4 0.6

Table 6.7 has the computations for both the expected utility and the expected mone-
tary payoff for comparison. Note that for this problem they give the same decision; how-
ever, this is not always the case. It is quite possible to get different results when using
utility values as opposed to monetary values. For example, if in this investment prob-
lem the utility values remained the same but the HR stock only lost $300 instead of
$500 when the economy was weak then HR’s expected monetary value would have been
(0.4 × 1000) + (0.6 × (−300)) = 220, which is greater than the expected monetary value of
180 for the LR stock. For this scenario, stock HR would then be the decision made based
on expected monetary value which would be different than the decision of stock LR based
on expected utility values.

Utility theory gives a way to more realistically model a problem based on the decision
maker’s preferences and attitudes toward risk. The determination of utility functions may
be difficult, but there are existing utility functions that one can potentially use to help in
this process [5,7,8].

There can be drawbacks, however, to using utility functions. One is determining the
utility function and making sure the decision maker’s preferences satisfy the Von Neumann–
Morgenstern axioms of utility theory [7,9]. There is also the possibility of prospecting and
framing [7,10]. In both these cases, decision makers will make a decision that goes against
what the expected utility would suggest. Prospect theory says that a decision maker will not
treat the probabilities given for a problem as valid. They will “distort” the probabilities.
This generally occurs at the boundaries as most people are more sensitive to changes in
probabilities close to 0 or close to 1. Framing refers to how choices are presented to a decision
maker. The framing of the question and its context can result in different outcomes. For a
more detailed discussion of the utility theory see Refs. [7–13].

In this section, the determination of the “best” decision is dependent on expected values,
which implies that a probability distribution can be determined for the states of nature.
If this is possible, then decision trees can also be employed to help illustrate the decision
process and to organize the data. There has been a variety of software developed to help
in this process. Some of the software is very sophisticated and requires a great deal of
background knowledge to use properly, and some of the software is very simple to use. For
a thorough analysis of existing software see Maxwell [14,15].

6.4 Decision Making under Uncertainty

When it is not possible to find a probability distribution for a decision problem, or none
exists, that problem is said to be uncertain. In this situation, it is not possible to determine
expected values and one must find other factors on which to make a decision. The payoff
matrix is still employed for problems under uncertainty, but without any prior probabilities.

There are several methods to deal with this kind of uncertainty. These methods differ
mainly in how the decision maker views risk and the state of nature. The different methods
could be viewed as being similar to aspects of utility theory in that they try to take into
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TABLE 6.8 Payoff Matrix for Snack Production

State of Nature

Alternative Decrease Slightly Steady Marginal Increase Significant Increase

A1 −1500 −400 1100 2150
A2 −450 200 500 500
A3 −850 −75 450 1100
A4 −200 300 300 300
A5 −150 −250 −450 −850

account the decision maker’s preferences and attitudes. These methods are discussed in the
context of the following problem.

6.4.1 Snack Production Example

A local food processing plant has developed a low calorie snack that has taken the market
by storm. After only being on the market for 3 months sales have outpaced forecasts by
more than 60% and the plant cannot meet demand. It is running 24/7 and is lagging behind
demand, at the moment, by 25%. To help alleviate this problem, management must decide
how to increase production. Marketing was asked to develop new demand forecasts but has
not been able to determine whether or not sales will continue to increase, hold steady, or
decrease. After several different surveys it was found that sales could hold steady, increase
marginally (somewhere between 10% and 30%), increase significantly (somewhere between
30% and 70%) or decrease slightly (somewhere between 1% and 10%), but marketing can-
not give a distribution for the possible outcomes. After researching possible solutions the
following alternatives have been put forth by the engineering team: (A1) Build an addi-
tional plant that would be able to increase the total production of the product by 120%;
(A2) Add an identical additional line to the current plant that would increase production
by 30%; (A3) Expand the current plant and replace current line with new technologies that
would allow total production to increase by 60%; (A4) Hire a full time operations analyst to
increase efficiency with an estimated increase in production of 15%; and (A5) Do Nothing
and maintain the status quo. An economic analysis of each alternative has been carried out
and the net profit gained from possible increased sales minus implementation costs is used
as the payoff for the alternative. For the DN alternative this would simply be lost sales.
Table 6.8 gives the payoff matrix, and the values are in $1000.

6.4.2 Maximin (Minimax) Criterion

This criterion is a conservative approach to managing the unknown risk. The intent is to
determine the worst that can happen with each alternative and then pick the alternative
that gives the best worst result. When payoffs are profit then the maximin (maximize the
minimum value possible) criterion is used and when the payoff is cost then the minimax
(minimize the maximum value possible) criterion is used.

Implementation of this criterion is quite simple. For maximin, identify the minimum in
each row and then select the alternative with the largest row minimum. This is given in
Table 6.9. The best choice under maximin would be alternative A4.

Under this approach, the decision maker is guaranteed they will never lose more than
$200,000 but at the same time they will never make more than $300,000, whereas a different
alternative such as A2 would guarantee they would never lose more than $450,000 but could
make $500,000 but never any more. By choosing A4, they relinquish the opportunity to make
more money if the state of nature is anything other than a decrease in demand.
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TABLE 6.9 Maximin for Snack Production

State of Nature

Decrease Marginal Significant
Alternative Slightly Steady Increase Increase Row Minimum

A1 −1500 −400 1100 2150 −1500
A2 −450 200 500 500 −450
A3 −850 −75 450 1,100 −850
A4 −200 300 300 300 −200∗

A5 −150 −250 −450 −850 −850
∗ represents best alternative

TABLE 6.10 Maximax for Snack Production

State of Nature

Decrease Marginal Significant
Alternative Slightly Steady Increase Increase Row Maximum

A1 −1500 −400 1100 2150 2150∗

A2 −450 200 500 500 500
A3 −850 −75 450 1100 1100
A4 −200 300 300 300 300
A5 −150 −250 −450 −850 −150
∗ represents best alternative

6.4.3 Maximax (Minimin) Criterion

This criterion is the opposite of maximin in that it is very optimistic and risk-seeking. For
this approach it is assumed that the best scenario possible will happen. Therefore, for each
row the maximum is chosen and then the alternative with the maximum row maximum is
selected. Table 6.10 illustrates this.

The alternative selected by this approach is A1, which yields the largest possible pay-
off. However, just as with the maximin approach this leaves the decision maker open to
significant losses. For A1 two states of nature yield a loss, one of which is quite significant.

6.4.4 Hurwicz Criterion

The two previous criteria were at the extremes, one very pessimistic and the other very
optimistic. This criterion is designed to mitigate the extremes and to allow for a range of
attitudes of the decision maker. The basis of this approach is an index of optimism given
by α, such that 0 ≤α ≤ 1. The more certain a decision maker is that the better states of
nature will occur, the larger the value of α, the less certain the smaller the value of α. For a
given value of α, the criterion is implemented by taking for each row (alternative), ((α × row
max) − (1 −α) ×|row min|), and then selecting the alternative with the largest value. For
the example, let α = 0.48, which indicates not a strong regard for optimism or pessimism,
but with a hint of pessimism. For the alternatives, the computations are

For A1 0.48 × (2150) − 0.52 × (1500) = 44
For A2 0.48 × (500) − 0.52 × (450) = 6
For A3 0.48 × (1100) − 0.52 × (850) = 85
For A4 0.48 × (300) − 0.52 × (200) = 40
For A5 0.48 × (−150) − 0.52 × (850) = −514

The best alternative under this criterion is A3.

© 2008 by Taylor & Francis Group, LLC



ch006.tex 22/10/2007 14: 1 Page 6-20

6-20 Operations Research and Management Science Handbook

TABLE 6.11 Laplace for Snack Production

State of Nature

Decrease Marginal Significant
Alternative Slightly Steady Increase Increase Expected Value

A1 −1500 −400 1100 2150 338∗

A2 −450 200 500 500 188
A3 −850 −75 450 1100 156
A4 −200 300 300 300 175
A5 −150 −250 −450 −850 −425
∗ represents best alternative

TABLE 6.12 Minimax Regret for Snack Production

State of Nature

Decrease Marginal Significant
Alternative Slightly Steady Increase Increase Row Maximum

A1 1350 700 0 0 1350
A2 300 100 600 1650 1650
A3 700 375 650 1050 1050∗

A4 50 0 800 1850 1850
A5 0 550 1550 3000 3000
∗ represents best alternative

6.4.5 Laplace Criterion or Expected Value

The Laplace criterion is another more optimistic approach to the problem. The basis of this
approach is that since the probabilities are not known for the states of nature and there is
no reason to think otherwise, each state of nature should be viewed as equally likely. This
gives a probability distribution for the states of nature, which then allows the expected
value to be determined. The alternative with the best expected value is selected.

For the snack production example, as there are four states of nature, the probability for
each state would be 0.25. The expected value for each alternative is determined by taking
the sum of the payoff for each state of nature times 0.25. Table 6.11 gives the Laplace
(expectation) values and A1 is the best choice under this criterion.

6.4.6 Minimax Regret (Savage Regret)

The last approach is based on the concept of regret discussed previously. The idea is to not
look at payoffs, but instead at lost opportunities (regret). The regret is based on each state
of nature and is determined by looking at the best outcome of that state against the other
possible outcomes. Therefore, regret is computed for each column of the payoff matrix by
taking the maximum value in that column and replacing each payoff value in the column
with the maximum value minus the payoff value. The regret matrix for the snack production
problem is given in Table 6.12. Once the regret is known, the minimax criterion is applied
that says to take the maximum value of each row and then choose the minimum of the row
maximums. For this criterion the best alternative is A3.

Making decisions under uncertainty is a difficult task. The decision maker’s attitude
toward risk will affect the approach taken and the possibilities for large losses or gains as
well as regrets. Generally, when the probabilities of the states of nature are truly unknown
the decision maker will make more conservative decisions.
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6.5 Practical Decision Analysis

In this chapter, a number of approaches for different types of decision making problems
have been covered. The methods and procedures presented should be viewed as decision
support tools and not as the final solutions to the problems. To help make better decisions
in practice there are structured approaches to decision making that can be employed that
use the discussed techniques as a part of the process. The intent of this section is to provide
a practical, well thought-out approach to solving a problem in which the techniques of this
chapter are but a part. The structure being proposed and the majority of the material in
this section are based on the work of Hammond et al. [16], which should be consulted for a
more complete discussion.

There are many approaches to solving problems, but most use a basic framework that
involves defining the problem and alternatives. However, oftentimes the greatest value
added to the decision process from a structured approach is the enhanced understanding and
insight gained by the decision maker from going through the process. This in itself will lead
to better decisions as most decisions made in practice are based on intuition, experience, and
gut reactions without much analysis. This is not to say that these cannot lead to good out-
comes, but this approach in the long run will produce more poor decisions than good ones.

As an example, consider the following Hospital Problem that you have been asked to
solve. As the director of a private hospital you have been tasked by the governing board
to increase profits through additional services. The hospital is located in a prosperous city
that is home to a major university, several other health care facilities, good infrastructure,
and many local and nearby attractions. The hospital is well run and well respected and
especially noted for its geriatric care unit, its burn unit, its cardiac unit, its pharmacy, and
its pediatrics unit. The major problems within the facility are related to staffing issues, but
the board desires to increase profits without any drastic cost savings accomplished through
staff attrition or layoffs. Some of the board feel that the hospital is already understaffed.

Any procedure that can be used to help structure the decision making process for this
problem or any problem is very helpful in practice. The practical framework given here was
developed by Hammond et al. [16], based on years of experience and research in the deci-
sion analysis field. They present a framework containing eight essential aspects of decision
making that pertain to all decisions. These eight factors constitute the body of the process
of making effective decisions. These eight factors are presented below.

6.5.1 Problem Definition

The first and key aspect of decision making is to identify the real problem. That is, to make
sure you are solving the correct problem. “A good solution to a well-posed decision problem
is always better than an excellent solution to a poorly posed one” [16].

To define the decision problem and pose it well requires practice and effort. To begin,
one should understand what caused the need for the decision in the first place. For example,
you might be asked to determine the best conveyor system to replace your current one, but
the actual problem may not be that the current conveyor system needs replacing. The actual
problem might be a cycle time issue or it might be that you need to determine what the best
material handling system for your overall production facility is without limiting yourself to
only conveyors. Time and thought need to go into why the apparent problem has arisen
and into what the actual components are that are driving the problem. Too many mistakes
are made by solving the wrong problem.

As the problem is defined, there are usually constraints that are identified that help
narrow the alternatives. These constraints may be self-imposed or imposed from outside.
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For example, a company might desire to maintain a zero defect quality control policy (self-
imposed) and also must meet federal regulations on hazardous waste disposal. All constraints
should be questioned to make sure they are legitimate, do not hinder you from seeing the
best decision, or that they are not just a symptom of defining the wrong problem.

Next, to make sure “you are focused on the right goal” [16], it is essential that the correct
elements of the problem are identified as well as what other decisions will be affected by the
decision for this problem. How this plays into the decision process should also be determined.
Use this to help refine the scope of the problem definition. That is, all aspects of the problem
should be considered, but you do not want to make the problem so large or complicated
that a decision cannot be made.

Lastly, re-examine the problem definition as the process goes along. Time and informa-
tion may change your perspective or give new insights into the problem that will allow for
the problem to be restated and better defined. Always look for opportunities to question
the problem statement and to redefine it. This redefining of the problem statement helps
focus the problem better, helps determine information needed, and tends to lead to better
decisions.

Consider the hospital problem introduced at the beginning of this section. The problem
seems at first to be to increase profit so as to please shareholders. This could be done
through cost-cutting measures and staffing issues but that does not address the real issue
and is against the board’s wishes. The profit margins for the hospital have been increasing
slightly each year for the last 5 years and it has been determined that this facility is one of
the most profitable in the state. As you ask questions of the board, you find out that their
desire to raise profits is related to wanting more positive exposure for the hospital at the cor-
porate level and to wanting to attract better doctors, as well as improving the shareholders’
positions. After much discussion and research you settle on the problem being that you need
to increase profits without cutting cost while enhancing the reputation of the hospital. This
will impact several areas of concern, such as staffing issues and attracting quality physicians.
Therefore, you develop the following problem statement: Increase the profit margin of the
hospital through the expansion of services that meet the needs of the community.

6.5.2 Objectives

With the problem well defined, you now need some way to determine the best decision. This
is done by identifying what it is you really want to achieve. That is, how will you know if
your decision is a good one? How will you measure the success of the decision? These criteria
are called objectives. Hence, objectives tell you what you want to achieve and give a way
of assessing the decision you have made. One of the keys in this process is to make sure all
the objectives for the problem are identified. This helps one think through the problem and
in this process of analysis and objective identification it might be possible to even identify
possible solutions. This also helps one develop and identify alternatives for the problem.

Objectives should help guide the entire process of decision making. They tell you what
information is needed, what decision should be made, why a decision is a good one, and the
importance of the decision in terms of time and effort. Hammond et al. [16] give five steps
to help identify objectives.

1. Write down all concerns you hope to address through your decision.
2. Convert your concerns into succinct objectives.
3. Separate ends from means to establish your fundamental objectives. Means objec-

tives are milestones on the way to the end. The end or fundamental objective is
what is needed for its own sake. It is the reason for the decision. Means objectives
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help generate alternatives and give insight to the problem, but fundamental objec-
tives are what are used to evaluate and compare alternatives.

4. Clarify what you mean by each objective. For example, what does improve quality
really mean?

5. Test your objectives to see if they capture your interests. That is, based on the
derived objectives test several alternatives to see what decision would be made
and whether or not that decision is one you could live with.

When identifying your fundamental objectives keep in mind that objectives are personal,
different people can have different objectives for the same problem, objectives should not
be limited by what is easy or hard, fundamental objectives should remain relatively stable
over time, and if a potential solution makes you uncomfortable, you may have missed an
objective [16]. The process of identifying the objectives is very important to the overall
decision process. It is imperative to take the time to get them right and to specify them
fully and completely.

Note that in many problems there are multiple objectives to be considered. In the previous
sections of this chapter, the methods presented were for a single objective. Often, when
there appear to be multiple objectives, there is still only one fundamental or end objective
and the methods developed here would be applicable to that objective. If there truly are
multiple fundamental objectives, then one would need to apply different techniques such as
multiple objective decision making (see Chapter 5).

For the hospital problem there is one overriding fundamental objective and that is to
increase profits. This is easily measured. Likewise, as part of meeting this objective it
is possible to measure its impact on the other stated objectives of enhancing reputation
and attracting high quality physicians. The enhancement of reputation is more difficult
to measure, but can be determined indirectly from survey results, newspaper articles, and
increased patient demand. The attraction of high quality physicians is easily measured.

6.5.3 Alternatives

Alternatives are the potential choices one can make to solve the given problem. The dilemma,
though, is that your solution will only be as good as your set of alternatives. Therefore,
it is crucial to have a good set of alternatives that are not limited in scope. Do not think
that just because alternatives to a similar problem are known, those alternatives will suffice
for the new problem or that the apparent alternatives are all that is needed. Oftentimes,
bad decisions are made because the only alternatives considered are the apparent ones or
ones that are only incrementally better than the current solution. Realize that regardless of
how well you generate alternatives, there still may be a better one out there. However, do
not fall into the trap of trying to find the “best” alternative. This may lead to spending so
much time looking for the alternative that no decision is made or that a decision is forced
on you by the delay. Find a set of alternatives with which you are satisfied, and stop there,
realizing you can adapt and consider new alternatives as you go through the process.

Generating a good set of alternatives takes time and effort. To help in the process consider
the following techniques by Hammond et al. [16] to generate good alternatives.

1. Based on your objectives, ask how they can be achieved. Do this for means as
well as fundamental objectives.

2. Challenge the constraints. Make sure a constraint is real and is needed. Assume
there are no constraints and develop alternatives and then see how they fit the
constraints or can be adapted to the constraints. Ask why the constraint is there
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and what can be done to meet it or overcome it. Are there ways to nullify the
constraint? Think creatively.

3. Set high aspirations. Force yourself to meet this high expectation by thinking
more out of the box.

4. Do your own thinking first. Develop alternatives before you ask others for input.
This helps keep you from having only alternatives that might have been biased
from input from others.

5. Learn from experience. Have you made similar decisions? What was right or
wrong in that decision? Use past experience to help generate alternatives, but
do not fall into the trap of just repeating past mistakes or not considering other
alternatives since you did not before.

6. Ask others for suggestions and input. This is done only after you have carefully
thought about the problem and developed your own alternatives. This can be
viewed as a sort of a brainstorming session. Keep an open mind and consider the
suggestions and see what other alternatives they might trigger for you.

7. Never stop looking for alternatives. As you go through the decision process you
might see other alternatives or get other ideas. Never think it is too late to
consider different alternatives.

8. Know when to quit looking for alternatives. Realize that the perfect solution
usually does not exist so spending a great deal of time looking for it is not
usually productive. If you have thought hard about your alternatives and have a
set of alternatives that give you a diversity of options and at least one you would
be satisfied with, then you could stop. However, remember to always consider
additional alternatives as they present themselves through the decision process.

9. Don’t forget to always include the do nothing or status quo alternative. It is
possible that the current state is the best alternative available.

For the hospital problem you have spent much time researching what other hospitals are
doing, analyzing your current strengths, market trends, and the population demographics of
your area. You have developed several alternatives based on this research. One is the devel-
opment of an outpatient clinic focused on orthopedics. You believe there is great potential
here based on the aging population, your already strong geriatrics unit, and the increasing
number of sports-related injuries occurring at the local high schools and university. Another
is the development of a complementary pediatrics unit that is designed similar to the obstet-
rics unit that allows for family visitors and birthing rooms. This unit will allow a family
member to stay in the room and the rooms will be furnished more like a bedroom than a
hospital room. These will cost more but will allow for more family input and attention. It
is believed as well that through this process you can also address some of the staffing issues
by having family members in the room to help monitor progress and other basic services.
Another alternative would be to upgrade the cardiac unit to allow for more state-of-the-art
surgeries and techniques. This would help attract physicians and open up the hospital to
more specialized and profitable surgeries. Lastly, you could maintain the status quo and see
if profits increase on their own.

After the determination of these alternatives you hold two brainstorming sessions, one
with the staff and one with the physicians. In the session with the staff someone mentions
the growing number of elder care facilities in the area and the lack of trained staff to check
pharmaceuticals and prescriptions. This leads to the alternative of using your pharmacy
and pharmacists as a pharmaceutical distribution center. You will meet the needs of the

© 2008 by Taylor & Francis Group, LLC



ch006.tex 22/10/2007 14: 1 Page 6-25

Decision Analysis 6-25

surrounding elder care facilities by providing pharmaceutical services, quality and safety
checks on prescriptions, door-to-door delivery, and expedited services. Another idea that
came up was the development of a research unit dedicated to state-of-the-art genetic testing
and automated surgeries on the assumption this would increase reputation as well as draw
highly qualified physicians, which would result in increased profits. Due to the large capital
outlay to equip such a laboratory, it was eliminated from consideration at this time. At
this point no new alternatives or alternatives that meet the constraints are presented, so
you move forward with the four alternatives: outpatient orthopedics, family pediatric unit,
upgrade cardiac unit, and the pharmaceutical distribution network.

6.5.4 Consequences

Now that the problem has been defined, objectives determined, and alternatives developed
you need to be able to determine which alternative is the “best.” This is done by looking
at the consequences of the alternatives related to the objectives and determining what the
payoff for each alternative will be. In the case of a single objective, the techniques described
in this chapter can be applied to find the best alternative. The key is to make sure that as
you look at each alternative the measure of the consequences is consistent and is a measure
you are willing to use. The key to making sure you have the right consequences for the
alternatives is to build a consequence table. This is very similar to the payoff matrix, and
generally the payoff matrix is part of the consequences table. The difference is that the
consequences table includes more measures than just the single payoff measure and is used
to help identify the main measure that is consistent across the alternatives.

The alternatives of the hospital problem are analyzed in terms of the demographics,
potential profits, costs of implementation, staffing issues, and other pertinent factors. Sev-
eral possible states of nature are also formulated related to the economy, demographics,
health care costs, supply and demand of nurses, and household income. Based on this
information a consequence table is developed where the main measure is potential profit
increases. Additionally, within the consequence table are factors related to reputation and
physician applications and recruitment. From this consequence table it is determined that
the best alternative is to develop a pharmaceutical distribution network for local elder care
facilities.

6.5.5 Tradeoffs

The concept of tradeoffs is most commonly applied to multiobjective problems, but the
basic idea also has applicability to single objective problems.

Even with applicable techniques and appropriate consequences it may be that there is
more than one possible alternative to consider. Recall from the earlier discussion of the
different techniques applied to the investment and snack problem that each technique gave
a different alternative. The question then becomes: which alternative to choose.

To help in this process one can look at possible tradeoffs within the alternatives. First,
one should eliminate any alternative that is dominated by another alternative. As discussed
earlier, that is when there is an alternative that is better than another alternative no matter
the state of nature or the objective. The dominated alternative is eliminated from further
consideration. For the other alternatives, consider what the tradeoffs are of choosing one
over another. For example, in the snack production problem alternative A2 was never chosen
by any of the methods. However, if the decision maker is conservative in nature they may
be willing to choose A2 over A4 by viewing the tradeoff of losses in the first two states of
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nature compared to the gains in the other two states of nature as acceptable for this other
conservative solution.

In the case of a single objective, when two alternatives are “equal” then other considera-
tions will need to come into play. This might include subjective considerations or additional
objectives not considered initially.

As an example, in the hospital problem there was actually one alternative that gave a
higher expected profit than the distribution alternative. That alternative was the orthope-
dics unit. However, in analyzing the two alternatives it was seen that the difference in profit
increases was not substantial, but the difference in reputation enhancement was quite large
in favor of the distribution network. Likewise, the distribution network integrated well with
the geriatrics unit and could possibly increase demand for this service substantially in the
future. Hence, the distribution network was chosen.

6.5.6 Uncertainty

Virtually all problems deal with uncertainty in some form or another. The methods pre-
sented in this chapter are designed for dealing with uncertainty. The key is to realize uncer-
tainty exists and that it will need to be dealt with appropriately. This involves determining
the possible states of nature and their probability of occurrence, if possible, and appropriate
courses of action based on those states of nature. The decision trees presented earlier are
an excellent tool to help in the understanding of uncertainty and risk and its impact on the
decision problem.

It is also important to understand that when uncertainty exists it is possible to make a
good decision and still have the consequences of that decision turn out poorly. Likewise, it
is possible to make a bad decision and still have the consequences turn out good. That is
the nature of risk and uncertainty. Therefore, under uncertainty and risk, the consequences
of the decision might not be the best way to assess the decision made or the process used
to arrive at that decision. What truly needs to be assessed is the decision process itself.
A poor process may occasionally yield good consequences, but over the long run it will be
detrimental. Likewise, a good process may occasionally yield poor consequences, but over
the long run this process will be beneficial.

When developing the problem statement uncertainty must be included. This is done
through the use of a risk profile. To determine the risk profile, Hammond et al. [16] suggest
answering the following four questions:

1. What are the key uncertainties?
2. What are the possible outcomes of these uncertainties?
3. What are the chances of occurrence of each possible outcome?
4. What are the consequences of each outcome?

Answering these four questions should lead to a payoff matrix with prior probabilities.
The payoff matrix can then be used to generate solutions and to develop a corresponding
decision tree.

As part of the consequence table for the hospital problem uncertainties were taken
into account and probabilities determined. The key uncertainties were related to health
care costs, demographics, economic conditions, and potential competition from other area
health care providers. For example, it was determined that if the demographics indicated
a downturn in the percentage of the population over 60 and the economy was weak then
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elder care facilities would lose business. The consequence of this for the distribution net-
work alternative would be an expected 2% decline in profits, for the orthopedic unit it
would be an expected 3% decline in profits, for the family pediatric unit it would result
in no change in profit, and for the cardiac unit it would represent an expected 1% decline
in profits.

6.5.7 Risk Tolerance

Once the risk profile has been determined it is necessary to understand how you as the
decision maker view risk. This is the process of determining your utility function. Are you
risk-averse, risk-neutral, or risk-seeking? Taking this into account can help you make a
better decision for yourself. Here it is important to remember that the measure of success
is the decision process and not the consequences of the decision. A risk-seeker and someone
who is risk-averse will come to two completely different decisions, but if the process is sound
then those decisions are good decisions for them.

As the decision maker for the hospital problem you have determined that you are risk-
averse, preferring more conservative approaches that give a better chance of smaller profits
than riskier high-return alternatives. This is part of the reason why the family pediatric
unit and the cardiac unit did not look promising to you.

6.5.8 Linked Decisions

Very few decisions are truly made independently. Current decisions have an impact on
decisions that will need to be made later. These are called linked decisions. To make a good
decision, at this point in time, requires you to think about the impact of the current decision
on later decisions. A poor decision now may lead to limited alternatives for later decisions.
“The essence of making smart linked decisions is planning ahead” [16].

Linked decisions tend to always contain certain components. These components are:
(1) a basic decision must be made now; (2) the alternatives to choose from are affected
by uncertainty; (3) desirability of an alternative is also affected by the possible future deci-
sions that will need to be made based on the current decision; (4) the typical decision
making pattern is to decide, then learn, then decide, then learn, then decide, and so on.

Considering and making linked decisions is really just another decision problem. The
process outlined in this section can be used to help make the linked decisions. There are six
basic steps in dealing with linked decisions [16]:

1. Understand the basic decision problem. This includes the steps outlined here of
defining the problem, specifying objectives, generating alternatives, determining
consequences, and identifying uncertainties. The uncertainties are what make
linked decisions difficult, so it is important to spend time correctly identifying
and acknowledging them.

2. Identify ways to reduce critical uncertainties. This generally involves obtaining
additional information. Once obtained, then it might be possible to determine
posterior probabilities.

3. Identify future decisions linked to the basic decision. In doing this, it is important
to find an appropriate time horizon to consider. If the horizon is too long, you
might be considering future possibilities that will not actually come into play. A
rule of thumb is often the current decision and two future linked decisions.
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4. Understand relationships in the linked decisions. Often a decision tree can be
used here to help illustrate relationships and to discover unseen relationships.

5. Decide what to do in the basic decision. Again, this is where a decision tree can
be most helpful in keeping the linked decisions before you. Look at what will be
happening and then work backward from there determining the consequences of
each choice. In the decision tree this is equivalent to starting at the right hand
side and working back through the branches.

6. Treat later decisions as new decision problems.

Recognition of linked decisions is the first critical aspect. It is important to always view
decisions in terms of short-range as well as long-range impacts. A more holistic view allows
the decision maker to better gauge the impact of decisions on current objectives as well
as possible unintended consequences and later effects. The consideration of the linking of
a decision to future considerations leads to better decisions. A truly good decision will be
viewed as such not only now but also in the future when its effects are experienced.

For the hospital problem, part of the reason the distribution network was chosen was
its linkage with future decisions. The growing demographics of the region indicated that
elder care would become a central component of the health care system for that region.
Focusing on the distribution network would serve as a marketing device for the hospital in
this demographic as well as a way to identify potential patients with concerns other than
pharmaceuticals. It might then be possible to build the elder care reputation of the hospital
to the point where it is the first choice among the elderly, which would then allow the
hospital to go forward with its other alternative of orthopedics targeted primarily at the
elderly. This in turn could open up other alternatives related to elder care not yet considered
and make the hospital the dominant health care delivery entity in the region. This would
then attract high quality physicians and enhance the reputation even further.

6.6 Conclusions

In this chapter, a number of approaches to different types of decision problems under risk
and uncertainty have been presented. The intent of theses methodologies is to give tools to
the decision maker to assist in the decision making process. They should not be viewed as a
shortcut to good decisions or as a panacea for making decisions. To be a consistently good
decision maker requires a systematic and thorough approach to decision making. The goal
is to have a sound decision making process and framework that allows a decision maker to
approach any problem with confidence. The worst scenario for a decision maker is to have
decisions made for them due to their slowness in responding to a situation or their inability
to decide. A decision maker’s intent should be to make the best decision possible with the
information given at the current point in time. If the process is well thought out and sound
then the decisions made should generally be good.

The purpose of this chapter has been to help decision makers develop their decision
making process and to give tools to help in that process. The following basic systems
approach to decision making summarizes the approach taken in this chapter [16]:

1. Address the right decision problem.
2. Clarify your real objectives and recognize means and ends.
3. Develop a range of creative alternatives.
4. Understand the consequences of the decisions (short and long term).
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5. Make appropriate tradeoffs between conflicting objectives.
6. Deal appropriately with uncertainties.
7. If there are multiple objectives, make appropriate tradeoffs.
8. Take account of you risk attitude.
9. Plan ahead for decisions linked over time.

10. Make your decision, analyze possible other solutions through the use of different
methodologies, and perform sensitivity analysis.

There is no guarantee that a decision will always be good when uncertainties are present,
but the chances of a decision being good increase significantly when the decision process is
good. Making good decisions takes time and effort but the rewards are worth the invest-
ment. This is true for decisions in everyday life as well as those one wrestles with in their
work. To help one make good decisions consistently, a decision maker needs to develop
a good process, apply the process to all decisions, be flexible, adjust decisions as time
and information become available, and enjoy what they are doing; then good decisions
will occur.

6.7 Resources

Decision analysis is a well-studied field with many resources available. In addition to the
information given here and the stated references thus far, there are many other works to
consider. Hillier and Lieberman [5, p. 717] give a good listing of actual applications of
decision analysis as presented in the practitioner-oriented journal Interfaces. Many other
articles and books exist, which cannot all be detailed here. To help one begin the process
of a deeper study of decision analysis, Refs. [17–32] are recommended as initial sources.

A quick search of the Web is also suggested in that there are many sites devoted to decision
analysis. These include academic sites as well as professional and consulting sites. Some good
places to start are Decision Analysis Society of INFORMS: http://faculty.fuqua.duke.edu/
daweb/ and International Society on Multiple Criteria Decision Making: http://www.terry.
uga.edu/mcdm/.

There is also a large selection of software available at many different levels to help in
decision analysis. Maxwell [14,15] has done excellent surveys of decision analysis software.
The latest survey is available on the Web at http://www.lionhrtpub.com/orms/orms-10-04/
frsurvey.html.

Additionally, there is also a decision analysis software survey from OR/MS Today avail-
able at http://www.lionhrtpub.com/orms/surveys/das/das.html.

Along with these surveys, there are a number of sites dedicated to software. Some of
this software is discussed in Ref. [5], which also gives some examples and brief tutori-
als. The software mentioned in this chapter related to decision trees can be found at
http://www.treeplan.com/ and http://www.usfca.edu/∼middleton/.

Some additional software sites include, but are not limited to, http://www.palisade.com/
precisiontree/, http://www.lumina.com/, and http://www.vanguardsw.com/decisionpro/
jgeneral.htm.

Remember, though, that the software is still just a decision support tool, not a decision
making tool. It will give you the ability to analyze different scenarios and to do sensitivity
analysis, but the decision must still be made by the decision maker.
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7.1 Introduction

Dynamic programming (DP) is an optimization procedure that was developed by Richard
Bellman in 1952 [1,2]. DP converts a problem with multiple decisions and limited resources
into a sequence of interrelated subproblems arranged in stages, so that each subproblem is
more tractable than the original problem. A key aspect of this procedure is that the decision
in one stage cannot be made in isolation due to the resource constraints. The best decision
must optimize the objective function with respect to the current and prior stages, or the
current and future stages.

A wide variety of deterministic and stochastic optimization problems can be solved by
DP. Some of them are multi-period planning problems, such as production planning, equip-
ment replacement, and capital investment problems, in which the stages of the DP model
correspond to the various planning periods. Other problems involve the allocation of limited
resources to various activities or jobs. The latter case includes all variations of the knapsack
and cargo loading problems.

The difficulty of DP is in the development of the proper model to represent a particular
situation. Like an artist experience in model development is essential to be able to man-
age complex problems and establish recurrence relations between interrelated subproblems
in consecutive stages. For this reason, this chapter introduces DP by analyzing different
applications, where decision variables may be integer or continuous, objective functions and
constraints may be either linear or nonlinear, and the data may be deterministic or random
variables with known probability distribution functions. Below, the basic components of a

7-1
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DP model are introduced and applied to the following nonlinear integer program with a
single constraint:

maximize z =
n∑

i=1

ci(xi)

subject to
n∑

i=1

aixi ≤ b

xi ≥ 0, integer, i = 1, . . ., n

where b and ai, i= 1, . . ., n, are positive real values. This optimization model represents the
allocation of b units of a resource to n different activities. The objective is to maximize
the total profit, given that function fi(xi), i= 1, . . ., n, defined for xi ∈ {0, 1, 2, . . ., �b/ai�},
shows the profit for activity i given that xi units of the activity are employed.

The terminology used to define a DP model includes the following main elements
[2,3,4,6,7,10,11,14,16]:

Stage (i): the original problem is divided into n stages. There is an initial stage
(stage n) and a terminating stage (stage 1). Index i represents a given stage,
i= 1, 2, . . ., n.

State (si): each stage has a number of states associated with it. The states are the
various possible conditions in which the system might be at each particular stage
of the problem.

Decision variable (xi): there is one decision variable or a subset of decision variables
for each stage of the problem.

Contribution function (ci(xi)): this function provides the value at stage i given
that the decision is xi.

Optimal value function (f i(si)): best total function value from stage i to stage n,
given that the state at stage i is si.

Optimal policy (pi(si)=x∗
i ): optimal decision at a particular stage depends on the

state. The DP procedure is designed to find an optimal decision at each stage for
all possible states.

Transformation function (ti(si, xi)): this function shows how the state for the
next stage changes based on the current state, stage, and decision.

Example si+1 = ti(si, xi) = si − aixi

Recurrence relation: this is an equation that identifies the optimal policy (decision)
at stage i, given that the optimal policy at stage i+ 1 is available.

Example fi(si) = max
xi=0,1, ...,�si/ai�

{ci(xi) + fi+1(si − aixi)}, si = 0, . . ., b;

i= 1, . . ., n− 1

Boundary conditions: these are the initial conditions at stage n and obvious values
of the optimal value function.

Example fn(sn) = max
xn=0,1,...,�sn/an�

{cn(xn)}, sn = 0, . . ., b

Answer: the global optimal solution of the problem is determined in the terminating
stage (stage 1).

Example f1(b)
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FIGURE 7.1 Graphical illustration of the stages of a DP formulation.

In this DP model, the recurrent process begins in stage n, moves backwards, and terminates
in stage 1 (backward formulation). A similar formulation could be developed in reverse
order from stage 1 to stage n (forward formulation). In many applications, both the two
formulations are equivalent and require the same computational effort to solve a particular
instance of the problem. In other applications, depending on the initial conditions and the
size of the state space, one of the formulations may be more efficient than the other.

Figure 7.1 provides a graphical illustration equivalent to the above DP formulation. Each
box corresponds to a stage. The state at a particular stage is predetermined by the prior
decision. Based on the state and the decision made at this stage, an outcome represented
by the contribution function and the value of the state at the following stage is obtained.

Two significant advantages of DP can be observed in the above formulation. One is that
it transforms a problem with n decision variables into n single-variable subproblems. The
second advantage over virtually all other optimization methods is that it finds the global
maxima or minima rather than just local optima. The key limitation of DP is the dimen-
sionality of the state space. In simple terms, if the model includes several state variables,
then difficulties concerning the storage of information and time required to perform the
computation may appear.

The justification of the DP procedure relies on the Principle of Optimality. Roughly, the
principle states that, if (x∗

1, x
∗
2, . . ., x

∗
n) is an optimal policy to a given problem and s∗

i is
the optimal state in stage i, then (x∗

i , x
∗
i+1, . . ., x

∗
n) is an optimal policy for the subproblem

defined between stages i and n with s∗
i as the initial state. The correctness of a DP model

can be proved by showing that all possible states are considered and the recurrence relation
satisfies the principle of optimality.

The selection of the state variables for the DP model is critical in the sense that the
states in the state space must satisfy the Markov Property. That is, the optimal policy from
any stage i to stage n depends only on the entering state (si) and not in any other way on
previous decisions.

DP models can be classified as deterministic and stochastic, depending on the type of
data that are available to solve a problem. Obviously, if the data are known for a particular
situation, a deterministic DP model will be used to find the best solution of the problem. If
some of the data are probabilistic, then a stochastic DP model will be developed to optimize
an expected value. Below, five applications of deterministic DP and two applications of
stochastic DP are presented in Sections 7.2 and 7.3, respectively.

7.2 Deterministic Dynamic Programming Models

7.2.1 Capacity Expansion Problem [11,13]

A supplier of electronic components for the automotive industry has decided to expand its
capacity by building nine new manufacturing facilities closer to customer locations in the
next 4 years. A builder has made an interesting offer to build the facilities. The annual
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TABLE 7.1 Annual Facility Requirements
and Costs (in Millions of Dollars)

Year Required Fixed Cost Variable Cost
(i) Facilities (ri) (ai) (bi)

1 2 1.2 4.3
2 4 1 4.7
3 7 1.4 4.4
4 9 1.2 5.1

construction cost will consist of a fixed cost plus a variable cost per facility to be built. The
fixed cost does not have to be paid if no facilities are built in a given year. The maximum
number of facilities that can be built in a single year is four. Table 7.1 shows the desired
number of facilities that need to be finished by the end of each year along with the annual
fixed and variable costs.

DP Formulation and Solution

This example can be formulated as a four-stage DP model where the stages correspond to
the four planning years. The construction cost in year i, defined as ci(xi), is a function of
the number of facilities xi to be built during the year:

ci(xi) =
{

0, if xi = 0,
ai + bixi, if xi = 1, . . ., 4

At the beginning of a year (stage), the state of the system can be specified by the total
number of facilities built in the prior years or the number of remaining facilities to be
built. In the proposed model, the state of the system, si, is characterized by the number
of facilities already built. At each stage i, it is possible to determine the range of feasible
states. For example, for i= 3, s3 ∈ {4, . . ., 8}, because 4 is the minimum requirement of
completed facilities by the end of year 2 and 8 is the most that can be built in 2 years.
For i= 4, s4 ∈ {7, 8, 9}. The lower bound 7 is the requirement for year 3 and 9 is the overall
requirement for the entire planning horizon (4 years). The transformation function computes
the number of facilities by the beginning of year i+ 1 as a function of the number of facilities
at the beginning of year i and the facilities built during the year:

si+1 = si + xi

The optimal value function, fi(si), is defined as the total minimum cost for years i to 4, given
that si facilities have already been built by the beginning of year i. Then, the recurrence
relation is as follows:

fi(si) = min
xi=λi,...,ui

{ci(xi) + fi+1(si + xi)}, si = ri−1, . . .,min {4(i − 1), 9}; i = 1, . . ., 3

where λi = max {0, ri − si} and ui = max {4, 9 − si} defines the range of the decision vari-
able xi, based on the minimum number of required facilities by the end of year i, and the
annual construction capacity or the facility requirements at the end of the 4-year planning
horizon. Note that the lower bound on si is the minimum number of required facilities by
the end of year i− 1, and the upper bound is the minimum of the maximum production
capacity in the first i− 1 years, 4(i− 1), and the total number of facilities needed by the
end of year 4.

The numerical solution for this problem is provided by the tables below. Each table
summarizes the solutions of the various subproblems solved for all feasible values of the state

© 2008 by Taylor & Francis Group, LLC



CH007.tex 22/10/2007 14: 2 Page 7-5

Dynamic Programming 7-5

variable in one particular stage. The second column of each table shows the computations
of the values of the optimal value function for each possible decision. For example, when
s3 = 6 in stage 3, five values of the decision variable are considered. The decision x3 = 0
is infeasible because at least seven facilities must be completed by the end of the year
(s3 + x3 = 6 + 0< 7). The case x3 = 4 is non-optimal because only nine facilities are required
by the end of year 4 (s3 + x3 = 6 + 4> 9). The other three decisions are feasible and the
corresponding function values need to be determined to select the optimal decision that
provides minimum construction cost for years 3 and 4. In this subproblem, the optimal
decision is x∗

3 = 3 and the corresponding optimal value function is

f3(6) = c3(3) + f4(6 + 3) = (1.4 + 3 × 4.4) + 0 = 14.6.

The last three columns of the table in stage i summarize the optimal solutions for the sub-
problems in that stage, including the optimal value function, f∗

i (si), the optimal decision,
x∗

i , and the initial state at the next stage, si+1. The optimal value function is obtained by
selecting the minimum of the function values calculated in the second column. The minimum
value corresponds to a specific decision that is optimal for the subproblem. The last column
provides the next state that is determined by using the transformation function. It is impor-
tant to point out that the actual calculations in the tables can be performed very efficiently.
The function value of any cell in the second column of Tables 7.1 to 7.3 is the sum of two val-
ues, ci(xi) + fi+1(si −xi). The first value is constant for all the cells in the same subcolumn
corresponding to decision xi. The second value comes from column fi+1(xi+1) in stage i+ 1.

Stage 4: (Initialization)

c(x4)

s4 x4 = 0 x4 = 1 x4 = 2 f∗
4 (s4) x∗

4 s5

7 Infeasible Infeasible 1.2 + 2× 5.1 = 11.4 11.4 2 9
8 Infeasible 1.2 + 5.1 = 6.3 Non-optimal 6.3 1 9
9 0 Non-optimal Non-optimal 0 0 9

Stage 3:

c3(x3) + f4(s3 + x3)

s3 x3 = 0 x3 = 1 x3 = 2 x3 = 3 x3 = 4 f3(s3) x∗
3 s4

4 Infeasible Infeasible Infeasible 14.6 + 11.4 = 26.0 19.0 + 6.3 = 25.3 25.3 4 8
5 Infeasible Infeasible 10.2 + 11.4 = 21.6 14.6 + 6.3 = 20.9 19.0 + 0 = 19.0 19.0 4 9
6 Infeasible 5.8 + 11.4 = 17.2 10.2 + 6.3 = 16.5 14.6 + 0 = 14.6 Non-optimal 14.6 3 9
7 0 + 11.4 = 11.4 5.8 + 6.3 = 12.1 10.2 + 0 = 10.2 Non-optimal Non-optimal 10.2 2 9
8 0 + 6.3 = 6.3 5.8 + 0 = 5.8 Non-optimal Non-optimal Non-optimal 5.8 1 9

Stage 2:

c2(x2) + f3(s2 + x2)

s2 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 f2(s2) x∗
2 s3

2 Infeasible Infeasible 10.4 + 25.3 = 35.7 15.1 + 19.0 = 34.1 19.8 + 14.6 = 34.4 34.1 3 5
3 Infeasible 5.7 + 25.3 = 31.0 10.4 + 19.0 = 29.4 15.1 + 14.6 = 29.7 19.8 + 10.2 = 30.0 29.4 2 5
4 0 + 25.3 = 25.3 5.7 + 19.0 = 24.7 10.4 + 14.6 = 25.0 15.1 + 10.2 = 25.3 19.8 + 5.8 = 25.6 24.7 1 5
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Stage 1:

c1(x1) + f2(s1 + x1)

s1 x1 = 0 x1 = 1 x1 = 2 x1 = 3 x2 = 4 f1(s1) x∗
1 s2

0 Infeasible Infeasible 9.8 + 34.1 = 43.9 14.1 + 29.4 = 43.5 18.4 + 24.7 = 43.1 43.1 4 4

Optimal Solution

The optimal solution, in this case unique, can be found by backtracking, starting at the last
solved stage (stage 1) and terminating at the stage solved initially (stage 4). Using the
transformation function, it is possible to determine the state at stage i+ 1, si+1, from the
state in stage i, si, and the corresponding optimal decision, x∗

i . Details of this process are
provided below.

s1 = 0, x∗
1(0) = 4 plants to be built in year 1,

s2 = t1(0, 2) = 0 + 4 = 4, x∗
2(4) = 1 plant to be built in year 2,

s3 = t2(3, 3) = 4 + 1 = 5, x∗
3(5) = 4 plants to be built in year 3,

s4 = t3(6, 0) = 5 + 4 = 9, x∗
4(9) = 0 plants to be built in year 4.

f1(0) = $43.1 millions (minimum construction cost for all 4 years).

7.2.2 Capacity Expansion Problem with Discounting [5,11,13]

The solution of the capacity expansion problem discussed in the prior section gives equal
weight to the cost of a facility paid in year 1 and in year 4. However, in reality, the money
spent in year 4 can be invested in year 1 to earn interest for the following 3 years. This
situation can be resolved by either using the present values of all cost data within the original
DP model or extending the DP model to take into account the time value of money.

If money can be safely invested at an annual interest rate r, then future expenditures can
be invested at the same rate. The effect of that is that capital grows by a factor of (1 + r)
each year. Similarly, assuming that all annual costs are always effective at the beginning
of the corresponding year, a dollar spent next year has the same value as β dollars today,
where β = 1/(1 + r) is called the discount rate.

The capacity expansion problem with a discount factor β = 0.9 can be solved using the
original formulation with the discounted costs shown in Table 7.2. Note that the costs in
year i have been multiplied by βi−1 to determine their present value at the beginning of
stage 1. For example, the discounted fixed cost in year 3 becomes 1.4 · 0.93−1 = 1.26 and the
corresponding variable cost is 4.4 · 0.93−1 = 3.56.

Alternatively, the original DP formulation can be extended by redefining the optimal
value function and including β in the recurrence relation.

TABLE 7.2 Annual Facility Requirements
and Discounted Costs (in Millions of Dollars)
Year Required Fixed Cost Variable Cost
(i) Facilities (ri) (ai) (bi)

1 2 1.20 4.30
2 4 0.90 4.23
3 7 1.26 3.56
4 9 0.97 3.72
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Optimal value function (f i(si)): present value of the total minimum cost at the
beginning of year i for years i to 4 given that si facilities have already been built
by the beginning of year i.

Recurrence relation:

fi(si) = min
xi=λi,...,ui

{ci(xi) + β · fi+1(si + xi)}, si = ri−1, . . .,min {4(i − 1), 9}; i = 1, . . ., 3

The optimal solution of the example in Section 7.2.1 with discounting is the following:

x∗
1(0) = 4 plants to be built in year 1,

x∗
2(4) = 0 plants to be built in year 2,

x∗
3(4) = 4 plants to be built in year 3,

x∗
4(8) = 1 plant to be built in year 4.

The present value of the optimal construction cost can be determined using the revised
recurrence relation that takes into account the time value of money:

f4(8) = c4(1) = 1.2 + 5.1 · 1 = 6.3,

f3(4) = c3(4) + β · f4(4 + 4) = (1.4 + 4.4 · 4) + 0.9 · 6.3 = 24.67,

f2(4) = c2(0) + β · f3(4 + 0) = 0 + 0.9 · 24.67 = 22.20,

f1(0) = c3(4) + β · f2(0 + 4) = (1.2 + 4.3 · 4) + 0.9 · 22.20 = 38.38.

Note that the optimal policy for the discounted model differs from that in the original
model. While both policies require four facilities to be built in year 1 and four additional
facilities in year 3, the ninth facility is built in year 2 in the original policy and in year 4 in
the discounted policy. The present value of the total construction cost at the beginning of
year 1 for the optimal policy is $38.38 million.

7.2.3 Equipment Replacement Problem [3,8,10]

A company needs to own a certain type of machine for the next n years. As the machine
becomes older, annual operating costs increase so much that the machine must be replaced
by a new one. The price of a new machine in year i is a(i). The annual expenses for operating
a machine of age j is r(j). Whenever the machine is replaced, the company receives some
compensation for the old one, as trade-in value. Let t(j) be the trade-in value for a machine
that has age j. At the end of year n, the machine can be salvaged for v(j) dollars, where
j is the age of the machine. Given that at the beginning of the first year the company
owns a machine of age y, we need to determine the replacement policy for the machine that
minimizes the total cost for the next n years, given that replacement decisions can only be
made at the beginning of each year. It is assumed that annual operating costs and trade-in
and salvage values are stationary and only depend on the age of the machine.

DP Formulation and Solution

The DP formulation for this problem involves n stages corresponding to the n planning
periods (years). At the beginning of stage i, the state of the system can be completely
defined by the age of the machine that has been used in the prior year. At the beginning
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of a stage, two possible decisions can be made: keep the current machine or replace the
machine. If we decide to keep the machine, then the only cost in the current stage will be
the cost of operating the machine. If the decision is to replace the machine, the annual cost
will include the price of a new machine, minus the trade-in value received for the current
machine, plus the operating cost of a new machine. The cost in stage i, ci(j), depends on
the age of the current machine and the decision:

ci(j) =
{

a(i) − t(j) + r(0), if we buy a new machine
r(j), if we keep the current machine

The remaining DP formulation is provided below.

Optimal value function (f i(si)): minimum cost of owning a machine from the begin-
ning of year i to the end of year n (or beginning of year n + 1), starting year i
with a machine that just turned age si.

Optimal policy (pi(si)): “buy” or “keep.”
Transformation function (ti(si, pi)): this function shows how the state for the

next stage changes based on the current state, stage, and decision.

si+1 = ti(si, pi) =
{

1, if pi = “buy”
si + 1, if pi = “keep”

Recurrence relation:

fi(si) = min
{
a(i) − t(si) − r(0) + fi+1(1), if pi = “buy”
r(si) + fi+1(si + 1), if pi = “keep” si = 1, 2, . . ., i−1, y + i−1

Boundary conditions: fn+1(si) = −v(si), sn = 1, 2, . . ., n− 1, y + n − 1
Answer: f1(y).

Example 7.1

This DP formulation is illustrated by solving a numerical problem for a 4-year planning
horizon. The age of the machine at the beginning of the first year is 2. The cost of a
new machine in year 1 is $58,000 and increases by $2,000 every year. Annual operat-
ing costs along with trade-in and salvage values are time independent and provided in
Table 7.3.

TABLE 7.3 Cost Data (in Thousands) for the Equipment
Replacement Example

Machine Age Annual Operating Trade-in Value Salvage Value
(si) in Years Cost (ri(si)) (ti(si)) (vi(si))

0 12 – –
1 15 35 30
2 25 25 20
3 35 15 10
4 60 10 5
5 80 5 0
6 100 0 0
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Solution 7.1

f5(1) = −30, f5(2) = −20, f5(3) = −10, f5(4) = −5, f5(6) = 0

f4(1) = min
{

(58 + 6) − 35 + 12 + (−30)
15 + (−20)

}
= −5, p4(1) = keep

f4(2) = min
{

(58 + 6) − 25 + 12 + (−30)
25 + (−10)

}
= 15, p4(2) = keep

f4(3) = min
{

(58 + 6) − 15 + 12 + (−30)
35 + (−5)

}
= 30, p4(3) = buy

f4(5) = min
{

(58 + 6) − 5 + 12 + (−30)
80 + 0

}
= 41, p4(5) = buy

f3(1) = min
{

(58 + 4) − 35 + 12 + (−5)
15 + 15

}
= 30, p3(1) = keep

f3(2) = min
{

(58 + 4) − 25 + 12 + (−5)
25 + 30

}
= 44, p3(2) = buy

f3(4) = min
{

(58 + 4) − 15 + 12 + (−5)
60 + 30

}
= 54, p3(4) = buy

f2(1) = min
{

(58 + 2) − 35 + 12 + 30
15 + 44

}
= 59, p2(1) = keep

f2(3) = min
{

(58 + 2) − 15 + 12 + 54
35 + 54

}
= 99, p2(3) = keep

f1(2) = min
{

58 − 25 + 12 + 59
25 + 99

}
= 104, p1(2) = buy

The feasible states for stage 5 are 1 to 4, and 6. Note that, if the original machine is not
replaced at all, it will have age 6 by the beginning of year 5, and if the machine is replaced
at least one time, it will be at most 4 years old by the beginning of year 5. Thus, state 5 is
infeasible.

The total minimum cost for the 4-year planning horizon is $104,000 based on an optimal
replacement policy that includes buying a new machine at the beginning of years 1, 3, and 4.

7.2.4 Simple Production Problem

A company needs to produce at least d units of a product during the next n periods. The
production cost in period i is a quadratic function of the quantity produced. If xi units are
produced in period i, the production cost is ci(xi) = wi x2

i , where wi is a known positive
coefficient, i= 1, . . ., n. The objective of this problem is to determine the optimal production
quantities that minimize the total cost for the n periods. Note that the production quantities
are not restricted to be integer. This problem can be formulated as a nonlinear program
with a quadratic objective function and a linear constraint:

Minimize z =
n∑

i=1

wix
2
i

subject to
n∑

i=1

xi ≥ d

xi ≥ 0, i = 1, . . ., n
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This model illustrates a situation in which decision variables are continuous. Thus,
subproblems cannot be solved by checking all feasible solutions as the feasible region is
not finite. In general, when decision variables are continuous, an optimization procedure
must be used to find an optimal solution. In this particular problem, the single-variable
subproblems can be solved by setting the first derivative of the optimal value function to
zero and solving the resulting linear equation.

DP Formulation and Solution

The proposed DP model is based on a forward formulation in the sense that the boundary
conditions are given for stage 1 and the recurrent process moves from any stage i to stage
i+ 1, i= 1, . . ., n− 1, where stages match the production periods. The state of the system
at a given stage i, si, is defined by the number of units produced in the first i periods. The
DP formulation is presented below.
Optimal value function (f i(si)): minimum production cost for the first i periods

given that si units are produced in these periods.
Optimal policy (pi(si)=x∗

i ): units produced in period i.
Transformation function (ti(si, xi)): it finds the number of units produced by the

end of period i− 1 as a function of the number of units produced in the first i
periods and the number of units produced in period i.

si−1 = ti(si, xi) = si − xi

Recurrence relation:

fi(si) = min
0≤xi≤si

{wi x2
i + fi−1(si − xi)}, 0 ≤ si ≤ d; i = 1, . . ., n − 1

Boundary conditions:

f1(s1) = w1x
2
1, where x1 = s1, 0 ≤ si ≤ d

Answer: fn(d).
The optimal value function in stage 1 is given in closed-form; that is, f1(s1) = w1s

2
1. This

function can be used as an input to stage 2 to determine the corresponding optimal value
function in closed-form:

f2(s2) = min
0≤x2≤s2

{w2x
2
2 + f1(s2 − x2)} = min

0≤x2≤s2
{w2x

2
2 + w1(s2 − x2)2}

Figure 7.2 shows the single-variable quadratic function w2 x2
2 + w1(s2 −x2)2, which is

convex. The convexity of the function is proved below by showing that the second derivative
is positive.

∂{w2 x2
2 + w1(s2 − x2)2}

∂x2
= 2x2 (w1 + w2) − 2 s2w1

∂2{w2 x2
2 + w1(s2 − x2)2}

∂x2
2

= 2(w1 + w2) > 0, since w1, w2 > 0

The unbounded minimum is determined by setting the first derivative to zero. If this mini-
mum falls between bounds, 0 ≤x2 ≤ s2, it is feasible and solves the subproblem; otherwise,
the minimum in the feasible range would be one of the two boundary points.

2 x2(w1 + w2) − 2 s2 w1 = 0 ⇒ x2 =
w1

w1 + w2
s2 =

1
w2

1
w1

+
1
w2

s2
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∗x2
s2

w2 x2
2 � w1 ( s2 � x2) 2

FIGURE 7.2 Function to be minimized in stage 2.

As the above solution is feasible (between bounds), it solves the subproblem in stage 2.
This solution can be incorporated into the recurrence relation for stage 2 to compute the
following optimal value function in closed-form:

f2(s2) =
s2
2

1
w1

+
1
w2

THEOREM 7.1 In general, the optimal policy and value function for the simple produc-
tion problem is given by the following equations:

xi =

1
wi∑i

j=1
1
wj

si and fi(si) =
s2

i∑i
j=1

1
wj

, i = 1, . . ., n − 1

PROOF 7.1 (By induction) Since the result has already been proved for stages 1 and 2,
now we only need to show that, if it is true for stage i, it must be true for stage i+ 1. Note
that in stage i+ 1,

fi+1(si+1) = min
0≤xi+1≤si+1

{wi+1x
2
i+1 + fi(si+1 − xi+1)}

Now, the term fi(si+1 −xi+1) can be replaced by its closed-form expression, which is
assumed to be correct in stage i.

fi+1(si+1) = min
0≤xi+1≤si+1

⎧⎪⎪⎨
⎪⎪⎩

wi+1 x2
i+1 +

(si+1 − xi+1)2∑i
j=1

1
wj

⎫⎪⎪⎬
⎪⎪⎭
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The minimum is obtained by setting the first derivative to zero.

∂

∂xi+1

⎧⎪⎪⎨
⎪⎪⎩

wi+1 x2
i+1 +

(si+1 − xi+1)2∑i
j=1

1
wj

⎫⎪⎪⎬
⎪⎪⎭

=
2∑i

j=1
1
wj

⎡
⎣

⎛
⎝wi+1

i∑
j=1

1
wj

+ 1

⎞
⎠ xi+1 − si+1

⎤
⎦ = 0

⇒ xi+1 =

1
wi+1∑i+1
j=1

1
wj

si+1

which proves the closed-form solution for the optimal policy. This value is the unique mini-
mum because the second derivative can be shown to be positive. Now, by replacing this
expression for xi+1 into fi+1(si+1), the closed-form solution for the optimal value function
can be derived:

fi+1(si+1) = wi+1

⎛
⎜⎜⎝

1
wi+1∑i+1
j=1

1
wj

si+1

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝si+1 −

1
wi+1∑i+1
j=1

1
wj

si+1

⎞
⎟⎟⎠

2

∑i
j=1

1
wj

which can be simplified to

fi+1(si+1) =
s2

i+1∑i+1
j=1

1
wj

�

In this application, DP has been used to derive a simple closed-form solution for the problem.
Below, the closed-form solution is applied to solve a numerical example.

Example 7.2

In this example, we solve a three-period production planning problem for a total demand
of 9 units. The coefficients of the objective function are: w1 = 2, w2 = 3, and w3 = 6.

Solution 7.2

The closed-form solution can be applied starting at stage 3 and going backwards to stages
2 and 1.

Stage i =3:

s3 = d = 9 ⇒ x∗
3 =

1
6

· 9

1
2

+
1
3

+
1
6

= 1.5

Stage i =2:

s2 = 9 − 1.5 = 7.5 ⇒ x∗
2 =

1
3

· 7.5

1
2

+
1
3

= 3
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Stage i =1:

s1 = 7.5 − 3 = 4.5 ⇒ x∗
1 = 4.5

f3(9) =
92

1
2

+
1
3

+
1
6

= 81

7.2.5 Dynamic Inventory Planning Problem [11,15]

One of the important applications of DP for many decades has been in the area of inventory
planning and control over a finite number of time periods, where demand is known but may
change from period to period. Let ri be the demand in period i, i= 1, . . . , n. At the beginning
of each period the company needs to decide the number of units to be ordered to an external
supplier or produced in the manufacturing floor in that period. If an order in period i is sub-
mitted, the ordering cost consist of a fixed setup cost, Ki, and a unit variable cost, ci, which
must be multiplied by the order quantity. Inventory shortages are not allowed. If inventory
is carried from period i to period i+ 1, a holding cost is incurred in that period. The holding
cost in period i is determined by multiplying the unit holding cost, hi, by the number of units
of inventory by the end of period i, which are carried from period i to period i+ 1. In the
following DP model the initial inventory at the beginning of period 1 and the final inventory
at the end of period n are assumed to be zero. If this is not the case, the original problem can
be slightly modified by subtracting the initial inventory in period 1 from the demand in that
period, and adding the final required inventory in period n to the demand of that period.

The proposed model belongs to the class of periodic review models, because the company
reviews the inventory level at the beginning of each period, which can be a week or a month,
and then the ordering decision is made. This model is an alternative to the continuous review
model in which the company keeps track of the inventory level at all times and an order
can be submitted at any time.

DP Formulation and Solution

Similar to the model in Section 7.2.3, the stages of this DP formulation correspond to the
n production periods. The cost at any stage i, i= 1, 2, . . . , n, is a function of the inventory
on hand at the beginning of the stage before ordering, xi, and the quantity ordered in that
stage, zi:

ci(xi, zi) =
{

hi(xi − ri), if zi = 0
Ki + ci zi + hi(xi + zi − ri), if zi > 0

Note that to avoid shortages, zi ≥ max{0, ri −xi}, i= 1, 2, . . ., n, which means that the
initial inventory plus the order quantity must be greater than or equal to the demand in
period i.

The DP approach presented here takes advantage of the following optimality condition,
which is also known as the zero inventory ordering property (Wagner and Whitin, 1957):
“For an arbitrary demand requirement and concave costs (e.g., a fixed setup cost, and linear
production and holding costs), there exists an optimal policy that orders (or produces) only
when the inventory level is zero.” This condition implies that x∗

i · z∗
i = 0, i, = 1, 2, . . ., n.

Based on this property, the only order quantities that need to be considered in each stage
(period) i are either 0, ri, ri + ri+1, . . ., ri + ri+1 + · · · + rn. By taking advantage of this
property, a simple DP model can be developed with only one state in each stage, assuming
that the initial inventory on hand, before ordering, is zero. Thus, given that an order must
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be submitted in stage i, the order quantity must correspond to the sum of demands of
a certain number of periods ahead, ri + ri+1 + · · · + rj , where j is the last period whose
demand will be served by this order. Therefore, j ∈ {i, i+ 1, . . ., n} is the decision variable.
An efficient DP formulation is provided below.

Optimal value function (f i): the total cost of the best policy from the beginning of
period i to the end of period n, given that the inventory on hand, before ordering,
in period i is zero.

Optimal policy (pi = j∗): given that the inventory on hand is zero, the optimal pol-
icy indicates the last period to be served from the order issued in stage i.

Transformation function (ti(j)= j +1): it shows the next stage j + 1 in which an
order will be issued, given that a production order is submitted in stage i.

Recurrence relation: The general recurrence relation is

fi = min
j=i,i+1,...,n

{Ki + ci(ri + ri+1 + · · · + rj) + hi(ri+1 + · · · + rj)

+ hi+1(ri+2 + · · · + rj) + · · · + hj−1rj + fj+1}, i= 1, . . ., n

If the cost parameters are stationary, that is, Ki = K, ci = c, hi = h, i= 1, . . ., n,
the recurrence relation can be slightly simplified as follows:

fi = min
j=i,i+1,...,n

{K + c (ri + ri+1 + · · · + rj) + h [ri+1 + 2ri+2 + 3ri+3 + · · ·
+ (j − i)rj ] + fj+1}, i= 1, . . ., n

Boundary conditions: fn+1 = 0.
Answer: f1.

Example 7.3

In this example, we consider a five-period dynamic inventory problem with stationary cost
data: K = $40, c = $10/unit, and h = $3/unit/period. The known demand for each period is
the following: r1 = 2 units, r2 = 4 units, r3 = 2 units, r4 = 2 units, and r5 = 3 units.

Solution 7.3

Stage 6: (Initialization)

f6 = 0

Stage 5: (r5 = 3)

j K + cr5 + f6 f5 j∗

5 40 + 10 × 3 + 0 = 70 70 5

Stage 4: (r4 = 2)

j K + c (r4 + · · · + rj) + h[r5 + · · · + (j − 4)rj ] + fj+1 f4 j∗

4 40 + 10 × 2 + 0 + 70 = 130
5 40 + 10 × (2 + 3) + 3 × 3 + 0 = 99 99 5
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Stage 3: (r3 = 2)

j K + c (r3 + r4 + · · · + rj) + h[r4 + 2r5 + · · · + (j − 3)rj ] + fj+1 f3 j∗

3 40 + 10 × 2 + 0 + 99 = 159
4 40 + 10 × (2 + 2) + 3 × 2 + 70 = 156 134 5
5 40 + 10 × (2 + 2 + 3) + 3× (2 + 2 × 3) + 0 = 134

Stage 2: (r2 = 4)

j K + c (r2 + r3 + · · · + rj) + h[r3 + 2r4 + · · · + (j − 2)rj ] + fj+1 f2 j∗

2 40 + 10 × 4 + 0 + 134 = 214
3 40 + 10 × (4 + 2) + 3 × 2 + 99 = 205 195 5
4 40 + 10 × (4 + 2 + 2) + 3× (2 + 2 × 2) + 70 = 208
5 40 + 10 × (4 + 2 + 2 + 3) + 3× (2 + 2 × 2 + 3 + 3) + 0 = 195

Stage 1: (r1 = 2)

j K + c (r1 + r2 + · · · + rj) + h[r2 + 2r3 + · · · + (j − 1)rj ] + fj+1 f1 j∗

1 40 + 10 × 2 + 0 + 195 = 255
2 40 + 10 × (2 + 4) + 3 × 4 + 134 = 246
3 40 + 10 × (2 + 4 + 2) + 3× (4 + 2 × 2) + 99 = 243 243 3
4 40 + 10 × (2 + 4 + 2 + 2) + 3× (4 + 2 × 2 + 3 + 2) + 70 = 252
5 40 + 10 × (2 + 4 + 2 + 2 + 3) + 3× (4 + 2 × 2 + 3 + 2 + 4× 3) + 0 = 248

Solution 7.4

Minimum Total Cost: f1 = $243.

Stage 1:
j∗ = 3 ⇒ Order r1 + r2 + r3 = 2 + 4 + 2 = 8 units in period 1.

Stage 4:

j∗ = 5 ⇒ Order r4 + r5 = 2 + 3 = 5 units in period 4.

Graphical Solution

A directed graph is constructed with n + 1 nodes. Each node i, i= 1, 2, . . ., n+ 1, represents
the beginning of a production period with zero units of inventory on hand. For each node i,
an arc (i, j) is added to the graph, for j = i+ 1, . . ., n+ 1. Arc (i, j + 1) represents the case
where the inventory on hand at the beginning of period i is zero and an order of ri + · · · + rj

units is submitted in that period, so that at the beginning of period j + 1 the inventory level
will become zero again. The cost associated with arc (i, j + 1), denoted as ci,j+1, represents
the total ordering and holding cost for periods i to j for this case:

ci,j+1 = Ki + ci(ri + ri+1 + · · · + rj) + hi(ri+1 + · · · + rj)
+ hi+1(ri+2 + · · · + rj) + · · · + hj−1rj

If the cost parameters are stationary, that is, Ki = K, ci = c, hi = h, i= 1, . . ., n, the arc cost
ci,j+1 becomes

ci,j+1 = K + c(ri + ri+1 + · · · + rj) + h[ri+1 + 2ri+2 + 3ri+3 + · · · + (j − i)rj ]
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FIGURE 7.3 Graphical solution for the dynamic inventory example.

The optimal inventory policy is determined by finding the shortest path from node 1 to
node n + 1.

Figure 7.3 shows the 6-node graph for the example problem. The arc costs have been
computed using the formula for the stationary cost parameters. Detailed calculations of
two arc costs are shown below.

c1,6 = K + c(r1 + r2 + · · · + r5) + h[r2 + 2 r3 + · · · + 4r5]
= 40 + 10 × (2 + 4 + 2 + 2 + 3) + 3 × (4 + 2 × 2 + 3 + 2 + 4 × 3) + 0 = 248

c2,4 = K + c(r2 + r3) + hr3 = 40 + 10 × (4 + 2 + 2) + 3 × (2 + 2 × 2) + 7 = 208

Once all arc costs are calculated, the shortest path from node 1 to node 6 can be found in a
straightforward manner as the graph is acyclic. The computational effort required to find the
shortest path is exactly the same than the effort required to solve all DP stages. Initially, the
optimal value function at stage 6 is set to zero, f6 = 0. At stage 5, the optimal value function
(length of the shortest path from node (stage) 5 to node 6) is f5 = c5,6 + f6 = 70 + 0 = 70.
The remaining optimal value functions can be computed recursively with the following
simplified recurrence relation:

fi = min
j=i,i+1,...,n

{ci,j + fj+1}

7.2.6 Reliability System Design [11]

Figure 7.4 shows an illustration of an electromechanical device that contains three compo-
nents in serial arrangement so that each component must work for the system to function.
The reliability of the system can be improved by installing several parallel units in one or
more of the components. Table 7.4 shows the reliability of each component as a function of
the number of parallel units.

The reliability of the device is the product of the reliabilities of the three components.
The cost of installing one, two, or three parallel units in each component (in thousands of
dollars) is given in Table 7.5.
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f1 = 243 f2 = 195 f6 = 0

(40 + 70) + 24 = 134

654321

(40 + 60) + 12 = 112 (40 + 40) + 6 = 86 (40 + 50) + 9 = 99

(40 + 130) + 78 = 248

(40 + 80) + 24 = 144   

40 + 20 = 60 40 + 40 = 80 40 + 20 = 60 40 + 20 = 60 40 + 30 =70

f3 = 134 f4 = 99 f5 = 70 

(40 +100) + 42 = 182 (40 + 110) + 45 = 195

(40 + 60) + 6 = 106

(40 + 80) + 18 = 138
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FIGURE 7.4 Illustration of the electromechanical system.

TABLE 7.4 Reliability for Each Component
Probability of Functioning pi(xi)

Parallel Component Component Component
Units (xi) i = 1 i = 2 i = 3

1 0.6 0.7 0.8
2 0.7 0.8 0.9
3 0.9 0.9 0.95

TABLE 7.5 Cost of Each Component
(in Thousands of Dollars)

Cost of the Component ci(xi)

Parallel Component Component Component
Units (xi) i = 1 i = 2 i = 3

1 3 2 1
2 5 4 4
3 6 5 5

Because of budget limitations, a maximum of $10,000 can be expended. We need to
determine the number of units for each component so that the reliability of the system is
maximized.

DP Formulation and Solution

This problem can be formulated as a three-stage DP model. At each stage i, a decision has
to be made concerning the number of parallel units, xi, to be assigned to the ith component.
This decision depends on the remaining budget available for stages i to 3. Thus, the state
of the system, si, is the remaining budget available at the beginning of that stage (in
thousands of dollars). At each stage i, it is necessary to determine a range of feasible states.
For example, for i= 3, s3 ∈ {1, . . ., 5}, because 1 is the cost of one unit of component 3
and 5 is the maximum available budget, given that at least one unit of component 1 and
one unit of component 2 have to be bought, i.e., 10− (3 + 2) = 5. Similar arguments can be
provided to establish the range of s2: s2 ∈ {3, . . ., 7}. The transformation function computes
the budget available by the beginning of state i+ 1 as a function of the budget available at
the beginning of stage i and the number of units assigned to component i:

si+1 = ti(si, xi) = si − ci(xi)

where ci(xi) is the cost of xi units of component i (see Table 7.5).
The optimal value function, fi(si), gives the maximum probability of functioning of a

subsystem defined by components i= 1, 2, 3 in serial arrangement given that the budget
available for these components is si. Based on this definition, the recurrent relation can be
established as follows:

fi(si) = max
xi=1,2,3

{pi(xi) · fi+1(si − ci(xi))}, si = li, . . ., ui; i = 1, 2
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where li and ui are the lower and upper bounds on si, and pi(xi) is the reliability of
component i with xi units in parallel. The boundary conditions in stage 3 are defined as
follows:

f3(s3) = max
xi=1,2,3

{p3(x3) : c3(x3) ≤ s3}

In this problem, f1(10) gives the maximum system reliability that can be obtained with
a budget of $10,000. The numerical solution for this problem is provided in the following
tables.

Stage 3:

p3(x3)

s3 x3 = 1 x3 = 2 x3 = 3 f∗
3 (s3) x∗

3 s4

1 0.8 Infeasible Infeasible 0.8 1 0
2 0.8 Infeasible Infeasible 0.8 1 1
3 0.8 Infeasible Infeasible 0.8 1 2
4 Non-optimal 0.9 Infeasible 0.9 2 0
5 Non-optimal Non-optimal 0.95 0.95 3 0

Stage 2:

p2(x2) · f3(s2 − c2(x2))

s2 x2 = 1 x2 = 2 x2 = 3 f∗
2 (s2) x∗

2 s3

3 0.7× 0.8 = 0.56 Infeasible Infeasible 0.56 1 1
4 0.7× 0.8 = 0.56 Infeasible Infeasible 0.56 1 2
5 0.7× 0.8 = 0.56 0.8× 0.8 = 0.64 Infeasible 0.64 2 1
6 0.7× 0.9 = 0.63 0.8× 0.8 = 0.64 Infeasible 0.64 2 2
7 0.7× 0.95 = 0.665 0.8× 0.8 = 0.64 0.9× 0.8 = 0.72 0.72 3 2

Stage 1:

p1(x1) · f2(s1 − c1(x1))

s1 x1 = 1 x1 = 2 x1 = 3 f∗
1 (s1) x∗

1 s2

10 0.6 × 0.72 = 0.432 0.7× 0.64 = 0.448 0.9× 0.56 = 0.504 0.504 3 4

Optimal Solution

The optimal solution is unique and can be obtained by backtracking, starting at stage 1
and moving to stages 2 and 3. Using the transformation function, it is possible to determine
the state at stage i+ 1, si+1, from the state in stage i, si, and the corresponding optimal
decision, x∗

i . Details of this process are provided below.

s1 = 10, x∗
1(10) = 3 units of component 1 are used

s2 = t1(s1, x1) = 10 − 6 = 4, x∗
2(4) = 1 unit of component 2 is used

s3 = t2(s2, x2) = 4 − 2 = 2, x∗
3(1) = 1 unit of component 3 is used

f∗
1 (10) = 0.504 (system reliability)

© 2008 by Taylor & Francis Group, LLC



CH007.tex 22/10/2007 14: 2 Page 7-19

Dynamic Programming 7-19

7.3 Stochastic Dynamic Programming Models

Decision makers generally face situations in which they need to make decisions with many
uncertainties concerning the consequences of these decisions. A manufacturer may produce
items for inventory without knowing how many units customers will demand for each type
of item. An investor may decide to buy a certain number of shares of a particular stock
without knowing if the stock will go up or down in the future. Although the future may be
uncertain, in general, it is still possible to estimate probability distributions for all possible
outcomes associated with a decision [4,7,9,12].

All the DP applications discussed in the previous section have considered situations in
which the consequences of all possible decisions were completely predetermined, including
the system reliability problem in Section 7.2.6. Although the objective of that problem was
to maximize the expected system reliability, it can be categorized as deterministic in the
sense that, when a decision is made at any stage, the state resulting from that decision is
precisely determined and known. The essential difference between the stochastic models to
be discussed in this section and the prior deterministic models is that the state resulting from
a decision is not predetermined, but can be described by a known probability distribution
function that depends on the initial state and the decision taken.

In stochastic DP, let the pair (i, j) denote state j of stage i and D(i, j) denote the set
of all possible decisions associated with (i, j). If the system is observed to be in (i, j), some
decision x in D(i, j) must be selected. Assuming that stage i is not the last stage n, for
example, i < n, decision x will cause a transition to some state k in stage i+ 1; the particular
state k can be characterized by the following transition probability:

P i
jk(x) = probability that the state observed in stage i + 1will be k, given that the

current state in stage i is j and decision x is made.

Note that, for a particular pair (i, j) and a specific decision x ∈ D(i, j),
∑

k P i
jk(x) = 1 and

P i
jk(x) ≥ 0, for any state k in the state space. Two applications of stochastic DP using this

type of probabilities are presented in this section.
Note that, in stochastic DP, a different set of states may occur for different replications of

the same problem even though the same policy is applied. The simple explanation is that,
for a given stage, state, and decision, the resulting state at the next stage is only known by
a probability distribution. Therefore, in stochastic DP, an optimal policy is characterized
by the best decision for each possible state at any stage.

7.3.1 Stochastic Equipment Replacement Problem [3,8,10]

First, we present an extension of the equipment replacement problem discussed in Sec-
tion 7.2.3. Now, we assume that the annual operating cost of a machine of age j is a random
variable with known probability distribution. In addition, it is assumed that the machine
may suffer a severe failure at the end of any year and must be replaced. The probability
of a severe failure only depends on the age of the machine at the beginning of the year.
Finally, at the beginning of a year, we allow the option of salvaging the currently owned
machine and leasing a new machine for a year. If the company has already leased a machine
during the prior year, it can lease another machine or buy a new one at the beginning of
the year. Assuming that the company owns a machine of age y by the beginning of the
first year, and replacement or leasing decisions can only be made at the beginning of each
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year, we need to find the optimal replacement/leasing policy. The input data defining this
problem are:

n = number of years to be considered

y = age of the machine at the beginning of year 1

a(i) = purchasing price of a new machine at the beginning of year i

r(j) = expected annual operating cost for a machine of age j at the beginning of
the year

tw(j) = trade-in value for a machine of age j that is in working condition

vw(j) = salvage value for a machine of age j that is in working condition

tb(j) = trade-in value for a machine of age j that is broken down

vb(j) = salvage value for a machine of age j that is broken down

q(j) = probability that a machine of age j in working condition at the beginning of
a year breaks down by the end of the year

λ = annual cost for leasing a machine

DP Formulation and Solution

In this problem, it is assumed that the company does not have to pay anything if a leased
machine breaks down by the end of a year as the leasing cost includes insurance for the
machine.

The following DP formulation uses two optimal value functions. One function provides
the value of the best policy for years i to n, given that the company owns a machine at
the beginning of year i. The second function gives the value of the best policy if a machine
was leased in the prior year. In the case of the first function, a number of states need to
be considered depending on the age of the owned machine at the beginning of year i. If the
machine was leased, only one state exists because the company does not currently own any
machine. In the two recurrence relations stated below, some states require two decisions.
The first decision is applied at the beginning of year i and the second decision is taken only
if the company decides to own a machine during the current year and the machine incurs
a severe failure by the end of the year. If the decision taken at the beginning of the year is
to lease a machine, then the second decision is unnecessary. The following notation is used
to represent the decision making process:

B: “buy a new machine”

K: “ keep the current machine”

and L: “lease a new machine for one year”

Stage (i): year i, i= 1, . . ., n.
State: if the company owned a machine in year i− 1, then the state of the system at

the beginning of year i, denoted as si, is the age of the machine; if a machine
was leased in year i− 1, the only state is that the company does not own any
machine at the beginning of year i.

Decision variable (xi =(xi1, xi2)): two decisions may have to be taken in each
state. The first decision at the beginning of year i is xi1 ∈ {“buy,” “keep,” “lease”},
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obviously the “keep” option is only available if the company owns a machine. The
second decision may be necessary at the end of stage i, if an owned machine breaks
down at the end of the year, xi2 ∈ {“buy,” “lease”}.

Optimal value functions: the following two functions need to be evaluated in each
stage:

fi(si) = minimum expected cost from the beginning of year i to the beginning of
year n + 1, given that the company owns a working machine of age si at
the beginning of year i.

gi = minimum expected cost from the beginning of year i to the beginning
of year n + 1, given that the company does not own any machine at the
beginning of year i as a machine was leased in the preceding year.

Optimal policy (pf(i,si) or pg(i)=x∗
i ): optimal replacement/leasing plan for

year i.
Recurrence relation: For i= n − 1, . . ., 2, 1; si = 1, 2, . . ., i, y + (i− 1)

fi(si) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B: p(i) − tw(si) + r(0) + (1 − q(0)) · fi+1(1) + q(0)

· min

⎧⎨
⎩

B: p(i + 1) − tb(1) + fi+1(0)

L: λ − vb(1) + r(0) + gi+2

K: r(si) + (1 − q(si)) · fi+1(si + 1) + q(si)

· min

⎧⎨
⎩

B: p(i + 1) − tb(si + 1) + fi+1(0)

L: λ − vb(si + 1) + r(0) + gi+2

L: λ − vw(si) + r(0) + gi+1

For i= n − 1, . . ., 2, 1; si = 0,

fi(0) = K: r(0) + (1−q(0)) · fi+1(1)+q(0) · min

⎧⎨
⎩

B: p(i + 1) − tb(1) + fi+1(0)

L: λ − vb(1) + r(0) + gi+2

For i= n − 1, . . ., 2, 1,

gi = min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B: p(i) + r(0) + (1 − q(0)) · fi+1(1) + q(0)

· min

⎧⎨
⎩

B: p(i + 1) − tb(1) + fi+1(0)

L: λ − vb(1) + r(0) + gi+2

L: λ + r(0) + gi+1

Boundary conditions: For si = 1, 2, . . ., n, y + (n − 1),

fn(si) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B: p(n) − tw(si) + r(0) + (1 − q(0)) · vw(1) + q(0) · vb(1)

K: r(si) + (1 − q(si)) · vw(si + 1) + q(si) · vb(si + 1)

L: λ − vw(si) + r(0)
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gn = min

⎧⎨
⎩

B: p(n) + r(0) + (1 − q(0)) · vw(1) + q(0) · vb(1)

L: λ + r(0)

gn+1 = 0 (This case may be used in the computation of fn−1(si) and gn−1.)

Answer: f1(y).

7.3.2 Investment Planning [11]

We have $10,000 to invest in the following 3 years. Investments can only be made for 1 year
at the beginning of any year in multiples of $10,000. Two types of investment opportunities
are available: A and B. Investment B is more conservative than investment A. If we invest
in A in a given year, at the end of the year the money will be lost with probability 0.3 or
will be doubled with probability 0.7. If the investment is made in B, at the end of the year
the money will be returned with probability 0.9 or will be doubled with probability 0.1. The
objective of this problem is to come up with an investment policy that maximizes the total
expected return by the end of the third year. In order to simplify the solution procedure, it
is assumed that only one type of investment can be selected in a given year.

DP Formulation and Solution

In the following formulation, the set of possible decisions depends on the amount of money
available at the beginning of a year. If we have less than $10,000, the only possibility is to
keep the money, but if the money available for investment is $10,000 or more, multiples of
$10,000 can be invested in A or B.

Stage (i): year i, i= 1, 2, 3.
State (si): amount of money on hand at the beginning of year i. In year 1, s1 = $10,000.
Decision variable (xi =(xi1,xi2)): the decision in stage i consists of the amount of

money to invest, xi1, in multiples of $10,000, and the type of investment to be
made, xi2 ∈ {0, A, B}, where 0 means that no investment is made.

Optimal value function (f i(si)): maximum expected amount of money from the
beginning of year i to the end of year 3 given that the money on hand is si at
the beginning of year i.

Optimal policy (pi(si)=x∗
i ): optimal investments plan for year i, given that the

money on hand is si.
Recurrent relation: For 0≤ si < 10, xi = (xi1, xi2) = (0, 0), fi(si) = si.

For si ≥ 10,

fi(si) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi+1(si) for (xi1, xi2) = (0, 0)

max
xi1∈A

{0.3 × fi+1(si − xi1) for xi2 = A

+ 0.7 × fi+1(si + xi1)}

max
xi1∈A

{0.9 × fi+1(si) + 0.1 × fi+1(si + xi1)}, for xi2 = B

where A = {a : a = 10, 20, . . .; a≤ si} is the set of possible investment quantities
(in thousands of dollars).
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Boundary conditions: For 0≤ s3 < 10, x3 = (x31, x32) = (0, 0), f3(s3) = s3.
For s3 ≥ 10,

f3(s3) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s3 for (x31, x32) = (0, 0)

max
x31∈A

{0.3 × (s3 − x31) + 0.7 × (s3 + x31)} for x32 = A

max
x31∈A

{0.9 × (s3) + 0.1 × (s3 + x31)} for x32 = B

where A = {a : a = 10, 20, . . .; a≤ s3}.
Answer: f1(10).

Numerical solution

The tables below analyze all possible investment opportunities for each year (stage) depend-
ing on the money on hand at the beginning of the year (state). The decision that gives the
maximum expected return by the end of the third year is selected.

Stage 3:

s3 0.3 × (s3 − x31) + 0.7 × (s3 + x31) 0.9 × s3 + 0.1 × (s3 + x31)

s3 x31 x32 = 0 x32 = A x32 = B x∗
31 x∗

32 f3(s3)

0 0 0 – – 0 0 0
10 0 10 – –

10 – 0.3 × (10 − 10) + 0.7 × (10 + 10) = 14 0.9 × 10 + 0.1 × (10 + 10) = 11 10 A 14
20 0 20 – –

10 – 0.3 × (20 − 10) + 0.7 × (20 + 10) = 24 0.9 × 20 + 0.1 × (20 + 10) = 21
20 – 0.3 × (20 − 20) + 0.7 × (20 + 20) = 28 0.9 × 20 + 0.1 × (20 + 20) = 22 20 A 28

30 0 30 – –
10 – 0.3 × (30 − 10) + 0.7 × (30 + 10) = 34 0.9 × 30 + 0.1 × (30 + 10) = 31
20 – 0.3 × (30 − 20) + 0.7 × (30 + 20) = 38 0.9 × 30 + 0.1 × (30 + 20) = 32
30 – 0.3 × (30 − 30) + 0.7 × (30 + 30) = 42 0.9 × 30 + 0.1 × (30 + 30) = 33 30 A 42

40 0 40 – –
10 – 0.3 × (40 − 10) + 0.7 × (40 + 10) = 44 0.9 × 40 + 0.1 × (40 + 10) = 41
20 – 0.3 × (40 − 20) + 0.7 × (40 + 20) = 48 0.9 × 40 + 0.1 × (40 + 20) = 42
30 – 0.3 × (40 − 30) + 0.7 × (40 + 30) = 52 0.9 × 40 + 0.1 × (40 + 30) = 43
40 – 0.3 × (40 − 40) + 0.7 × (40 + 40) = 56 0.9 × 40 + 0.1 × (40 + 40) = 44 40 A 56

Stage 2:

f3(s2) 0.3 × f3(s2 − x21) + 0.7 × f3(s2 + x21) 0.9 × f3(s2) + 0.1 × f3(s2 + x21)

s2 x21 x22 = 0 x22 = A x22 = B x∗
21 x∗

22 f2(s2)

0 0 f3(0) = 0 – – 0 0 0
10 0 f3(10) = 14 – –

10 – 0.3 × f3(10 − 10) + 0.7 × f3(10 + 10) 0.9 × f3(10) + 0.1 × f3(10 + 10) 10 A 19.6
= 0.3 × 0 + 0.7 × 28 = 19.6 = 0.9 × 14 + 0.1 × 28 = 15.4

20 0 f3(20) = 28 – –
10 – 0.3 × f3(20 − 10) + 0.7 × f3(20 + 10) 0.9 × f3(20) + 0.1 × f3(20 + 10)

= 0.3 × 14 + 0.7 × 42 = 33.6 = 0.9 × 28 + 0.1 × 42 = 29.4
20 – 0.3 × f3(20 − 20) + 0.7 × f3(20 + 20) 0.9 × f3(20) + 0.1 × f3(20 + 20)

= 0.3 × 0 + 0.7 × 56 = 39.2 = 0.9 × 28 + 0.1 × 56 = 30.8 20 A 39.2
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Stage 1:

f2(s1) 0.3 × f2(s1 − x11) + 0.7 × f2(s1 + x11) 0.9 × f2(s1) + 0.1 × f2(s1 + x11)

s1 x11 x12 = 0 x12 = A x12 = B x∗
11 x∗

12 f1(s1)

10 0 f2(10) = 19.6 – –
10 – 0.3 × f2(10 − 10) + 0.7 × f2(10 + 10) 0.9 × f2(10) + 0.1 × f2(10 + 10)

= 0.3 × 0 + 0.7 × 39 = 27.3 = 0.9 × 19.6 + 0.1 × 39.2 = 21.56 10 A 27.3

Optimal Solution

x∗
1 = (x∗

11, x
∗
12) = (10, A) ≡ Invest $10,000 in A.

f1(10) = 27.3 ≡ The expected amount of money by the end of the
third year will be $27,300.

7.4 Conclusions

This chapter has introduced the reader to DP, which is a particular approach to solve opti-
mization problems. In an optimization problem, we try to find the best solution from a set
of alternatives. One of the main difficulties of DP is in the development of the mathematical
formulation for a particular problem and the establishment of the recurrence relation that
allows us to solve instances of the problem in stages in an efficient manner. For this reason,
we have taken the approach of introducing DP by discussing the formulation of some of
the important applications in the areas of industrial engineering and management science.
These applications have been categorized in deterministic models, where data is known with
certainty, and stochastic models, in which some of the information is uncertain and require
the use of probability distribution functions.

In many real-world applications, the difficulty of DP is the large number of states that
need to be considered to solve a problem. This difficulty was called the curse of dimension-
ality by Bellman (1952). The number of states can be reduced by making some additional
assumptions to the problem, which may result in a model that does not capture the real-
world setting. A DP model must be simple enough so that its behavior can be understood,
but at the same time its robustness must be verifiable.
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8.1 Introduction

Deterministic models and stochastic models are two broad categories of mathematical
models that aim at providing quantitative characterizations of a real system or a natural
phenomenon under study. The salient difference between the two types of models is that,
given a set of assumptions for each model, a deterministic model predicts a single outcome,
whereas a stochastic model predicts a set of possible outcomes along with the likelihood
or probability of each outcome. When a stochastic model is a more suitable choice for the
purpose of investigation, it is often the case that the underlying system can be better repre-
sented by a collection or a family of random variables, indexed by a parameter such as time or
space. Such a family of random variables is called a stochastic process. The field of stochastic
processes represents a collection of models and methods used to depict the dynamic rela-
tionship of a family of random variables evolving in time or space.

The study of stochastic processes was started at the beginning of the twentieth cen-
tury, and it has been an actively researched area ever since, doubtlessly because of its
deep connections with practical problems. Today, stochastic processes are widely applied
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in different disciplines such as engineering, business, physics, biology, health care, and the
military, to name a few. Stochastic processes can be used to understand the variability
inherent in the underlying process, to make predictions about the system behavior, to gain
insight on effective design and control of the system, and to aid in managerial decision mak-
ing. The following examples illustrate the applications of stochastic processes in different
fields.

Example 8.1: A brand switching model for consumer behavior

Suppose there are several brands of a product competing in a market. For example, those
brands might be competing brands of soft drinks. Let us assume that every week a consumer
buys one of the three brands, labeled as 1, 2, and 3. In each week, a consumer may either buy
the same brand he bought the previous week or switch to a different brand. A consumer’s
preference can be influenced by many factors, such as brand loyalty and brand pressure
(i.e., a consumer is persuaded to purchase the same brand; see Whitaker (1978)). To gauge
consumer behavior, sample surveys are frequently conducted. Suppose that one of such
surveys identifies the following consumer behavior:

Following week

Current week Brand 1 Brand 2 Brand 3

Brand 1 0.51 0.35 0.14
Brand 2 0.12 0.80 0.08
Brand 3 0.03 0.05 0.92

For example, of those who currently bought brand 1, 51% buy the same brand, 35% switch
to brand 2 and 14% to brand 3, in the next week. The brand choices of a consumer over
different weeks can be represented by a stochastic process that can enter three different
states, namely, 1, 2, and 3. The market share of a brand during a period is defined as the
average proportion of people who buy the brand during the period. The questions of interest
might be: What is the market share of a specific brand in a short run (say in 3 months)
or in a long run (i.e., the average market share of the brand when the number of weeks
observed is sufficiently large)? How does repeat business, due to brand loyalty and brand
pressure, affect a company’s market share and profitability? What is the expected number
of weeks that a consumer stays with a particular brand? �

Example 8.2: Automobile insurance

Most insurers around the world use the Bonus Malus (Latin for good-bad) system in auto-
mobile liability insurance. Such a system gives a merit rating, represented by a positive
integer-valued state, to each policyholder and determines the annual premium accordingly.
A policyholder’s state changes from year to year in response to the number of at-fault acci-
dents made by the policyholder. The system penalizes at-fault accidents of a policyholder
by increasing his state value (resulting in an annual premium surcharge) and rewards claim-
free years by decreasing his state value (resulting in a premium discount). The following
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table describes a hypothetical Bonus Malus system having four states (a real Bonus Malus
system usually has many more states):

Next state if

Current state Annual premium 0 claims 1 claim 2 claims ≥3 claims

1 $500 1 2 3 4
2 $600 1 3 4 4
3 $800 2 4 4 4
4 $1000 3 4 4 4

For instance, the table indicates that if a policyholder in state 2 makes no claims this
year, then the person’s rating would change to state 1 the next year. Empirical data can
be collected and analyzed so that a theoretical probability distribution on the number of
yearly claims from a policyholder can be obtained. The collection of states visited by a
policyholder, indexed by year, is a stochastic process. Based on the above table and the
probability distribution of annual claims, an insurer can compute the probability that a
policyholder changes from one state to another in successive years. From a model like
this, an insurer can compute various performance measures, such as the long-run average
premium received from a policyholder and its own insurance risk. �

Example 8.3: Reliability

The reliability of a system, possibly consisting of several parts, is defined as the probability
that the system will function during its assigned mission time. The measure is determined
mainly by the lifetime distributions of the constituting components and the structure func-
tion of the system. For example, during the mission time, a k-out-of-n system will function
if and only if at least k components out of n components will function. Special cases are the
series system, which is an n-out-of-n system, and the parallel system, which is a 1-out-of-n
system. If we associate with each time t a binary random variable that equals 1 if the system
functions at time t and 0 otherwise, then the collection of the binary random variables for
different t is a stochastic process, representing the availability of the system over time. The
reliability of the system can be determined by the properties of the lifetime distributions of
the components and system structure. �

Example 8.4: ALOHA protocols

ALOHA was a multiaccess communication protocol first deployed at the University of
Hawaii in 1970. While the original version of the protocol is no longer used, its core design
concept has become the basis for the almost universal Ethernet.

It was quickly noticed that the first version of the ALOHA protocol was not stable. Its
throughput was low and the number of backlogged packets was high, while a large portion
of available bandwidths was being wasted. Since then, several versions of the protocol have
been proposed. The following slotted and unslotted ALOHA models are based on Kulkarni
(1995) (also see Gautam, 2003).

In the slotted version, there are N users transmitting messages (in the form of packets)
via satellites. At time slots n = 1, 2, . . ., each user independently transmits a packet with
probability p. If only one user transmits a packet then the transmission is successful and
the packet departs the system. However, if two or more users simultaneously transmit, then
a collision occurs and their packets are garbled. Such packets are backlogged in the system
and have to be re-sent later. A backlogged packet will, independent of all else, retransmit
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with probability r in a time slot. A user with a backlogged packet will not transmit a new
packet until his backlogged packet is successfully re-sent.

In the unslotted version (again see Kulkarni, 1995, and Gautam, 2003), it is assumed
that each of the N users, when not backlogged, transmits a packet after an exponential
amount of time with rate λ. Each packet requires an exponential amount of time with rate
µ to transmit. A collision occurs when a user attempts to transmit while another user is
transmitting, which causes all transmissions to terminate instantaneously and the collided
packets to be backlogged. It is assumed that a backlogged packet retransmits after an
exponential amount of time with rate γ.

In either the slotted or unslotted version of the protocol, the number of backlogged packets
over time slots n = 1, 2, . . . or over continuous-time t ≥ 0 form a stochastic process. The
typical performance measures arising in the efficient satellite communication of ALOHA
include the system throughput, the bandwidth utilization, the long-run behavior of the
number of backlogged packets, and the time needed to successfully transmit a packet. �

Example 8.5: A model of social mobility

A problem of interest in the study of social structure is about the transitions between
the social status of successive generations in a family. Sociologists often assume that the
social class of a son depends only on his parents’ social class, but not on his grandparents’.
A famous U.K. study of social mobility was conducted after World War II (Glass, 1954),
which identified three social classes: upper class (executive, managerial, high administra-
tive, professional), middle class (high grade supervisor, non-manual, skilled manual), and
lower class (semi-skilled or unskilled). Each family in the society occupies one of the three
social classes, and its occupation evolves across different generations. Glass (1954) analyzed
a random sample of 3500 male residents in England and Wales in 1949 and estimated that
the transitions between the social classes of successive generations in a family were as the
following:

Following generation

Current generation Upper class Middle class Lower class

Upper class 0.45 0.48 0.07
Middle class 0.05 0.70 0.25
Lower class 0.01 0.50 0.49

A dataset like this has enabled sociologists to answer questions such as: How many gen-
erations are necessary for a lower class family to become a higher class family? What is the
distribution of a family’s occupation in the long run? �

With the help of the above examples, we now define a stochastic process.

DEFINITION 8.1 The collection of random variables X = {X(t), t∈T} is called a
stochastic process, where T is called the index set.

The values assumed by process X are called the states, and the set of all possible values is
called the state space and denoted by S. Stochastic processes are further classified into four
broad classes by the nature of the index set T and state space S, where each of them can be
either discrete or continuous. The index t ∈T often corresponds to discrete units of time, and
the index set is T = {0, 1, 2, . . .}. In this case, X is called a discrete-time stochastic process,
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and it is customary to represent X by {Xn, n ≥ 1}. Take the brand switching problem as
an example: Xn might represent the brand preference of a consumer in week n, which can
take values 1, 2, or 3, with a discrete state space S = {1, 2, 3}. As another example, suppose
that Xn represents the total amount of claims (for convenience sake we assume it can take a
nonnegative, continuous value, although in reality it is countable) made by a policyholder in
year n, then {Xn, n ≥ 0} is a discrete-time stochastic process with a continuous state space.
When the index set T is an interval, X is called a continuous-time stochastic process. In most
common physical systems time is a natural index parameter, so T = (0, ∞). In this case,
we follow the convention to write X as {X(t), t ≥ 0}. In the unslotted ALOHA example, if
X(t) represents the number of backlogged packets at time t, t ≥ 0, then {X(t), t ≥ 0} is a
continuous-time stochastic process with a discrete state space S = {0, 1, 2, . . .}. Finally, an
example of the continuous-time stochastic process with a continuous state space might be
the cumulated amount of rainfall in an area continuously monitored during a season, or the
market price of a stock continuously observed during a trading session.

The random variables in a stochastic process often exhibit some sort of interdependence.
For instance, the current rating of a policyholder may depend on his claim history, and a
son’s occupation can be affected by his ancestors’ occupations. Without knowing the depen-
dence structure of a random sequence, little can be said or done about a stochastic process.
As such, the study of stochastic processes is mainly centered around the characterizations
and solution methods of some prototypical processes that have certain types of dependence
structure. In this chapter, we shall discuss several fundamental processes that are most
frequently used in modeling real-world problems.

1. Poisson Processes: A stochastic process {N(t), t ≥ 0} is called a counting process
if N(t) represents the number of “events” that have occurred during the interval
[0, t]. A counting process is called a Poisson process if the interarrival times of
successive events are independently and identically distributed (iid) random vari-
ables that follow a common exponential distribution. The Poisson process inherits
the memoryless property of the exponential distribution, which translates into the
following stationary and independent increments property: at any time epoch t,
the process from time t onward is independent of its history and has the same
distribution as the original process. In essence, this property reduces the analysis
of the Poisson process into that of a sequence of independent random variables,
where those random variables represent the numbers of events occurring in non-
overlapping intervals. The Poisson process is a key building block in stochastic
modeling. For example, it has been used extensively to model the arrivals to a
service system, the traffic flow on a highway, the number of defective items in
a manufacturing process, and the number of replacements of a component. The
subjects related to the Poisson process are covered in Section 8.2.

2. Discrete-Time Markov Chains: A discrete-time Markov chain (DTMC) is a
discrete-time stochastic process defined on S = {0, 1, 2, . . .} that has the sim-
plest type of dependence structure, known as the Markov property: given the
present state of the process, the future evolution of the process is independent of
its history. The dependence structures in the brand switching, automobile insur-
ance, and social mobility examples are all of this type. As it turns out, a DTMC
can be completely specified by the transition probability matrix (e.g., the prob-
ability tables given in the aforementioned examples) and the distribution of the
initial state (e.g., the distribution of the merit rating of a policyholder at time 0),
which greatly simplifies the analysis of a DTMC. Although simple, the DTMC
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proves to be the most useful modeling tool in analyzing practical problems. We
shall treat the topics relevant to DTMCs in Section 8.3.

3. Continuous-Time Markov Chains: In a DTMC, the process stays in a state for
a unit of time and then possibly makes a transition. If we relax this assumption
and allow the sojourn time of the process in each state to be independent and
follow a state-dependent exponential distribution, the resultant process is called
a continuous-time Markov chain (CTMC). For example, the unslotted ALOHA
protocol given in Example 8.4 can be modeled as a CTMC. As in the case of
a DTMC, a CTMC is a simple yet powerful modeling tool to treat real-world
stochastic systems. The topics related to CTMCs will be examined in Section 8.4.

4. Renewal Theory: In a Poisson process, the times between successive events are iid
exponential random variables. As an extension, a renewal process is a counting
process whose interarrival times are iid random variables following a general dis-
tribution. In renewal theory, an event is called a renewal, the time instance when
a renewal takes place is called a renewal epoch, and the time interval between two
consecutive renewals is called a renewal cycle. A renewal process has a stronger
dependence structure than a Poisson process: while the latter can probabilisti-
cally restart itself at any time, the former can only do so at a renewal epoch.
Nevertheless, renewal epochs facilitate the partition of the interval (0, ∞) into dis-
joint, independent renewal cycles, which, in turn, reduce the long-run analysis of
a renewal process to that of a typical renewal cycle. When there is a reward asso-
ciated with each renewal, the resultant process is called a renewal reward process.
A large number of practical problems can be formulated as renewal reward pro-
cesses. Renewal theory also forms a cornerstone for the development of other
stochastic processes with more complex dependence structures. For example, the
semi-Markov process can be roughly understood as a combination of a Markov
chain and a renewal process: it assumes that the process changes states as a
DTMC, but the sojourn time in each state can follow a state-dependent, but
otherwise general, distribution. We shall deal with the renewal process and its
variants in Section 8.5.

For each of the aforementioned processes, our discussion shall be focused on the following
aspects of the process:

• Process characterization: First, we shall give the formal definition of the underly-
ing process, identify its basic structure, and characterize the important properties.

• Transient analysis: Second, we shall consider how the underlying process behaves
in the transient state, i.e., to derive the distribution of X(t) or Xn for a finite t or
n. Transient analysis helps to answer questions such as “what is the distribution
of the number of backlogged packets in ALOHA at time t = 10” or “what is the
probability that a 1-out-of-n system will function in the next 24 hours?”

• Long-run analysis: Third, we shall study the long-run behavior of the process,
i.e, derive the limiting distribution of X(t) or Xn, as t or n tends to infinity. The
long-run analysis seeks to answer questions such as “what is the long-run market
share of a brand” or “what proportion of families will be in the middle class in
steady-state?”

• Statistical inference: To apply results of stochastic processes to a real-life situa-
tion, data from the actual process have to be observed and analyzed to fit the
characteristics of a prototypical process. This brings us to the topic of statistical
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inference of stochastic processes. We shall briefly introduce parameter estimation
and hypothesis testing methods used in stochastic processes.

For each process, we shall illustrate the basic concepts and methodologies using several
practical problems extracted from different application areas. Because of the page limitation,
the results will be stated without proof. There are numerous stochastic processes textbooks
where the reader can consult the proofs of our stated results. The References section of this
chapter lists a sample of the texts at different levels. At the introductory level, the reader
may consult Ross (2003), Kulkarni (1999), Kao (1997), and Taylor and Karlin (1994). The
books for a more advanced level include Cinlar (1975), Ross (1996), Wolff (1989), Bhat &
Miller (2002), Tijms (1994), and Kulkarni (1995). There are also many books dealing with
stochastic processes in specialized fields and a few of them are listed here: Aven & Jensen
(1999) and Barlow & Proschan (1981) for reliability, Buzacott & Shanthikumar (1993) for
manufacturing, Bolch et al. (2006) for computer networks, Kleinrock (1976) for queueing
systems, Rolski et al. (1999) and Kijima (2003) for finance and insurance, Zipkin (2000)
and Porteus (2002) for inventory systems, Helbing & Calek (1995) and Bartholomew (1982)
for social sciences, and Goel & Richter-Dyn (2004) for biology.

8.2 Poisson Processes

It appears that the Poisson process was first investigated in detail by physicians A. Einstein
and M. Smolukhovsky in the context of Brownian processes. The first application of the
Poisson process, published in 1910, was to describe radioactive decay occurring randomly.
The Poisson process, however, was named after the French mathematician Simeon-Denis
Poisson (1781–1840), who was credited for the introduction of the Poisson distribution, but
not of the Poisson process. Nevertheless, he certainly earned the right to be named after
this famous process connected with his distribution.

Both the Poisson process to be dealt with here and the continuous-time Markov chain
to be considered in Section 8.4 are intimately connected with the exponential distribution.
Exponential distribution plays a special role in those processes because it is mathematically
amenable and often a good approximation to the actual distribution. In the next section,
we review several salient properties of the exponential distribution.

8.2.1 The Exponential Distribution and Properties

A continuous random variable T is said to follow an exponential distribution with parameter
(or rate) λ > 0, where λ = 1/E[T ], if it has the probability density function (PDF)

f(t) = λe−λt, t ≥ 0 (8.1)

The property that makes the distribution attractive mathematically is that it has no
memory, or is memoryless. That is, the exponential distribution satisfies the condition

P (T > t + s|X > s) = P (T > t) for any t, s > 0

The memoryless property bears the following interpretation: if T is the lifetime of a part,
then the above condition states that the probability that an s-year-old part lasts another t
years is the same as the probability that a new part lasts t years. To see that the property
is also a realistic assumption for an actual distribution, imagine that T is the time inter-
val between two successive accidents occurring on a highway, with a mean of 3 days per
accident. Suppose that there were no accidents in the past 2 days. Then, because of the
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total randomness of accidents, the remaining time until the next accident to occur from this
point on should be no different, probabilistically, from the original waiting time between
two successive accidents. Thus, beyond the 2 accident-free days, we should expect to wait
another 3 days for the next accident to occur.

Besides the memoryless property, the exponential distribution also has several other nice
properties useful in stochastic modeling, as stated below.

Further Properties of the Exponential Distribution

1. The sum of a fixed number of iid exponential random variables follows a Gamma
(or Erlang) distribution. Suppose that Sn = T1 + T2 + · · ·+ Tn, where Ti are iid
exponential random variables with rate λ. Then random variable Sn has the
probability density function

fSn(t) = λe−λt (λt)n−1

(n − 1)!
, for t ≥ 0

For example, suppose that the occurrence times between successive accidents
on a highway are iid exponential random variables with a mean of 3 days per
accident. Then the waiting time for the 5th accident to occur is Erlang with mean
nλ = 5(3) = 15 days.

2. The minimum of independent exponential random variables is still an exponen-
tial random variable. Let Ti be the time when the ith event occurs, where Ti’s are
independent exponential variables with respective rates λi, i= 1, 2, . . ., n. Then
the time when the first of the n events occurs, T = min(T1, T2, . . ., Tn), is an
exponential random variable with rate

∑n
i=1 λi. For example, suppose that there

are two clerks who can serve customers at the exponential rates 3 and 5, respec-
tively. Given both clerks are currently busy, the time until one of the clerks
finishes service follows an exponential distribution with rate 3 + 5 = 8.

3. The probability that the ith event is the first to occur among the n events is
proportional to λi. Let Ti, i= 1, 2, . . ., n, be independent exponential variables
with respective rates λi, and T = min(T1, T2, . . ., Tn). Then

P (Ti = T ) =
λi∑n
i=1 λi

, i = 1, 2, . . ., n (8.2)

Applying the above result to our two clerks example, the probability that the clerk with
the exponential rate 3 is the first one to complete service is

(
3

(3+5) = 3
8

)
.

8.2.2 Definition of Poisson Processes

A stochastic process {N(t), t ≥ 0} is called a counting process if N(t) represents the number
of “events” that have occurred during the interval [0, t). Here, the “events” can be inbound
phone calls to a call center, machine breakdowns in a production system, or customer orders
for a product. Let us first examine two properties that are desirable for a counting process.
A counting process is said to have independent increments if the numbers of events that
occur in nonoverlapping intervals are independent. This means, for example, the defective
items produced by a machine between 8:00 and 10:00 a.m. is independent of that produced
between 12:00 and 3:00 p.m. The counting process is said to have stationary increments if
the number of events that occur in an interval depends only on how long the interval is.

© 2008 by Taylor & Francis Group, LLC



CH008.tex 22/10/2007 14: 3 Page 8-9

Stochastic Processes 8-9

In other words, N(s + t) −N(s) and N(t) are governed by the same distribution for any
s≥ 0 and t > 0. For example, if the aforementioned defective counting process has stationary
increments, then the number of defective items produced during 8:00–10:00 a.m. will have
the same distribution as that produced during 1:00–3:00 p.m., since both time periods are
2 h. Note that the stationary and independent increment properties together mean that if
we partition the time interval (0, ∞) into the subintervals of an equal length, then the
number of events that occurred in those subintervals are iid random variables.

Now we are ready to formally define a Poisson process.

DEFINITION 8.2 A Poisson process with rate (or intensity) λ is a counting process
{N(t), t ≥ 0} for which

a. N(t) ≥ 0;
b. the process has independent increments;
c. the number of events in any interval of length t follows the Poisson distribution

with rate λt:

P (N(s + t) − N(s) = n) =
(λt)ne−λt

n!
, for any s ≥ 0 and t > 0 (8.3)

(Property (c), in fact, implies that the Poisson process has stationary increments.)

Conditions (a)–(c) imply that the numbers of events that occur in nonoverlapping
intervals are independent Poisson random variables, and those Poisson events
occur at a constant rate λ. The Poisson process plays a key role in stochastic
modeling largely because of its mathematical tractability and practical realism.
Theoretically, the law of common events asserts that the Poisson distribution is
an approximation of the binomial distribution if the number of events is large and
the probability of actual occurrence of each event is small (Ross, 2003; Taylor &
Karlin, 1994). Empirically, it has been found that counting processes arising in
numerous applications indeed exhibit such characteristics.

From conditions (a)–(c), we can identify additional characterizations of a Poisson
process:

d. the probability that there is exactly one event occurring in a very small interval
[s, s + h) is approximately λh;

e. the probability that there are at least two events occurring in a very small interval
[s, s + h) is negligible; and

f. the interarrival times between successive events are a sequence of iid exponential
random variables with rate λ.

Conditions (d) and (e) postulate that the Poisson process is a process of “rare” events,
that is, events can only occur one at a time. In fact, conditions (d) and (e), together
with stationary and independent increments, serve as an alternative definition of a Poisson
process. Now, condition (f) means that the Poisson process is memoryless, that is, at any
time epoch, the remaining time until the next event to occur follows the same exponential
distribution, regardless of the time elapsed since the last event. Condition (f) serves as the
third alternative definition of a Poisson process. Those definitions are equivalent in the sense
that from the set of conditions for one definition one can derive the set of conditions for
another definition.
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Practitioners can use any of the three definitions as a yardstick to justify whether a
Poisson process is an adequate representation of the actual arrival process. For example, if
the actual arrival process shows a pattern of batch arrivals or the arrival rates at different
time instances are different (e.g., the arrival rate in a rush-hour is larger than that in normal
hours), then the Poisson process can be excluded outright as a candidate for modeling the
actual arrival process. Nevertheless, the law of rare events suggests that the Poisson process
is often a good approximation of the actual arrival process.

8.2.3 Properties of Poisson Processes

We often need to split a Poisson process into several subprocesses. For example, it might be
beneficial to classify the customers arriving to a service system as the priority customers and
non-priority customers and route them to different agents. Suppose that we associate with
each arrival in the Poisson process a distribution {pi :

∑n
i = 1 pi = 1}, and let the arrival be of

type i with probability pi, i= 1, . . ., n, independent of all else. This mechanism decomposes
the original Poisson process into n subprocesses. In some applications we need to merge
several independent Poisson streams into a single arrival stream. The following theorem
states that both the decomposed processes and the superposed process are still Poisson
processes.

THEOREM 8.1

a. Let {N(t), t ≥ 0} be a Poisson process with rate λ. Each time an event occurs, inde-
pendent of all else, it is classified as a type i event with probability pi,

∑n
i = 1 pi = 1.

Let {Ni(t), t ≥ 0} be the arrival process of type i. Then {Ni(t), t ≥ 0}, i= 1, . . ., n,
are n independent Poisson processes with respective rates λpi, i= 1, . . ., n.

b. Let {Ni(t), t ≥ 0}, i= 1, . . ., n, be independent Poisson processes with respective
rates λi, i= 1, . . ., n. Then the composite process {

∑n
i = 1 Ni(t), t≥ 0} is a Poisson

process with rate
∑n

i = 1 λi.

Example 8.6: The case of meandering messages

This case is adapted from Nelson (1995) and is a simplified version of a real computer system.
While the numbers used here are fictitious, they are consistent with actual data. A computer
at the Ohio State University (called osu.edu) receives e-mail from the outside world, and
distributes the mail to other computers on campus, including the central computer in the
College of Engineering (called eng.ohio-state.edu). Besides the mail from osu.edu, eng.ohio-
state.edu also receives e-mail directly without passing through osu.edu. Records maintained
by ohio.edu show that, over the two randomly selected days, it received 88,322 messages
on one day and 84,478 messages on the other, during the normal business hours 7:30 a.m.–
7:30 p.m. Historically, 20% of the mail goes to the College of Engineering, with the average
message size about 12K bytes. The College of Engineering does not keep detailed records,
but estimates that the direct messages to eng.ohio-state.edu is about two-and-a-half times
the traffic it receives from ohio.edu. The College of Engineering plans to replace eng.ohio-
state.edu with a newer computer and wants the new computer to have enough capacity to
handle even extreme bursts of traffic.

Provided that the rate of arrivals is reasonably steady throughout the business day, a
Poisson process is a plausible model for mailing directly to ohio.edu and directly to eng.ohio-
state.edu, because it is the result of a large number of senders acting independently. However,
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the planner should be aware that the Poisson process model is not perfect, as it does not
represent “bulk mail” that occurs when a single message is simultaneously sent to multiple
users on a list. Also, because e-mail traffic is significantly lighter at night, our conclusions
have to be restricted to business hours, to amend to the stationary increments requirement
of the Poisson process.

Two business days, with 12 h per day, amounts to 86,400 s. So the estimated arrival
rate is λ̂osu = ((88,322 + 84,478)/86,400) ≈ 2 arrivals/s (see Section 8.2 for parameter esti-

mation in a Poisson process). The standard error is only ŝe =
√

λ̂osu/86, 400 ≈ 0.005

arrivals/s, indicating a quite precise estimation of λ̂osu. The overall arrival process to
eng.ohio-state.edu is composed of the direct arrivals and those distributed by osu.edu. If
we say that each arrival to osu.edu has probability p = 0.2 of being routed to eng.ohio-
state.edu, then the arrivals to the machine through ohio.edu form a Poisson process with
rate λ̂routed = pλ̂osu = 0.4 arrivals/s. Based on speculation, the direct arrival rate to eng.ohio-
state.edu is λ̂direct = (2.5)λ̂routed = 1 arrival/s. We can assign no standard error to this esti-
mate as it is not based on data. Thus, we may want to do a sensitivity analysis over a range
of values for λ̂direct. The overall arrival process to eng.ohio-state.edu, a superposition of two
independent Poisson processes, is a Poisson process with rate λ̂eng = λ̂routed + λ̂direct = 1.4
arrivals/s. Based on the model, we can do some rough capacity planning by looking at the
probability of extreme bursts (a better model requires to model the system as a queueing
process). For example, if the new machine is capable of processing 3 messages/s, then

P (more than three arrivals/s)= 1 −
3∑

i=0

e−λ̂eng

(
λ̂eng

)i

i!
≈ 0.05

If the processing time of a message also depends on its size, then the average number of
bytes received by eng.ohio-state.edu is (12Kbytes) λ̂eng = 16.8K bytes/s, assuming the mes-
sage size is independent of the arrival process. Unfortunately, we cannot make a probability
statement about the number of bytes received, as we have no knowledge of the distribution
of the message size except for its mean. �

The next result relates a Poisson process to a uniform distribution, which provides tool for
computing the cost model of a Poisson process. Let Sn be the time of occurrence of the nth
event in a Poisson process, n = 1, 2, . . .. From property (1) of the exponential distribution
given in Section 8.2, we know that Sn has an Erlang distribution with parameters (n, λ),
n ≥ 1. If we are told that exactly n events have occurred during interval [0, t], that is,
N(t) = n, how does this information alter the joint distribution of S1, S2, . . ., Sn? This
can be answered intuitively as follows: as Poisson events occur completely randomly over
time, it postulates that any small interval of a fixed length is equally likely to contain a
Poisson event. In other words, given N(t) = n, the occurrence times S1, . . ., Sn, considered
as unordered random variables, behave like a random sample from a uniform distribution
between [0, t]. This intuition can be formalized by the following theorem.

THEOREM 8.2 Given N(t) = n, the occurrence times S1, . . ., Sn have the same distribu-
tion as the order statistics of n independent uniform random variables in the interval [0, t].

Example 8.7: Sum quota sampling

We wish to estimate the expected interarrival time of a Poisson process. To do so, we have
observed the process for a pre-assigned quota, t, and collected a sample of the interarrival
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times, X1, X2, . . ., XN(t), during interval [0, t]. Note that the sample size is a random
variable. In sum quota sampling, we use the sample mean

X̄N(t) =
SN(t)

N(t)
=

X1 + X2 + · · · + XN(t)

N(t)
, N(t) > 0

to estimate the expected waiting time, provided that N(t) > 0. An important statistical
concern is whether E[X̄N(t)|N(t) > 0] is an unbiased estimator of the expected interarrival
time, say E(X1). The key is to evaluate the conditional expectation E[SN(t)|N(t) = n].
Let (U1, . . ., Un) be a sample from the uniform distribution in the interval [0, t]. Then by
Theorem 8.2,

E(SN(t) |N(t) = n) = E[max(U1, . . ., Un)] =
∫ t

0

[
1 −

(x

t

)n]
dx=

nt

n + 1

Then we get

E[X̄N(t) |N(t) > 0] =
∞∑

n=1

E

[
Sn

n
|N(t) = n

]
P (N(t) = n |N(t) > 0)

=
∞∑

n=1

nt

(n + 1)n

[
(λt)ne−λt

n!(1 − e−λt)

]
=

1
λ

(
1 − λt

e−λt − 1

)

The fraction of the bias to the true mean, E[X1] = 1/λ, is

E[X̄N(t) |N(t) > 0] − E[X1]
E[X1]

= − λt

eλt − 1
= − E[N(t)]

eE[N(t)] − 1

The following table computes numerically the bias due to the sum quota sampling:

E[N(t)] Fraction bias E[N(t)] Fraction bias

5 −0.0339 20 −4.12E-8
10 −4.54E-04 25 −3.47E-10
15 −4.59E-06 30 −2.81E-12

This suggests that, although the sample mean generated by sample quota sampling is
downward biased, the bias tends to zero rapidly. Even for a moderate average sample size
of 10, the fraction of the bias is merely about 0.5%. �

8.2.4 Nonhomogeneous Poisson Processes
and Compound Poisson Processes

In many applications, it is pertinent to allow the arrival rate of the Poisson process to be
dependent on time t, that is, λ = λ(t). The resultant process is called the nonhomogeneous
Poisson process with rate function λ(t). For such a process, the number of events in an
interval [s, s+ t) follows a Poisson distribution with rate

∫ s + t

s
λ(u)du, and the number of

events that occur on non-overlapping intervals is independent.
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Example 8.8: Emergency 911 calls

In a study of police patrol operations in the New York City Policy Department (Green and
Kolesar, 1989), the data of 911 calls were analyzed. The study tabulated the total number
of calls to Precinct 77 in fifteen-minute intervals during June–July, 1980.

The data exhibit a strong nonhomogeneous arrival pattern of the calls: the average number
of calls decreases gradually from about 37 calls at 12:00 midnight to 9 calls at 6:00 a.m.,
and then steadily increases, though with certain periods held stable, to about 45 calls when
it approaches 12:00 midnight. Based on the arrival counts, an estimated rate function λ(t)
was obtained. The hypothesis tests based on the counts and interarrival times showed that
the nonhomogeneous Poisson process was an adequate description of the arrival process of
the 911 calls. �

Another generalization of the Poisson process is to associate each event with a random
variable (called mark): let {Yn, n ≥ 1} be a sequence of iid random variables that is also
independent of the Poisson process {N(t), t ≥ 0}. Suppose that for the nth event we associate
with it a random variable Yn, n ≥ 1, and define X(t) =

∑N(t)
n=1 Yn, t ≥ 0. Then the process

{X(t), t≥ 0} is call a compound Poisson process.

Example 8.9: Examples of compound Poisson processes

1. The Poisson process: This is a special case of the compound Poisson process since
if we let Yn ≡ 1, n ≥ 1, then X(t) = N(t).

2. Insurance risk: Suppose that insurance claims occur in accordance with a Poisson
process, and suppose that the magnitude of the nth claim is Yn. Then the cumu-
lative amount of claims up to time t can be represented by X(t).

3. Stock prices: Suppose that we observe the market price variations of a stock
according to a Poisson process. Denote Yn, n ≥ 1, as the change in the stock
price between the (n − 1)st and nth observations. Based on the random work
hypothesis of stock prices, which is a postulation developed in finance, Yn, n ≥ 1,
can be modeled as iid random variables. Then X(t) represents the total price
change up to time t. �

Statistical Inference of Poisson Processes

To apply mathematical results in a real life process, empirical data have to be collected,
analyzed, and fitted to a theoretical process of choice. Parameter estimation and hypothesis
testing are two basic statistical inference tools to extract useful information from the dataset.
This section briefly discusses statistical inference concerning the Poisson process.

Suppose that, for a fixed time interval [0, t], we observed n Poisson events at times
0 = s0 < s1 < s2 < · · · < sn < t. Since the interarrival times si − si−1, i= 1, . . ., n, form a
random sample from an exponential distribution, the maximum likelihood function of the
sample is given by

f(λ) =
n∏

i=1

(λe−λ(si − si−1))e−λ(t − sn) = λne−λt

The log maximum likelihood function L(λ) = ln f(λ) is

L(λ) = lnf(λ) = n lnλ − λt
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Solving dL(λ)/dλ = 0 yields the maximum likelihood estimate of λ as

λ̂ =
n

t
(8.4)

As the number of events n in [0, t] follows a Poisson distribution with the mean and variance
both equal to λt, λ̂ is an unbiased estimator of λ, E(λ̂) = λ, with V (λ̂) = λ

t . Clearly, the longer

the observation interval [0, t], the more precise the estimator λ̂, as sê =
√

λ̂/t decreases in t.
To test whether a process is Poisson for the data collected over a fixed interval, we

can use several well-developed goodness-of-fit tests based on the exponential distribution
of the interarrival times (see Gnedenko et al., 1969). We discuss here another simple test
(Bhat & Miller, 2002), using the relationship between the uniform distribution and the
Poisson process (see Theorem 8.2). Again assume that we have observed n Poisson events
at times 0 = s0 < s1 < s2 < · · ·< sn <t. Recall that the si, considered as unordered random
variables, are iid uniform random variables between [0, t]. Hence, Yn =

∑n
i=1 si is the sum

of n independent uniform random variables between [0, t], with E(Yn) = nt/2 and V (Yn) =
nt2/12. When n is sufficiently large,

Z =
Yn − nt

2√
nt2

12

(8.5)

is a standard normal random variable, by the central limit theorem.

Example 8.10: Testing for a Poisson process

This example is based on Lewis (1986), and the dataset was reprinted in Hand (1994). The
data were the number of times that 41 successive vehicles driving northbound on Route M1
in England passed a fixed point near Junction 13. The 40 time points (in seconds) are given
below:

12 14 20 22 41 46 80 84 85 89
97 104 105 126 132 143 151 179 185 189

194 195 213 222 227 228 249 250 251 256
259 273 278 281 285 290 291 294 310 312

Denote si as the ith observation in the above list, where t = s40 = 312 corresponds to
the passing time of the last vehicle. We wish to test the null hypothesis that this pro-
cess is Poisson. We calculate Y40 =

∑40
i=1 si = 7062 and Z = Yn−nt/2√

nt2/12
= 7062−6240√

324,480 = 1.443. The

p-value for the test is 2P (Z ≥ 1.443) = 0.149. Therefore, the dataset did not constitute
sufficient evidence to reject the null hypothesis that the underlying process is Poisson. �

8.3 Discrete-Time Markov Chains

Most real-world systems that evolve dynamically in time exhibit some sort of temporal
dependence, that is, the outcomes of successive trials in the process are not independent
random variables. Dealing with temporal dependence in such a process is a formidable task.
As the simplest generalization of the probability model of successive trials with independent
outcomes, the discrete-time Markov chain (DTMC) is a random sequence in which the
outcome of each trial depends only on that of its immediate predecessor (known as the first
order dependence).
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The notion of Markov chains originated from the Russian mathematician A.A. Markov
(1856–1922), who studied sequences of random variables with certain dependence structures
in his attempt to extend the weak law of large numbers and the central limit theorem. For
illustrative purposes, Markov in his 1906 manuscript applied his chain to the distribution of
vowels and consonants in Pushkin’s poem “Eugeny Onegin.” In the model, he assumed that
the outcome of each trial depends only on its immediate predecessor. The model turned out
to be a very accurate estimation of the frequency at which consonants occur in Pushkin’s
poem. Today, the Markov chain finds applications in diverse fields such as physics, biology,
sociology, meteorology, reliability, and many others, and proves to be the most useful tool
for analyzing practical problems.

8.3.1 Definition of Discrete-Time Markov Chains

Consider the discrete-time stochastic process {Xn, n = 0, 1, . . .} that assumes values in the
discrete state space S = {0, 1, 2, . . .}. We say the process is in state i at time n if Xn = i.
The process is called a discrete-time Markov chain (DTMC) if for all i0, i1, . . ., i, j, and n,

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . ., X1 = i1, X0 = i0) = P (Xn+1 = j|Xn = i) (8.6)

The above expression describes the Markov property, which states that to predict the
future of the process it is sufficient to know the most recently observed outcome of the
process. The right side of Equation 8.6 is called the one-step transition probability, which
represents the conditional probability that the chain undergoes a state transition from i
to j in period n. If for all i, j, and n,

P (Xn+1 = j|Xn = i) = pij

then the DTMC is said to be stationary or time-homogeneous. We shall limit our discussion
to the stationary case. Following the convention, we arrange probabilities pij in a matrix
form, P= {pij}, and call P the one-step transition matrix. Matrix P is a stochastic matrix
in the sense that

pij ≥ 0 for all i, j, and
∑

j

pij = 1 for i = 1, 2, . . . (8.7)

Note that a DTMC is completely specified by the transition matrix P and the initial
distribution a = {ai}, where ai = P (X0 = i) is the probability that the chain starts in state
i, i= 0, 1, . . ..

Several motivating examples given in Section 8.1, for example, the brand switching, social
mobility, automobile insurance, and slotted Aloha examples, are all DTMC models. Next,
we revisit some of those examples and also introduce other well-known DTMC models.

Example 8.1: A brand switching model (continued)

Let us continue our discussion on customers’ brand switching behavior, based on a model
extracted from Whitaker (1978). Whitaker defines brand loyalty as the proportion of con-
sumers who repurchase a brand on the next occasion without persuasion, and purchasing
pressure as the proportion of consumers who are persuaded to purchase a brand on the next
occasion. Denote wi and di, respectively, as the values of brand loyalty and brand pressure
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for brand i, where both di and wi are between 0 and 1 and
∑

i di = 1. To illustrate, consider
the following three-brand case:

Brand 1 Brand 2 Brand 3

Brand loyalty wi 0.30 0.60 0.90
Purchasing pressure di 0.30 0.50 0.20

In Whitaker’s Markov brand switching model, brand loyalty and brand pressure are
combined to give brand switching probabilities as follows:

pij =
{

di + (1 − di)wj i = j
(1 − di)wj i �= j

(8.8)

Here, pii, the proportion of consumers who repurchase brand i on two consecutive occasions,
includes the proportion of loyal consumers di who stay with brand i without being influenced
by purchasing pressure, and the proportion of disloyal consumers (1− di) who remain with
brand i due to purchasing pressure wi. The proportion of switching customers, pij , j �= i,
consists of the proportion of disloyal consumers (1 − di) who are subjected to purchasing
pressure wj from brand j. Applying Equation 8.8 to our dataset yields

P =

⎛
⎝0.51 0.35 0.14

0.12 0.80 0.08
0.03 0.05 0.92

⎞
⎠

This explains how we arrive at the probability table given in Example 8.1. �

Example 8.11: A random walk model

Consider a DTMC defined on the state space S = {0, 1, 2, . . ., N}, where N can be infinity,
with a trigonal transition matrix:

P =

⎛
⎜⎜⎜⎜⎜⎝

r0 p0
q1 r1 p1

q2 r2 p1
. . . . . . . . .

rN pN

⎞
⎟⎟⎟⎟⎟⎠

where qi, ri, pi ≥ 0 and qi + ri + pi = 1, for i= 1, . . ., N − 1, and r0 + p0 = 1 and rN + N = 1.
The key feature of this DTMC is that it can only move at most one position at each step.
It has the designated name random walk, as in the original article of Karl Pearson of 1905,
it was used to describe a path of a drunk who either moves one step forward, one step
backward, or stays in the same location (a more general model allows the drunk to move to
the negative integer points, or to move on the integer points of a two-dimensional space).
Since then, the random work model has been used in physics to describe the trajectories
of particle movements, in finance to depict stock price changes, in biology to study how
epidemics spread, and in operations research to model the number of customers in discrete
queues.

When r0 = 0 (hence p0 = 1), the random walk is said to have a reflecting barrier at 0, as
whenever the process hits 0, it bounces back to state 1. When r0 = 1 (hence p1 = 0), the
random walk is said to have an absorbing barrier at 0, as whenever the chain hits 0, it stays
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there forever. When N < ∞, p0 = rN = 0 (hence r0 = pN = 1), pi = p, and qi = 1 − p (hence
ri = 0) for i= 1, 2, . . ., N − 1, it becomes the well-known gambler’s ruin model. The model
assumes that a gambler at each play of the game either wins $1 with probability p or loses
$1 with probability q = 1 − p. The gambler will quit playing either when he goes broke (i.e.,
hits 0) or attains a fortune of N , whichever occurs first. Then {Xn, n ≥ 0} represents the
gambler’s fortune over time. �

Example 8.12: Success runs

Consider a DTMC on a state space {0, 1, . . ., N}, where N can be infinity, with the transition
matrix of the form:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p0 q0 0 0 . . . 0 0
p1 r1 q1 0 . . . 0 0
p2 0 r2 q2 . . . 0 0
...

...
...

...
...

...
pN−1 0 0 0 . . . rN−1 qN−1
pN 0 0 0 . . . 0 qN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where pi, ri, qi ≥ 0, pi + ri + qi = 1 for i= 1, . . ., N − 1, and p0 + q0 = pn + qn = 1. To see why
the name success runs is appropriate, consider a sequence of trials, each results in a success,
a failure, or a draw. If there have been i consecutive successes, then, the probabilities of a
failure, a draw, and a success in the next trial are pi, ri, and qi, respectively. Whenever there
is a failure, the process starts over with a new sequence of trials. Then {Xn, n = 1, 2, . . .}
forms a Markov chain, where Xn denotes the length of the run of successes at trial n.

The success-run chain is a source of rich examples and we consider two here. Suppose
that customer accounts receivable in a firm are classified each month into four categories:
current (state 1), 30 to 60 days past due (state 2), 60 to 90 days past due (state 3), and over
90 days past due (state 4). The company estimates the month-to-month transition matrix
of customer accounts to be

P =

⎛
⎜⎜⎝

0.9 0.1 0 0
0.5 0 0.5 0
0.3 0 0 0.7
0.2 0 0 0.8

⎞
⎟⎟⎠

Then {Xn, n ≥ 0} is a success-run chain, where Xn is the status of an account in month n.
Another application of the success-run chain is in reliability. Let us assume that a com-

ponent has a discrete lifetime Y with the distribution P (Y = i) = ai, i= 1, 2, . . .. Starting
with a new component, suppose that the component in service will be replaced by a new
component either when it fails or when its age surpasses a predetermined value T , whichever
occurs first. These types of policies are called age replacement policies. The motivation of
instituting age replacement policies is to reduce unplanned system failures, as unplanned
replacements disrupt normal operations of the system and are more costly then planned
replacements. Let Xn be the age of the component in service at time n, with state space
S = {0, 1, . . ., T}. We have

P (Xn+1 = 0 |Xn = i) = P (Y = i + 1 |Y ≥ i + 1) =
ai+1∑∞

k=i+1 ak
≡ pi, i = 0, 1, . . ., T
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where pi represents that an i-period old component fails by the end of the period. Therefore,

P =

⎛
⎜⎜⎜⎜⎜⎝

p0 1 − p0 0 0 . . . 0
p1 0 1 − p1 0 . . . 0
p2 0 0 1 − p2 . . . 0
...

...
...

...
...

1 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

It can be easily seen that this is a success-run chain. �

Example 8.4: A slotted ALOHA model (continued)

The slotted ALOHA described in Example 8.4 can be modeled as a DTMC {Xn, n ≥ 0} on
S = {0, 1, . . ., N}, where N is the total number of users and Xn is the number of backlogged
users at the beginning of the nth slot. The transition probabilities are given by (see Kulkarni,
1995):

pi,i−1 = P (None of N −Xn users transmit, exactly one of Xn users retransmits)
= (1 − p)N−iir(1 − r)i−1,

pi,i+1 = P (Exactly one of N −Xn users transmits, at least one of Xn users retransmits)
= (N − i)p(1 − p)N−i−1(1 − (1 − r)i),

pi,i+j = P (Exactly j of N −Xn users transmit)

=
(N − i)!

j!(N − i− j)!
pj(1 − p)N−i−j , 2 ≤ j ≤N − i,

pi,i = P

(
Exactly one of N − Xn users transmits, none of Xn users retransmit; or
none of N − Xn users transmit, 0 or more than one of Xn users retransmit

)

= (N − i)p(1 − p)N−i−1(1 − r)i + (1 − p)N − i(1 − ir(1 − r)i−1). �

8.3.2 Transient Analysis

Transient analysis of a DTMC is concerned with the performance measures that are functions
of the time index n. These performance measures are probability statements about the pos-
sible realization of a DTMC at time n. We present two such performance measures. The
first one is the conditional probability that the chain goes from i to j in n transitions:

p
(n)
ij ≡ P (Xn = j |X0 = i), n = 1, 2, . . . (8.9)

They are called the n-step transition probabilities. In the matrix form, those probabilities
are denoted by P(n) = {p

(n)
ij }, n = 1, 2, . . .. For example, in the brand switching model of

Example 8.1, p
(5)
13 is the conditional probability that a consumer will buy brand 3 in week 5,

given he bought brand 1 in week 0. The second performance measure of interest is

a
(n)
j ≡P (Xn = j), n = 1, 2, . . . (8.10)

which is the unconditional probability that the DTMC is in state j after n steps, without
the knowledge of the initial state. For instance, in the brand switching model, a

(5)
3 is the

unconditional probability that a customer will purchase brand 3 in week 5, regardless of his
choice in week 0.
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Next, we present the formulas to calculate the performance measures given in Equations
8.9 and 8.10. The basic equations to evaluate Equation 8.9 are the Chapman-Kolmogorov
(CK) equations:

p
(m+n)
ij =

∞∑
k=0

p
(m)
ik p

(n)
kj (8.11)

The equations state that from state i, for the chain to be in state j after m + n steps, it
must be in some intermediate state k after m steps and then move from k onto j during
the remaining n steps. The CK equations allow us to construct the convenient relationship
for the transition probabilities between any two periods in which the Markov property
holds. From the theory of matrices we recognize that Equation 8.11 can be expressed as
P(m+n) =P(m) · P(n). By iterating this formula, we obtain

P(n) = P(n−1) · P = P(n−2) · P · P = · · · = P · P · · ·P = Pn (8.12)

In words, the n-step transition matrix P(n) can be computed by multiplying the one-step
transition matrix P by itself n times.

To obtain a
(n)
j defined in Equation 8.10, we condition on the state of the process in period

n − 1:

a
(n)
j = P (Xn = j) =

∑
i

P (Xn = j |Xn−1 = i)P (Xn−1 = i) =
∑

i

pija
(n−1)
i (8.13)

or, equivalently, a(n) =a(n−1)P. Iteratively using this relationship, we get

a(n) = a(n−1)P = a(n−2)P2 = · · · = a(0)Pn (8.14)

Example 8.1: A brand switching model (continued)

Let a(0) = (0.30, 0.30, 0.40) be the brand shares in week 0. Then the brand shares in week 2,
computed by Equation 8.14, are

a(2) = a(0)P2 = (0.30, 0.30, 0.40)

⎛
⎝0.51 0.35 0.14

0.12 0.80 0.08
0.03 0.05 0.92

⎞
⎠

2

= (0.159, 0.384, 0.457)

For example, the share of brand 3 in week 2 is a
(2)
3 = 0.457. To obtain p

(2)
23 , the proportion

of consumers who bought brand 2 in week 0 and buy brand 3 in week 2, we use Equation
8.12 and obtain:

P(2) = P2 =

⎛
⎝0.51 0.35 0.14

0.12 0.80 0.08
0.03 0.05 0.92

⎞
⎠

2

=

⎛
⎝0.306 0.466 0.228

0.160 0.686 0.154
0.049 0.096 0.855

⎞
⎠ (8.15)

Then p
(2)
23 = 0.154. �

Example 8.12: Success runs (continued)

Consider a special case of the success-run model where N = ∞ and

pi0 = pi = p, pi,i + 1 = qi = q = 1 − p, i= 0, 1, . . ., N, and ri = 0, i= 1, . . ., N

Let us compute p
(n)
0j . Although doable, it would be cumbersome to first compute Pn and

then identify the appropriate terms p
(n)
0j from Pn. A better way is to explore the special
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structure of the transition matrix. Toward this end, we directly use the CK equations 8.11
and get

p
(n)
00 =

∞∑
k=0

p
(n−1)
0k pk0 = p

∞∑
k=0

p
(n−1)
0k = p

Thus p
(n)
00 = p for all n ≥ 1! Using the similar idea,

p
(n)
01 =

∞∑
k=0

p
(n−1)
0k pk1 = p

(n−1)
00 · p01 = pq =

{
q if n = 1
pq if n > 1

Let us now compute p
(n)
0j , for j > 1. If j > n, then p

(n)
0j = 0, as it takes a minimum of j steps

to move from 0 to j. For j ≤n, we can recursively compute

p
(n)
0j =

∞∑
k=0

p
(n−1)
0k pkj = qp

(n−1)
0,j−1 = q2p

(n−2)
0,j−2 = · · · = qj−1p

(n−j+1)
01 =

{
qj if n = j
pqj if n > j

where in the last equality, we used the expression for p
(n)
01 . To verify the correctness of the

above expressions, we find that

∞∑
j=0

p
(n)
0j =

n−1∑
j=0

pqj + qn =
p(1 − qn)

1 − q
+ qn = 1

8.3.3 Classification of States

It is often necessary to obtain the limiting distribution of a DTMC as n → ∞, which tells us
how the DTMC behaves in a long-run. Specifically, we consider the limiting distributions of
P(n), as n → ∞. It turns out that the existence and uniqueness of such a limiting distribution
depend on the types of DTMCs. To understand possible complications that may arise in
the limiting behavior of a DTMC, we consider, in turn, the following two-state DTMCs on
the state space S = {1, 2}:

P1 =
(

0.7 0.3
0.4 0.6

)
, P2 =

(
1 0
0 1

)
, P3 =

(
0 1
1 0

)
, P4 =

(
0.5 0.5
0 1

)
(8.16)

For the DTMC governed by matrix P1, simple matrix multiplications show that

P(2)
1 = P1 · P1 =

(
0.7 0.3
0.4 0.6

)(
0.7 0.3
0.4 0.6

)
=
(
0.61 0.39
0.52 0.48

)

P(4)
1 = P(2)

1 · P(2)
1 =

(
0.61 0.39
0.52 0.48

)(
0.61 0.39
0.52 0.48

)
=
(

0.575 0.425
0.567 0.433

)

P(8)
1 = P(4)

1 · P(4)
1 =

(
0.575 0.425
0.567 0.433

)(
0.575 0.425
0.567 0.433

)
=
(

0.572 0.428
0.570 0.430

)

Observe that P(4)
1 is almost identical to P(8)

1 , and they have almost identical row values.
This suggests that there exist values πj , j = 1, 2, such that

lim
n→∞

p
(n)
ij = πj , j = 1, 2
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In this case, the limiting probability p
(n)
ij is independent of i. This DTMC is an example

of the regular Markov chain, where a Markov chain is said to be regular if for some n ≥ 1,
P(n) has all positive entries. It turns out that the limiting distribution exists for any regular
DTMC.

Now, the DTMC associated with P2 always returns to the same initial state. Indeed,
both states are absorbing states as once entered they are never left. Since P(n)

2 =P2 for all
n, the limit of p

(n)
ij , as n tends infinity, exists, but it depends on the initial state.

Next, observe that the DTMC governed by P3 alternates between states 1 and 2, for
example, p

(n)
11 = 0 when n is odd, and p

(n)
11 = 1 when n is even. As both states in the DTMC

are periodic, P(n)
3 does not converge to a limit as n → ∞.

Finally, for the DTMC governed by transition matrix P4, we get

lim
n→∞

P(n)
4 = lim

n→∞

(
0.5n 1 − 0.5n

0 1

)
=
(

0 1
0 1

)

Here, state 1 is transient and the chain is eventually absorbed by state 2. Intuitively, a
state is transient if, starting from the state, the process will eventually leave the state and
never return.

Those four transition matrices illustrate four distinct types of convergence behaviors of
DTMCs. To sort out various cases, we must first be able to classify the states of a DTMC.
It is worth noting that the calculations of the transient performance measures hold to all
DTMCs, regardless of the classification of states.

Let us now classify states in a DTMC, using the transition matrices P1 to P4 given in
Equation 8.16 to illustrate the concepts. State j is said to be accessible from state i if,
starting from state i, there is a positive probability that j can be reached from i in a finite
number of transitions, that is, p

(n)
ij > 0 for some n ≥ 0. States i and j are said to communicate

if they are accessible to each other. For instance, the states in P1 or P3 communicate since
each state can be accessed by another in one transition: p12 > 0 and p21 > 0. However, in P2
or P4, the two states do not communicate.

We can partition the states of a Markov chain into equivalent classes, where each equiv-
alent class contains those states that communicate with each other. For example, there is a
single class in the DTMC governed by P1 or P3, whereas there are two classes, each with a
single state, in the DTMC governed by P2 or P4. It is possible, as illustrated by P4, that
the process starts in one class and enters another class. However, once the process leaves a
class, it cannot return to that class, or else the two classes should be combined to form a
single class. The Markov chain is said to be irreducible if all the states belong to a single
class, as in the case of P1 or P3.

State i is said to be transient if limn→∞ p
(n)
ii = 0 and recurrent if limn→∞ p

(n)
ii > 0. Intu-

itively, a state is transient if, starting from the state, the process will eventually leave the
state and never return. In other words, the process will only visit the state a finite number
of times. A state is recurrent if, starting from the state, the process is guaranteed to return
to the state again and again, in fact, infinitely many times. In the example of P4, state 1
is transient and state 2 is recurrent. It turns out that for a finite-state DTMC, at least one
state must be recurrent, as seen from P1 to P4.

If a state is recurrent, then it is said to be positive recurrent if, starting from the state,
the expected number of transitions until the chain return to the state is finite. It can be
shown that in a finite-state DTMC all the recurrent states are also positive recurrent. In an
infinite-state DTMC, however, it is possible that a recurrent state is not positive recurrent.
Such a recurrent state is called null recurrent.
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State i is said be periodic if p
(n)
ii > 0 only when n = d, 2d, 3d, . . ., and p

(n)
ii = 0 otherwise.

A state that is not periodic is called aperiodic. In P3, both states have period d = 2, since
the chain can reenter each state only at steps 2, 4, 6, and so on. The states in the other
three matrices are all aperiodic.

It can be shown that recurrence, transientness, and periodicity are all class properties;
that is, if state i is recurrent (positive recurrent, null recurrent, transient, periodic), then all
other states in the same class of state i inherit the same property. The claim is exemplified
by matrices P1 to P4.

8.3.4 Limiting Probabilities

The basic limiting theorem of a DTMC can be stated as follows.

THEOREM 8.3 For a DTMC that is irreducible and ergodic (i.e., positive recurrent and
aperiodic), limn→∞p

(n)
ij , j ≥ 0, exists and is independent of initial state i. Let limt→∞p

(n)
ij , =

πj, j ≥ 0. Then, π = (π0, π1, . . .) is the unique solution of

πj =
∞∑

i=0

πipij , j = 0, 1, . . . (8.17)

∞∑
j=0

πj = 1 (8.18)

Equation 8.17 can be intuitively understood by the CK equations: recall that

p
(n)
ij =

∑
k

p
(n−1)
ik pkj , for all i, j, n

If p
(n)
ij indeed converges to a value that is independent of i, then by letting n approach to

infinity on both sides of the above equation, and assuming that the limit and summation
operations are interchangeable, we arrive at Equation 8.17.

Of the four matrices P1–P4, only P1 represents an irreducible ergodic DTMC. Matrix
P2 or P4 has two classes and hence is not irreducible, and matrix P3 is periodic and hence
is not ergodic.

Denote µjj as the mean recurrent time of state j, which is defined as the expected number
of transitions until the process revisits state j. For example, in the brand switching example,
µjj is the expected number of weeks between successive purchases of brand j, j = 1, 2, 3. It
turns out that µjj is intimately related to πj via the equation

µjj =
1
πj

, j ≥ 0 (8.19)

The relationship makes an intuitive sense: since, on average, the chain will spend one unit
of time in state j on every µjj units of time, the proportion of time it stays in state j, πj ,
must be 1/µjj .

Note that in a finite-state DTMC, one of the equations in 8.17 is redundant, as we only
need Nequations to obtain Nunknowns. This is illustrated by the following two examples.
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Example 8.5: A model of social mobility (continued)

The DTMC is obviously irreducible and ergodic. Based on the estimated transition prob-
abilities shown in the table of Example 8.5, the limiting probabilities (π1, π2, π3) can be
obtained by solving

π1 = 0.45π1 + 0.05π2 + 0.01π3

π2 = 0.48π1 + 0.70π2 + 0.50π3

π1 + π2 + π3 = 1

The solution is π1 = 0.07, π2 = 0.62, π3 = 0.31. This means, regardless of the current occupa-
tion of a family, in a long-run, 7% of its descendants holds upper-class jobs, 62% middle-class
jobs, and 31% lower-class jobs. Now, given a family currently holds an upper-class job, it
takes in average µ11 = 1/π1 = 14.29 generations for the family to hold an upper-class job
again! �

Example 8.2: Automobile insurance (continued)

In the Bonus Malus system discussed in Example 8.2, suppose that the number of yearly
claims by a policyholder follows Poisson with rate 0.5, that is, P (Y = n) = e−0.5n0.5

n! ≡ θn.
Then θ0 = .6065, θ1 = .3033, θ2 = .0758, and

∑∞
n=3 θn = 0.0144. Based on the Bonus Males

table given in Example 8.2, we obtain the transition matrix

P =

⎛
⎜⎜⎝

.6065 .3033 .0758 .0144

.6065 .0000 .3033 .0902

.0000 .6065 .0000 .3935

.0000 .0000 .6065 .3935

⎞
⎟⎟⎠

The chain is irreducible and ergodic. The limiting distribution satisfies the system of
equations

π1 = .6065π1 + .6065π2

π2 = .3033π1 + .6065π3

π3 = .0758π1 + .3033π2 + .6065π4

4∑
i=1

πi = 1

The solution is π1 = 0.3692, π2 = 0.2395, π3 = 0.2103, and π4 = 0.1809. Based on the limiting
distribution, we can compute the average annual premium paid by a policyholder as

500π1 + 600π2 + 800π3 + 1000π4 = $677.44 �

Unfortunately, not all Markov chains can satisfy the conditions given in Theorem 8.3.
What can be said about the limiting behavior of such Markov chains? It turns out that it
depends on different cases, as explained by the following remark.

Remark 8.1

1. The DTMC with irreducible, positive recurrent, but periodic states: In this case, π
is still a unique nonnegative solution of Equations 8.17 and 8.18. But now πj must
be understood as the long-run proportion of time that the process is in state j. An
example is the DTMC associated with P3; it has the unique solution π = (1/2, 1/2).
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The long-run proportions are also known as the stationary distribution of the
DTMC. The name comes from the fact that if the initial distribution of the chain
is chosen to be π, then the process is stationary in the sense that the distribution
of Xn remains the same for all n. It can be shown that when a limiting distribution
exists, it is also a stationary distribution.

2. The DTMC with several closed, positive recurrent classes: In this case, the transition
matrix of the DTMC takes the form

P =
(
PA 0
0 PB

)

where the subprocess associated with either PA or PB itself is a Markov chain.
Matrix P2 is an example of such a case. A slightly more general example is

P =

⎛
⎝ 0.5 0.5 0

0.75 0.25 0
0 0 1

⎞
⎠ (8.20)

with PA =
(

0.5 0.5
0.75 0.25

)
and PB = (1). It can be easily obtained that

P(n) =

(
P(n)

A 0
0 P(n)

B

)
(8.21)

which means that each class is closed, that is, once the process is in a class, it
remains there thereafter. In effect, the transition matrix is reduced to two irreducible
matrices PA and PB . From Equation 8.21, it follows that, for the matrix given in
Equation 8.20,

lim
n→∞

P(n) =

⎛
⎝πA

1 πA
2 0

πA
1 πA

2 0
0 0 πB

3

⎞
⎠

where we can obtain (πA
1 , πB

2 ) = (1/3, 2/3) in the usual way using Equations 8.17 and
8.18. We of course have πB

3 = 1. In contrast to the irreducible ergodic DTMC, where
the limiting distribution is independent of the initial state, the DTMC with several
closed, positive recurrent classes has the limiting distribution that is dependent on
the initial state.

3. The DTMC with both recurrent and transient classes: The DTMC associated with
P4 is an example of such a case. In general, there may be several transient and
several recurrent classes. In this situation, we often seek the probabilities that the
chain is eventually absorbed by different recurrent classes. We illustrate the method
using the well-known gambler’s ruin problem described in Example 8.11.

Example 8.13: The gambler’s ruin

The DTMC associated with the gambler’s ruin problem has the transition matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
q 0 p 0 · · 0
0 q 0 p 0 · 0
...

...
...

...
...

...
...

0 0 · · q 0 p
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.22)
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The DTMC has three classes, C1 = {0}, C2 = {N}, and C3 = {1, 2, . . ., N − 1}, where C1 and
C2 are recurrent classes and C3 is a transient class. Starting from any state i, we want to
compute fi, the probability that the chain is absorbed by C2 (i.e., the gambler attains a
fortune of N before being ruined), for i= 0, 1, . . ., N. Conditioning on the outcome of the
first play, we obtain a system of linear equations for the fi:

f0 = 0
fi = pf i+1 + qf i−1, i = 1, 2, . . ., N − 1

fN = 1

The solution of the above system of linear equations is given by:

fi =

⎧⎪⎨
⎪⎩

1 − (q/p)i

1 − (q/p)N
p �= 1/2

i

N
p = 1/2

i = 0, 1, . . ., N

An application of the gambler’s ruin model in drug testing is given by Ross (2003). �

4. The irreducible DTMC with null recurrent or transient states: This case is only
possible when the state space is infinite, since any finite-state, irreducible DTMC
must be positive recurrent. In this case, neither the limiting distribution nor the
stationary distribution exists. A well-known example of this case is the random
walk model discussed in Example 8.13. It can be shown (see, for example, Ross,
2003) that when N = ∞, p0 = 1, and pi = qi = 1/2 for i≥ 1, the Markov chain is null
recurrent. If N = ∞, p0 = 1, and pi = p, > 1 − p = q = qi for i≥ 1, then the Markov
chain is transient.

8.3.5 Statistical Inference of Discrete-Time Markov Chains

In this section, we briefly discuss parameter estimation and hypothesis testing issues for
DTMCs. Further references on the subject can be found in Bhat & Miller (2002), Basawa &
Prakasa Rao (1980), and references therein.

We first consider how to estimate the entries in transition matrix P= {pij}, based on
data collected. Suppose we have observed a DTMC on a finite state space S = {0, 1, . . ., N}
for n transitions. Let ni be the number of periods that the process is in state i, and nij

the number of transitions from i to j, with ni =
∑N

j=0 nij , i= 1, 2, . . ., N , and
∑N

i=0 ni = n.
For each state i, the transition counts from this state to other states, (ni0, ni1, . . ., niN ),
can be regarded as a sample of size ni from a multinomial distribution with probabilities
(pi0, pi1, . . ., piN ), i= 0, 1, . . .,N. To obtain the maximum likelihood function of P, we also
have to take into account that the values (n0, n1, . . . , nN ) are random variables. Whittle
(1955) shows that the maximum likelihood function has to include a correction factor A,
and takes the form

f(P) = A

N∏
i=0

ni!
ni0!ni1! · · ·niN !

pni0
i0 pni1

i1 · · ·PniN

iN
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where A turns out to be independent of P. Therefore, the log likelihood function L(P) is
given by

L(P) = ln f(P) = lnB +
N∑

i=0

N∑
j=0

nij ln pij

= lnB +
N∑

i=0

⎡
⎣N−1∑

j=0

nij ln pij + niN ln

⎛
⎝1 −

N−1∑
j=0

pij

⎞
⎠
⎤
⎦

where B contains all the terms independent of P. For each i, we take the derivatives of
L(P) with respect to pij for j = 0, 1, . . ., N − 1 and set the resultant equations to zero:

∂L(P )
∂pij

=
nij

pij
− niN

1 −
∑N−1

j=0 pij

= 0, j = 0, 1, . . ., N − 1

Solving the above equations yields the maximum likelihood estimator of pij as

p̂ij =
nij

ni
, i, j = 0, 1, . . ., N (8.23)

Example 8.14: Voters’ attitude changes

Anderson (1954) used the data collected by the Bureau of Applied Social Research in Erie
County, Ohio, in 1940 (Lazarsfeld et al., 1948), in a study of voters’ attitude changes. The
Bureau interviewed 600 voters from May to August on their voting preferences,
D (Democrat), R (republican), and DK (Do not know or other candidates). Among the 600
people interviewed, 445 people responded to all six interviews. In that year, the Republic
Convention was held between the June and July interviews, and the Democratic Convention
was held between the July and August interviews. The transition counts for pairs of three
successive interviews are given below.

May–June June–July July–August

R D DK Total R D DK Total R D DK Total

R 125 5 16 146 R 124 3 16 143 R 146 2 4 153
D 7 106 15 128 D 6 109 14 127 D 6 111 4 121
DK 11 18 142 171 DK 22 9 142 173 DK 40 36 96 172

445 445 445

Using Equation 8.23, we obtain the estimates of the three sets of transition probabilities as:

May–June June–July July–August

R D DK R D DK R D DK

R 0.856 0.034 0.110 R 0.867 0.021 0.112 R 0.961 0.013 0.026
D 0.055 0.828 0.117 D 0.047 0.845 0.108 D 0.050 0.917 0.033
DK 0.064 0.105 0.831 DK 0.127 0.052 0.821 DK 0.233 0.209 0.558

One question pertinent in the study was whether the voters’ attitudes had changed due
to the political events during the period under consideration. If no attitude changes were
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detected, the Markov chain is stationary, and hence the three sets of transition counts should
be pooled to give a single estimate of the transition matrix. We shall revisit this issue later.

�

We now discuss the likelihood ratio test for the stationarity of transition matrices. Let
pt

ij = P (Xt+1 = j|Xt = i) be the one-step transition probability from state i to state j at
time t. Our null hypothesis, H0, is pt

ij = pij , for t = 1, . . ., T . To test H0, denote nt
ij as the

transition count from i to j in period t. For example, in the voters’ attitude dataset, let t = 1,
2, 3 represent respectively May, June, and July, and states 1, 2, 3 correspond to D, R, and
DK. Then n1

12 = 5 means that 5 people changed their voting preferences from a Republican
candidate to a Democratic candidate from May to June. Under H0, the likelihood ratio test
statistic follows a χ2 distribution with (T − 1)N(N − 1) degrees of freedom (see Bhat &
Miller, 2002, pp. 134–135):

χ2
(T−1)N(N−1) = 2

T∑
t=1

N∑
i=0

N∑
j=0

nt
ij ln

pt
ij

pij
(8.24)

As discussed, the maximum likelihood estimates of pt
ij and pij are given by

p̂t
ij =

nt
ij∑N

j=0 nt
ij

, t = 1, 2, . . ., T, p̂ij =

∑T
t=1 nt

ij∑T
t=1

∑N
j=0 nt

ij

=
nij

ni

Example 8.14: Voters’ attitude changes (continued)

We wish to test the stationarity of the three transition matrices, which tells us whether
the voters exhibited the same behavior across May to August. If indeed the process were
stationary, the three sets of transition counts can be pooled to form one set of transition
counts. The pooled transition counts and the estimate of the transition matrix for the pooled
data are given in the following table:

nij R D DK Total p̂ij R D DK

R 395 10 36 441 R 0.896 0.023 0.081
D 19 326 33 378 D 0.050 0.862 0.088
DK 73 63 380 516 DK 0.141 0.122 0.737

1335

Under H0, the χ2 statistic given in Equation 8.24 has (3− 1) · 3 · (3 − 1) = 12 degrees
of freedom. Using the three sets of transition probabilities computed in Example 8.14
along with the above estimated transition probabilities for the pooled data, we obtain
χ2

12 = 97.644. As P (χ2
12 > 97.644) < 0.001, we conclude that there was sufficient evidence to

support the claim that the voters’ attitudes had been affected by political events. �

8.4 Continuous-Time Markov Chains

In a DTMC, the process stays in a state for a unit of time and then possibly makes a
transition. However, in many practical situations the process may change state at any point
of time. One type of model that is powerful to analyze a continuous-time stochastic system
is the continuous-time Markov chain (CTMC), which is similar to the DTMC but assumes
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that the sojourn time of the process in each state is a state-dependent exponential random
variable, independent of all else.

8.4.1 Definition of Continuous-Time Markov Chains

We call a continuous-time stochastic process {X(t), t≥ 0} with state space S = {0, 1, . . .} a
continuous-time Markov chain if for all i, j, t, and s,

P (X(t + s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s) = P (X(t + s) = j|X(s) = i) (8.25)

As in the definition of the DTMC, Equation 8.25 expresses the Markov property, which
states, to predict the future state of the process, it is sufficient to know the most recently
observed state. Here, we only consider the stationary, or time-homogeneous, CTMC, that
is, the CTMC with its transition probability P (X(t + s) = j|X(s) = i) depending on t but
not on s, for any i, j, s, and t. We write

pij(t) ≡ P (X(t + s) = j|X(s) = i)

We take the convention to arrange the probabilities pij(t) in the form of a matrix,
P(t) = {pij(t)}, which shall be called the transition matrix. Note that P(t) depends on
t, that is, a different t specifies a different transition matrix. For each t, P(t) is a stochastic
matrix in the sense defined in Equation 8.7. As in the DTMC case, the transition matrix of
the CTMC satisfies the Chapman–Kolmogorov (CK) equations:

P(s + t) = P(s) · P(t) (8.26)

How do we check whether a stochastic process is a CTMC? Directly examining the Markov
property Equation 8.25 of the system is not practical and yields little insight. A more direct
construction of a CTMC is via a jump process with exponentially distributed sojourn times
between successive jumps. For this, consider a stochastic process evolving in the state space
S = {0, 1, . . .} as follows: (1) if the system enters state i, it stays there for an exponentially
distributed time with rate νi, independent of all else; (2) when the system leaves state i, it
makes a transition to state j �= i with probability pij , independent of how long the system
has stayed in i. By convention, the transition from a state to itself is not allowed. Define
X(t) as the state of the system at time t in the jump process described above. Then it can
be shown that {X(t), t ≥ 0} is a CTMC. As such, a CTMC can be described by two sets of
parameters: exponential sojourn time rates {νi} and transition probabilities {pij , j �= i}.

Another view of a CTMC as a jump process is as follows: when the process is in state
i, it attempts to make a jump to state j after a sojourn time Tij , j ≥ 0, where Tij fol-
lows an exponential distribution with rate qij , independent of all else. The process moves
from i to j if Tij happens to be the smallest among all the sojourn times Tik, k �= i,
that is, Tij = Ti = mink �=i{Tik}. Then, by properties (2) and (3) of the exponential dis-
tribution (see Section 8.2), Ti follows the exponential distribution with rate

∑
k �=i qik, and

P (Tij = Ti) = qij/
∑

k �=i qik.
Let us define

νi =
∑
k �=i

qik, pij =
qij∑

k �=i qik
, i = 0, 1, . . ., j �= i (8.27)

The preceding expressions mean that a CTMC can also be represented by a set of expo-
nential rates qij , j �= i, which shall be referred to as the transition rates hereafter. For
convenience, we define

qii = −νi = −
∑
k �=i

qik, i = 0, 1, . . .
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Then we can arrange all the rates by a matrix, Q= {qij}. Matrix Q is known as the infinites-
imal generator (or simply, the generator) of a CTMC. Supplemented by the initial distribu-
tion of the process, namely, a= {aj}, where aj = P (X(0) = j), j ≥ 0, Q completely specifies
the CTMC.

Example 8.15: A two-component cold standby system

A system has two components, only one of which is used at any given time. The standby
component will be put in use when the online component fails. The standby component
cannot fail (thus the name cold standby). The uptime of each component, when in use,
is an exponential random variable with rate λ. There is a single repairman who repairs a
breakdown component at an exponential rate µ.

Let X(t) denote the number of failed components at time t; then X(t) can take values
0, 1, or 2. It is not difficult to see that {X(t), t ≥ 0} is a DTMC with the parameters

ν0 = λ, ν1 = λ + µ, ν2 = µ,

p01 = p21 = 1, p10 =
µ

λ + µ
, p12 =

λ

λ + µ

From Equation 8.27, we obtain the infinitesimal generator Q of the CTMC as

Q =

⎛
⎝−λ λ 0

µ −(λ + µ) λ
0 −µ µ

⎞
⎠

�

8.4.2 Birth and Death Processes and Applications

The birth and death process is a CTMC with state space S = {0, 1, 2, . . .}, where the state
represents the current number of people in the system, and the state changes when either
a birth or a death occurs. More specifically, when the population size is i, a new arrival
(birth) enters the system at an exponential rate λi, i= 0, 1, . . ., and a new departure (death)
leaves the system at an exponential rate µi, i= 1, 2, . . .. The infinitesimal generator of the
birth and death process is

Q =

⎛
⎜⎜⎜⎝

−λ0 λ0 0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 0 · · ·
0 µ2 −(λ1 + µ1) λ2 0 · · ·
...

...
...

...
...

...

⎞
⎟⎟⎟⎠ (8.28)

As seen, the key feature of the birth and death process is that, at any state, the process
can only jump to an adjacent state of that state. The Poisson process is an example of the
birth and death process, in which births occur at a constant rate λ and death rates are
all 0. The cold standby reliability system is another example. The birth and death process
may also be viewed as the continuous counterpart of the random walk model discussed in
Example 8.11.

The study of the birth and death process was started in the second decade of the twentieth
century, with its roots in biology. The investigations by the Dutch scientist A.K. Erlang on
traffic of telephone networks also contributed to the development of the theory of the birth
and death process and its application in queueing theory. We shall illustrate the use of a
fundamental result credited to Erlang, the Erlang C formula, in the following example.
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Example 8.16: A model of tele-queue: the Erlang C formula

The fundamental challenge for efficient inbound call center operations is to strike a correct
balance between supply (the numbers of agents and trunks) and demand (the random and
time varying incoming calls). The call center needs to maximize the utilization of its agents,
while keeping a caller waiting time to an acceptable minimum. Gans et al. (2003) give a
comprehensive review of queueing models used in call center operations. One of the simplest
yet widely used model to evaluate a call center’s performance is the Erlang C model that
originated from A.K. Erlang. When Erlang worked for the Copenhagen Phone Company,
he used the model to calculate the fraction of callers in a small village who had to wait
because all the lines were in use.

By the queueing notation, Erlang C is an M/M/s queue, which is a birth and death
process. The model assumes that the arrival process is Poisson with rate λ, service times
are iid exponential with rate µ, and there are s agents to answer calls. Erlang C has its
parameters specified as

λi = λ, i ≥ 0, µi =
{

iµ if 0 < i ≤ s
sµ if i > s

(8.29)

The death rate µi is understood as: when 0< i≤ s, i(≤s) agents are busy, and a caller
departs the center when one of the i agents finishes service. Hence the service rate is is.
When i≥ s, all s agents are busy and they serve at an aggregated rate sµ. We will revisit
the model and discuss its solution methods in the subsequent sections. �

Erlang C has two drawbacks. First, it assumes that the system has an infinite number of
trunks so a caller who cannot be answered immediately would not be blocked. In reality, a
call center has a finite number of lines, and a caller will be blocked (i.e., get busy signals)
when all the lines are occupied. Second, it does not take customer abandonments into
account. Empirical data show that a significant proportion of callers abandon their lines
before being served (Gans et al., 2003). The next model, Erlang A, incorporates both busy
signals and abandonment in model construction.

Example 8.17: The Erlang A model

In this model, the arrival process is assumed to be Poisson and service times are iid expo-
nential. There are s agents and k trunks, s≤ k. The maximum number of calls the system
can accommodate is k and an incoming call will get busy signals if all k lines are occupied.
Patience is defined as the maximal amount of time that a caller is willing to wait for service;
if not served within this time, the caller deserts the queue. The queueing model associated
with Erlang A is the M/M/s/k + M queue, where the +M notation means that patience
is iid exponentially distributed, say with rate θ. The M/M/s/k + M model is again a birth
and death process with the transition rates

λi = λ i = 0, . . ., k − 1
µi = min{i, s}µ + max{i − s, 0}θ i = 1, . . ., k

(8.30)

To understand the departure rate µi, note that the first term min{i, s}µ is the service
completion rate, bearing a similar explanation as in the Erlang C model. The second term
max{i− s, 0}θ is the abandonment rate when there are i callers in the system, as the number
of callers waiting in queue is max{i− s, 0}, and each caller in queue abandons the line at
an exponential rate θ. �
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8.4.3 Transient Analysis

Transient analysis of a CTMC is concerned with the distribution of X(t) for a finite t. Since
if we know P(t) = {pij(t)}, we can compute the distribution of X(t) by

P (X(t) = j) =
∞∑

i=0

pij(t)ai

where {ai} is the distribution of X0, it suffices to know {pij(t)}. There are several ways
to compute {pij(t)}, and we present two of them, the uniformization and Kolmogorov dif-
ferential equation methods. While the first one is straightforward for numerical compu-
tation, the second one is mathematically more structured. Let us consider them in turn.
The uniformization method needs the condition that the νi in the CTMC is bounded. For
example, the condition holds for a finite-state CTMC. Let ν be any finite number such
that maxi{νi} ≤ ν <∞. Intuitively, what this technique does is to insert fictitious transi-
tions from a state to itself so that, with both the real and fictitious transitions, the CTMC
changes states at a constant rate ν, regardless of the state it is in, where ν is a uniform
upper bound on νi for any i. Let matrix P̂= {p̂ij} be defined as

p̂ij =

⎧⎨
⎩

1 − νi

ν
if i = j

qij

ν
if i �= j

(8.31)

Clearly, P̂ is a stochastic matrix. The following is the key result, which gives the distri-
bution P(t):

P(t) =
∞∑

k=0

e−νt (νt)k

k!
P̂k, t ≥ 0 (8.32)

Example 8.18:

Suppose that the infinitesimal generator of a CTMC is

Q =

⎛
⎜⎜⎝

−5 2 3 0
4 −6 2 0
0 2 −4 2
1 0 3 −4

⎞
⎟⎟⎠

Since qii = −νi, we have ν0 = 5, ν1 = 6, ν3 = 4, and ν2 = 4. Hence, we can choose ν = max{5,
6, 4, 4} = 6. The uniformized transition matrix P̂ becomes

P =

⎛
⎜⎜⎝

1/6 1/3 1/2 0
2/3 0 1/3 0
0 1/3 1/3 1/3

1/6 0 1/2 1/3

⎞
⎟⎟⎠

Let us compute P(0.5). To numerically evaluate P(t) given in Equation 8.32, we must
truncate the summation of infinite terms to that of the first K terms. We shall use K = 13
(algorithms are available to determine K that guarantees the error to be controlled within
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a desired level. See Nelson (1995) and Kulkarni (1995). From Equation 8.32, we get

P (0.5) =
13∑

k=0

e−6×0.5 (6 × 0.5)k

k!

⎛
⎜⎜⎜⎝

1/6 1/3 1/2 0
2/3 0 1/3 0
0 1/3 1/3 1/3

1/6 0 1/2 1/3

⎞
⎟⎟⎟⎠

k

=

⎛
⎜⎜⎝

0.2506 0.2170 0.3867 0.1458
0.2531 0.2381 0.3744 0.1341
0.1691 0.1936 0.4203 0.2170
0.1580 0.1574 0.3983 0.2862

⎞
⎟⎟⎠

Similarly, we can compute P(1), using K = 19. We get

P (1) =

⎛
⎜⎜⎝

0.2083 0.2053 0.3987 0.1912
0.2083 0.2053 0.3979 0.1885
0.1968 0.1984 0.4010 0.2039
0.1920 0.1940 0.4015 0.2125

⎞
⎟⎟⎠

We can verify that P(1) =P(0.5) ·P(0.5), as we would expect from the CK equations. �

Example 8.19: A repairable reliability system

Consider a machine that alternates between two conditions: state 0 means the machine is
in working condition, whereas state 1 means it is under repair. Suppose the working time
and repair time are both exponentially distributed with respective rates λ and µ. We are
interested in the distribution of the state of the machine at a fixed time t. It is easily seen
that the process has the generator given by

Q =
(

−λ λ
µ −µ

)

It is convenient to let ν = λ + µ. From Equation 8.31 we obtain

P̂ =

⎛
⎜⎝

µ

λ + µ

λ

λ + µ
µ

λ + µ

λ

λ + µ

⎞
⎟⎠

It can be easily verified that P̂k = P̂, for any k ≥ 1. This property allows us to obtain
Equation 8.32 in the closed form (for detailed derivation, see, for example, Kulkarni, 1995):

P (t) =

⎛
⎜⎝

µ

λ + µ

λ

λ + µ
µ

λ + µ

λ

λ + µ

⎞
⎟⎠+

⎛
⎜⎝

λ

λ + µ

−λ

λ + µ
−µ

λ + µ

µ

λ + µ

⎞
⎟⎠ · e−(λ+µ)t (8.33)

From Equation 8.33, we can read that the probability that the machine, now up, will be
up at time t is

p00(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t �

The second approach to evaluate P(t) is based on the systems of Kolmogorov differential
equations, which assert that P(t) must satisfy

dP(t)
dt

= P(t) · Q and
dP(t)

dt
= Q · P(t) (8.34)
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where dP(t)/dt = {dpij(t)/dt}. The first set of equations is called the Kolmogorov forward
equations and the second set the Kolmogorov backward equations. Under the mild con-
ditions, which are satisfied by most practical problems, the solutions of the forward and
backward equations are identical. We illustrate the method using the previous example.

Example 8.19: A repairable reliability system (revisited)

We shall use the forward equations to obtain P(t). Using the generator Q given in Example
8.19, we can write Equation 8.34 as

⎛
⎜⎝

dp00(t)
dt

dp01(t)
dt

dp10(t)
dt

dp11(t)
dt

⎞
⎟⎠ =

(
p00(t) p01(t)
p10(t) p11(t)

)
·
(

−λ λ
µ −µ

)
(8.35)

Note that there are in total four differential equations in Equation 8.35. Suppose we are
only interested in p00(t). Do we have to solve all four differential equations to get p00(t)?
The answer is fortunately no. In general, if we are interested in pij(t), then we only need
to solve the set of differential equations involved in the ith row of {dpij(t)/dt}. In our case,
we end up with two differential equations:

dp00(t)
dt

= −λp00(t) + µp01(t)
dp01(t)

dt
= λp00(t) − µp01(t)

Recognizing p00(t) = 1 − p01(t), we further reduce the two equations to one:

dp00(t)
dt

= µ − (λ + µ)p00(t)

Using the standard technique to solve this linear differential equation, we obtain

p00(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t

As expected, this result is the same as the result obtained by the uniformization method. �

8.4.4 Limiting Distribution

We now turn our attention to the limiting behavior of the CTMC. As in the DTMC case, the
existence of the limiting distribution of P(t), when t → ∞, requires the CTMC under study
to satisfy certain conditions. The sufficient conditions under which the limiting distribution
exists and is independent of the initial state are:

1. the CTMC is irreducible, that is, all states communicate; and
2. the CTMC is positive recurrent, that is, starting from any state, the mean time

to return to that state is finite.

Note that any finite-state, irreducible CTMC is positive recurrent, and hence, exists the
limiting distribution that is independent of the initial state.

When the above conditions are satisfied for the CTMC, denote π = {π0, π1, . . .} as the lim-
iting distribution of the process, where πj = limt→∞ pij(t), j ≥ 0. To derive the set of equa-
tions that π = {π0, π1, . . .} satisfy, consider the forward equations given in Equation 8.34.
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If for any given j, probability pij(t) indeed converges to a constant πj , then we must have

limt→∞
dpij(t)

dt
= 0. Hence, the forward equations, in the limit, tend to

0 = πQ = (π0, π1, π2, . . .)

⎛
⎜⎜⎜⎝

−v0 q01 q02 q03 · · ·
q10 −v1 q12 q13 · · ·
q20 q21 −v2 q23 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎠ (8.36)

where νi = Σjqij . The above equations are equivalent to

πjvj =
∑
i �=j

πiqij , for all j (8.37)

Evidently, we also need the normalizing equation:
∑

j

πj = 1 (8.38)

Equations 8.37 are called the balance equations and have a nice interpretation: the left
side term, πjνj , represents the long-run rate at which the process leaves state j, since, when
in j, the process leaves at rate νj , and the long-run proportion of time it is in j is πj . The
right side term, Σi �=jπipij , is the long-run rate at which the process enters j, since, when
in state i, the process enters j at rate qij , and the proportion of time the process is in i is
πi, i �= j. Hence, Equation 8.37 asserts, the long-run rate into any state must be balanced
with the long-run rate out of that state.

Equations 8.37 and 8.38 together can be used to compute the limiting distribution π
of the CTMC when it exists. It turns out that the solution is also unique. The limiting
distribution π sometimes is called the stationary distribution. The name comes from the
fact that if the distribution of the initial state X0 is chosen to be π, then X(t) will have the
same distribution π for any given t. In other words, the process is stationary starting from
time 0.

Example 8.20: The limiting distribution of the birth and death process

The infinitesimal generator Q of the birth and death process is given in Equation 8.28.
Using Equations 8.37 and 8.38, we get

λ0π0 = µ1π1

(λi + µi)πi = λi−1πi−1 + µi+1πi+1, i > 0∑
j

πj = 1

The solution of the preceding equations is (see, for example, Ross, 2003)

π0 =

[
1 +

∞∑
i=1

λ0λ1, . . ., λi − 1

µ1µ1, . . ., µi

]−1

(8.39)

πi =
λ0λ1, . . ., λi − 1

µ1µ1, . . ., µi
π0, i > 0 (8.40)
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The necessary and sufficient condition for the limiting distribution to exist is

∑∞

i=1

λ0λ1, . . ., λi−1

µ1µ1, . . ., µi
< ∞

The above formulas will be used to derive the limiting distributions of Erlang models, which
are special cases of the birth and death process. �

Example 8.16: The Erlang C formula (continued)

We start with computing the limiting distribution for Erlang C (i.e., the M/M/s queue).
The transition rates of Erlang C are given in Equation 8.29. Define ρ = λ/sµ as the traffic
intensity of the system. We assume ρ < 1, which is the necessary and sufficient condition for
the existence of the limiting distribution. Substituting the parameters into Equations 8.39
and 8.40, we get

π0 =

[
s∑

i=0

(sρ)i

i!
+

ρs+1ss

s!
(1 − ρ)−1

]−1

πi =

⎧⎪⎨
⎪⎩

(sρ)i

i!
π0 if i ≤ s

ssρi

s!
π0 if i ≥ s

i ≥ 1

We now use π to compute key performance measures in a call center operation. One
way to use the Erlang C result is to estimate the service level (SL), which is defined as the
probability that a caller’s waiting time, Wq, is no more than a predetermined number, say D:

SL = P (Wq ≤ D) (8.41)

Conditioning on whether a caller has to wait, we can write the expression of SL as

SL = P (Wq ≤ D) = 1 − P (Wq > D|Wq > 0)P (Wq > 0) (8.42)

To compute SL, we need the expressions of P (Wq > 0) and P (Wq > D|Wq > 0); each is of
interest in its own right, as the former is the proportion of callers who must wait, and the
latter is the proportion of the callers in queue who have to wait more than D units of time. As
a caller has to wait in queue if and only if there are at least s callers present when he arrives,

P (Wq > 0) = 1 −
s−1∑
i=0

πi = 1−
s−1∑
i=0

(sρ)i

i!
π0 =

(sρ)sπ0

s!(1 − ρ)
(8.43)

To compute P (Wq > D|Wq > 0), we reason as follows: since πi has a geometric tail, that is,
πi + 1 = ρπi, for i≥ s, the random variable Wq|Wq > 0 has an exponential distribution with
rate (sµ−λ). Thus,

P (Wq > D|Wq > 0) = e−(sµ−λ)D (8.44)

Substituting Equations 8.43 and 8.44 into Equation 8.42, we obtain

SL = 1 − e−(sµ−λ)D (sρ)sπ0

s!(1 − ρ)
(8.45)

The average waiting time of a caller can be computed by the formula

E(Wq) = E(Wq|Wq > 0)P (Wq > 0) =
(sρ)sπ0

(sµ − λ)(1 − ρ)s!
(8.46)
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Erlang C can also be used to estimate the number of agents needed to satisfy a desirable
SL. Here, the objective is to find the minimum number of agents needed to achieve a given
SL. For example, suppose that the arrival rate is λ = 10 calls/min, the average service time
is 3 min/call (µ= 1/3), the acceptable waiting time is D = 5 min, and the desirable service
rate is 90%. If we denote Wq(λ, µ, s) as the waiting time of a caller with system parameters
λ, µ, and s, then we need to find the minimum number of agents s∗ such that

SL = P (Wq(10, 1/3, s∗) ≤ 5) ≥ 90%

To ease computation, various telecommunication service providers offer free, online “cal-
culators” to evaluate performance measures such as SL given in Equation 8.45. For exam-
ple, performance analysis calculators for Erlang models are publicly available at www.
4callcenters.com and www.math.vu.nl/obp/callcenters. The results presented in Table 8.1
use the calculator available at the second listed URL, which is an Excel add-in package
called “CallCenterDSS.xla,” offered by Professor G. Koole at Vrije University, Amsterdam.
In our computation, we first compute SL for an acceptable waiting time D, for the fixed
arrival rate λ, service rate µ, and number of agents s; we then compute the number of
agents s necessary to achieve an acceptable SL, for the fixed arrival rate λ, service rate µ,
and acceptable waiting time D.

Example 8.17: The Erlang A model (continued)

Recall that Erlang A is an M/M/s/k + M queue, where s is the number of agents, k is the
number of trunks, s≤ k, and +M means that each caller has an independent patience time
that is exponentially distributed with rate, say θ. In principle, since Erlang A is a birth and
death process, its limiting distribution can be computed by Equations 8.37 and 8.38, using
the transition rates given in Equation 8.30. The expression of the limiting probabilities,
however, is complex, and shall not be given here. As mentioned, several Erlang calculators
are publicly available, and some of them are able to treat Erlang A. The results presented
in Table 8.2 use “CallCenterDSS.xla” from www.math.vu.nl/obp/callcenters. The table
shows that when callers become less patient, that is, when θ increases, the SL increases
(good), the percentage of abandonment increases (bad), the percentage of total calls lost
(i.e., the sum of the percentages of abandonment and calls blocked) increases (bad), and
the percentage of calls blocked decreases (good). When the number of trunks k increases,

TABLE 8.1 Calculating Performance Measures in Erlang C
Service Level Number of Agents Needed

System Parameters: λ = 10, µ = 1/3, s = 35 System Parameters: λ = 10, µ = 1/3, D = 5

D : Acceptable Waiting Service Level Required SL # of Agents
Time (minute) % % Needed

2 73.08 75 34
4 74.53 80 35
6 75.91 85 36
8 77.21 90 38

10 78.44 95 40

TABLE 8.2 Calculating Performance Measures in Erlang A

System Parameters: λ = 10, µ = 1/3, s = 30, D = 5

θ: Patience Rate k: # of Trunks SL % Abandonment % Blocking % Total calls lost %

3 32 87.79 5.90 5.46 11.36
6 32 89.18 8.46 3.36 11.82
3 35 80.24 10.35 0.50 10.85
6 35 85.38 11.54 0.09 11.63
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the SL decreases (bad), the percentage of calls blocked decreases (good), the percentage of
total calls lost decreases (good), and the percentage of abandonment increases (bad). Those
comparative statistics suggest that management must balance several competing criteria to
achieve efficient call center operation. �

8.4.5 Statistical Inference of Continuous-Time Markov Chains

The maximum likelihood procedure has been extensively used in the CTMC for parameter
estimation. We illustrate the idea by a special case of the birth and death process with
λ0 = λI , λi, = λB , for i≥ 1 (i.e., the arrival rate when the system is idle is different from the
arrival rate when the system is busy), and µi = µ, for i≥ 1 (i.e., the service rate is a constant
regardless of the number of customers in the system). We want to estimate parameters λI ,
λB , and µ.

Suppose that we have observed this special birth and death process for a total time t. Dur-
ing the period the system was idle for a total time tI and busy for a total time tB , such that
tI + tB = t. We also keep track of the following counts during the observation period [0, t]:

1. nI : the number of arrivals who observe an empty system (i.e., the number of type
0 → 1 transitions). Note that nI can be considered as a random sample of the
number of Poisson events with rate λI during the observation time [0, tI ];

2. nB : the number of arrivals who observe a busy system (i.e., the number of type
n → n + 1 transitions, n ≥ 1). Note that nB can be considered as a random sample
of the number of Poisson events with rate λB during the observation time [0, tB ];

3. nd: The number of departures (i.e., the number of type n → n − 1 transitions).
Note that nd can be considered as a random sample of the number of Poisson
events with rate µ during the observation time [0, tB ].

Recall that we have shown in Section 8.2 that the maximum likelihood estimator of the
arrival rate in a Poisson process is λ̂ = n/t, where t is the observation period and n is the
number of events occurred during the period. Here, we again encounter the parameter esti-
mation issue of a Poisson process. However, our problem is more complicated since tI and tB
are random variables. Nevertheless, it can be shown that the maximum likelihood estimators
of λI , λB , and µ can be obtained as if tI and tB were constants (Bhat & Miller, 2002):

λ̂I =
nI

tI
, λ̂B =

nB

tB
, µ̂ =

nd

tB
(8.47)

These estimators are indeed intuitively plausible. Note that the idea is to decompose the
process into three Poisson processes: the birth process when the system is empty, the birth
process when the system is busy, and the death process when the system is busy. Equation
8.47 then gives the estimate of the arrival rate in the underlying Poisson process. This idea
can be used to estimate the transition rates in the more general birth and death process.

When λI = λB = λ, the above simple birth and death process becomes an M/M/1 queue,
and the counts nI and nB can be pooled to arrive at a single estimate of λ:

λ̂ =
nI + nB

t
(8.48)

Example 8.21

The manager of a supermarket needs to decide the staffing level of his store so that the
average waiting time of his customers is no more than 1 min. He feels that it is reasonable
to assume that customers arriving at his store follow a Poisson process, and each customer
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needs an exponential amount of time to be served at the checkout counter. To estimate the
traffic intensity of his store, he took observations for a 2-h period, during which he found 63
customers arrived at the counter and 44 customers left the counter. He also observed that
the checkout counter was completely empty for 9 min during the 2-h observation period.

The problem described above is an M/M/1 queue with arrival rate λ and service rate µ.
Using the notation given earlier, we have

t = 120 min, tB = 111 min
nI + nB = 63, nd = 44

From Equations 8.47 and 8.48, it can be estimated that

λ̂ =
nI + nB

t
=

63
120

= 0.53, µ̂ =
nd

tB
=

44
111

= 0.40

The manager needs to determine the number of checkers to hire so that the average waiting
time of his customer is 1 min. For this, he needs to find s so that E[Wq] = 1 min. From
Equation 8.46, s should be the smallest integer such that

E[Wq] =
1

sµ−λ
P (Wq > 0) ≤ 1 min

Substituting the estimated parameters λ̂ and µ̂ into the above expression, it is found that
the smallest integer to ensure the above condition is s = 3. �

Next, we consider the hypothesis testing method for the DTMC in the context of the
simple birth and death process discussed earlier, based on the study of Billingsley (1961).
Suppose that we have observed the process for a duration t and collected statistics for tI , tB ,
nI , nB , and nd. We are reasonably sure that the process is a birth and death process and we
wish to know whether there are convincing evidences to support the hypothesis H0 : λI = λ0

I ,
λB = λ0B , µ= µ0. The log maximum likelihood function under the null hypothesis is

L(λ0
I , λ

0
B , µ0) = nI lnλ0

I + nB lnλ0
B + nd lnµ0 − λ0

ItI − λ0
BtB − µ0tb + C

where C is a term involving nI , nB , and nd and independent of λ0
I , λ0

B , and µ0. The test
statistic for H0 follows χ2 distribution with 2 degrees of freedom:

2[maxL(λI , λB , µ) − L(λ0
I , λ

0
B , µ0)] − 2

⎡
⎢⎣

nI ln
nI

λ0
ItI

+ nB ln
nB

λ0
BtB

+ nd ln
nd

µ0tB

−(nI + nB + nd) + λ0
ItI + λ0

BtB + µ0tB

⎤
⎥⎦ (8.49)

Example 8.21 (continued)

Suppose the manager of the supermarket anticipates the average service time of his checkout
counter is 2 min. Further, he has assumed that the arrival rate is 0.5. To test the hypoth-
esis H0: λ = 0.5 and µ= 0.5, we use Equation 8.49 and find that the χ2 statistic is 2.71,
with 2 degrees of freedom. Since P (χ2 ≥ 2.71) = 0.26 is large enough, it indicates that the
manager’s estimates of system parameters, λ = 0.5 and µ= 0.5, cannot be rejected.
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8.5 Renewal Theory

The stochastic process we have discussed so far, including the Poisson process, the DTMC
and the CTMC, all have the Markov property, that is, the future of the process from time
n (for the discrete-time case) or t (for the continuous-time case) onward depends only on
the state of the system at time n or t and is independent of the process’s history prior to
time n or t. The Markov property proves to be the key enabler to make the analysis of such
a system possible.

In this section, we discuss the stochastic processes that do not have the Markov property
at all observation points. In particular, we consider the stochastic processes that have the
Markov property only at some, possibly random, time epochs 0 =T0 ≤T1 ≤T2 ≤. . .. In other
words, only at times Tn, n = 0, 1, . . ., the future of the process can be predicted based
on the state of the system at time Tn. It turns out that the transient analysis of such
a process is much harder than the process with the Markov property. Therefore, in this
section we focus on the long-run behavior of the process. The processes we shall cover in
this section include renewal processes, renewal reward processes, regenerative processes, and
semi-Markov processes.

8.5.1 Renewal Processes

Recall that a Poisson process is a counting process in which the interarrival times between
successive events are iid random variables with an exponential distribution. As a general-
ization of the Poisson process, we define:

DEFINITION 8.3 A counting process {N(t), t≥ 0} is said to be a renewal process if the
interarrival times between successive events, {X1, X2, . . .}, are a sequence of iid random
variables.

As defined, X1 is the arrival epoch of the first event, which follows some distribution F ,
X2 is the time between the first and second events, which follows the same distribution F ,
and so on. Therefore, a renewal process depicts a sequence of events occurring randomly
over time, and N(t) represents the number of such events that occurred by time t. Let
S0 = 0 and

Sn =
n∑

j=1

Xj , n = 1, 2, . . . (8.50)

be the waiting time until the occurrence of the nth event. We shall call Sn the renewal epoch
of the nth event, n ≥ 1, and the event that occurred at a renewal epoch a renewal. Clearly,
the renewal process starts afresh, probabilistically, at renewal epochs Sn, n ≥ 0. In practice,
{N(t), t ≥ 0} and {Sn, n ≥ 1} are interchangeably called the renewal process.

It is often of interest to compute the expected number of renewals occuring by time t.
The function m(t) = E[N(t)] is known as the renewal function. For example, the renewal
function of a Poisson process with rate λ is m(t) = λt.

Example 8.22

The prototypical example of a renewal process is the successive replacements of light bulbs,
with the times required for replacements ignored. Suppose a new light bulb, with lifetime
X1, is put in use at time 0. At time S1 = X1, it is replaced by a new light bulb with lifetime
X2. The second light bulb fails at time S2 = X1 + X2 and is immediately replaced by the
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third one, and the process continues as such. It is natural to assume that the lifetimes of
light bulbs follow the same distribution and are independent of each other. Now, N(t) is
the number of light bulbs replaced up to time t, with mean m(t), and Sn is the time epoch
for the nth replacement. �

Although in theory we can derive certain properties associated with N(t), Sn, and m(t)
(Wolff, 1989), they are generally hard to evaluate for finite t or n unless the process has
the Markov property. For example, it is difficult to know exactly the average number of
light bulbs replaced during a 1-year period except when the a light bulb has an exponential
lifetime. As a consequence, renewal theory is primarily concerned with the limiting behavior
of the process as t → ∞. We first investigate the limiting behavior of N(t)/t as t → ∞. Let
µ be the reciprocal of the mean interarrival time:

E(Xj) =
1
µ

(8.51)

To avoid trivialities, we assume that 0< E(Xj) <∞. This assumption can be used to
establish the fact that N(t) is finite for finite t and goes to infinity as t goes to infinity.

THEOREM 8.4: The Elementary Renewal Theorem

1. limt→∞
N(t)

t
= µ with probability 1.

2. limt→∞
m(t)

t
= µ.

The elementary renewal theorem is intuitively plausible. Take the first expression as an
example: the left side term, limt→∞N(t)/t, gives the long-run number of renewals per unit
time, and the right side term, µ, is the reciprocal of the expected time between renewals.
It becomes obvious that if each renewal occurs in average E(Xj) units of time, then the
number of renewals per unit time, in a long run, must approach to 1/E[Xj ] = µ. Because
of the theorem, µ is called the renewal rate, since it can be thought of as the number of
renewals occurred per unit time in a long run.

The elementary renewal theorem, though simple and intuitive, proves to be extremely
powerful to analyze the long run behavior of non-Markov systems. We illustrate its appli-
cations with several examples.

Example 8.23: Age replacement policies

Consider an age replacement policy that calls for replacing an item when it fails or when its
age reaches T , whichever occurs first. We shall call the policy Policy T. Suppose that the
lifetimes of successive items are iid random variables Y1, Y2, . . ., with distribution G. Under
policy T, the time the ith item spent in service is Xi = min{Yi, T}, i= 1, 2, . . ., with the
expectation

E[Xi] =
∫ ∞

0
P (min{Yi, T ) > t)dt =

∫ T

0
P (Yi > t)dt

Theorem 8.4 then tells us that, in a long run, the replacements occur at the rate

µ =
1

E[Xi]
=

1∫ T

0 P (Yi > t)dt
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For example, suppose the lifetime is uniformly distributed between [0, 1] and T = 1/2. Then

µ =
1

E[Xi]
=

1∫ 1/2
0 (1 − t)dt

=
3
8 �

Example 8.24: The M/G/1/1 queue

Suppose that patients arrive at a single-doctor emergency room (ER) in accordance with a
Poisson process with rate λ. An arriving patient will enter the room if the doctor is available;
otherwise the patient leaves the ER and seeks service elsewhere. Let the amount of time
the doctor treats a patient be a random variable having distribution G. We are interested
in the rate at which patients enter the ER and the service level of the ER, defined as the
proportion of the arriving patients who are actually being treated.

To see how the system can be formulated as a renewal process, let us suppose that at
time 0 a patient has just entered the ER. We say that a renewal occurs whenever a patient
enters the ER. Let 1/µG be the mean time needed by the doctor to treat a patient. Then,
by the memoryless property of the exponential interarrival times, the mean time between
successive entering patients is

1
µ

=
1

µG
+

1
λ

and the rate at which patients enter the ER is

µ =
λµG

λ + µG

Since the patient arrival process is Poisson with rate λ, the service level of the ER is given by

µ

λ
=

µG

λ + µG
�

8.5.2 Renewal Reward Processes

Consider a renewal process {N(t), t ≥ 0} with interarrival times {Xn, n ≥ 1}. Suppose that
associated with each interarrival time Xn is a reward Rn (or a profit, i.e., reward-cost),
n ≥ 1. We allow Xn and Rn to be dependent (they usually are, as a reward may depend
on the length of the interval), but assume that the pairs (X1, R1), (X2, R2), . . . are iid
bivariate random variables. Let R(t) be the total reward received by the system over the
interval [0, t]:

R(t) =
N(t)∑
n=1

Rn (8.52)

The reward process {R(t), t ≥ 0} is called the renewal reward process or cumulative pro-
cess. The expected cumulative reward up to time t is denoted by E[R(t)], t ≥ 0. In general,
it is very difficult to derive the distribution of R(t) and to compute the expectation E[R(t)].
Fortunately, it is quite easy to compute the long-run reward rate, that is, the limit of R(t)/t
as t → ∞.
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THEOREM 8.5: The Renewal Reward Theorem.
Let E[Xn]=E[X ] and E[Rn]=E[R]. If E[X ] < ∞ and E[R] < ∞, then

1. limt→∞
R(t)

t
=

E[R]
E[X]

, with probability 1.

2. limt→∞
E[R(t)]

t
=

E[R]
E[X]

.

We shall call renewal intervals renewal cycles. With this terminology, the renewal reward
theorem states that the long-run average reward per unit time (or the expected reward per
unit time) is the expected reward per cycle divided by the expected cycle length. This simple
and intuitive result is very powerful to compute the long-run reward rate, or the long-run
proportion of time spent in different states, as illustrated by the following examples.

Example 8.23: Age replacement policies (continued)

Let us assume that, under policy T , the cost for a planned replacement is cr, and that for
an unplanned replacement is cf , with cf > cr. The cost of the ith replacement, Ri, depends
on lifetime Yi as follows:

Ri =
{

cr if Yi < T
cf if Yi ≥ T

Clearly, Ri depends on the in-service time of the ith item. The expected cost per
replacement is

E(R) = cfP (Yi ≤ T ) + crP (Yi > T )

The length of a cycle, as computed in Example 8.23, is E(X) =
∫ T

0 P (Yi > t)dt. We have
the long-run cost per unit time under policy T as

E(R)
E(X)

=
cfP (Yi ≤ T ) + crP (Yi > T )∫ T

0 P (Yi > t)dt

Given the distribution of Yi and cost parameters cr and cf , the optimal age replacement
policy would be the value T that minimizes the preceding equation. For a numerical example,
let Yi be a uniform random variable over (0, 1) years, cr = 50, and cf = 100. Then

E(R)
E(X)

=
100T + 50(1 − T )

T − T 2

2

Taking the derivative of the above equation and setting it to zero, we get T ∗ =
√

3 − 1 = 0.732
years. The annual cost under the optimal policy T ∗ is $186.6/year.

How is policy T ∗ compared with the “replace upon failure” policy? In this case the cost
rate is E(R)

E(Y ) = 100
0.5 = $200/year. Thus, even though the age replacement policy replaces the

item more often than the “replace upon failure” policy, it is actually more economical than
the latter. �

Example 8.25: A simple continuous-review inventory model

In a continuous-review inventory system, the inventory level is continuously monitored and
information is updated each time a transaction takes place. In this setting, let us consider
a simple inventory system where customers arrive according to a renewal process with a
mean interarrival time 1/λ, and each customer requests a single item. Suppose that the
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system orders a batch of Q items each time the inventory level drops to zero. For simplicity,
the replenishment lead time is assumed to be zero. The operating costs incurred include a
fixed set-up cost K each time an order is placed and a unit holding cost h for each unsold
item. The manager of the system needs to determine the optimal order quantity Q∗ that
minimizes the long-run operating cost of the system.

To see how the problem can be formulated as a renewal reward process, define a cycle
as the time interval between two consecutive orders. The expected length of a cycle is the
expected time required to receive Q orders. Since the mean interarrival time of demand
is 1/λ,

E[length of a cycle] =
Q

λ

Let Yn be the time between the (n − 1)st and nth demands in a cycle, n = 1, . . ., Q. Since,
during the period Yn, the system holds (Q−n + 1) units of the item, the cost per cycle is

E[cost of a cycle] = K + E

[
Q∑

n=1

h(Q − n + 1)Yn

]
= K +

hQ(Q + 1)
2λ

Hence, the long-run average cost of the system is

E[cost of a cycle]
E[length of a cycle]

=
λK

Q
+

h(Q + 1)
2

Treating Q as a continuous variable and using a calculus, then the above expression is
minimized at

Q̂ =

√
2λK

h

If Q̂ is an integer, then it is the optimal batch size; otherwise, the optimal batch size is
either the largest integer smaller than Q̂ or the smallest integer larger than Q̂, whichever
yields a smaller value in the cost function. �

Example 8.26: Prorated warranty

This example is based on Example 7.11 in Kulkarni (1999). A tire company issues a 50,000
mile prorated warranty on its tires as follows: if the tire fails after its mileage life, denoted
by L, exceeds 50,000 miles, then the customer has to pay $95 for a new tire. If the tire fails
before it reaches 50,000 miles, that is, L≤ 50,000, the customer pays the price of a new tire
according to the prorated formula $95× (L/50,000). Suppose that the customer continues
to buy the same brand of tire after each failure. Let L follow the distribution

f(x) = 2 × 10−10x, for 0 ≤ x ≤ 100, 000 miles

The customer has the option to buy the tire without warranty for $90. Should the consumer
purchase the warranty (we assume that the customer either always gets the warranty or
never gets the warranty)? First suppose that the customer never purchases the warranty.
The cycle is defined as each purchase of a new tire, with the mean

E(L) =
∫ 100,000

0
2 × 10−10x2dx = 2 × 10−10 x3

3

∣∣∣∣
100,000

0
=

2
3

× 105

Since each new tire costs the customer $90, the average cost rate per mile is

E(R)
E(L)

=
$90

2
3 × 105

= $135 × 10−5 per mile
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or $1.35 per 1000 miles. Now consider the option of always purchasing the tires under
the warranty. The cycle is the same as before. However, the prorated warranty implies
R = $95× min{50,000,L}

50,000 . Hence

E(R) =
∫ 50,000

0
2 × 10−10 × 95x2

50, 000
dx +

∫ 100,000

50,000
2 × 10−10 × 95xdx = $87.08

The long-run cost under the warranty is

97.08
2
3 × 105

= $130.63 × 10−5 per mile

or $1.31 per 1000 miles. This implies that the customer should buy the warranty. �

8.5.3 Regenerative Processes

Consider a stochastic process {Z(t), t ≥ 0} defined on S = {0, 1, . . .} having the property
that the process starts afresh, probabilistically, at (possibly random) time epochs Tn, n ≥ 1.
This means, there exist time epochs Tn, n ≥ 1, such that the evolution of the process from
Tn onward follows the same probability law as the process that starts at time Tn−1. We call
such a process a regenerative process, the time epochs {Tn, n ≥ 1} regenerative epochs, and
Yn = Tn −Tn−1, n ≥ 1, regenerative cycles. One may envision that {Tn, n ≥ 1} constitute the
arrival times of a renewal process, and {Yn, n ≥ 1} the interarrival times. Indeed, a renewal
process is an example of a regenerative process. Another example is a recurrent Markov
chain, where T1 represents the time of the first transition into the initial state.

A very useful result about the long-run behavior of a regenerative process states that

lim
t→∞

P (Z(t) = i) =
E[amount of time in state i in a cycle]

E[length of a cycle]
(8.53)

Example 8.27:

Suppose that an irreducible, positive recurrent CTMC {X(t), t ≥ 0} starts in state i. By
the Markov property, the process starts over again each time it re-enters state i. Thus Tn,
n ≥ 1, where Tn denotes the nth time the CTMC returns to state i, constitute regenerative
epochs. Let µii be the mean recurrent time of state i. From Equation 8.53,

lim
t→∞

P (X(t) = i) =
E[amount of time in state i during a recurrent time of state i]

µii

As each time the CTMC visits state i, it stays there for an exponential amount of time with
rate νi, we have

lim
t→∞

P (X(t) = i) =
1/vi

µii
�

Example 8.25: A simple continuous-review inventory model (continued)

Suppose that in the continuous-review inventory system discussed in Example 8.25, we are
interested in the limiting distribution of I(t), where I(t) is the number of units on hand
at time t. Suppose that at time 0 there are Q units on hand, and each time inventory on
hand drops to 0 we order a new batch of size Q. Then the inventory process {I(t), t ≥ 0} is
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a regenerative process, which regenerates itself each time a new order is placed. Then, for
i= 1, 2, . . ., Q,

lim
t→∞

P (I(t) = i) =
E[amount of time i units on hand during a reorder cycle]

E[length of a reordering cycle]

=
1/λ

(1/λ)Q
=

1
Q

That is, inventory on hand is a discrete uniform random variable between 1 and Q. �

8.5.4 Semi-Markov Processes

Consider a process {X(t), t ≥ 0} that can be in any of the finite states {0, 1, 2, . . ., N}. Sup-
pose that each time the process enters state i, it remains there for a random amount of time
with rate µi and then makes a transition to state j with probability pij .The sojourn time in
a state and the next state reached do not need to be independent. Such a process is called
the semi-Markov process (SMP). Let {Tn, n ≥ 1}, where T0 = 0, be the sequence of epochs
at which the process makes transitions (returning to the same state is allowed). An impor-
tant property of a semi-Markov process is that the process at each of the transition epochs
Tn, n ≥ 1, has the Markov property. That is, for each Tn, the evolution of the process from
Tn onward depends only on X(Tn), the state of the process observed at transition time Tn.
Clearly, if the sojourn time in each state is identically 1, then the SMP is just a DTMC, and if
the sojourn time in each state is exponentially distributed, then the SMP becomes a CTMC.

Let Mj(t) be the total time that the SMP spends in state j up to time t. We define

pj = lim
t→∞

Mj(t)
t

as the long-run proportion of time that the SMP is in state j, j = 0, 1, . . ., N. Let us find
those proportions. To do this, we denote Xn = X(Tn) as the nth state visited by the SMP,
n ≥ 1. Note that {Xn, n ≥ 1} is a DTMC governed by the transition matrix P= {pij}.
This DTMC shall be called the embedded DTMC of the SMP. For simplicity, let us assume
that the embedded DTMC is irreducible so that the limiting (or stationary) distribution
π = {π0, π1, . . ., πn} of the embedded DTMC exists. From the result of Section 8.3, π will
be the unique non-negative solution of

πj =
N∑

i=0

πipij (8.54)

N∑
j=0

πj = 1 (8.55)

Now, since the proportion of transitions that the SMP enters state j is πj , and it remains
in state j for an average 1/µj units of time in each of such transitions, it is intuitively
plausible, and indeed can be shown formally, that pj is given by

pj =
πj/µj∑
j πj/µj

, j = 0, 1, . . ., N (8.56)

Example 8.26: Machine maintenance

We now take the repair times of the reliability system under policy T into account. Suppose
that under policy T , an item in service is repaired upon failure (emergency renewal) or at
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age T (preventive renewal). Suppose that the lifetime of the item is L, and emergency and
preventive renewals take random times Ze and Zp, respectively.

The aim is to determine the long-run availability of the system. The system can be in
one of the three states, 0 (up), 1 (emergency renewal), and 2 (preventive renewal). Then
the system can be modeled as a SMP with its embedded DTMC having the transition
probability matrix

P =

⎛
⎝0 P (L < T ) P (L ≥ T )

1 0 0
1 0 0

⎞
⎠

The limiting distribution of the embedded CTMC can be obtained as π0 = 1/2, π1 =
P (L < T )/2, and π2 = P (L≥T )/2. The mean sojourn time of the system in each state is

1
µ0

= E[min(L, T )] =
∫ T

0
P (L > l)dl,

1
µ1

= E[Ze],
1
µ2

= E[Zp]

According to Equation 8.56, the stationary availability of the system is

A(T ) =

∫ T

0 P (L > l)dl∫ T

0 P (L > l)dl + E[Ze]P (L < T ) + E[Zp]P (L ≥ T )

It is practically important that the system availability does not depend on the distributions
of repair times Ze and Zp, but only on their expected values. �

8.5.5 Statistical Inference of Renewal Processes

Let {N(t), t ≥ 0} be a counting process with the times between successive events denoted
by {Xn, n ≥ 1}. If {N(t), t ≥ 0} is a renewal process, we require that {Xn, n ≥ 1} is a
sequence of iid random variables from some distribution F . Given that we have observed
a sample of interarrival event times, (x1, x2, . . ., xn), statistical inference problems become
choosing an appropriate distribution function F and estimating its parameters, which can
be done by using standard statistical theory. We will not elaborate on the details of those
methods here. We would like, however, to provide the reader with several useful references
for further reading. Parametric inferences were studied by Barlow & Proschan (1981), and
nonparametric inferences were considered by Karr (1991). Miller & Bhat (1997) presented
several sampling methods to estimate the parameters of F when the inter-event times are
not directly observable. Basawa & Prakasa Rao (1980) and Bhat & Miller (2002) also contain
useful materials on this subject.

8.6 Software Products Available for Solving
Stochastic Models

Both special-purpose and general-purpose software products are available to solve stochastic
models, either numerically or symbolically. The special-purpose stochastic modeling soft-
ware products, listed below, focus on Markov process analyses and their applications in
different areas such as queueing, reliability, and telecommunications. Most of them have
simulation capabilities.

1. Probabilistic Symbolic Model Checker (PRISM): PRISM is a free and
open source software developed at the University of Birmingham. PRISM is a tool
for modeling and analyzing probabilistic systems including DTMCs, CTMCs,
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and Markov decision processes (MDPs). PRISM uses a module-based system
description language for model inputs. It then translates the system descriptions
into an appropriate model and provides performance statistics. Hinton et al.
(2006) provide an overview of the main features of PRISM. The Web site of
PRISM is www.cs.bham.ac.uk/dxp/prism/index.php.

2. MCQueue: This is a free educational software for Markov Chains and queues (no
commercial use). This software package contains two modules. The first module
is for the analysis of DTMCs and CTMCs up to 100 states. The other module cal-
culates performance measures for basic queueing models (e.g., M/G/1, M/M/s,
M/D/s, G/M/s, and M/M/s/s+M queues). The algorithms in this package are
based on the methods discussed in Tijms (2003). The package can be downloaded
from http://staff.feweb.vu.nl/tijms/.

3. MARkov Chain Analyzer (MARCA): MARCA is developed at North
Carolina State University. It facilitates the generation of large Markov chain mod-
els. It also has a set of Fortran subroutines to support model construction. Order-
ing information is available at www.csc.ncsu.edu/faculty/stewart/MARCA/
marca.html.

4. Queueing theory is an important application area of stochastic processes. Not
surprisingly, quite a few software products are available for queueing analysis
and applications in telecommunications. A list of queueing software packages has
been compiled by Dr. M. Hlynka at the University of Windsor and is available
at www2.uwindsor.ca/hlynka/qsoft.html.

5. Several software packages are available for reliability applications. For exam-
ple, Relex Markov by Relex Software Corporation (www.relexsoftware.co.uk/
products/markov.ph), Markov Analysis by ITEM Software (www.itemuk.
com/markov.html), and SMART by University of California at Riverside
(www.cs.ucr.edu/ ciardo/SMART/).

6. @Risk and Crystal Balls are Excel add-ins that analyze stochastic models
by Monte Carlo simulation. Excel, with the aid of VBA, can also be used in
Monte Carlo simulation. Arena, ProModel, and Extend are popular software
packages designed for discrete-event simulations.

Several general-purpose, programming language based software products, although not
specifically developed for the stochastic modeling purpose, are popular in solving such prob-
lems. These include the proprietary computational packages such as MATLAB, Maple,
and Mathematica for general mathematical computation and open source software pack-
ages such as R (sometimes described as GNU S) for statistical computing and graphics.
Some textbooks provide computer program codes (e.g., Kao, 1997, who uses MATLAB).
Statistical packages such as SAS and Minitab are also powerful in analyzing stochastic
models.
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9.1 Introduction

What do a fast food restaurant, an amusement park, a bank, an airport security check
point, and a post office all have in common? Answer: you are certainly bound to wait in
a line before getting served at all these places. Such types of queues or waiting lines are
found everywhere: computer-communication networks, production systems, transportation
services, and so on. To efficiently utilize manufacturing and service enterprises, it is critical
to effectively manage queues. To do that, in this chapter, we present a set of analytical
techniques collectively called queueing theory. The main objective of queueing theory is to
develop formulae, expressions, or algorithms for performance metrics, such as the average
number of entities in a queue, mean time spent in the system, resource availability, probabil-
ity of rejection, and the like. The results from queueing theory can directly be used to solve
design and capacity planning problems, such as determining the number of servers, an opti-
mum queueing discipline, schedule for service, number of queues, system architecture, and

9-1
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TABLE 9.1 Examples to Illustrate Various Types
of Queueing Systems

Single-class Multiclass

Single-station Post office Multi-lingual call center
Multistation Theme park Multi-ward hospital

the like. Besides making such strategic design decisions, queueing theory can also be used
for tactical as well as operational decisions and controls.

The objective of this chapter is to introduce fundamental concepts in queues, clarify
assumptions used to derive results, motivate models using examples, and point to software
available for analysis. The presentation in this chapter is classified into four categories
depending on the types of customers (one or many) and number of stations (one or many).
Examples of the four types are summarized in Table 9.1.

The results presented in this chapter are a compilation of several excellent books and
papers on various aspects of queueing theory. In particular, the bulk of the single-station
and single-class analysis (which forms over half the chapter) is from Gross and Harris [1],
which arguably is one of the most popular texts in queueing theory. The book by Bolch
et al. [2] does a fantastic job presenting algorithms, approximations, and bounds, espe-
cially for multistage queues (i.e., queueing networks). For multiclass queues, the founda-
tions are borrowed from the well-articulated chapters of Wolff [3] as well as Buzacott and
Shanthikumar [4]. The set of papers by Whitt [5] explaining the queueing network analyzer
is used for the multistage and multiclass queues. Most of the notation used in this chapter
and the fundamental results are from Kulkarni [6]. If one is interested in a single site with
information about various aspects of queues (including humor!), the place to visit is the page
maintained by Hlynka [7]. In fact, the page among other things illustrates various books on
queueing, course notes, and a list of software. A few software tools would be pointed out
in this chapter, but it would be an excellent idea to visit Hlynka’s site [8] for an up-to-date
list of queueing software. In there, software that run on various other applications (such as
MATLAB, Mathematica, Excel, etc.) are explained and the most suitable one for the reader
can be adopted.

This chapter is organized as follows. First, some basic results that are used throughout
the chapter are explained in Section 9.2. The bulk of this chapter is Section 9.3, which lays
the foundation for the other types of systems by initially considering the single-station and
single-class queue. Then in Section 9.4, the results for single-station and multiple classes are
presented. Following that, the chapter moves from analyzing a single station to a network of
queues in Section 9.5 where only one class is considered. This is extended to the most general
form (of which all the previous models are special cases) of multistation and multiclass queue
in Section 9.6. Finally, some concluding remarks are made in Section 9.7.

9.2 Queueing Theory Basics

Consider a single-station queueing system as shown in Figure 9.1. This is also called a
single-stage queue. There is a single waiting line and one or more servers. A typical example
can be found at a bank or post office. Arriving customers enter the queueing system and
wait in the waiting area if a server is not free (otherwise they go straight to a server). When
a server becomes free, one customer is selected and service begins. Upon service completion,
the customer departs the system. A few key assumptions are needed to analyze the basic
queueing system.
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FIGURE 9.1 A single-station queueing system.

TABLE 9.2 Fields in the Kendall Notation
AP M, G, Ek, H, PH, D, GI, etc.

ST M, G, Ek, H, PH, D, GI, etc.

NS denoted by s, typically 1, 2, . . ., ∞
Cap denoted by k, typically 1, 2, . . ., ∞

default: ∞
SD FCFS, LCFS, ROS, SPTF, etc.

default: FCFS

ASSUMPTION 9.1 The customer interarrival times, that is, the time between arrivals,
are independent and identically distributed (usually written as ‘‘iid’’). Therefore, the arrival
process is what is called a renewal process. All arriving customers enter the system if there
is room to wait. Also, all customers wait till their service is completed in order to depart.

ASSUMPTION 9.2 The service times are independent and identically distributed random
variables. Also, the servers are stochastically identical; that is, the service times are sampled
from a single distribution. In addition, the servers adopt a work-conservation policy; that
is, the server is never idle when there are customers in the system.

The above assumptions can certainly be relaxed. There are a few models that do not
require the above assumptions. However, for the rest of this chapter, unless explicitly stated
otherwise, we will assume that Assumptions 9.1 and 9.2 hold.

To standardize description for queues, Kendall developed a notation with five fields:
AP/ST/NS/Cap/SD. In the Kendall notation, AP denotes arrival process characterized by
the interarrival distribution, ST denotes the service time distribution, NS is the number of
servers in the system, Cap is the maximum number of customers in the whole system (with a
default value of infinite), and SD denotes service discipline which describes the service order
such as first come first served (FCFS), which is the default, last come first served (LCFS),
random order of service (ROS), shortest processing time first (SPTF), and so on. The fields
AP and ST can be specific distributions such as exponential (denoted by M which stands
for memoryless or Markovian), Erlang (denoted by Ek), phase-type (PH ), hyperexponential
(H), deterministic (D), and so on. Sometimes, instead of a specific distribution, AP and
ST fields could be G or GI, which denote general distribution (although GI explicitly says
“general independent,” G also assumes independence). Table 9.2 depicts values that can be
found in the five fields of Kendall notation.

For example, GI/H/4/6/LCFS implies that the arrivals are according to a renewal process
with general distribution, service times are according to a hyperexponential distribution,
there are four servers, a maximum of six customers are permitted in the system at a time
(including four at the server), and the service discipline is LCFS. Also, M/G/4/9 implies
that the interarrival times are exponential (whereby the arrivals are according to a Poisson
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process), service times are according to some general distribution, there are four servers,
the system capacity is nine customers in total, and the customers are served according to
FCFS. Finally, in an M/M/1 queue, the arrivals are according to a Poisson process, service
times exponentially distributed, there is one server, the waiting space is infinite and the
customers are served according to FCFS.

9.2.1 Fundamental Queueing Relations

Consider a single-station queueing system such as the one shown in Figure 9.1. Assume
that this system can be described using Kendall notation. That means the interarrival
time distribution, service time distribution, number of servers, system capacity, and
service discipline are given. For such a system we now describe some parameters and
measures of performance. Assume that customers (or entities) that enter the queueing
system are assigned numbers with the nth arriving customer called customer-n. Most of
the results presented in this section are available in Kulkarni [6] with possibly different
notation.

In that light, let An denote the time when the nth customer arrives, and thereby
An −An−1, an interarrival time. Let Sn be the service time for the nth customer. Let
Dn be the time when the nth customer departs. We denote X(t) as the number of cus-
tomers in the system at time t, Xn as the number of customers in the system just after the
nth customer departs, and X∗

n as the number of customers in the system just before the
nth customer arrives. Although in this chapter we will not go into details, it is worthwhile
mentioning that X(t), Xn, and X∗

n are usually modeled as stochastic processes. We also
define two other variables, which are usually not explicitly modeled but can be characterized
in steady state. These are Wn, the waiting time of the nth customer and W (t), the total
remaining workload at time t (this is the total time it would take to serve all the customers
in the system at time t). The above variables are described in Table 9.3 for easy reference,
where customer n denotes the nth arriving customer.

It is usually very difficult to obtain distributions of the random variables X(t), Xn, X∗
n,

W (t), and Wn. However, the corresponding steady-state values can be obtained, that is, the
limiting distributions as n and t go to infinite. In that light, let pj be the probability that
there are j customers in the system in steady state, and let πj and π∗

j be the respective
probabilities that in steady state a departing and an arriving customer would see j other
customers in the system. In addition, let G(x) and F (x) be the cumulative distribution
functions of the workload and waiting time respectively in steady state. Finally, define L as
the time-averaged number of customers in the system, and define W as the average waiting
time (averaged across all customers). One of the primary objectives of queueing models is
to obtain closed-form expressions for the performance metrics pj , πj , π∗

j , G(x), F (x), L,

TABLE 9.3 Variables and Their Mathematical and English
Meanings
Variable Mathematical Meaning

Expression

An Arrival time of customer n
Sn Service time of customer n
Dn Departure time of customer n
X(t) Number of customers in the system at time t
Xn X(Dn+) No. in system just after customer n’s departure
X∗

n X(An−) No. in system just before customer n’s arrival
Wn Dn − An Waiting time of customer n
W (t) Total remaining workload at time t
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and W . These performance metrics can be mathematically represented as follows:

pj = lim
t→∞

P{X(t) = j}

πj = lim
n→∞

P{Xn = j}

π∗
j = lim

n→∞
P{X∗

n = j}

G(x) = lim
t→∞

P{W (t) ≤ x}

F (x) = lim
n→∞

P{Wn ≤ x}

L= lim
t→∞

E[X(t)]

W = lim
n→∞

E[Wn]

Let λ be the average number of customers that enter the queueing system per unit time,
referred to as the mean entering rate. Note that if the system capacity is finite, all arriving
customers do not enter and therefore λ is specifically referred to as average rate of “entering”
and not “arrival.” The relation between L and W is given by Little’s law (a result by Prof.
John D.C. Little of MIT):

L = λW (9.1)

It is important to note two things. First, for the finite capacity case W must be inter-
preted as the mean time in the system for customers that actually “enter” the system (and
does not include customers that were turned away). Second, note that the average rate of
departure from the system (if the system is stable) is also λ. This is called conservation
of customers, whereby customers are neither created nor destroyed; therefore the average
customer entering rate equals average customer departure rate (if the system is stable).

We now focus our attention on infinite capacity queues in the next section. However, while
we present results, if applicable, finite capacity queues’ extensions will be explained. In addi-
tion, in future sections too we will mainly concentrate on infinite capacity queues (with some
exceptions) due to issues of practicality and ease of analysis. From a practical standpoint,
if a queue actually has finite capacity but the capacity is seldom reached, approximating
the queue as an infinite capacity queue is reasonable.

9.2.2 Preliminary Results for the GI/G/s Queue

Define the following for a single-stage GI/G/s queue (interarrival times independent and
identically distributed, service time any general distribution, s servers, infinite waiting room,
FCFS service discipline):

• λ: Average arrival rate into the system (inverse of the average time between two
arrivals); notice that as the capacity is finite, all customers that arrive, also enter
the system.

• µ: Average service rate of a server (inverse of the average time to serve a cus-
tomer); it is important that the units for λ and µ be the same; that is, both
should be per second or both should be per minute, and so on.

• Lq: Average number of customers in the queue, not including ones in service
(L defined earlier, includes the customers at the servers).
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• Wq: Average time spent in the queue, not including in service (W defined earlier,
includes customer service times). Note that, in units of 1/µ,

W = Wq +
1
µ

(9.2)

• ρ = λ
sµ : the traffic intensity, which is a dimensionless quantity.

It is important to note that while extending the results to finite capacity queues, all the
above definitions pertain only to customers that enter the system (and do not include
those that were turned away when the system was full). However, the first result below is
applicable only for infinite capacity queues as finite capacity queues are always stable.

RESULT 9.1 A necessary condition for stability of a queueing system is

ρ ≤ 1

For most cases, the above condition is also sufficient (the sufficient condition actually is
ρ < 1). However, in the case of queues with multiclass traffic that traverses through multi-
station queues, this condition may not be sufficient.

Little’s Law and Other Results Using Little’s Law

As described in the previous section, we once again present Little’s law, here λ = λ.

RESULT 9.2 For a GI/G/s queue,

L = λW (9.3)

and

Lq = λWq (9.4)

Notice that if we can compute one of L, Lq, W , or Wq, the other three can be obtained using
the above relations. Little’s law holds under very general conditions. In fact, even the service
discipline does not have to be FCFS and the servers do not need to be work conserving.
The result holds for any system with inputs and outputs. As an example, Equation 9.4 is
nothing but using Little’s law for the waiting space and not including the server. Note that
if the system is stable, the output rate on an average is also λ. Using Little’s law, some more
interesting results can be obtained.

RESULT 9.3 The probability that a particular server is busy pb is given by

pb = ρ

which can be derived from W= Wq + 1/µ and Little’s law via the relation L= Lq + λ/µ.
Also, for the special single server case of s= 1, that is, GI/G/1 queues, the probability that
the system is empty, p0 is

p0 = 1 − ρ

Based on the definition of L, it can be written as

L =
∞∑

j=0

jpj
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In a similar manner, let L(k) be the kth factorial moment of the number of customers in
the system in steady state, that is,

L(k) =
∞∑

j=k

k!
(

j
k

)
pj

Also, let W (k) be the kth moment of the waiting time in steady state, that is,

W (k) = lim
n→∞

E
[
{Wn}k

]

Little’s law can be extended for the M/G/s queue in the following manner.

RESULT 9.4 For an M/G/s queue,

L(k) = λkW (k) (9.5)

Of course, the special case of k = 1 is Little’s law itself. However, the interesting result
is that all moments of the queue lengths are related to corresponding moments of waiting
times. Notice that from factorial moments it is easy to obtain actual moments.

Limiting Distributions of X(t), Xn , and X∗
n

In some situations it may not be possible to obtain pj easily. But it may be possible to get
πj or π∗

j . In that light, two results based on the limiting distributions (πj , π∗
j , and pj)

will be presented. The first result relates the Xn and X∗
n processes in the limit (i.e., the

relation between πj and π∗
j ). The second result illustrates the relation between the limiting

distributions of X(t) and X∗
n (i.e., pj and π∗

j ). They hold under very general cases beyond
the cases presented here. However, one must be very careful while using the results in
the more general situations.

RESULT 9.5 Let πj and π∗
j be as defined earlier as the limiting distributions of Xn and

X∗
n, respectively. When either one of those limits exists, so does the other and

πj = π∗
j for all j ≥ 0

It can easily be shown that the limits described in the above result exists for queue length
processes of M/M/1, M/M/s, M/G/1, and G/M/s queueing systems. However, the limit
for the more general G/G/s case is harder to show but the result does hold. The result also
holds for the G/G/s/k case, whether we look at “entering” or “arriving” customers (in the
“arriving” case, departing customers denote both the ones rejected as well as the ones that
leave after service).

RESULT 9.6 If the arrival process is Poisson (i.e., an M/G/s queue), then the probability
that an arriving customer in steady state will see the queueing system in state j is the
probability that the system is in state j in the long run, that is,

pj = lim
t→∞

P{X(t) = j} = π∗
j

The above result is called PASTA (Poisson Arrivals See Time Averages). PASTA is a pow-
erful result that can be used in situations beyond queueing. For example, if one is interested
in computing an average over time, instead of observing the system continuously, it can be
observed from time to time such that the interarrival times are exponentially distributed.
In fact, one common mistake made by a lot of people is to compute averages by sampling
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at equally spaced intervals. In fact, sampling must be done in such a manner that the time
between samples is exponentially distributed. Only then the averages obtained across such
a sample will be equal to the average across time.

Therefore, when one out of L, W , Lq, or Wq is known, the other three can be computed.
Also under certain conditions, when one out of pj , πj , or π∗

j is known, the others could be
computed. In the next few sections, we will see how to compute “one” of those terms.

9.3 Single-Station and Single-Class Queues

In this section, we consider a single queue at a single station handling a single class of cus-
tomers. We start with the simplest case of an M/M/1 queue and work our way through
more complex cases. Note that all the results can be found in standard texts such as Gross
and Harris [1] especially until Section 9.3.11.

9.3.1 The Classic M/M/1 Queue: Main Results

Consider a single-stage queueing system where the arrivals are according to a Poisson process
with average arrival rate λ per unit time (which is written as PP(λ)), that is, the time
between arrivals is according to an exponential distribution with mean 1/λ. For this system
the service times are exponentially distributed with mean 1/µ and there is a single server.

The number in the system at time t in the M/M/1 queue, that is, X(t), can be modeled
as a continuous time Markov chain (CTMC), specifically a birth and death process. The
condition for stability for the CTMC and subsequently the M/M/1 queue is that the traffic
intensity ρ should be less than 1, that is, ρ = λ/µ < 1. This means that the average arrival
rate should be smaller than the average service rate. This is intuitive because the server
would be able to handle all the arrivals only if the arrival rate is slower than the rate at
which the server can process on an average.

The long-run probability that the number of customers in the system is j (when ρ < 1)
is given by

pj = lim
t→∞

P{X(t) = j} = (1 − ρ)ρ j for all j ≥ 0

Therefore, the long-run probability that there are more than n customers in the system
is ρn. In addition, the key performance measures can also be obtained. Using pj we have

L =
∞∑

j=0

jpj =
λ

µ − λ

and

Lq = 0p0 +
∞∑

j=0

jpj+1 =
λ2

µ(µ − λ)

Recall that Wn is the waiting time of the nth arriving customer and F (x) = lim
n→∞

P{Wn ≤x}.
Then

F (x) = 1 − e−(µ−λ)x for x ≥ 0
and therefore the waiting time for a customer arriving in steady-state is exponentially
distributed with mean 1/(µ−λ). Therefore

W =
1

µ − λ
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which can also be derived using Little’s law and the expression for L. In addition, using
Little’s law for Lq,

Wq =
λ

µ(µ − λ)

M/M/1 Type Queues with Balking

When an arriving customer sees j other customers in the system, this customer joins the
queue with probability αj . In other words, this customer balks from the queueing system
with probability (1−αj). This can be modeled as a CTMC, which is a birth and death
process with birth parameters (i.e., rate for going from state n to n + 1) λn+1 = αnλ for n ≥ 0
and death parameters (i.e., rate for going from state n to n − 1) µn = µ for n ≥ 1. It is not
possible to obtain pj in closed-form (and thereby L) except for some special cases. In general,

pj =
∏j

k=0(λk/µk)

1 +
∑∞

n=1
∏n

i=1
λi

µi

with λ0 = µ0 = 1 and when the denominator exists. Also,

L =
∞∑

j=0

jpj

and using λ =
∑∞

n=0 λn+1pn, W can be obtained as L/λ.

M/M/1 Type Queues with Reneging

Every customer that joins a queue waits for an exp(θ) amount of time before which if the
service does not begin, the customer leaves the queueing system (which is called reneging
from the queueing system). This can be modeled as a birth and death CTMC with birth
parameters (see above for M/M/1 with balking for definition) λn+1 = λ for n ≥ 0 and death
parameters µn = µ+ (n − 1)θ for n ≥ 1. It is not possible to obtain pj in closed-form (and
thereby L) except for some special cases. In general,

pj =
∏j

k=0(λk/µk)

1 +
∑∞

n=1
∏n

i=1
λi

µi

with λ0 = µ0 = 1 and when the denominator exists. Also,

L =
∞∑

j=0

jpj

and using λ = λ, it is possible to obtain W as L/λ. It is crucial to note that W is the time
in the system for all customers, so it includes those customers that reneged as well as those
that were served. A separate analysis must be performed to obtain the departure rate of
customers after service. Using this departure rate as λ, if W is obtained then it would be
the average waiting time for customers that were served.

In case there is a queueing system with balking and reneging, then the analysis can be
combined. However, it must be noted that if the reneging times are not exponential, then
the analysis is a lot harder.
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M/M/1 Queue with State-Dependent Service

Consider an M/M/1 type queue where the mean service rate depends on the state of the
system. Many times when the number of customers waiting increases, the server starts
working faster. This is typical when the servers are humans. Therefore, if there are n cus-
tomers in the system, the mean service rate is µn. Note that in the middle of service if the
number in service increases to n + 1, the mean service rate also changes to µn+1 (further, if
it increases to n + 2 then service rate becomes µn+2, and so on). This can also be modeled as
a birth and death CTMC with birth parameters (defined in M/M/1 with balking) λn+1 = λ
for n ≥ 0 and death parameters µn for n ≥ 1. It is not possible to obtain pj in closed-form
(and thereby L) except for some special cases. In general,

pj =
∏j

k=0(λk/µk)

1 +
∑∞

n=1
∏n

i=1
λi

µi

with λ0 = µ0 = 1 and when the denominator exists. Also,

L =
∞∑

j=0

jpj

and using λ = λ, W can be obtained as L/λ.
Note that if the mean service rate has to be picked and retained throughout the service

of a customer, that system cannot be modeled as a birth and death process.

M/M/1 Queue with Processor Sharing

For pj , L, and W it does not matter what the service discipline is (FCFS, LCFS, ROS, etc.)
The results are the same as long as the customers are served one at a time. Now what if the
customers are served using a processor sharing discipline? Customers arrive according to a
Poisson process with mean arrival rate λ customers per unit time. The amount of work each
customer brings is according to exp(µ); that is, if each customer were served individually it
would take exp(µ) time for service. However, the processor is shared among all customers.
So, if the system has i customers, each customer gets only an ith of the processing power.
Therefore each of the i customers get a service rate of µ/i. However, the time for the first of
the i to complete service is according to exp(i×µ/i). Therefore, the CTMC for the number
of customers in the system is identical to that of an FCFS M/M/1 queue. And so, even the
processor sharing discipline will have identical pj , L, and W as that of the FCFS M/M/1
queue.

9.3.2 The Multiserver System: M/M/s

The description of an M/M/s queue is similar to that of the classic M/M/1 queue with the
exception that there are s servers. Note that by letting s = 1, all the results for the M/M/1
queue can be obtained. The number in the system at time t, X(t), in the M/M/s queue
can be modeled as a CTMC, which again is a birth and death process. The condition for
stability is ρ = λ/(sµ) < 1 where ρ is called the traffic intensity. The long run probability
that the number of customers in the system is j (when ρ < 1) is given by

pj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
j!

(
λ

µ

)j

p0 if 0 ≤ j ≤ s − 1

1
s!sj−s

(
λ

µ

)j

p0 if j ≥ s
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where p0 =
[∑s−1

n=0

{ 1
n! (λ/µ)n

}
+ (λ/µ)s

s!
1

1 − λ/(sµ)

]−1
. Thereby, using pj , we can derive

Lq =
p0(λ/µ)sλ

s!sµ[1 − λ/(sµ)]2

Also, Wq = Lq/λ, W = Wq + 1/µ, and L= Lq + λ/µ. The steady-state waiting time for a
customer has a cumulative distribution function (CDF) given by

F (x) =
s(1 − ρ) − w0

s(1 − ρ) − 1
(1 − e−µx) − 1 − w0

s(1 − ρ) − 1
(1 − e−(sµ−λ)x)

where w0 = 1 − λsp0
s!µs(1−ρ) .

9.3.3 Finite Capacity M/M/s/K System

In fact, this is one of the more general forms of the Poisson arrivals (with mean rate λ per
unit time) and exponential service time (with mean 1/µ) queue. Using the results presented
here, results for all the M/M/·/· type queues can be obtained. For example, letting s = 1
and K = ∞, the M/M/1 results can be obtained; K = ∞ would yield the M/M/s results,
K = s would yield the M/M/s/s results, K = s = ∞ would yield the M/M/∞ results, and
so on. The special cases are popular because (a) the results are available in closed-form and
(b) insights can be obtained, especially while extending to the more general cases.

The number in the system at time t, X(t), in the M/M/s/K queue can be modeled as
specifically a birth and death chain CTMC. Using the pj values, one can derive

Lq =
p0(λ/µ)sρ

s!(1 − ρ)2
[1 − pK−s − (K−s)ρK−s(1 − ρ)]

where ρ = λ/(sµ) and p0 =
[∑s

n=0

{ 1
n! (λ/µ)n

}
+ (λ/µ)s

s!

∑K
n=s+1 ρn−s

]−1
.

Caution: Since this is a finite capacity queue, ρ can be greater than 1. The probability

that an arriving customer is rejected is pK as is given by pK =
(λ/µ)K

s!sK−s
p0. Therefore, the

average entering rate λ is given by λ = (1 − pK)λ. Hence Wq can be derived as Lq/λ. Also,
W and L can be obtained using W = Wq + 1/µ and L= Lq + λ/µ.

9.3.4 The M/M/1/K Queue

The M/M/1/K is another special case of the M/M/s/K system with s = 1. However, it
is the most fundamental finite capacity queue example with Poisson arrivals (with mean
rate λ) and exponential service times (with mean 1/µ). No more than K customers can
be in the system at any time. The traffic intensity ρ (where ρ = λ/µ) does not have to
be less than one. Since the capacity is finite, the system cannot be unstable. However, we
assume for now that ρ �= 1. For the case ρ = 1, limits results from calculus can be used (such
as L’Hospital’s rule) to obtain the corresponding value. The number of customers in the
system, not including any at the server, is

Lq =
ρ

1 − ρ
− ρ(KρK + 1)

1 − ρK+1
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To obtain Wq, we use
Wq = L/λ

where λ is the average entering rate into the system and can be expressed as λ(1 − pK) where

pK =
(λ/µ)K [1 − λ/µ]
1 − (λ/µ)K+1

Also, W and L can be obtained using W = Wq + 1/µ and L= Lq + λ/µ.

9.3.5 The M/M/s/s Queue

Although the M/M/s/s queue is a special case of the M/M/s/K system with K = s, there
are several interesting aspects and unique applications for it. Customers arrive according to
a Poisson process with mean rate λ per unit time. Essentially there are no queues. But there
are s servers that can be thought of as s resources that customers hold on to for an exponen-
tial amount of time (with mean 1/µ). In fact, queueing theory started with such a system by
a Danish Mathematician A.K. Erlang, who studied telephone switches with s lines. There
is no waiting and if all s lines are being used, the customer gets a “busy” tone on their tele-
phone. This system is also known as the Erlang loss system. However, there are many other
applications for the M/M/s/s queue such as: a rental agency with s items, gas stations
where customers do not wait if a spot is not available among s possible spots, self-service area
with maximum capacity s, and so on. In many of these systems there are no explicit servers.

The probability that there are j (for j = 0, . . ., s) customers in the system in the long
run is

pj =

(λ/µ)j

j!
∑s

i=0
(λ/µ)i

i!
Therefore, the “famous” Erlang loss formula is the probability that an arriving customer is
rejected (loss probability) and is given by

ps =

(λ/µ)s

s!∑s
i=0

(λ/µ)i

i!

A remarkable fact is that the above formula holds good even for the M/G/s/s system with
mean service time 1/µ. We will see that in the M/G/s/s system explanation. We can derive

L =
λ

µ
(1 − ps)

As the effective arrival rate is λ(1 − ps), W = 1/µ, which is obvious since there is no
waiting, the average time in the system W is indeed the average service time. Clearly
Lq = 0 and Wq = 0 for that same reason.

9.3.6 The Infinite Server M/M/∞ Queue

This is identical to the M/M/s/s system with s = ∞. In reality there are never infinite
resources or servers. But when s is very large and a negligible number of customers are
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rejected, the system can be assumed as s = ∞ as the results are expressed in closed-form.
Systems such as the beach, grocery store (not counting the check out line), car rentals, and
the like can be modeled as M/M/∞ queues.

The probability that there are j customers in the system in the long run is pj =
(λ/µ)j 1

j!e
−λ/µ. Also, L= λ/µ and W = 1/µ. Of course, Lq = 0 and Wq = 0.

9.3.7 Finite Population Queues

Until this point we assumed that there are an infinite number of potential customers and
the arrival rates did not depend on the number of customers in the system. Now we look
at the case where the arrivals are state-dependent. Consider a finite population of N cus-
tomers. Each customer after completion of service returns to the queue after spending exp(λ)
time outside the queueing system. There is a single server which serves customers in exp(µ)
amount of time. Clearly the arrival rate would depend on the number of customers in the sys-
tem. If X(t) denotes the number of customers in the system, then its limiting distribution is

pj = lim
t→∞

P{X(t) = j} =

(
N
j

)
j!(λ/µ)j

∑N
i=0

(
N
i

)
i!(λ/µ)i

Clearly L=
∑∞

j=0 jpj ; however, Lq, W , and Wq are tricky and need the effective arrival rate
λ. Using the fact that λ = λ(N −L) we can get

Lq = L − λ(N − L)/µ, W =
L

λ(N − L)
, and Wq =

Lq

λ(N − L)

Notice that the arrivals are not according to a Poisson process (which requires that
interarrival times be independent and identically distributed exponential random variables).
Therefore, PASTA cannot be applied. However, it is possible to show that the probability
that an arriving customer in steady state will see j in the system is

π∗
j =

(N − j)pj

N − L

9.3.8 Bulk Arrivals and Service

So far we have only considered the case of single arrivals and single service. In fact, in prac-
tice, it is not uncommon to see bulk arrivals and bulk service. For example, arrivals into
theme parks are usually in groups, arrivals and service in restaurants are in groups, shuttle
busses perform service in batches, and so on. We only present the cases where the interar-
rival times and service times are both exponentially distributed. However, unlike the cases
seen thus far, here the CTMC models are not birth and death processes for the number in
the system.

Bulk Arrivals Case: M [X]/M/1 Queue

Arrivals occur according to PP(λ) and each arrival brings a random number X customers
into the system. A single server processes the customers one by one, spending exp(µ) time
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with each customer. There is infinite waiting room and customers are processed according
to FCFS. Such a system is denoted an M [X]/M/1 queue. Let ai be the probability that an
arrival batch size is i, that is, P{X = i} for i > 0 (we do not allow batch size of zero). Let
E[X] and E[X2] be the first and second moments of X (where E[X2] =V ar[X] + {E[X]}2).
Define ρ = λE[X]/µ. The condition for stability is ρ < 1. We can derive the following results:

p0 = 1 − ρ

L =
λ{E[X] + E[X2]}

2µ(1 − ρ)

Other pj values can be computed in terms of λ, µ, and ai. Note that the average entering
rate λ = λE[X]. Therefore, using Little’s law, W = L/(λE[X]). Also, Wq = W − 1/µ and
thereby Lq = λE[X]Wq.

Bulk Service Case: M/M [Y ]/1 Queue

Single arrivals occur according to PP(λ). The server processes a maximum of K customers
at a time and any arrivals that take place during a service can join service (provided the
number is less than K). There is a single server, infinite waiting room, and FCFS discipline.
The service time for the entire batch is exp(µ) whether the batch is of size K or not. In
fact, this is also sometimes known as the M/M [K]/1 queue (besides the M/M [Y ]/1 queue).
Notice that this system is identical to a shuttle bus type system where customers arrive
according to PP(λ) and busses arrive with exp(µ) as the inter-bus-arrival distribution. As
soon as a bus arrives, the first K customers (if there are less than K, then all customers)
instantaneously enter the bus and the bus leaves. Then the queue denotes the number of
customers waiting for a shuttle bus.

To obtain the distribution of the number of customers waiting, let (r1, . . ., rk+1) be the
K + 1 roots of the characteristic equation (with D as the variable)

µDK+1 − (λ + µ)D + λ = 0

Let r0 be the only root among the K + 1 to be within 0 and 1. We can derive the following
results:

pn = (1 − r0)rn
0 for n ≥ 0

L =
r0

1 − r0
, Lq = L − λ/µ

W =
r0

λ(1 − r0)
, Wq = W − 1/µ

9.3.9 The M/G/1 Queue

Consider a queueing system with PP(λ) arrivals and general service times. The service times
are iid with CDF G(·), mean 1/µ, and variance σ2. Notice that in terms of Sn, the service
time for any arbitrary customer n,

G(t) = P{Sn ≤ t}

1/µ = E[Sn]

σ2 = Var[Sn]
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There is a single server, infinite waiting room, and customers are served according to
FCFS service discipline. It is important to note for some of the results, such as L and W ,
that the CDF G(·) is not required. However, for pj and the waiting time distribution, the
Laplace Steiltjes Transform (LST) of the CDF denoted by G̃(s) and defined as

G̃(s) = E[esSn ] =

∞∫
t=0

e−stdG(t)

is required.
Note that since the service time is not necessarily exponential, the number in the system

for the M/G/1 queue cannot be modeled as a CTMC. However, notice that if the system was
observed at the time of departure, a Markovian structure is obtained. Let Xn be the number
of customers in the system immediately after the nth departure. Then it is possible to show
that {Xn, n ≥ 0} is a discrete time Markov chain (DTMC) whose transition probability
matrix can be obtained. The stability condition is ρ < 1 where ρ = λ/µ. Let πj be the limiting
probability (under stability) that in the long run a departing customer sees j customers in
the system, that is,

πj = lim
n→∞

P{Xn = j}

Then, using PASTA, we have pj = πj for all j. To obtain the πj , consider the generating
function φ(z) such that

φ(z) =
∞∑

j=0

πjz
j

If the system is stable,

π0 = 1 − ρ

φ(z) =
(1 − ρ)(1 − z)G̃(λ − λz)

G̃(λ − λz) − z

Although πj values cannot be obtained in closed-form for the general case, they can be
derived from φ(z) by repeatedly taking derivatives with respect to z and letting z go to zero.

However, L and W can be obtained in closed-form. The average number of customers in
the system is

L = ρ +
λ2

2
(σ2 + 1/µ2)

1 − ρ

The average waiting time in the system is

W = 1/µ +
λ

2
(σ2 + 1/µ2)

1 − ρ

Also, Lq = L− ρ and Wq = W − 1/µ.
Recall that Wn is the waiting time of the nth arriving customer and F (x) = lim

n→∞
P{Wn ≤x}.

Although it is not easy to obtain F (x) in closed-form except for some special cases, it is
possible to write it in terms of the LST, F̃ (s) defined as

F̃ (s) = E[esWn ] =

∞∫
x=0

e−sxdF (x)
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in the following manner:

F̃ (s) =
(1 − ρ)sG̃(s)

s − λ(1 − G̃(s))

It is important to realize that although inverting the LST in closed-form may not be easy,
there are several software packages that can be used to invert it numerically. In addition,
it is worthwhile to check that all the above results are true by trying exponential service
times, as after all M/M/1 is a special case of the M/G/1 queue.

The M/G/1 Queue with Processor Sharing

Similar to the M/M/1 system, for the M/G/1 system as well, the expressions for the num-
ber in system, L, and waiting time, W , it does not matter what the service discipline is
(FCFS, LCFS, ROS, etc). The results would be the same as long as the customers were
served one at a time. Now what if the customers are served using a processor sharing disci-
pline? Customers arrive according to a Poisson process with mean arrival rate λ customers
per unit time. The amount of work each customer brings is according to some general dis-
tribution with CDF G(·) as described in the M/G/1 setting earlier. Also, if each customer
were served individually it would take 1/µ time for service on an average (and a variance
of σ2 for service time). However, for this case, the processor is shared among all customers.
So if the system has i customers, each customer gets only an ith of the processing power.
Therefore, each of the i customers get a service rate of 1/i of the server speed. For this
system, it can be shown that

W =
1

µ − λ

The result indicates that the waiting time does not depend on the distribution of the service
time but on the mean alone. Also, L= λW , Wq = 0, and Lq = 0.

The M/G/∞ Queue

Although this is an extension to the M/M/∞ for the general service time case, the results
are identical, indicating they are independent of the distribution of service time. The prob-
ability that there are j customers in the system in the long run is

pj = e−λ/µ (λ/µ)j

j!
for j ≥ 0

The departure process from the queue is PP(λ). Also, L= λ/µ and W = 1/µ. Of course
Lq = 0 and Wq = 0.

The M/G/s/s Queue

This is a queueing system where the arrivals are according to a Poisson process with mean
arrival rate λ. The service times (also called holding times) are generally distributed with
mean 1/µ. There are s servers but no waiting space. The results are identical to those of the
M/M/s/s queue. In fact, the Erlang loss formula was derived for this general case initially.
For 0≤ j ≤ s, the steady-state probability that there are j customers in the system is

pj =

(λ/µ)j

j!
∑s

k=0
(λ/µ)k

k!
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The departure process from the queue is PP((1 − ps)λ). In addition, L= λ
µ (1 − ps), W = 1/µ,

Lq = 0, and Wq = 0.

9.3.10 The G/M/1 Queue

Consider a queueing system where the interarrival times are according to some given general
distribution and service times are according to an exponential distribution with mean 1/µ.
The interarrival times are iid with CDF G(·) and mean 1/λ. This means that

G(t) = P{An+1 − An ≤ t}

1/λ = E[An+1 − An] =

∞∫
0

tdG(t)

Assume that G(0) = 0. Also, there is a single server, infinite waiting room, and customers
are served according to FCFS service discipline. It is important to note for most of the
results the LST of the interarrival time CDF denoted by G̃(s) and defined as

G̃(s) = E[es(An+1−An)] =

∞∫
t=0

e−stdG(t)

is required.
Similar to the M/G/1 queue, as all the random events are not necessarily exponentially

distributed, the number in the system for the G/M/1 queue cannot be modeled as a CTMC.
However, notice that if the system was observed at the time of arrivals, a Markovian struc-
ture is obtained. Let X∗

n be the number of customers in the system just before the nth
arrival. Then it is possible to model the stochastic process {X∗

n, n ≥ 0} as a DTMC. The
DTMC is ergodic if

ρ =
λ

µ
< 1

which is the stability condition. Let π∗
j be the limiting probability that in the long run an

arriving customer sees j other customers in the system, that is,

π∗
j = lim

x→∞
P{X∗

n = j}

If ρ < 1, we can show that
π∗

j = (1 − α)αj

where α is a unique solution in (0,1) to

α = G̃(µ − µα)

Using the notation Wn as the waiting time of the nth arriving customer under FCFS and
F (x) = lim

x→∞
P{Wn ≤ x}, we have

F (x) = 1 − e−µ(1−α)x

Therefore, under FCFS, the waiting time in the system in the long run is exponentially
distributed with parameter µ(1 −α). Using that result, the average waiting time in the
system is

W =
1

µ(1 − α)
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Using Little’s law, the average number of customers in the system is

L =
λ

µ(1 − α)

Note that we cannot use PASTA (as the arrivals are not Poisson, unlike the M/G/1 case).
However, it is possible to obtain pj using the following relation:

p0 = 1 − ρ

pj = ρπ∗
j−1 when j > 0

9.3.11 The G/G/1 Queue

Consider a single server queue with infinite waiting room where the interarrival times and
service times are according to general distributions. The service discipline is FCFS. As the
model is so general without a Markovian structure, it is difficult to model the number in
the system as an analyzable stochastic process. Therefore, it is not possible to get exact
expressions for the various performance measures. However, bounds and approximations can
be derived. There are several of them and none are considered absolutely better than others.
In this subsection, almost all the results are from Bolch et al. [2] unless otherwise noted.

Recall that Wn is the time in the system for the nth customer, Sn is the service time for the
nth customer and An is the time of the nth arrival. To derive bounds and approximations for
the G/G/1 queue, a few variables need to be defined. Define In+1 = max(An+1 −An −Wn, 0)
and Tn+1 = An+1 −An. All the bounds and approximations are in terms of four parameters:

1/λ = E[Tn] average interarrival time

C2
a = Var[Tn]/{E[Tn]}2 SCOV of interarrival times

1/µ = E[Sn] average service time

C2
s = Var[Sn]/{E[Sn]}2 SCOV of service times

where SCOV is the “squared coefficient of variation,” that is, the ratio of the variance to
the square of the mean (only for positive-valued random variables). Another parameter that
is often used is ρ = λ/µ, which is the traffic intensity.

Let random variables T , S, and I be the limiting values as n → ∞ of Tn, Sn, and In,
respectively. Although the mean and variance of T and S are known, E[I] can be com-
puted as E(I) = E(T ) −E(S), which requires E(T ) > E(S), that is, ρ < 1. It is possible to
show that

W =
E(S2) − 2{E(S)}2 − E(I2) + E[T 2]

2{E(T ) − E(S)}

Notice that the only unknown quantity above is E(I2). Therefore, approximations and
bounds for W can be obtained through those of E[I2]. As L= λW (using Little’s law),
bounds and approximations for L can also be obtained.

Since on many occasions, the departure process from a queue is the arrival process
to another queue in a queueing network setting, it is important to study the mean and
SCOV of the departure process of a G/G/1 queue. Let Dn be the time of departure of
the nth customer. Define ∆n+1 = Dn+1 −Dn as the interdeparture time with ∆ being
the interdeparture time in steady state. Then it is possible to show that under stability,
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E(∆) =E(I) + E(S) = E(T ) = 1/λ. Therefore, the departure rate equals arrival rate (con-
servation of flow of customers). In addition, let C2

d = Var(∆)/{E[∆]}2; then

C2
d = C2

a + 2ρ2C2
s + 2ρ(1 − ρ) − 2λW (1 − ρ)

Note that C2
d is in terms of W and hence approximations and bounds for W would yield

the same for C2
d .

Bounds for L, W , and C2
d for G/G/1 Queue

First some bounds on W :

W ≤ C2
a + ρ2C2

s

2λ(1 − ρ)
+ E(S)

W ≤ ρ(2 − ρ)C2
a + ρ2C2

s

2λ(1 − ρ)
+ E(S)

W ≥ ρ(C2
a − 1 + ρ) + ρ2C2

s

2λ(1 − ρ)
+ E(S) if T is DFR

W ≤ ρ(C2
a − 1 + ρ) + ρ2C2

s

2λ(1 − ρ)
+ E(S) if T is IFR

where IFR and DFR are described subsequently. Note that ρ(2 − ρ) < 1; therefore, the first
bound is always inferior to the second. Also, IFR and DFR respectively denote increasing
failure rate and decreasing failure rate random variables. Mathematically, the failure rate of a
positive-valued random variable X is defined as h(x) = fX(x)/[1 −FX(x)], where fX(x) and
FX(x) are the probability density function and CDF of the random variable X. The reason
they are called failure rate is because if X denotes the lifetime of a particular component,
then h(x) is the rate at which that component fails when it is x time units old. IFR and
DFR imply that h(x) is respectively the increasing and decreasing functions of x. Note that
all random variables need not be IFR or DFR; they could be neither. Also, the exponential
random variable has a constant failure rate.

We can also obtain bounds via the M/G/1 (disregarding C2
a and using Poisson arrival

process with mean rate λ arrival process) and G/M/1 (disregarding C2
s and using exponen-

tially distributed service times with mean 1/µ) results. It is important to note that to use
the G/M/1 results, the distribution of the interarrival times is needed, not just the mean
and SCOV. See the table below with LB and UB referring to lower and upper bounds:

C2
a C2

s M/G/1 G/M/1

>1 >1 LB LB

>1 <1 LB UB

<1 >1 UB LB

<1 <1 UB UB

That means (see second result above) if C2
a > 1 and C2

s < 1 for the actual G/G/1 system,
then W using M/G/1 analysis would be a lower bound and correspondingly G/M/1 would
yield an upper bound.
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Next let us see what we have for L when T is DFR (although all bounds above for W
can be used by multiplying by λ)

ρ(C2
a − 1 + ρ) + ρ2C2

s

2(1 − ρ)
+ ρ ≤ L ≤ ρ(2 − ρ)C2

a + ρ2C2
s

2(1 − ρ)
+ ρ

Finally some bounds on C2
d :

C2
d ≥ (1 − ρ)2C2

a + ρ2C2
s

C2
d ≤ (1 − ρ)C2

a + ρ2C2
s + ρ(1 − ρ) if T is DFR

C2
d ≥ (1 − ρ)C2

a + ρ2C2
s + ρ(1 − ρ) if T is IFR

Approximations for L, W , and C2
d for G/G/1 Queue

The following are some approximations for L and C2
d taken from Buzacott and Shanthikumar

[4]. Approximations for W can be obtained by dividing L by λ. There are several other
approximations available in the literature, many of which are empirical. Only a few are
presented here as follows:

Approx. L C2
d

1

(
ρ2(1 + C2

s )
1 + ρ2C2

s

)(
C2

a + ρ2C2
s

2(1 − ρ)

)

+ ρ (1 − ρ2)

(
C2

a + ρ2C2
s

1 + ρ2C2
s

)

+ ρ2C2
s

2

(
ρ2(1 + C2

s )
2 − ρ + ρC2

s

)(
ρ(2 − ρ)C2

a + ρ2C2
s

2(1 − ρ)

)

+ ρ 1 − ρ
2 + ρ

2
C

2
s + (C2

a − 1)
(

(1 − ρ2)(2 − ρ) + ρC2
s (1 − ρ)2

2 − ρ + ρC2
s

)

3
ρ2(C2

a + C2
s )

2(1 − ρ)
+

(1 − C2
a)C2

aρ

2
+ ρ (1 − ρ)(1 + ρC2

a)C2
a + ρ2C2

s

9.3.12 The G/G/m Queue

Everything is similar to the G/G/1 queue explained before except that the number of servers
is m. Getting closed-form expressions was impossible for G/G/1, so naturally for G/G/m
there is no question. However, several researchers have obtained bounds and approximations
for the G/G/m queue. In fact, letting m = 1 for the G/G/m results would produce great
results for G/G/1. Notice that the traffic intensity ρ = λ/(mµ). The random variables S
and T , as well as parameters C2

a and C2
s used in the following bounds and approximations,

have been defined in the G/G/1 system above.

• The Kingman upper bound:

Wq ≤ V ar(T ) + V ar(S)/m + (m − 1)/(m2µ2)
2(1 − ρ)

• The Brumelle and Marchal lower bound:

Wq ≥ ρ2C2
s − ρ(2 − ρ)
2λ(1 − ρ)

− m − 1
m

(C2
s + 1)
2µ

• Under heavy traffic conditions, for the G/M/m systems,

Wq ≈ V ar(T ) + V ar(S)/m2

2(1 − ρ)
λ
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and waiting time in the queue is distributed approximately according to an expo-
nential distribution with mean 1/Wq. Note that “heavy traffic” implies that ρ is
close to 1.

• And finally,

WG/G/m ≈
WM/M/m

WM/M/1
WG/G/1 + E[S]

In the above approximation, the subscript for W denotes the type of queue. For
example, WM/M/m implies the mean waiting time for the M/M/m queue using
the same λ and µ as the G/G/m case.

• There are several approximations available in the literature, many of which are
empirical. The most popular one is the following. Choose αm such that

αm =

⎧⎪⎨
⎪⎩

ρm + ρ

2
if ρ > 0.7

ρ
ρ+1
2 if ρ < 0.7

The waiting time in the queue is given by the approximation

Wq ≈ αm

µ

(
1

1 − ρ

) (
C2

a + C2
s

2m

)

9.4 Single-Station and Multiclass Queues

In the models considered so far there was only a single class of customers in the system. How-
ever, there are several applications where customers can be differentiated into classes and
each class has its own characteristics. For example, consider a hospital emergency room.
The patients can be classified into emergency, urgent, and normal cases with varying arrival
rates and service time requirements. Another example is a toll booth where the vehicles can
be classified based on type (cars, buses, trucks, etc.) and each type has its own arrival rate
and service time characteristics. There are several examples in production systems (rou-
tine maintenance versus breakdowns in repair shops) and communication systems (voice
calls versus dial-up connection for Internet at a telephone switch) where entities must be
classified due to the wide variability of arrival rates and service times.

Having made a case for splitting traffic in queues into multiple classes, it is also important
to warn that unless absolutely necessary, due to the difficulty in analyzing such systems,
one should not classify. There are two situations where it does make sense to classify. First,
when the system has a natural classification where the various classes require their own
performance measures (e.g., in a flexible manufacturing system, if a machine produces three
types of parts and it is important to measure the in-process inventory of each of them
individually, then it makes sense to model them as three classes). Second, when the service
times are significantly different for the various classes that the distribution models would
fit better, then it makes sense (e.g., if the service times have a bimodal distribution, then
classifying into two classes with unimodal distribution for each class would possibly be
better).

The next question to ask is how are the different classes of customers organized at the
single station? There are two waiting line structures:

a. All classes of customers wait in the same waiting room. Examples: buffer in
flexible manufacturing system, packets on a router interface, vehicles at a 1-lane
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road traffic light, and so on. Service scheduling policies are: FCFS, priority, ROS,
LCFS, and so on.

b. Each class has a waiting room of its own and all classes of customers of a par-
ticular class wait in the same waiting room. Examples: robots handling several
machine buffers, class-based queueing in routers, vehicles at a toll plaza (elec-
tronic payments, exact change, and full service), and the like. Service scheduling
policies (especially when there is only a single server) across the classes typically
are: priority, polling, weighted round-robin, and so on.

Within a class, the two waiting line structures use FCFS usually (LCFS and others are also
possible). If the waiting room is of infinite capacity and there is no switch-over time from
one queue to another, both (a) and (b) can be treated identically. However, in the finite
waiting room case, they are different and in fact one of the design decisions is to figure out
the buffer sizes, admission/rejection rules, and the like.

For the multiclass queues, several design decisions need to be made. These include:

• Assigning classes: how should the customers be classified? As alluded to before,
it is critical, especially when there is no clear-cut classification, how customers
should be classified and how many categories to consider.

• Buffer sizing: what should the size of the buffers be or how should a big buffer
be partitioned for the various classes? These decisions can be made either one
time (static) or changed as the system evolves (dynamic).

• Scheduling rule: how should the customers or entities be scheduled on the servers?
For example, FCFS, shortest expected processing time first (FCFS within a class),
round-robin across the K classes, priority-based scheduling, and so on. Sometimes
these are “given” for the system and cannot be changed; other times these could
be decisions that can be made.

• Priority allocation: if priority-based scheduling rule is used, then how should
priorities be assigned? In systems like the hospital emergency room, the priorities
are clear. However, in many instances one has to trade off cost and resources to
determine priorities.

• Service capacity: how to partition resources such as servers (wholly or partially)
among classes? For example, in a call-center handling customers that speak dif-
ferent languages and some servers being multilingual, it is important to allocate
servers to appropriate queues. Sometimes these capacity allocations are made in
a static manner and other times dynamically based on system state.

There are several articles in the literature that discuss various versions of the above design
problems. In this chapter, we assume that the following are known or given: there are R
classes already determined, infinite buffer size, scheduling rule already determined, and a
single server that serves customers one at a time. For such a system, we first describe some
general results for the G/G/1 case next and describe specific results for the M/G/1 case
subsequently. Most of the results are adapted from Wolff [3] with possibly different notation.

9.4.1 Multiclass G/G/1 Queue: General Results

Consider a single-station queue with a single server that caters to R classes of customers.
Customers belonging to class i (i∈ {1, 2, . . ., R}) arrive into the system at a mean rate λi

and the arrival process is independent of other classes, but is also independent and identi-
cally distributed within a class. Customers belonging to class i (i∈ {1, 2, . . ., R}) require an
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average service time of 1/µi. Upon completion of service, the customers depart the system.
We assume that the distribution of interarrival times and service times are known for each
class. However, notice that the scheduling policy (i.e., service discipline) has not yet been
specified. We describe some results that are invariant across scheduling policies (or at least
a subset of policies).

For these systems, except for some special cases, it is difficult to obtain performance
measures such as “distribution” of waiting time and queue length like in the single class
cases. Therefore, we concentrate on obtaining average waiting time and queue length. Let Li

and Wi be the mean queue length and mean waiting time for class i customers. Irrespective
of the scheduling policy, Little’s law holds for each class, so for all i∈ [1, R],

Li = λiWi

That means that one can think of each class as a mini system in itself. Also, similar results
can be derived for Liq and Wiq which respectively denote the average number waiting in
queue (not including customers at servers) and average time spent waiting before service.
In particular, for all i∈ [1, R],

Liq = λiWiq

Wi = Wiq +
1
µi

Li = Liq + ρi

where

ρi =
λi

µi

In addition, L and W are the overall mean number of customers and mean waiting time
averaged over all classes. Note that L= L1 + L2 + · · · + LR and if λ = λ1 + λ2 + · · · + λR,
the net arrival rate, then W = L/λ. For the G/G/1 case with multiple classes, more results
can be derived for a special class of scheduling policies called work-conserving disciplines
that we describe next.

Work-Conserving Disciplines under G/G/1

We now concentrate on a subset of service-scheduling policies (i.e., service disciplines) called
work-conserving disciplines where more results for the G/G/1 queue can be obtained. In fact,
many of these results have not been explained in the single class in the previous sections,
but by letting R = 1, they can easily be accomplished.

The essence of work-conserving disciplines is that the system workload at every instant of
time remains unchanged over all work-conserving service scheduling disciplines. Intuitively
this means that the server never idles and does not do any wasteful work. The server contin-
uously serves customers if there are any in the system. For example, FCFS, LCFS, and ROS
are work conserving. Certain priority policies that we will see later, such as non-preemptive
and preemptive resume policies, are also work conserving. There are policies that are non-
work-conserving, such as the preemptive repeat (unless the service times are exponential).
Usually, when the server takes a vacation from service or if there is a switch-over time (or
set-up time) during moving from classes, unless those can be explicitly accounted for in the
service times, are non-work conserving.
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To describe the results for the work-conserving disciplines, consider the notation used in
Section 9.4.1. Define ρ, the overall traffic intensity, as

ρ =
R∑

i=1

ρi

An R-class G/G/1 queue with a work-conserving scheduling discipline is stable if

ρ < 1

In addition, when a G/G/1 system is work conserving, the probability that the system is
empty is 1 − ρ.

Let Si be the random variable denoting the service time of a class i customer. Then we
have the second moment of the overall service time as

E[S2] =
1
λ

R∑
i=1

λiE[S2
i ]

We now present two results that are central to work-conserving disciplines. These results
were not presented for the single-class case (easily doable by letting R = 1).

RESULT 9.7 If the G/G/1 queue is stable, then when the system is in steady state, the
expected remaining service time at an arbitrary time in steady state is λE [S2]/2.

As the total amount of work remains a constant across all work-conserving disciplines,
and the above result represents the average work remaining for the customer at the server,
the average work remaining due to all the customers waiting would also remain a constant
across work-conserving discipline. That result is described below.

RESULT 9.8 Let Wiq be the average waiting time in the queue (not including service)
for a class i customer, then the expression

R∑
i=1

ρiWiq

is a constant over all work conserving disciplines.

However, quantities such as L, W , Li, and Wi (and the respective quantities with the
q subscript) will depend on the service-scheduling policies. It is possible to derive these
expressions in closed-form for M/G/1 queues that we describe next. The HOM software
[9] can be used for numerical analysis of various scheduling policies for relatively general
multiclass traffic.

9.4.2 M/G/1 Queue with Multiple Classes

Consider a special case of the G/G/1 queue with R classes where the arrival process is
PP(λi) for class i (i= 1, 2, . . ., R). The service times are iid with mean E[Si] = 1/µi, sec-
ond moment E[S2

i ], and CDF Gi(·) for class i (i= 1, 2, . . ., R) and ρi = λi/µi. We present
results for three work-conserving disciplines: FCFS, non-preemptive priority, and preemp-
tive resume priority.

Multiclass M/G/1 with FCFS

In this service-scheduling scheme, the customers are served according to FCFS. None of
the classes receive any preferential treatment. The analysis assumes that all the R classes
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in some sense can be aggregated into one class as there is no differentiation. Hence, the net
arrival process is PP(λ) with λ = λ1 + λ2 + · · · + λR. Let S be a random variable denoting
the “effective” service time for an arbitrary customer. Then

G(t) = P (S ≤ t) =
1
λ

R∑
i=1

λiGi(t)

E[S] =
1
µ

=
1
λ

R∑
i=1

λiE[Si]

E[S2] = σ2 +
1
µ2 =

1
λ

R∑
i=1

λiE[S2
i ]

ρ = λE[S]

Assume that the system is stable. Then, using standard M/G/1 results with X(t) being
the total number of customers in the system at time t, we get when ρ < 1,

L = ρ +
1
2

λ2E[S2]
1 − ρ

W =
L

λ

Wq = W − 1
µ

Lq =
1
2

λ2E[S2]
1 − ρ

The expected number of class i customers in the system (Li) as well as in the queue (Liq)
and the expected waiting time in the system for class i (Wi) as well as in the queue (Liq)
are given by:

Wiq = Wq =
1
2

λE[S2]
1 − ρ

Liq = λiWiq

Li = ρi + Liq

Wi = Wiq +
1
µi

M/G/1 with Non-Preemptive Priority

Here we consider priorities among the various classes. For the following analysis assume that
class 1 has highest priority and class R has the lowest. Service discipline within a class
is FCFS. The server always starts serving a customer of the highest class among those
waiting for service, and the first customer that arrived within that class. However, the
server completes serving a customer before considering who to serve next. The meaning
of non-preemptive priority is that a customer in service does not get preempted while in

© 2008 by Taylor & Francis Group, LLC



CH009.tex 30/10/2007 10: 24 Page 9-26

9-26 Operations Research and Management Science Handbook

service by another customer of high priority (however preemption does occur while waiting).
Assume that the system is stable.

Let αi = ρ1 + ρ2 + · · · + ρi with α0 = 0. Then we get the following results:

E[W q
i ] =

1
2

∑R
j=1 λjE[S2

j ]

(1 − αi)(1 − αi−1)
for 1 ≤ i ≤ R

E[Lq
i ] = λiE[W q

i ]

Wi = E[W q
i ] + E[Si]

Li = E[Lq
i ] + ρi

Sometimes performance measures for individual classes are required and other times aggre-
gate performance measures across all classes. The results for the individual classes can also
be used to obtain the overall or aggregate performance measures as follows:

L = L1 + L2 + · · · + LR

W =
L

λ

Wq = W − 1
µ

Lq = λWq

Note: In the above analysis we assume we are given which class should get the highest
priority, second highest, and so on. However, if we need to determine an optimal way
of assigning priorities, one method is now provided. If you have R classes of customers and
it costs the server Cj per unit time a customer of class j spends in the system (holding
cost for class j customer), then to minimize the total expected cost per unit time in the
long run, the optimal priority assignment is to give class i higher priority than class j if
Ciµi > Cjµj . In other words, sort the classes in the decreasing order of the product Ciµi

and assign first priority to the largest Ciµi and the last priority to the smallest Ciµi over
all i. This is known as the Cµ rule. Also note that if all the Ci values were equal, then this
policy reduces to “serve the customer with the smallest expected processing time first.”

M/G/1 with Preemptive Resume Priority

A slight modification to the M/G/1 non-preemptive priority considered above is to allow
preemption during service. During the service of a customer, if another customer of higher
priority arrives, then the customer in service is preempted and service begins for this new
high priority customer. When the preempted customer returns to service, service resumes
from where it was preempted. This is a work-conserving discipline (however, if the service has
to start from the beginning which is called preemptive repeat, then it is not work conserving
because the server wasted some time serving). Here, we consider the case where upon arrival,
a customer of class i can preempt a customer of class j in service if j > i. Also, the total
service time is unaffected by the interruptions, if any. Assume that the system is stable.

The waiting time of customers of class i is unaffected by customers of class j if j > i.
Thus, class 1 customers face a standard single-class M/G/1 system with arrival rate λ1
and service time distribution G1(·). In addition, if only the first i classes of customers are
considered, then the processing of these customers as a group is unaffected by the lower
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priority customers. The crux of the analysis is in realizing that the work content of this
system (with only the top i classes) at all times is the same as an M/G/1 queue with FCFS
and top i classes due to the work-conserving nature. Therefore, using the results for work-
conserving systems, the performance analysis of this system is done.

Now consider an M/G/1 queue with only the first i classes and FCFS service. The net
arrival rate is

λ(i) = λ1 + λ2 + · · · + λi

the average service times is

1
µ(i)

=
i∑

j=1

λjE[Sj ]
λ(i)

and the second moment of service times is

S2(i) =
i∑

j=1

λjE[S2
j ]

λ(i)

Also let ρ(i) = λ(i)/µ(i). Let W prp
jq be the waiting time in the queue for class j customers

under preemptive resume policy. Using the principle of work conservation (see Result 9.8),

i∑
j=1

ρjW
prp
jq = ρ(i)

λ(i)S2(i)
2(1 − λ(i)/µ(i))

Notice that the left-hand side of the above expression is the first i classes under preemptive
resume and the right-hand side being FCFS with only the first i classes of customers. Now,
we can recursively compute W1q, then W2q, and so on till WRq via the above equations for
i= 1, 2, . . ., R.

Other average measures for the preemptive resume policy can be obtained as follows:

W prp
i = W prp

iq + E[Si]

Lprp
i = λiW

prp
i

Lprp
iq = Lprp

i − ρi

Sometimes performance measures for individual classes are required and other times
aggregate performance measures across all classes. The results for the individual classes
can also be used to obtain the overall performance measures as follows:

Lprp = Lprp
1 + Lprp

2 + · · · + Lprp
R

W prp =
Lprp

λ

W prp
q = W prp − 1

µ

Lprp
q = λW prp

q
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9.5 Multistation and Single-Class Queues

So far we have only considered single-stage queues. However, in practice, there are several
systems where customers go from one station (or stage) to other stations. For example,
in a theme park the various rides are the different stations and customers wait in lines at
each station and randomly move to other stations. Several engineering systems such as
production, computer-communication, and transportation systems can also be modeled as
queueing networks.

In this section, we only consider single-class queueing networks. The network is analyzed
by considering each of the individual stations one by one. Therefore, the main technique
would be to decompose the queueing network into individual queues or stations and develop
characteristics of arrival processes for each individual station. Similar to the single-station
case, here too we start with networks with Poisson arrivals and exponential service times,
and then eventually move to more general cases. There are two types of networks: open
queueing networks (customers enter and leave the networks) and closed queueing networks
(the number of customers in the networks stays a constant).

9.5.1 Open Queueing Networks: Jackson Network

A Jackson network is a special type of open queueing network where arrivals are Poisson and
service times are exponential. In addition, a queueing network is called a Jackson network
if it satisfies the following assumptions:

1. It consists of N service stations (nodes).
2. There are si servers at node i (1 ≤ si ≤ ∞), 1 ≤ i≤N .
3. Service times of customers at node i are iid exp(µi) random variables. They are

independent of service times at other nodes.
4. There is infinite waiting room at each node.
5. Externally, customers arrive at node i in a Poisson fashion with rate λi. All arrival

processes are independent of each other and the service times. At least one λi

must be nonzero.
6. When a customer completes service at node i, he or she or it departs the system

with probability ri or joins the queue at node j with probability pij . Here pii > 0
is allowed. It is required that ri +

∑N
j=1 pij = 1 as all customers after completing

service at node i either depart the system or join another node. The routing of a
customer does not depend on the state of the network.

7. Let P = [Pij ] be the routing matrix. Assume that I −P is invertible, where I is
an N ×N identity matrix. The I −P matrix is invertible if there is at least one
node from where customers can leave the system.

To analyze the Jackson network, as mentioned earlier, we decompose the queueing network
into the N individual nodes (or stations). The results are adapted from Kulkarni [6]. In
steady state, the total arrival rate into node j (external and internal) is denoted by aj and
is given by

aj = λj +
N∑

i=1

aipij j = 1, 2, . . ., N

Let a = (a1, a2, . . ., aN ). Then a can be solved as

a = λ(I − P )−1
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The following results are used to decompose the system: (a) the departure process from
an M/M/s queue is a Poisson process; (b) the superposition of Poisson process forms a
Poisson process; and (c) Bernoulli (i.e., probabilistic) splitting of Poisson processes forms
Poisson processes. Therefore, the resultant arrival into any node or station is Poisson. Then
we can model node j as an M/M/sj queue with PP(aj) arrivals, exp(µj) service, and sj

servers (if the stability condition at each node j is satisfied, i.e., aj < sjµj). Hence, it is
possible to obtain the steady-state probability of having n customers in node j as

φj(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n!

(
aj

µj

)n

φj(0) if 0 ≤ n ≤ sj − 1

1

sj !s
n−sj

j

(
aj

µj

)n

φj(0) if n ≥ sj

where φj(0) =
[∑sj−1

n=0

{
1
n!

(aj/µj)n

}
+

(aj/µj)s
j

sj !
1

1 − aj/(sjµj)

]−1

Now looking back into the network as a whole, let Xi be the steady-state number of
customers in node i. Then it is possible to show that

P{X1 = x1, X2 = x2, . . ., XN = xN} = φ1(x1)φ2(x2). . . φN (xN )

The above form of the joint distribution is known as product form. In steady state, the queue
lengths at various nodes are independent random variables. Therefore, what this implies is
that each node (or station) in the network behaves as if it is an independent M/M/s queue.
Hence, each node j can be analyzed as an independent system and performance measures
can be obtained.

Specifically, it is possible to obtain performance measures at station j, such as the average
number of customers (Lj), average waiting time (Wj), time in queue not including service
(Wjq), number in queue not including service (Ljq), distribution of waiting time (Fj(x)),
and all other measures using the single-station M/M/s queue analysis in Section 9.3.2.

Besides the Jackson network, there are other product-form open queueing networks. The
state-dependent service rate and the state-dependent arrival rate problems are two cases
when product-form solution exists.

State-Dependent Service

Assume that the service rate at node i when there are n customers at that node is given
by µi(n) with µi(0) = 0. Also assume that the service rate does not depend on the states of
the remaining nodes. Then define the following: φi(0) = 1 and

φi(n) =
n∏

j=1

(
ai

µi(j)

)
n ≥ 1

where aj is as before, the effective arrival rate into node j.
The steady-state probabilities are given by

P{X1 = x1, X2 = x2, . . ., XN = xN} = c

N∏
i=1

φi(xi)

where the normalizing constant c is

c =

{
N∏

i=1

{ ∞∑
n=0

φi(n)

}}−1
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Using the above joint distribution, it is possible to obtain certain performance measures.
However, one of the difficulties is to obtain the normalizing constant. Once that is done, the
marginal distribution at each node (or station) can be obtained. That can be used to get
the distribution of the number of customers in the system as well as the mean (and even
higher moments). Then, using Little’s law, the mean waiting time can also be obtained.

State-Dependent Arrivals and Service

In a manner similar to the case of state-dependent service, the analysis of state-dependent
arrivals and service can be extended. Let λ(n) be the total arrival rate to the network as
a whole when there are n customers in the entire network. Assume that ui is the probabil-
ity that an incoming customer joins node i, independently of other customers. Therefore,
external arrivals to node i are at rate uiλ(n). The service rate at node i when there are ni

customers at that node is given by µi(ni) with µi(0) = 0.
Let bi be the unique solution to

bj = uj +
N∑

i=1

bipij

Define the following: φi(0) = 1 and

φi(n) =
n∏

j=1

(
bi

µi(j)

)
for n ≥ 1

Define x̂=
∑N

i=1 xi. The steady-state probabilities are given by

P{X1 = x1, X2 = x2, . . ., XN = xN} = c

N∏
i=1

φi(xi)
x̂∏

j=1

λ(j)

where the normalizing constant c is

c =

⎧⎨
⎩

∑
x

N∏
i=1

φi(xi)
x̂∏

j=1

λ(j)

⎫⎬
⎭

−1

9.5.2 Closed Queueing Networks (Exponential Service Times)

Closed queueing networks are networks where there are no external arrivals to the system
and no departures from the system. They are popular in population studies, multipro-
grammed computer systems, window flow control, Kanban, and so on. It is important to
note that the number of customers being a constant is essentially what is required. This
can happen if a new customer enters the network as soon as an existing customer leaves
(a popular scheme in just-in-time manufacturing). Most of the results are adapted from
Kulkarni [6]. We need a few assumptions to analyze these networks:

1. The network has N service stations and a total of C customers.
2. The service rate at node i, when there are n customers in that node, is µi(n)

with µi(0) = 0 and µi(n) > 0 for 1 ≤n ≤C.
3. When a customer completes service at node i, the customer joins node j with

probability pij .

© 2008 by Taylor & Francis Group, LLC



CH009.tex 30/10/2007 10: 24 Page 9-31

Queueing Theory 9-31

Let the routing matrix P = [pij ] be such that it is irreducible. That means it is pos-
sible to reach every node from every other node in one or more steps or hops. Define
π = (π1, π2, . . ., πN ) such that

π = πP and
N∑

i=1

πi = 1

Indeed, the P matrix is a stochastic matrix, which is a lot similar to the transition probabil-
ity matrix of DTMCs. However, it is important to note that nothing is modeled as a DTMC.

Define the following: φi(0) = 1 and

φi(n) =
n∏

n=1

(
πi

µi(j)

)
n ≥ 1

The steady-state probabilities are given by

P{X1 = x1, X2 = x2, . . ., XN = xN} = G(C)
N∏

i=1

φi(xi)

where the normalizing constant G(C) is chosen such that
∑

x1,x2,...,xN

P (X1 = x1, X2 = x2, . . ., XN = xN ) = 1

Note that for this problem, similar to the two previous product-form cases, the difficulty
arises in computing the normalizing constant. In general it is not computationally trivial.

Some additional results can be obtained such as the Arrival Theorem explained below.

RESULT 9.9 In a closed product-form queueing network, for any x, the probability that
x jobs are seen at the time of arrival to node i when there are C jobs in the network is equal
to the probability that there are x jobs at this node with one less job in the network (i.e.,
C − 1).

This gives us the relationship between the arrival time probabilities and steady-state
probabilities. Let πij(C) denote the probability that in a closed-queueing network of C
customers, an arriving customer into node i sees j customers ahead of him/her/it in steady
state. Also, let pij(C − 1) denote the probability that in a “hypothetical” closed-queueing
network of C − 1 customers, there are j customers in node i in steady state. Result 9.9
states that

πij(C) = pij(C − 1)

Single-Server Closed Queueing Networks

Assume that for all i, there is a single server at node i with service rate µi. Then the mean
performance measures can be computed without going through the computation of the
normalizing constant. Define the following:

• Wi(k): Average waiting time in node i when there are k customers in the network;
• Li(k): Average number in node i when there are k customers in the network;
• λ(k): Overall throughput of the network when there are k customers in the

network.
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Initialize Li(0) = 0 for 1≤ i≤N . Then for k = 1 to C, iteratively compute for each i:

Wi(k) =
1
µi

[1 + Li(k − 1)]

λ(k) =
k∑N

i=1 aiWi(k)

Li(k) = λ(k)Wi(k)ai

The first of the above three equations comes from the Arrival Theorem (Result 9.9).
The second and third come from Little’s law applied to the network and a single node,
respectively.

9.5.3 Algorithms for Nonproduct-Form Networks

The product form for the joint distribution enables one to analyze each node independently.
When the interarrival times or service times are not exponential, then a nonproduct form
emerges. We will now see how to develop approximations for these nonproduct-form net-
works. We present only one algorithm here, namely the diffusion approximation. However,
the literature is rich with several others such as the maximum entropy method, QNA for
single class, and so on. We now illustrate the diffusion approximation algorithm as described
in Bolch et al. [2].

Diffusion Approximation: Open Queueing Networks

1. Key Idea: Substitute the discrete process {Xi(t), t≥ 0} that counts the number in
the node i, by a continuous diffusion process. Thus a product-form approximation
can be obtained that works well under heavy traffic (i.e., traffic intensity in each
node is above 0.95 at least).

2. Assumptions: Single server at each node. Service time at server i has mean 1/µi

and SCOV C2
Si

. There is a single stream of arrivals into the network with inter-
arrival times having a mean of 1/λi and SCOV C2

A. There is a slight change of
notations for the routing probabilities (consider the outside world as node 0):

a. If i > 0 then pij is the probability of going from node i to node j upon service
completion in node i;

b. If i= 0 then p0j is the probability that an external arrival joins node j;
c. If j = 0 then pi0 is the probability of exiting the queueing network upon service

completion in node i.
3. The Algorithm:

a. Obtain visit ratios aj for all 1≤ j ≤N by solving

aj =
N∑

i=1

pijai + p0j

with a0 = 1. Then for 1≤ i, j ≤N , if P = [pij ] an N ×N matrix, then
a = [a1, a2, . . ., aN ] = [p01, p02, . . ., p0N ][I −P ]−1.
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b. For all 1≤ i≤N , compute the following (assume C2
S0

= C2
A):

C2
Ai

= 1 +
N∑

j=0

(C2
Sj

− 1)p2
jiaj/ai

ρi =
λai

µi

θi = exp
[

−2(1 − ρi)
C2

Ai
ρi + C2

Si

]

φi(xi) =

{
1 − ρi if xi = 0

ρi(1 − θi)θxi−1
i if xi > 0

c. The steady-state joint probability is

p(x) =
N∏

i=1

φi(xi)

d. The mean number of customers in node i is

Li =
ρi

1 − θi

Diffusion Approximation: Closed Queueing Networks

All the parameters are identical to the open queueing network case. There are C customers
in the closed queueing network. There are two algorithms, one for large C and the other for
small C.

1. Algorithm Bottleneck (for large C)
a. Obtain visit ratios aj for all 1 ≤ j ≤N by solving

aj =
N∑

i=1

pijai

As there will not be a unique solution, one can normalize by a1 + a2 + · · ·+
aN = 1.

b. Identify the bottleneck node b as the node with the largest ai/µi value among
all i∈ [1, N ].

c. Set ρb = 1. Using the relation ρb = λab/µb, obtain λ = µb/ab. Then for all i �= b,
obtain ρi = λai/µi.

d. Follow the open queueing network algorithm now to obtain for all i �= b, C2
Ai

,
θi, and φi(xi).
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e. Then the average number of customers in node i (i �= b) is

Li =
ρi

1 − θi

and Lb = C −
∑

i �=b Li.

2. Algorithm MVA (for small C):
Consider MVA for product-form closed queueing networks (see Section 9.5.2).
Use that analysis and iteratively compute for all 1 ≤ k ≤C, the quantities Wi(k),
λi(k), and Li(k). Assume overall throughput λ = λ(C). Then follow the open
queueing network algorithm (in Section 9.5.3).

9.6 Multistation and Multiclass Queues

Consider an open queueing network with multiple classes where the customers are served
according to FCFS. To obtain performance measures we use a decomposition technique.
For that, we first describe the problem setting, develop some notation, and illustrate an
algorithm.

9.6.1 Scenario

We first describe the setting, some of which involves underlying assumptions needed to carry
out the analysis.

1. There are N service stations (nodes) in the open queueing network. The outside
world is denoted by node 0 and the others 1, 2, . . ., N .

2. There are mi servers at node i (1 ≤mi ≤ ∞), for 1≤ i≤N .
3. The network has R classes of traffic and class switching is not allowed.
4. Service times of class r customers at node i are iid with mean 1/µi,r and SCOV

C2
Si,r

.
5. The service discipline is FCFS.
6. There is infinite waiting room at each node.
7. Externally, customers of class r arrive at node i according to a general interarrival

time with mean 1/λ0i,r and SCOV C2
Ai,r

.
8. When a customer of class r completes service at node i, the customer joins the

queue at node j (j ∈ [0, N ]) with probability pij,r.

After verifying that the above scenario (and assumptions) is applicable, the next task is
to obtain all the input parameters for the model described above, that is, for each i∈ [1, N ]
and r ∈ [1, R], mi, 1/µi,r, C2

Si,r
, 1/λ0i,r, C2

Ai,r
, pij,r (for j ∈ [0, N ]).

9.6.2 Notation

Before describing the algorithm, some of the notations are in Table 9.4 for easy reference. A
few of the notations are inputs to the algorithm (as described above) and others are derived
in the algorithm. The algorithm is adapted from Bolch et al. [2], albeit with a different set

into the algorithm.
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TABLE 9.4 Notation Used in Algorithm
N Total number of nodes
Node 0 Outside world
R Total number of classes
λij,r Mean arrival rate from node i to node j of class r

λi,r Mean arrival rate to node i of class r (or mean departure rate from node i of class r)
pij,r Fraction of traffic of class r that exit node i and join node j

λi Mean arrival rate to node i

ρi,r Utilization of node i due to customers of class r

ρi Utilization of node i

µi Mean service rate of node i

C2
Si

SCOV of service time of node i

C2
ij,r SCOV of time between two customers going from node i to node j

C2
Ai,r

SCOV of class r interarrival times into node i

C2
Ai

SCOV of interarrival times into node i

C2
Di

SCOV of inter-departure times from node i

9.6.3 Algorithm

The decomposition algorithm essentially breaks down the network into individual nodes
and analyzes each node as an independent GI/G/s queue with multiple classes (note that
this is only FCFS and hence handling multiple classes is straightforward). For the GI/G/s
analysis, we require for each node and each class the mean arrival and service rates as
well as the SCOV of the interarrival times and service times. The bulk of the algorithm in
fact is to obtain them. There are three situations where this becomes hard: when multiple
streams are merged (superposition), when traffic flows through a node (flow), and when a
single stream is forked into multiple streams (splitting). For convenience, we assume that
just before entering a queue, the superposition takes place, which results in one stream.
Likewise, we assume that upon service completion, there is only one stream that gets split
into multiple streams. There are three basic steps in the algorithm (a software developed by
Kamath [10] uses the algorithm and refinements; it can be downloaded for free and used for
analysis).

Step 1: Calculate the mean arrival rates, utilizations, and aggregate service rate param-
eters using the following:

λij,r = λi,rpij,r

λi,r = λ0i,r +
N∑

j=1

λj,rpji,r

λi =
R∑

r=1

λi,r

ρi,r =
λi,r

miµi,r

ρi =
R∑

r=1

ρi,r (condition for stability ρ1 < 1 ∀i)

© 2008 by Taylor & Francis Group, LLC



CH009.tex 30/10/2007 10: 24 Page 9-36

9-36 Operations Research and Management Science Handbook

µi =
1∑R

r=1
λi,r

λi

1
miµi,r

=
λi

ρi

C2
Si

= −1 +
R∑

r=1

λi,r

λi

(
µi

miµi,r

)2

(C2
Si,r

+ 1)

Step 2: Iteratively calculate the coefficient of variation of interarrival times at each
node. Initialize all Cij,r = 1 for the iteration. Then until convergence perform i., ii., and
iii. cyclically.

i. Superposition (aggregating customers from all nodes j and all classes r the SCOV
of interarrival time into node i):

C2
Ai,r

=
1

λi,r

N∑
j=0

C2
ji,rλj,rpji,r

C2
Ai

=
1
λi

R∑
r=1

C2
Ai,r

λi,r

ii. Flow (departing customers from node i have interdeparture time SCOV as a
function of the arrival times, service times, and traffic intensity into node i):

C2
Di

= 1 +
ρ2

i (C
2
Si

− 1)
√

mi
+ (1 − ρ2

i )(C
2
Ai

− 1)

iii. Splitting (computing the class-based SCOV for class r customers departing from
node i and arriving at node j):

C2
ij,r = 1 + pij,r(C2

Di
− 1)

Note that the splitting formula is exact if the departure process is a renewal process. How-
ever, the superposition and flow formulae are approximations. Several researchers have pro-
vided expressions for the flow and superposition. The above is from Ward Whitt’s QNA [5].

Step 3: Obtain performance measures such as mean queue length and mean waiting
times using standard GI/G/m queues. Treat each queue as independent. Choose αmi

such that

αmi =

⎧⎪⎪⎨
⎪⎪⎩

ρmi
i + ρi

2
if ρi > 0.7

ρ
mi+1

2
i if ρi < 0.7

Then the mean waiting time for class r customers in the queue (not including service) of
node i is approximately

Wiq ≈ αmi

µi

(
1

1 − ρi

) (
C2

Ai
+ C2

Si

2mi

)
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Notice that for all classes r at node i, Wiq is the waiting time in the queue. Other
performance measures at node i and across the network can be obtained using standard
relationships.

9.7 Concluding Remarks

In this chapter, we presented some of the fundamental scenarios and results for single
as well as multiclass queueing systems and networks. However, this by no means does
justice to the vast amount of literature available in the field, as the chapter has barely
scratched the surface of queueing theory. But with this background it should be possi-
ble to read through relevant articles and books that model several other queueing sys-
tems. In a nutshell, queueing theory can be described as an analytical approach for sys-
tem performance analysis. There are other approaches for system performance analysis
such as simulations. It is critical to understand and appreciate situations when it is more
appropriate to use queueing theory as well as situations where one is better off using
simulations.

Queueing theory is more appropriate when: (a) several what-if situations need to be
analyzed expeditiously, namely, what happens if the arrival rate doubles, triples, and so
on; (b) insights into relationship between variables are required, namely, how is the ser-
vice time related to waiting time; (c) to determine the best course of action for any set of
parameters, namely, is it always better to have one queue with multiple servers than one
queue for each server; (d) formulae are needed to plug into optimization routines, namely,
to insert into a nonlinear program, the queue length must be written as a function to opti-
mize service speed. Simulations, on the other hand, are more appropriate when: (a) system
performance measures are required for a single set of numerical values; (b) performance
of a set of given policies needs to be evaluated numerically; (c) assumptions needed for
queueing models are unrealistic (which is the most popular reason for using simulations).
Having said that, in practice it is not uncommon to use a simulation model to verify ana-
lytical results from queueing models or to use analytical models for special cases to verify
simulations.

Another important aspect, especially for practitioners, is the tradeoff between using
physics versus psychology. Queueing theory in general and this chapter in particular deals
with the physics of waiting lines or queues. One should realize that the best solution is not
necessarily one that uses physics of queues but maybe some psychological considerations.
A classic example is a consultant who was approached by a hotel where customers were
complaining about how long they waited to get to their rooms using the elevators. Instead
of designing a new system with more elevators (and a huge cost thereby), the consultant
simply advised placing mirrors near the elevator and inside the elevator. By doing that,
although the actual time in the system does not improve, the perceived time surely does
as the customers sometimes do not realize they are waiting while they busily staring at the
mirrors!

From a research standpoint, there are several unsolved problems today, and a few of them
are described below. For the single-class and single-station systems, issues such as long-
range dependent arrivals and service, time-dependent arrival and service rates, nonidentical
servers, and time-varying capacity and number of servers have received limited attention.
For the multiclass and single-station queues, policies for scheduling customers, especially
when some classes have heavy-tailed service times (and there are more than one servers),
are being actively pursued from a research standpoint. For the single-class and multistation
queues, the situation where arrival and service rates at a node depend on the states of
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some of the other nodes has not been explored. For the multiclass and multistation case,
especially with re-entrant lines, performance analysis is being pursued for policies other
than FCFS (such as preemptive and non-preemptive priority).
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10.1 Introduction

Each product travels a path from where it consists of one or several raw materials and ends
up in the hands of the consumer as a finished good. Along the way it goes through several
manufacturing or other transformation processes. For example, consider a petroleum-based
product, say gasoline, which starts as crude oil and is transported to a refinery where it
is processed into its final form. Assume that the crude oil is transported to the refinery in
tankers that arrive at certain intervals. Obviously, the refinery cannot work intermittently;
it requires a continuous input of crude oil, forcing it to build holding spaces to store crude
oil from tankers and then to use it at a continuous rate. Also, after producing gasoline
the refinery cannot sell it at the exact rate at which it is produced. The refinery will need
storage tanks to store its gasoline production and supply it to its users, that is, gas stations,
according to demand. A little further down the path gas stations themselves cannot ask

10-1
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people needing 10 gallons of gasoline to wait until they can get this exact amount from
the refinery. Thus, each gas station builds a storage tank that is filled by the supplies from
the refinery and provides small amounts of gas to each car that comes to the station. The
amount of raw material, semi-finished or finished product held at each node in the supply
chain (SC) is referred to as the inventory level of that particular material at that node.
Inventories are a part of our daily life; careful observation will show that we store (or
hold inventories of) many items. One needs to look no further than the kitchen at home to
see inventories of vegetables, milk, and the like. Running to the grocery store every time we
want a glass of milk would be inefficient (and costly)!

10.1.1 On the Logic of Inventories

From the above petroleum example we see that one of the main functions of maintaining
inventories is to provide for a smooth flow of product from its original raw form to its final
form as a finished product in the hands of its ultimate users. However, even if all these
processes could be arranged such that the flow could be kept moving smoothly without
inventories, the variability involved with some of the processes would still create problems
that holding inventories could resolve. For example, suppose that the crude oil could be
pumped out at a rate exactly equal to the input rate to the refinery. Also assume that
gasoline could be sent to gas stations as it is produced through a pipeline, and further, gas
stations can supply cars at a continuous rate exactly equal to the output of the refinery.
With all these unrealistic assumptions, the need for inventory still cannot be eliminated.
For instance, if the pipeline carrying the crude oil is damaged as a result of an accident,
customers of the disrupted gas stations will be affected almost immediately. Or, if there is
a strike in the refinery, again the effect would be felt immediately. However, if inventories
of crude oil and gasoline were held at the refinery and the corresponding gas stations, the
effects may not be felt immediately or ever, as there would be enough supply to the end
users while the pipelines are being fixed and the production gap could be filled by overtime
production. In general, there are three main reasons to hold inventory:

• Economies of scale—Usually, placing an order has a certain cost that is indepen-
dent of the quantities ordered. Thus, more frequent orders incur higher costs of
ordering paper work. This may even cause higher transportation costs because
the cost of transportation per unit is often smaller for larger orders. Economies of
scale also play an important role in those cases where buying in large quantities
results in a reduction of the unit price.

• Uncertainties—As mentioned above, as a product is converted from raw material
to final product, variabilities in these transformational processes lead to losses.
Inventories help mitigate the negative impact of uncertainties.

• Customer service levels—While variabilities in demand and supply are inevitable,
inventories help buffer against these variations and ensure product availability.
Consequently, delays in satisfying customer demand are reduced (when out of
stock) and unnecessary loss of revenue is avoided while improving customer
satisfaction.

There are a few reasons why minimal inventories should be held. First, inventories repre-
sent significant investment in capital and resources that may be employed to better purposes.
Second, many products have limited life cycles after which they become obsolete. When the
product is perishable (e.g., fresh food items), excess inventories may have to be thrown out
after expiry. Even if the product is not perishable, markdowns may be required to dispose of
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excess inventory, leading to lower revenues or losses. Finally, inventories may hide inefficien-
cies in the system. Reduction of inventories coupled with better production processes form
the basis of just-in-time systems (see Silver et al. [1, Chapter 16] for details on such systems).

Virtually all businesses hold inventory and inventory management remains one of the
biggest business challenges. Many consider it to be a necessary evil; it helps ensure prod-
uct availability for customers but consumes valuable resources to procure and maintain.
The magnitude of inventory-related operations is staggering: in 1989, the total value of
inventories held in the United States alone was close to $1 trillion [2] and had increased to
about $1.1 trillion in total inventories held by private industry alone in the United States in
1999 [3]. Furthermore, new business models have emerged with inventory management as
the strategic differentiator. Companies like Dell and Amazon.com have used supply chain
management and inventory management to achieve great success. Between 1995 and 2005,
Toyota carried 30 fewer days of inventory than General Motors, giving it immense advan-
tage [4]. It is evident that these problems merit close attention. Inventory management
problems are often extremely complex and mathematical models capture only a limited
part of this complexity. Mathematical models from the fields of management science and
operations research have emerged as strong contenders to help gain insight and provide sci-
entific methods to address inventory management problems. Recent advances in computing
and information technologies have enabled the development, solution, and implementation
of many advanced models that are used in industry today.

Fundamentally, these inventory management models address two critical issues: how often
should inventory be replenished and by how much each time? Models gain complexity
as additional factors are incorporated, more constraints are added to the problem, and
assumptions are made less rigid and more realistic. Research into mathematical inventory
models may be traced back to more than nine decades but began to receive sustained
interest from the 1950s onwards. While it would be impossible to comprehensively cover
this vast body of literature, this chapter introduces the reader to the basic issues and models
in inventory management. Consequently, the expository style used here is to bring out the
main intuition and results and not toward theoretical rigor. The interested reader is referred
to Axsäter [5] and Silver et al. [1] for excellent coverage of inventory management; see also
Bramel and Simchi-Levi [6], Graves et al. [2], Hadley and Whitin [7], Porteus [8], and Zipkin
[3] for more (mathematically) advanced treatments.

10.1.2 Types of Inventory

For production systems there is a need for basically three types of inventories. These are
inventories of raw material, finished products, and work-in-process (wip). Any of these
inventory systems could exist at any stage of the path of a product from its origin until it
reaches the hands of the final users. Note that if various stages of production are performed
at different locations, or sometimes even by different companies, work finished in one location
could be considered the final product for that location and raw material for the next location
downstream.

Inventory of raw materials: The need for keeping an inventory of raw materials
arises because of several factors. As mentioned in the above example, it is often
not possible or economical to procure raw materials exactly when the need for
them arises. The cost factors involved include the cost of paperwork, transporta-
tion costs, economies of scale, and unforeseeable events. Unpredictable events
such as international shortage of certain goods, a strike at the supplying plant,
a dry season, and the like, may interrupt the production process if a sufficient
inventory of raw materials is not on hand.
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Inventory of work-in-process: This category of materials refers to semi-finished
goods. These are the outputs of one stage of production that act as the input
to the following stage. The uncertainties involved in this case are less than the
raw material category but never nonexistent. The uncertainties are less because
the capacities of each stage are known and controllable. Thus, the designer can
match the capacities. However, uncertainties are still there because of problems
in scheduling, unforeseeable breakdown of machinery, and so on.

Inventory of the finished product: The inventory of the final product involves
even more variability than is experienced with raw material. The demand for
the final product is often uncertain, and the manufacturer has little control over
it. Another factor, which is important when considering final product invento-
ries, is the cost involved in producing various sized lots. This sometimes favors
production of larger than demanded lot sizes because of potential savings in the
unit costs. All of these factors will be discussed in exploring inventory models.

Another important classification is to divide inventories into cycle stocks, pipeline inven-
tories, and safety stocks. The amount of inventory on hand when ordering in batches is
referred to as cycle stock. It is used to meet normal demand patterns. On the other hand,
safety stocks refer to the average inventory on hand to buffer against uncertainties in sup-
ply and demand. Inventories (whether raw materials, wip, or finished products) spend quite
some time in transit between various stages of the SC (say from factory to warehouse,
warehouse to retailer, etc.) and are referred to as pipeline inventories. Such inventories are
not physically accounted for though they have been ordered and shipped. Depending on
the situation, either the buyer or the supplier must pay for these pipeline inventories and
therefore they are an important type of inventory. Pipeline inventory costs are usually an
integral part of inventory models that account for transportation costs.

10.1.3 ABC Classification of Inventories

Most firms manage inventories of more than one product (commonly known as stock keeping
unit or SKU). Furthermore, these items may differ in their costs, demands, criticality, and
so on. Management would like to monitor its most critical and high value items closely
and expend lesser effort on other items. The ABC classification is a simple methodology to
aid in this process. It has been observed in several large, multiple-item inventory systems,
that a small percentage of items represent a significant portion of inventory investment.
ABC analysis involves computing the annual value of items to the firm as follows: the
product of the price and annual demand of each item is computed for all items. These are
then ranked in descending order and the cumulative percentages of annual dollar values and
number of SKUs are computed and plotted. An example of this is given in Figure 10.1a. The
salient characteristics of each class are given in Figure 10.1b. While the procedure involves
annual dollar value, we note that critical parts may be moved to class A or B irrespective
of monetary value to avoid disruptions. As the adage goes, “for want of a horseshoe, the
battle was lost.” See Silver et al. [1, Chapter 3] for a detailed discussion on frameworks for
inventory management.

10.2 Design of Inventory Systems

The discussion so far has indicated a need for holding inventories of raw material, wip, and
final product to take advantage of economies of scale and to counter the effects of unexpected
events. The design of inventory systems refers to the process of determining the amount to
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1. Class A items:

• Few items (≈ 20%) deserving close attention
• Represent large investments (≈ 80%)
• May include critical components
• Significant management by exception

2. Class B items:

• Large number of items (≈ 30%) deserving 
moderate attention (less critical items)

• Represent moderate investments (≈ 10%−20%)
• Automated inventory management; occasional 

management by exception

3. Class C items:

• Large number of items (≈ 50%) deserving 
minimal attention

• Represent moderate investments (≈ 5%−10%)
• Simple inventory management system

(b)(a)

Class C

Class B

Class A

75 090
Percentage value

100

20

50

P
er

ce
nt

ag
e 

of
 it

em
s

FIGURE 10.1 ABC analysis.

keep in inventory and the procedures and frequencies of replenishing consumed quantities,
that is, answering the two fundamental questions of how often and how much to order.

A major criterion for deciding the size of an inventory is the cost of holding the inventory.
One cannot increase the size of an inventory indefinitely to eliminate all disruptions of the
production process, because the actual cost of keeping the goods in the inventory might
exceed the potential loss due to the shortage of goods and materials. On the other hand,
if lower inventory levels are maintained to reduce inventory holding costs, costs will go
up due to more frequent ordering as well as losses that may result because of potential
disruption of the production process. Thus, designing an inventory system requires finding
an arrangement that is a compromise between the costs favoring a high level of inventory
and those in favor of low levels. This, in fact, requires a system that minimizes the total
costs. Some of the relevant costs are discussed below.

10.2.1 Factors in Favor of Higher Inventory Levels

Ordering Costs and Set-up Costs

When materials are purchased, they are ordered from a supplier. Ordering requires a series
of actions with associated costs such as market research, bidding, and the like. Usually
these costs are independent of the amount ordered. Sometimes even the transportation cost
is independent of the size of the order. For example, if a company sends its own truck to
pick up the purchased materials the truck may have to make the trip whether the quantity
ordered is 1 ton or 10 tons. The ordering cost in this case would be the cost of making one
trip, independent of the amount ordered. In the analysis provided here, any cost associated
with ordering that is independent of the volume of the order is referred to as an ordering cost.

A fixed ordering cost implies that larger orders require fewer orders to be placed during a
given period, thus incurring a lower total ordering cost for that period. For example, assume
that a company requires 12,000 electric motors each year and there is a fixed ordering cost
of $60/order. If the company orders all the units in a single lot, it will order only once a
year at an ordering cost of $60/year. If the company orders 3000 units at a time, then it has
to order 12,000/3000 = 4 times a year at an annual ordering cost of $60× 4 = $240. Thus,
fixed ordering cost favors higher quantities per order with a lower frequency of ordering.
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For wip parts and final products, where the units are produced rather than purchased,
the ordering cost is replaced by set-up costs. Set-up costs refer to the costs associated with
changing the existing setup of the machinery and production capacity to the setup required
for the next process. This involves stopping the work for a while, spending time and money
to change the arrangement of machinery and schedule, and a temporary loss of efficiency
due to the transition time required for the operators to get used to the new arrangements.
All these costs can be evaluated and combined into a fixed set-up cost. Set-up costs are also
independent of the number of units produced because the set-up cost would be the same
for the production of either one unit or several thousand units. In inventory analysis set-up
costs are dealt with in exactly the same manner as ordering costs.

Quantity Discounts

Sometimes ordering or producing in large quantities yields a reduction in the unit cost
of purchased or produced items. Most suppliers will consider providing discounts for a
customer who buys in large quantities. Besides that, sometimes one can save by ordering
large shipments from a major supplier who normally does not sell in small quantities. The
same is true in the case of producing a product. Producing larger quantities may make
possible the use of more efficient equipment, thus reducing the cost per unit. Because of
this, potential quantity discounts favor buying in larger volumes that in turn result in higher
levels of inventory. Silver et al. [1, Chapter 5] cover basic quantity discount models; see also
Munson and Rosenblatt [9].

Unreliable Sources of Supply

When supply sources are unreliable, management may decide to stock up its inventories to
avoid the losses that could result from being out of stock. This also provides motivation to
increase inventory levels.

10.2.2 Factors in Favor of Lower Inventory Levels

Inventory Holding Cost

Keeping the physical items in the inventory has certain costs. Some of these costs are

• The interest on the capital invested in the units retained.
• The cost of operating the physical warehousing facility where the items are held.

These are costs such as depreciation of the building, insurance, utilities, record-
keeping, and the like.

• The cost of obsolescence and spoilage. The item that becomes obsolete as a result
of newer products in the market will lose some or all of its value. This loss in
value is considered as a cost; so are the losses in values of perishable items such as
foods or some chemicals and published items such as newspapers and magazines.

• Taxes that are based on the inventories on hand.

These costs, unlike ordering and set-up costs, are dependent upon the size of the inventory
levels. The interest cost on the investment for each item can be easily found. Inventory
holding cost per item is not as simple to estimate. This cost is usually estimated based on
the average size of the storage place, which is usually proportional to the average size of the
inventory being held. An average per unit cost of obsolescence and spoilage is even harder
to evaluate, but it can be evaluated roughly as the cost of the average number of units lost
divided by the average number of units in the inventory. The average figure is used here
because the number of items that could be lost cannot be predicted with certainty.
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10.2.3 A Simple Classification of Inventory Management Models

Consider the operation of a simplified inventory system as shown in Figure 10.2. An order
of size Q units, called the order quantity, is placed with the supplier. The supplier may be
either an upstream production stage or an external stocking/production location who ships
this quantity (if available). This order is received after some (shipping) time delay. The time
between when an order is placed and when it is received is known as the lead time and we
denote it by L. The resulting inventory is used to satisfy customer demand (denoted by D).

Several variations in the supply and demand processes as well as the nature of the inven-
tory we are trying to manage result in several possible models as seen in the literature on
inventory management. Inventory models may be classified based on the following criteria
(Table 10.1).

1. Stocking location: Often suppliers and customer locations are not explicitly con-
sidered; instead we look to control inventory at a single stocking location (single
location models). When more than one stocking location is considered, such mod-
els are referred to as multi-echelon inventory models or SC inventory models in
the literature.

2. Control: In multiechelon models, the multiple locations may be under the control
of a single entity (allowing coordinated decisions) and are referred to as central-
ized SC inventory models [10]. Conversely, if multiple entities make inventory
decisions independently, we refer to these as decentralized SC inventory models
(see Refs. [11,14]). Centralized control models are usually harder to optimize
while decentralized models pose challenges in coordination of the SC locations.

Inventory
CustomerSupplier

Supply Demand

FIGURE 10.2 Basic inventory system flows.

TABLE 10.1 A Classification of Inventory Models
Factors Single Location Multi-Echelon

Centralized
Control

Decentralized

Zero/Fixed LT
Deterministic

Supply process OQ Based LT

Stochastic

Deterministic

Stationary
Demand process

Stochastic Non-Stationary

Unknown

Unlimited

Capacity Flexible

Fixed

Single Product
No. of items

Multiple Products

Single Source

Sourcing options Multiple

Lateral Shipments
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3. Supply process lead times: Lead times are variable in reality. However, a common
simplification is to assume that lead times are known and constant, that is,
deterministic. In fact, lead times are often assumed to be zero; when L > 0 and
deterministic, the model is usually analogous to the former case. Alternatively,
the lead time is assumed to follow a known distribution (stochastic lead time).

4. Demand process: Similar to supply processes, customer demand (simply demand
hereafter) may be deterministic and known or stochastic with known probability
distribution. The demand pattern (i.e., the underlying stochastic process) may
be time invariant or stationary with all demand parameters being constant over
time. When the parameters of the process (say the mean, standard deviation,
etc., of the distribution) change over time, the demand process is said to be
nonstationary. Nonstationary demands represent a challenging class of problems;
see Swaminathan and Tayur [15] for a review. Finally, there are many instances
when complete details about the demand distribution are unknown (e.g., new
product introductions, promotion periods, etc.). At best the estimates of the
mean and variance of demand may be known; see Gallego et al. [16], Godfrey
and Powell [17], and Moon and Gallego [18] for details.

5. Capacities:∗ Inventory models often assume that capacity restrictions may be
ignored at every stocking location. This assumption may be relaxed to reflect
capacity limits. Sometimes, capacity may be moderately flexible (e.g., outsourcing
to subcontractors, using flexible manufacturing systems, etc.).

6. Number of items: Inventory models may look to manage the inventories of a single
product or multiple products simultaneously. If demand for these multiple items
is independent of the others and capacity restrictions do not exist, then the prob-
lem decomposes to several single-product problems. When capacity constraints
or demand correlations exist, the problem becomes more complex. Bramel and
Simchi-Levi [6] and Swaminathan and Tayur [15] provide references for the mul-
tiproduct case.

7. Sourcing options: Figure 10.2 shows a single upstream supplier. Single sourcing
involves the use of one supplier for each component. When more than one supplier
is used, the strategy is referred to as multiple sourcing. Lateral shipments refer
to scenarios where some locations are allowed to become suppliers (temporarily)
to other locations at the same stage in the SC. For example, a retailer may send
an emergency shipment to another retail location to meet a surge in demand. We
consider only single sourcing in this chapter; Minner [20] presents a recent review
of multiple sourcing models.

Inventory Control Models

The objective of analyzing inventory systems is to design a system that is a compromise
between factors favoring high levels of inventory and those in favor of low levels. This
compromise is intended to result in the minimum cost of maintaining an inventory system.
The cost of maintaining an inventory system is usually evaluated in terms of cost per unit
time where the unit time can be any length of time, usually a year.

∗The interplay between capacities, lead times, and inventory decisions is little researched but important.
Karmarkar [19] remains an important reference on these issues.
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Inventory models are mathematical models of real systems. To evaluate inventory sys-
tems mathematically, these models make several assumptions that are sometimes restrictive.
Generally, as the assumptions are relaxed, the mathematical analyses become more difficult.
In this chapter some of the existing inventory models are discussed. First, it is assumed that
no uncertainty exists and deterministic models are presented. Then some limited stochastic
models will be presented.

10.3 Deterministic Inventory Systems

In deterministic inventory models it is assumed that the demand is fixed and known. Also
it is assumed that when a lot is ordered, it arrives exactly at the time it is expected.
Further, when the demand pattern remains constant over time, the inventory pattern is
known exactly. Consequently, parameters like the maximum and minimum inventory levels
are known exactly. Thus, these models may also be referred to as maximum–minimum
inventory models.

10.3.1 The Economic Order Quantity Model

The economic order quantity model represents the firm inventory control model due to
Harris [21]. This model can be applied to both raw material and finished goods. In the case
of raw material inventory, the demand is represented by the amount used by the production
process over a given period. The ordered quantities in this case are the amount ordered
from the supplier. In the case of finished goods, the demand is the amount shipped to the
retailer or consumer over a given period of time, and the orders are those sent to suppliers
requesting new lots to be supplied. In this model the whole inventory process can be shown
graphically. In a graph the amount of goods or products in the inventory is plotted against
time. Let us explain this situation through an example.

Example 10.1

Consolidated Appliance Company maintains an inventory of electric motors that are used in
the production of refrigerators. Figure 10.3a shows the graphical representation of the level
of inventory as a function of time (with the y-axis being in 100 units scale). At the start
there are 3000 motors on hand. The company uses 1000 motors a day; thus at the end of
day 1, there will remain only 2000 units in the inventory. This situation is shown by point
1 with coordinates of 1 and 2000, which corresponds to units in the inventory at the end
of day 1. At the end of day 2 there are 1000 units left, which is shown by point 2 with
coordinates of 2 and 1000. At the end of day 3, the number of motors on hand should be
zero, but the arrival of a new shipment of motors, which contains 7000 units, increases the
inventory level to 7000 (point 3 in Figure 10.3a). In this way, the inventory level at the end
of each day can be represented by a point. �

The points in Figure 10.3a show the number of units at the end of each period. However, if
one wants to demonstrate a real variation of the level of inventory by time, one can observe
the level at infinitesimal time differentials. This results in a curve rather than a series
of points. As nothing is said about the pattern by which 1000 units are drawn from the
inventory each day, the curve between two consecutive ends of the day points can have any
shape. In the present model, however, it is assumed that the shape of the curve between the
points is linear. Thus the demonstration in Figure 10.3a can be changed to the one shown
in Figure 10.3b. From here on this linear graphical representation will be adopted for all
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FIGURE 10.3 Example 1: (a) Inventory graph. (b) Linear representation of inventory system.

the deterministic cases. There are several concepts in the design of inventory systems that
now can be explained using Figure 10.3b.

1. The system may be called a maximum–minimum system because the number of
units in the system varies between a fixed maximum and a fixed minimum.

2. The minimum in this model corresponds to zero. As the decision maker is sure
that what has been ordered will arrive exactly at the time expected, he will have
nothing to worry about if he is out of stock for just a moment. However, as we
will see later, this is not the case where uncertainties are involved in the time of
arrival of the new shipment or the quantities of the demand.

3. As is seen in Figure 10.3b, it is assumed that everything ordered arrives at one
point in time, thus instantly raising the level of inventory at days 3 and 10.
Furthermore, it is clear that the maximum inventory in this case is equal to the
amount ordered.

Formulating the Model

To design such an inventory system it is necessary to find several quantitative parameters
with which the system can be uniquely defined. The values of these parameters should be
such that they minimize the total cost of operating the inventory system. From Figure 10.3b
it is clear that this system can be defined by three parameters: demand, the maximum level
of inventory, and the minimum level of inventory. It is assumed that the demand is fixed and
the designer has no control on this parameter. Also, as mentioned above, for this model the
minimum inventory level is always zero. Thus, the only parameter to be determined in this
case is the maximum inventory level. On the other hand, it was also mentioned that the max-
imum inventory level for this model is the quantity ordered. Then the design of the system
can be defined as finding the ordering quantity that minimizes the total cost of maintaining
the system. This best (optimal) order quantity is called the economic order quantity (EOQ).

To find the optimum values of parameters of an inventory system the system is formulated
as an optimization problem according to the following procedure. First, a suitable period
of analysis is selected. This period is usually 1 year. Then the total cost of maintaining
the inventory over this period is evaluated as a function of the controllable parameters
of the system. This function is then minimized by differentiation or any other applicable
mathematical technique to obtain the optimum values for the controllable variables of the
system. To formulate the EOQ model the following notation is utilized.
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Q= Order quantity
Q∗ = Economic order quantity
D = Demand per time-period
B = Ordering cost, $/order
E = Inventory holding costs, $/unit/time-period
U = Unit cost, $/unit

TC = Total cost per time-period

As was mentioned, the only controllable variable in this system is the order quantity.
Thus the total cost must be stated in terms of this variable. The total cost for this system
consists of two distinct types of expenses. These are inventory holding costs and ordering
or set-up costs. When the unit price of items is affected by the quantity ordered (as in the
case where quantity discounts are involved), the cost of units is also added to the total cost.
In cases where the unit price is assumed constant, inclusion of this cost has no effect on the
controllable variables of the system. In these situations, like the present model, this cost is
not considered.

Inventory holding costs are always present and depend on the number of units in stock and
the length of the time they are kept. In the electric motor example, suppose that keeping one
motor in inventory for 1 day costs one cent. According to our notation E = $0.01/unit/day.
This means that if 1000 units are kept in the inventory, the company bears a cost of
1000 × 0.01 = $10/day. If the amount of material kept in the inventory is constant over
time, say 1000 units, one can say that the contribution of the holding cost to the total
cost is $10/day, but as the level of inventory varies from one day to another, so does the
inventory holding cost. From Figure 10.3b, one can see that the inventory levels vary from
0 to 7000 units with the resulting holding cost varying from 0 to 7000 × 0.01 = $70/day.

To find the average daily inventory cost, one may consider finding the inventory holding
cost for each day and calculating their average. Another method to estimate the same value
is to find the average number of units kept in the inventory and multiply that by the holding
cost. As most of the time costs are calculated on an annual basis, it would be quite difficult
to evaluate the holding cost for each of the 365 days in a year. As we will see in the following
paragraph, evaluation of the average inventory and multiplying it by the annual inventory
holding cost/unit is much easier. As we assume variations in inventory levels are linear, it
is easy to see that the average inventory is equal to the average of the maximum and the
minimum of these levels. Thus,

Average Inventory =
Maximum Inventory + Minimum Inventory

2
(10.1)

However, we know that the minimum for our system is zero, and the maximum is just the
order quantity. Then

Average Inventory =
Q + 0

2
=

Q

2
(10.2)

The average holding cost per unit time would be

Average holding cost per unit time = E

(
Q

2

)
=

EQ

2
(10.3)

Now refer to the second part of inventory costs, which is ordering or set-up cost. This cost
occurs whenever an order is placed, but this cannot be considered as the cost per day or
per month. The best way to evaluate the contribution of this cost to the inventory cost
for the evaluation period is to find how many times the order is placed in one evaluation
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period. For instance, if the costs are evaluated per year and four times a year an order is
placed at a cost of $200, then the ordering cost per year would be 4× $200 = $800. For our
electric motor problem, if we assume a cost of $125/order, the annual ordering cost can be
calculated as

No. of orders per year =
Annual Demand

Quantity ordered each time
(10.4)

=
365 × 1000

7000
= 52.14

⇒ Annual ordering costs = $125 × 52.14 = $6518

Similarly, if the analysis period is 1 day, then the daily cost of ordering would be based on
ordering once a week. Thus,

No. of orders per day =
1
7

Daily ordering costs = $125 × 1
7

= $17.86

Now let us determine the frequency and the cost of ordering per period for a general model
in terms of our only controllable variable involved, the order quantity. As the items are
drawn from the inventory at a rate of D units per period, each order quantity lasts for Q/D
units of time. The number of orders placed during one period is

No. of orders per period =
1

Q/D
=

D

Q
(10.5)

Thus, paying $B per order, we have

Ordering costs per period =
BD

Q
(10.6)

Now, returning to the total cost per period,

Total cost per period, TC = Inventory holding cost per period + Ordering cost per period

=
EQ

2
+

BD

Q
(10.7)

To show that the addition of the acquisition cost of the units involved has no effect in
optimizing the system, we add the cost of units to this total cost. Then,

TC = Inventory holding cost/period + Ordering cost/period + Cost of units/period

=
EQ

2
+

BD

Q
+ UD (10.8)

After stating the total cost as a function of the ordering quantity, we proceed to minimize
the total cost. In this case, since there is only one variable involved, simple differentiation
yields the result.

d(TC)
dQ

=
E

2
− BD

Q2 = 0

⇒ Economic Order Quantity,Q∗ =

√
2BD

E
(10.9)
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As the above relationship shows, the cost of units involved does not play any role in this
optimum value. Thus, for this example, the economic order quantity can be calculated as

Q∗ =

√
2 × 125 × 1000

0.01
= 5000 units

Lead Time and Reorder Point

There is another parameter that is important in designing inventory systems. Usually orders
are not received at the time they are placed. In inventory systems terminology, the length of
time between when orders are placed and the time when they are received is called the lead
time (denoted by L). In deterministic inventory models, it is assumed that the lead time
is constant and known. In stochastic inventory systems, the lead time could be a random
variable.

Going back to the design stage, we note that orders are not received immediately after
they are placed. If one waits until the inventory level reaches zero and then orders, the
inventory will be out of stock during the lead time. Thus orders have to be placed before
the inventory level has reached zero. Two methods can be used to determine when an order
should be placed. In the first method the time at which the inventory will reach zero is
estimated and the order is placed a number of periods equal to the lead time earlier than
that estimated time. For example, if the lead time is 4 days, one could estimate the time at
which the inventory will reach the zero level and order 4 days before that time.

The second approach, which is used more often, is based on the level of inventory. In this
approach, the order is placed whenever the inventory level reaches a level called the reorder
point (ROP). This means that if the order is placed when the amount left in the inventory
is equal to the reorder point, the inventory on hand will last until the new order arrives.
Thus the reorder point is that quantity sufficient to supply the demand during the lead
time. Now, if we assume that both the lead time and the demand are constant, the demand
during the lead time is constant too. As the reorder point is equal to this demand, it can
be calculated from the following relation:

ROP = L × D (10.10)

It is very important to keep in mind that the reorder point is not a point in time, but a
quantity equal to the level of the inventory at the time the order is to be placed. Figure 10.4
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FIGURE 10.4 Graphical representation of economic order quantity, lead time, and reorder point.
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shows the values of economic order quantity, lead time, and reorder point graphically for a
simple maximum–minimum system.

10.3.2 Uniform Demand with Replenishment Taking Place over
a Period of Time

In this model, the assumption that all of the ordered units arrive at the same time is relaxed,
and is replaced by the assumption that units arrive at a uniform rate of P over a period of
time. This model is especially useful for situations where the units are produced inside the
plant and are stored to supply a uniform demand. Consequently, the model is often referred
to as the economic production quantity (EPQ) model.

The first requirement to build up a stock is that the supply rate P be higher than the
demand D during the production or supply period. During the supply period the inventory
is replenished at a rate of P units per period and consumed at a rate of D units per period.
Thus, in this period the inventory builds up at a rate of (P −D) units per period. The
graphical representation of this system is shown in Figure 10.5. The design parameter for
this system is again the order quantity, but here the maximum inventory level and the
order quantity are not the same. The reason is that it takes some time to receive all units
of ordered quantity and during this time some of the units are consumed. Another way of
defining this system is to specify the supply period instead of the order quantity. Knowing
the supply rate and the supply period, the order quantity could be determined. In this
chapter, the order quantity is specified as a design parameter.

Formulating the Model

This problem can be formulated very similarly to the basic model. The only difference here
is that the average inventory level is not half of the order quantity. As the system is still
linear and minimum inventory is zero, the average inventory is:

Average Inventory =
Maximum Inventory + Minimum Inventory

2
=

Maximum Inventory
2

(10.11)
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FIGURE 10.5 Inventory systems with uniform supply.
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Then if we can state the maximum inventory in terms of order quantity, the average cost
of the inventory system can be found as a function of order quantity. The calculation for
maximum inventory is done as follows. Let ST represent the length of the supply period.
As the order quantity is Q and supply rate is P , then

ST =
Q

P

During this supply period the inventory level is increased by (P −D) units per unit time.
As it is assumed that the supply starts arriving when the inventory level is zero, then the
maximum inventory level is equal to the buildup during this period. Then,

Maximum inventory, Imax = (P − D)ST = (P − D)
Q

P

= Q

(
1 − D

P

)
(10.12)

The average inventory (Iavg) is then given from Equations 10.11 and 10.12 as

Iavg =
Imax

2
=

Q

2

(
1 − D

P

)

As a result, the inventory holding cost is
EQ

2

(
1 − D

P

)
. The ordering cost is the same as

before. Thus,

TC =
EQ

2

(
1 − D

P

)
+

BD

Q
(10.13)

As before, differentiating Equation 10.13 and equating to zero, we solve for the optimal Q,
which is given as

Q∗ =

√
2BD

E
(
1 − D

P

) (10.14)

Notes: In using Equation 10.14 it is important to note the following:

• If P is less than D, the term (1−D/P ) becomes negative. This would result in
a Q∗ which is the square root of a negative value. This is due to insufficiency of
the supply. As mentioned earlier, to build up an inventory the production rate
must be higher than the consumption rate.

• The number of units produced and the number of units consumed over a long
period should not be confused with the production rate and consumption rate.
The production rate is higher, but production does not take place every day. To
avoid problems of this nature, it is suggested that the consumption rate always
be defined in terms of the period over which the production rate is defined. For
example, if the production rate is given in terms of units per day and consumption
in terms of units per month, the consumption rate should be converted into units
per day.
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10.3.3 EOQ Model with Back Ordering

In this model running out of stock is not forbidden, but a cost associated with back ordering
of each unit is taken into account. The characteristics of this system can be explained using
the graphical representation of this model as given in Figure 10.6. When the inventory level
reaches zero, at point O, demand for units continues. When the demands cannot be met,
they are recorded as back orders, meaning that the customer has to wait until the new
shipment arrives. Back ordered units could be considered as negative inventory. When the
new shipment arrives, the back orders are satisfied first. After supplying all back ordered
units (which is assumed to take place instantly), the remainder of the units in the shipment
raises the inventory level to the maximum of Imax represented by point M in Figure 10.6.
There are two important points to be noted here. First, it is assumed that the new shipment
is ordered such that when it arrives the back orders have reached their maximum of S. This
changes the relation for the reorder point to

ROP = DL − S (10.15)

For models where back orders are not allowed (as in the previous two models), S = 0 and
ROP =DL. The second point is that if the customer has to wait for his order, he may have
to be compensated by some means, such as a discount. These costs, which can be considered
as the penalty for late delivery, are represented by F and are stated as back ordering cost
per unit per unit time.

Formulating the Model

To design this system one controllable variable is no longer sufficient to define it. Three
variables can be defined for the system. These are the maximum inventory (Imax), the
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FIGURE 10.6 An inventory model with back ordering.
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maximum back orders (S), and the order quantity (Q). From Figure 10.6, see that

Q = LM + LN = Imax + S (10.16)

This indicates that any two variables out of the above three would be sufficient to define
the system. The third variable can be obtained from the other two. Here, two variables, Q
and S, are selected as the design variables of the system. Then, the maximum inventory
can be obtained from Equation 10.16 as Imax = (Q−S).

As was shown earlier with a zero minimum inventory, the average inventory can be con-
sidered to be one-half of the maximum inventory. However, in this case it is important to
note that at some period of time during each inventory cycle the level of inventory is zero.
This period in Figure 10.6 is shown by t2 as the time segment between points O and L. So,

Holding cost per unit time during interval t2 = 0

Holding cost per unit time during interval t1 = E
(Q − S)

2

Average holding cost/unit time =

E(Q − S)
2

(t1) + (0 × t2)

(t1 + t2)

=
t1
t

[
E(Q − S)

2

]
(10.17)

where t = t1 + t2. The values of t1 and t2 can be found as follows.
t2 is the time during which the back orders are built up to S at a rate of D units per unit

time. Thus, t2 = S/D. Further, t = t1 + t2 is the period during which Q units are spent at a
rate of D units per unit time. Then t = Q/D and t1 = t − t2 = (Q−S)/D. Then,

Average holding cost/unit time =
(Q − S)/D

Q/D

[
E(Q − S)

2

]

=
E(Q − S)2

2Q

The ordering cost does not change from its previous value, as the same ordering pattern
continues and ordering cost/unit time =BD/Q.

For this model we have to add an additional cost that is called the back ordering cost and
is represented by F , the cost per unit back ordered for a unit time. The number of units
back ordered varies from 0 to S with an average of S/2, but again this occurs only during
the time interval t2. Then

Back ordering cost per unit time during t1 = 0

Back ordering cost per unit time during t2 = F
S

2

Therefore,

Average back ordering cost/unit time =

[
t1 × 0 + t2

FS

2

]

t

=
FS2

2Q
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Thus, the total inventory cost per unit time is

TC = Holding cost/unit time + Ordering cost/unit time + Back ordering cost/unit time

=
E(Q − S)2

2Q
+

BD

Q
+

FS2

2Q
(10.18)

There are two variables of Q and S to be determined. By partial differentiation with respect
to Q and S and equating the results to zero, the values of Q and S can be found as follows.

∂(TC)
∂Q

=
E

2

[
2Q(Q − S) − (Q − S)2

Q2

]
− BD

Q2 − FS2

2Q2 = 0

∂(TC)
∂S

=
E

2

[
−2(Q − S)

Q

]
+

FS

Q
= 0

Solving these two equations simultaneously yields the optimum values of Q and S as

Q∗ =

√
2BD
E

×
√

E+F
F

(10.19)

S ∗ =

√
2BD
E

×

√
E 2

F (E +F )
(10.20)

Now that we have two parameters and we know that Imax = Q−S, the optimal value for
Imax may be shown to be

I ∗
max =

√
2BD
E

×
√

F

E + F
(10.21)

10.3.4 Time-Varying Demand: The Wagner–Whitin Model

Thus far, we have assumed that demand is deterministic and constant over time (i.e., time-
invariant or stationary). In this section, we relax this assumption of stationarity; the model
is due to Wagner and Whitin [22]. The following assumptions are made.

1. Demand is deterministically known for the following N periods and given by the
vector D = {D1, D2, . . ., DN}. Note that time-varying demand implies Di �= Dj

for at least one pair of i, j.
2. Let the inventory at the end of period j be given by Ij and let the starting

inventory be I0 = 0.
3. Supply is assumed to be instantaneous.
4. Shortages and back orders are not permitted.
5. Holding costs are incurred on the ending inventory in every period j, with hj

being the unit holding cost for period j. Then denote Hj(x) = xhj . Similarly,
order costs for period j are given by Cj(x) = ajδ(x) + ujx where aj is the set-up
costs in period j and uj is the cost/unit in period j. Further, let δ(x) = 1 if x > 0;
0 otherwise. We assume that Hj and Cj are concave functions of their respective
arguments.

Our objective is to find the order quantities in each period that minimized total ordering
and holding costs over the N periods. In other words, we want to find Q= {Q1, Q2, . . ., QN}
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where all order quantities are non-negative. The model may be formulated as given below:

min Z =
N∑

i=1

[Ci(Qi) + Hi(Ii)] =
N∑

i=1

[aiδi(Qi) + uiQi + hiIi] (10.22)

subject to Ii−1 + Qi = Di + Ii for all i

Qi, Ii ≥ 0 for all i

δi(Qi) binary for all i (10.23)

The above problem is a nonlinear, integer programming problem involving the minimization
of a concave function (since Hj and Cj are concave functions). To solve the problem, we
note the following [5,22]:

1. Inventory is held over a period if and only if the corresponding inventory costs are
lower than the ordering costs. Suppose k units are left at the end of period j − 1;
then it would be optimal to hold these⇔ Hj−1(k) < Cj(k). If not, the previous
replenishment should be reduced by these k units to reduce costs.

2. Inventory is replenished only when the inventory level is zero (zero inventory
ordering property). Consequently, if an order is placed, it must cover demand for
an integer number of future periods.

Using the above observations, Wagner and Whitin [22] show that the following must be
true:

Qi−1Ii = 0 for all i (10.24)

From the above properties and Equation 10.24, note that one of the following must be true
as a consequence:

1. Ii−1 > 0 ⇒ Qi = 0; and Ii−1 > 0 ⇒ Ii−1 > Di; Ii−1 ∈ {Di, Di + Di+1, . . .,
∑N

k=i Dk}.
Essentially, this means that if the last period’s ending inventory is positive, then
this inventory level is at least the current period demand (Di) and may be as
much as all remaining periods’ demand (

∑N
k=i Dk).

2. Ii−1 = 0 ⇒ Qi > 0. In fact, Qi ∈ {Di, Di + Di+1, . . .,
∑N

k=i Dk}. In this case, if
the ending inventory in period i− 1 is zero, then an order must be placed in
the current period and this order quantity (Qi) must be, at a minimum, equal
to the current period’s demand with the maximum possible order quantity being
equal to the total demand of all remaining periods.

Further, note that both Ii−1 and Qi cannot equal zero (unless i= N + 1, i.e., the last period
demand has been met).

A simple method to “see” and solve the Wagner–Whitin model would be to represent it
as an acyclic graph (Figure 10.7). To do so, let each node represent the beginning of a period
k = 1, 2, . . ., N ⇒ node k + 1 represents the end of period k. The graph then has a total of

1 2 3 4 i j N N + 1

c1,4

c1,3

c1,2 c2,3 c3,4

ci,j
c2,4

cN,N+1

FIGURE 10.7 Graph representation of the Wagner–Whitin model.
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N + 1 nodes. The arc (i, j) represents ordering in period i with the next replenishment
being in period j. Consequently, all demands in periods i, i+ 1, . . ., j − 1 are to be met from
inventory. Further, let arc (i, j) exist only if i < j (i= 1, . . ., N ; j = 2, . . ., N + 1). The total
number of arcs in the network is given by N(N + 1)

2 . Since the arc lengths (denoted by ci,j)
represent ordering and holding costs, we have

ci,j = Ci

(
j−1∑
k=i

Dk

)
+

j−2∑
k=i

[
Hk

(
j−1∑

r=k+1

Dr

)]
(10.25)

The optimal solution to the Wagner–Whitin model is given by the shortest path from node
1 to node N and may be solved efficiently using Dijkstra [23] and Wagelmans et al. [24].
See Lee and Nahmias [25] and Silver et al. [1] for examples and references.

Comments: Zangwill [26] solved the case where back orders are allowed. In addition to
these exact formulations, several heuristics like the Silver–Meal method, the Part–Period
Balancing method, and the like have been developed to get near-optimal solutions effi-
ciently [1,27]. Finally, a requirement of the Wagner–Whitin model is that there be a finite
horizon (with known ending inventory level). Rangarajan and Ravindran [28] exploit this
requirement to solve a SC inventory model efficiency.

10.4 Stochastic Inventory Systems

So far, in all the models studied, it was assumed that the demand is constant and known.
Also, it was assumed that the units ordered will arrive exactly when they are expected. These
assumptions eliminated uncertainties and allowed somewhat simple solutions for designing
inventory systems. However, in the real world uncertainties almost always exist. Very few
manufacturers can claim that they know exactly what their demand will be. Also, very
seldom can they be certain that the supplier will deliver the ordered quantities exactly on
time. Thus, applying deterministic models may result in some undesirable consequences
that are discussed below.

Realistically, new orders do not necessarily arrive just when the last item in the inventory
is used up. Let us consider an example. Suppose an automobile service center stocks car
batteries. On an average, 10 cars that need new batteries are brought in every day. Let us
assume that the service shop has used a deterministic model of inventory control and orders
100 batteries every 10 days. Also, let us assume that the lead time is 3 days, which results
in a reorder point of 30 batteries. Suppose one day the shop operator notices that there
are only 30 batteries left and orders a new shipment. If the demand is deterministic and
is exactly 10 batteries a day, he would not have any problem while waiting 3 days for the
order to arrive. His 30 batteries would be sufficient for these 3 days. However, the demand
is usually not deterministic. During these 3 days, the total number of batteries demanded
could be 40, 30, 20, or any other number. If the demand for these 3 days happens to be 20,
there is no problem, but if it happens to be 40 or anything more than 30, the service shop
will not have sufficient batteries to supply the demand. In this case, the service center is
going to be out of stock for some period of time. In other words, an inventory system is out
of stock when there is no unit available to meet all or part of the demand.

As another example, consider the electric motor case. The lead time in this situation was
3 days, and the reorder point was calculated to be 3000 motors. Now, if an order is placed
at a point where there are 3000 units in stock and if a fixed consumption rate of 1000 units
a day is assumed, the motors will be sufficient for the coming 3 days. However, if for some
reason the supplier delivers the order on the fourth day instead of the third, the inventory
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will be zero for 1 day, and the demand for 1000 motors will be left unsatisfied. Again this
inventory system will be out of stock but in this case for a different reason.

The undesirable consequences of being out of stock vary, depending on the nature of the
operation. For example, in the case of the auto service center the customers may be willing
to wait for one more day to get replacement batteries. In this case, being out of stock does
not result in any problem. On the other hand, they may not be willing to wait and force
the service center to do something about the situation, like buying the needed batteries
from a neighboring supplier at a higher cost. It is also possible that the customers may take
their business elsewhere. This would result in a loss of profit. Furthermore, those rejected
customers may never come back to this shop for future repairs, which again causes the loss of
goodwill and future revenue. In the case of the electric motors being used in manufacturing
home appliances, being out of stock for 1 day may halt the whole manufacturing process,
thus resulting in an appreciable loss.

The cost of being out of stock is called the shortage cost. The magnitude of this cost
depends on the nature of the operation. Shortage costs can somewhat be avoided by main-
taining some reserve stock called safety stock.

10.4.1 Safety Stock

In the auto service shop example, suppose the shop had ordered a new shipment at the time
when there were 40 units in stock instead of 30. It would then have been prepared to meet
a demand of up to 40 units during the lead time. On the other hand, if the demand had
followed the usual pattern of 10 a day, at the end of the lead time when the new shipment
was to arrive, 10 batteries would have still been left in stock. There also exists the possibility
of the demand being less than the expected demand. This may result in say 20 units left in
the inventory when the new shipment arrives.

To handle the uncertainties we will assume that the demand is a random variable with an
average of 30 units for the lead time period. If we decide on the reorder point of 40 units, the
units left in the inventory when the new shipment arrives would also be a random variable
with an average of 10. This quantity of 10 units is called the safety stock for this inventory
situation. The significance of safety stock is that it shows how many more units we should
keep in addition to the expected demand to cope with uncertainties. The safety stock of
10 units for the above example may not solve all of the problems the auto service shop
faces. For example, what happens if the demand during the lead time becomes 50? Again
the shop will be 10 units short. One may suggest that the safety stock of 20 batteries might
be better as it could respond to even greater uncertainties. In the extreme, to eliminate any
chance of being out of stock, it may seem that a large safety stock would be necessary.

Although a large safety stock may eliminate the risk of being out of stock, it raises another
problem. A large safety stock adds to the inventory holding costs. The capital spent on the
items in inventory is tied up and the insurance and tax costs on holdings increase. This
suggests that one should not increase the size of safety stock indefinitely to eliminate the
risk of being out of stock. Rather, one has to establish a balance between the losses due to
being out of stock and the cost of holding the additional units in stock.

The optimum value of the safety stock is the value for which the sum of the cost of
being out of stock and the cost of holding the safety stock is a minimum. In stochastic
inventory systems the demand or lead time or both are random. Thus, the shortage would
be a random variable too. Then to evaluate shortage costs, some information about the
probability distribution of the demand, especially demand during the lead time, must be
given. In the derivations that follow these probability distributions will be assumed as given.
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Before starting to study the stochastic inventory models, two points regarding safety
stock must be made. First, when safety stock is considered, the procedure for calculating
the reorder point changes. Without safety stock the reorder point was simply the product
of lead time and the demand. With safety stock present, its value must be added to the
previous reorder point to satisfy the variations in the demand. Thus,

ROP = LD + SS (10.26)

where ROP, L, and D are as previously defined and SS is the safety stock.
It is very important at this point to examine this relationship carefully. As the factor

directly affecting our decision is the reorder point rather than the safety stock, we usually
determine the best reorder point before finding the best safety stock. Safety stock can be
found from the reorder point by

SS = ROP − LD (10.27)

Also, as safety stock is used when dealing with stochastic systems, the above relationship
could be better defined by SS =ROP − Expected value of the demand during the lead time.

The second point to keep in mind is that since the basis for ordering is the reorder point,
the variation of the demand before reaching the reorder point does not create any problem.
For example, in the auto service example suppose that a new order of 100 units arrives
today. For the first 2 days assume that the demand has been 10 batteries a day. On the
third day, when there are 80 batteries left, a demand of 20 batteries arrives and the stock is
reduced to 60. As the reorder point of 30 has not yet been reached, the shop does not have
to do anything. Suppose the next day the demand is 30 batteries, which will deplete the
inventory to 30 units. Again, the shop has nothing to worry about because no customer has
been turned away; the new reorder point has been reached, the new order is placed, and
everything is in order. Now, if during the next 3 days the demands are 15, 15, and 10,
respectively, the shop will be out of stock after 2 days, and even if it orders immediately,
the order will not arrive on time. As a result, the shop will be 10 units short.

The above example shows that having two drastic demands of 20 and 30 units before
reaching the reorder point did not create any problem, while two demands of 15 units each
after the reorder point caused shortages. Thus we could conclude that the only time we
have to worry about being out of stock is during the lead time, and the period of study for
shortages should be restricted to this period.

To deal with uncertainties, like any other stochastic system, we would need some knowl-
edge about the stochastic behavior of the system. In this case, the stochastic characteristics
of interest would be the probability distribution of the demand during the lead time. The
problem arises from the fact that given the probability distribution function of the demand
per day or any other period, it is not always easy to determine the probability distribution
of demand during the lead time, which consists of several periods. In other words, if the
probability density function of demand per day is denoted by f(x), the density function for
demand during the lead time of n days is not always a simple function of f(x). As a result of
the above discussion, the first attempt in evaluating the safety stock must be to determine
the distribution of the demand during the lead time. In the discussion and examples of this
chapter only those cases will be presented for which this function can be easily evaluated.

10.4.2 A Maximum–Minimum System with Safety Stock

Here, a safety stock is added to the simple maximum–minimum inventory system. The
general form of this model is shown in Figure 10.8. In this figure, when the ordered units
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FIGURE 10.8 Inventory system with safety stock.

arrive, there are still a number of units equal to the safety stock SS left in the inventory. Of
course, as was pointed out earlier, because of the random demand the number of units left
when the new order arrives is a random variable. Three of the possible amounts left in the
inventory when the new order arrives are shown in Figure 10.8 by points A, B, and C. SS is
the expected value of these and all other possible values of this quantity. When new units
are received, they are added to this safety stock. As a result the inventory level is built up
to the maximum of

Imax = SS + Q

For simplicity, it is assumed that the decline in the inventory level follows a linear path until
it reaches its minimum level of Imin =SS where another order is received. Although it may
seem unreasonable to assume a linear decline pattern when the demand is random, in the
long run this assumption does not greatly affect the accuracy of the holding cost estimates.
The major effect of the random demand on the cost occurs during the lead time where the
possibility of shortage exists.

Now, having identified the maximum and the minimum levels of the inventory we can
determine the total cost function as

Total Inventory Cost/Period = Inventory holding cost/period + Ordering cost/period
+ Shortage cost/period

From previous discussions we know that

Inventory holding cost/period = E (average inventory)

= E

(
Q + SS + SS

2

)
= E

(
Q

2
+ SS

)
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Ordering cost/period =
BD

Q

⇒ TC = E

(
Q

2
+ SS

)
+

BD

Q
+ SC (10.28)

where SC is the shortage cost per period. Equation 10.28 could be used to minimize the cost
by finding the optimum values for the decision variables, Q and SS, provided that we could
state the shortage cost as a function of these two variables. This is possible if we know the
probability distribution of the random demand during the lead time. The demand during
the lead time is considered because that is the only time during which the possibility of
shortage exists. The calculation of shortage cost using that distribution is as follows.

Let the demand during the lead time be given by the random variable X with the density
function of f(x). Also let D and DL be the expected values of the demand per period and
the demand during the lead time, respectively. The shortages occur if the demand during
the lead time is more than the reorder point (denoted ROP). The reorder point in this
case is:

ROP = Expected value of the demand during the lead time + Safety stock

Expected value of the demand during lead time can be found as

DL =
∫ ∞

−∞
xf(x)dx

⇒ ROP = DL + SS (10.29)

Now the only time we may have shortage is when the demand during lead time exceeds the
reorder point. That is,

Shortage cost/Lead time =
{

0 if X ≤ ROP
S × E[No. of units short] if X > ROP

(10.30)

where S is the shortage cost per unit and E[·] denotes the expected value. Notice that
this assumption implies that the shortage cost per item is independent of the duration of
shortage. In other words, if an item is short during the lead time, the cost of its shortage
will be S whether this shortage happened 1 day before the new shipment arrived or 5 days.

However, the demand in excess of reorder point includes all values of demand greater
than ROP. Now if the demand is x and reorder point R, the shortage would be a random
variable that could be shown by (x−R). The expected value of this random variable is

E[No. of units short] =
∫ ∞

R

(x − R)f(x)dx

and, Shortage cost/Lead time = S

∫ ∞

R

(x − R)f(x)dx

As we have seen there are D/Q lead times per period

Shortage cost/Period = SC =
DS

Q

∫ ∞

R

(x − R)f(x)dx (10.31)

Although it is not explicitly stated, this cost is a function of Q and SS only. S is known
and the term under the integral after integration will be stated in terms of the limits of
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the integral that are between ∞ and R = DL +SS. Then the overall inventory cost (from
Equations 10.28 and 10.31) will be

TC = E

(
Q

2
+ SS

)
+

BD

Q
+

DS

Q

∫ ∞

DL+SS

(x − DL − SS)f(x)dx (10.32)

Now, if the density function can be integrated, the total cost will be in terms of Q and SS
only. When the demand is discrete, the total cost function changes to

TC = E

(
Q

2
+ SS

)
+

BD

Q
+

DS

Q

∑
xi>R

(xi − R)p(xi) (10.33)

where the summation is for all demands that are greater than ROP and p(xi) denotes
the probability mass function of the (discrete) demand distribution during the lead time.
Interestingly, Lau et al. [29] suggest that under certain conditions, order-quantity, reorder-
point models may yield impractical solutions or may be unsolvable. They suggest that cost
parameters and service-level targets be chosen carefully to yield good solutions.

10.4.3 A Simplified Solution Method for Stochastic Systems

When the demand is discrete, Equation 10.33 does not produce a continuous function for
differentiation. Also, sometimes even with continuous functions the resulting total cost
function is complicated and cannot be optimized easily. In such situations, the following
simplified method may result in a somewhat less accurate result, but the computations will
be easier. Consider Equation 10.32 or 10.33. The terms of these relations can be divided into
two categories. First, there are the terms associated with ordering and inventory holding
costs. These terms, which are similar to those in the deterministic model, are

TC1 =
BD

Q
+

EQ

2
(10.34)

Second, there are the terms associated with holding the safety stock and shortage costs.
These terms are

TC2 = E × SS +
DS

Q

∫ ∞

DL+SS

(x − DL − SS)f(x)dx

or TC2 = E × SS +
DS

Q

∑
xi>R

(xi − R)P (xi)
(10.35)

In the simplified model it is assumed that these two cost figures can be minimized separately
and independently from each other. This assumption is, of course, not correct because opti-
mizing a function term by term does not necessarily optimize the entire function. However,
the ease of evaluation obtained from this assumption sometimes compensates for the slight
loss of accuracy of the results.

Thus, the order quantity is found based on the first two terms. Then this order quantity
is used in the second group of the costs to determine the optimum value of the safety stock.
The optimum order quantity from Equation 10.34 can be obtained as follows:

dTC1

dQ
=

E

2
− BD

Q3 = 0

⇒ Q∗ =

√
2BD

E
=

√
2B E[D]

E
(10.36)
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Note that this is the relationship for the economic order quantity for the simple maximum–
minimum inventory model (i.e., the EOQ model). The only difference here is that demand is
represented by the expected value of the demand (as denoted explicitly in Equation 10.36).
When demand is a continuous random variable, we need to evaluate the integral in Equa-
tion 10.35. Once this is done, the resulting function becomes a single variable function in
terms of SS. Again, one has to be careful in minimizing such a function to make sure SS
falls within the acceptable range. For discrete demands the cost could be evaluated using
ROP =DL −S for the range of acceptable values of SS, and the optimum value could be
estimated as the one corresponding to the minimum cost.

10.4.4 Stochastic Inventory Model for One-Period Systems

This model applies to systems that operate for only one period and where items cannot be
carried from one period to the next. Examples of this type are perishable products, fashion
goods, or products that become obsolete or outdated after one period or selling season.
Consider keeping an inventory of fruits and vegetables to supply a stochastic demand for a
certain period. Obviously, at the end of the period, items left over are considered expired and
must be thrown away or sold at a considerable discount. Another example is the procurement
of newspapers and magazines. After a day or a week they become worthless. This model
is commonly referred to as the newsvendor model. To design an inventory system for these
situations one has to find the amount to procure such that the expected value of the profit
is maximized as given below.

The newsvendor sells a single product over a single selling season with one procurement
opportunity before the start of the season. Demand is stochastic with known distribution
function F (·) and probability density function f(·). The product is procured at a cost of
$c/unit and sold at a price of $p/unit. Any unsold inventory at the end of the selling period is
salvaged (i.e., the firm receives this amount per unsold unit) at a value of $s/unit (p > c > s).
Back orders are not permitted and supply is assumed to be instantaneous with no set-up
costs. The newsvendor is faced with the decision of how much to order at the start of the
period so as to maximize expected profit (denoted by Π). As before, the order quantity is
given by Q and demand by D. To develop the profit maximization model, note that

E[Π] = E[profit when D ∈ [0, Q]] + E[profit when D ∈ [Q,∞)] (10.37)

When demand is less than or equal to Q, then all demand is met and a loss (=(c− s)/unit)
is incurred for any excess inventory (first term on the right). When demand exceeds the
available inventory, then all Q units are sold (indicated by the second term on the right in
Equation 10.37). Let the random demand be given by X with known distribution. Then,
we may write Equation 10.37 as

E[Π] =

Q∫
0

[(p − c)x − (c − s)(Q − x)]dF (x) +

∞∫
Q

[(p − c)Q dF (x)] (10.38)

Using Leibniz’s rule to differentiate Equation 10.38 and setting the derivative to zero, we
can show that the optimal order quantity, Q∗, is given by

Q∗ = F−1
(

p − c

p − s

)
= F−1(cf ) (10.39)

where cf = (p − c)/(p − s) is known as the critical fractile. Now, note the following.

cf =
p − c

p − s
=

p − c

(p − c) + (c − s)
=

cu

cu + co
(10.40)
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where cu, the underage cost, represents the profit/additional unit that is lost by being short
of demand and co, the overage cost, represents the loss incurred/additional unit that is in
excess of demand. See also Chapter 22 of this book for additional discussion and derivation
of the newsvendor model result using marginal analysis.

Example 10.2

Let demand be random and uniformly distributed between 100 and 400 over the selling sea-
son. Further, let p = 12$/unit, c = 9$/unit, and s = 0$/unit. From Equation 10.40 we have
cf = (12− 9)/(12 − 0) = 0.25. The optimal order quantity, Q∗, is given by Equation 10.39.
For a uniform random variable, F (x) = x − a

b − a ; x∈ [a, b]. Therefore, Q∗ = cf (b − a) + a =
175 units. �

Comments: (i) The case when demand follows a discrete distribution is analogous to the one
above. (ii) Q∗ is often called the base stock level. If the starting inventory is less than Q∗,
then the optimal action is to bring the inventory level up to Q∗ (i.e., order Q= (Q∗ − I0)
units, where I0 is the inventory at the start before ordering). Such a policy is called a base
stock policy in the literature and has wide applicability. Evidently, the maximum inventory
level will equal the base stock level in this model. (iii) Several modifications of this model
are possible [see 1,15,30]. The newsvendor model also forms the basis of many models
addressing decisions in pricing [31–34], supply chain inventory models [35,36], production
capacity investments [37,38], and so on.

10.4.5 Stochastic, Multi-Period Inventory Models: The (s, S) Policy

Given the simple solution to the single period problem above, it is obvious to ask if the
analysis can be extended to a multi-period setting. Multiperiod inventory models are usually
addressed using techniques from dynamic programming; see Chapter 7 of this book for
an overview. Essentially, we are interested in finding the minimum expected cost over N
periods. As such, two important cases are possible: the finite horizon case, where decisions
are to be made over a finite number of periods (N < ∞) or the infinite horizon case (N = ∞).
While the derivation of such models is beyond the scope of this chapter, it has been shown
that in both cases [39,40] the optimal inventory control policy is of the form of (s, S) with
s < S. The policy essentially implies the following ordering rule: if inventory falls below the
reorder level (= s), then place an order to bring the inventory level up to S. To state this
mathematically, let inventory at the start of a period be I and the decision variable be Q,
the order quantity for that period. Then, (s, S) implies the following optimal ordering rule

Q =
{

(S − I) if I < s [i.e., raise inventory to S]
0 if I ≥ s [i.e., do nothing] (10.41)

Evidently, the (s, S) policy is fairly simple in form and easy to implement. However, it
must be noted that computation of the two parameters (s and S) is not always easy though
several efficient heuristics are available. The (s, S) policy has also been shown to be opti-
mal under fairly generic assumptions. For detailed development of the model, assumptions,
extensions, and solution procedures, see Lee and Nahmias [25], Porteus [8], and Zipkin [3].

10.5 Inventory Control at Multiple Locations

In the models discussed thus far, we have looked exclusively at managing inventories at a
single facility. In doing so, we have assumed that orders placed with an “external supplier”
are assured to arrive after a suitable lead time (when L > 0). The astute reader may have
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Material flow

FIGURE 10.9 A general multi-echelon supply chain network.

reason to pause and ask: “What if the supplier is out of stock?” Furthermore, virtually
all facilities holding inventories are part of a SC in reality. One therefore begins to see the
need for looking at inventory management at multiple locations. Such models are referred
to as SC inventory management models or as multi-echelon inventory theory in the research
literature.∗

As mentioned previously, inventory represents considerable investments and is considered
one of the drivers of SC performance; see Chopra and Meindl [43] and Chapter 22 of this
book for detailed discussions of the role of inventories in the SC. The core challenge of
managing inventories at multiple facilities is the issue of dependencies. Consider a retailer
who is supplied by a warehouse. In the models of Sections 10.3 and 10.4, we either assume
that this supplier has infinite capacities (or inventories) or that such inventories arrive after
a lead time that is either fixed or described by a probability distribution. However, this
ignores the explicit consideration of the supplier inventory, the dependency of the retailer
on the supplier’s inventory and the need to perhaps control supplier inventories as well. To
complicate matters further, inventories are usually held at multiple locations in the SC and
the SC may be viewed as a network (Figure 10.9). In this section, we briefly overview the
basics of multi-echelon inventory models and refer the reader to more detailed texts on this
topic [2,5,6,44] for further details and references.

10.5.1 Multi-Echelon Inventory Models: Preliminaries

Quantitative models for complex SC structures as in Figure 10.9 are difficult to work
with. Based on common network topologies observed in practice and to make models
more tractable, most multi-echelon inventory models assume one of three common net-
work structures. Before delving into this, we introduce some relevant terminology. In our

∗Multi-echelon inventory theory emerged from the need to control inventories at multiple production
stages in a facility and early literature reflects this “production” heritage. Clark [41] and Scarf [42], pioneers
in the field, give some perspective on the early developments and their work. In this chapter, we focus more
on SC inventory management that considers these locations to be distinct, reflecting contemporary practice.
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(a) Serial system

(b) Lateral supply

(c) Assembly network (d) Distribution system

FIGURE 10.10 Common supply chain structures.

retailer–warehouse example, the retailer represents one stage or echelon of the SC and the
warehouse is another stage of the SC. In general, an SC may have multiple stages and
multiple facilities at each stage (as shown in Figure 10.9). In all cases, clear relationships
exist between these stages; namely, material “flows” (or moves) from one stage to the next.
As we move from the raw material suppliers toward the final stages that see end customer
demand, we are said to be moving downstream in the SC and upstream when in the reverse
direction. So, material flows from upstream suppliers to downstream retailers.

We can now look at the common SC structures used in many multi-echelon inventory
models. These are represented graphically in Figure 10.10a–d.

1. Serial system, shown in Figure 10.10a, is an SC wherein every facility has at most
one upstream supplier and one downstream customer and only one facility exists
at each stage. This often represents the simplest structure.

2. Assembly network is one in which there is one downstream facility that is sup-
plied by multiple upstream suppliers, who may in turn be supplied by multiple
suppliers themselves. It is commonly assumed that each upstream stage has only
one customer at the next downstream stage. Figure 10.10c gives an example of
such a system.

3. Distribution systems are networks where upstream facilities supply multiple down-
stream stages. A special case of particular importance is when each facility has
at most one supplier but may itself supply multiple downstream customers. Such
a network is called an arborescent distribution network (Figure 10.10d).

4. Lateral supply—As mentioned in Section 10.2.3, in some cases, a facility may
receive supplies from another facility at the same stage. For example, consider
two Wal-Mart stores in a city. If one ships inventory to the other to make up for
shortages at the latter facility, this is known as a lateral shipment. This is usually
done as an emergency measure, though. Figure 10.10b represents this graphically.
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Note that the serial system is a special case of both the assembly and distribution network
types. In our discussions here, we will look at serial systems. See Graves et al. [2], Song and
Yao [45], and Song and Zipkin [46] for details on SC structure and assembly systems.

Inventory Coordination Policies

The effect of dependencies between inventories in the SC has the potential to complicate
operations. In the single warehouse, single retailer (serial) SC example, assume that the
retailer orders every week and the warehouse every 5 days. Ideally, we would like these
two reorder intervals to be such that the overall SC inventory costs are minimized; in
other words, we would like the SC members to be coordinated. Inventory coordination
schemes help smoothen operations. Coordination takes on special significance in a decen-
tralized control setting where members in the SC operate independently, often leading
to inefficiencies. Coordination is usually achieved in two ways: quantity coordination or
time coordination. In quantity coordination, SC members change their order quantities
so as to reduce system-wide costs. This is done using SC contracts that help induce this
change and redistributes some of the savings between the SC members. In time coordina-
tion schemes, the reorder intervals of the members are changed to bring some regularity
to operations (e.g., ordering weekly). Evidently, under deterministic settings, the two are
equivalent in terms of the changes in the order quantities and reorder intervals (though
contracts also look at the issue of sharing of cost savings). We discuss time coordination
policies here for two reasons: (a) they are operational in nature, fairly simple, and do
not involve issues like transfer pricing and compensation issues; and (b) optimal or near
optimal policies are available even without the use of more complex contracts and this suf-
fices for the discussion at hand. Cachon [47] and Tsay et al. [48] review the contracting
literature.

The following notation is used in the discussions below. The term facility is used to denote
an inventory stocking location. In general, we denote the first upstream facility as node 0
and the last down stream facility as node N in the serial system. The distribution system
in Figure 10.10d is commonly referred to as the single warehouse, multiple retailer system,
and we denote the warehouse as facility 0 and the retailers as facilities 1 through N . Let the
review period length at each location be Ti, i= 0, 1, . . ., N. The following are some common
coordination policies [12,49].

• Stationary Policy: If each facility orders at equally spaced points in time and in
equal quantities each time, then the policy is called a stationary policy.

• Nested Policy: If each facility orders every time any of its immediate suppliers
does (and perhaps at other times as well), then it is known as a nested policy.

• Stationary Nested: A policy is stationary and nested if Ti ≤T0 for all i= 1, 2, . . ., N .
Such a policy ensures that the order quantities at upstream stages are stationary.

Zero Inventory Ordering Property

Schwarz [50] considered a single warehouse, multi-retailer system and showed that an opti-
mal policy may be fairly complex. He then defined a basic policy that has the following
properties: (a) deliveries are made to the warehouse only when the warehouse and at least
one retailer have zero inventory; (b) deliveries are made to a retailer only when the retailer
has zero inventory; and (c) all deliveries made to any given retailer between successive
deliveries to the warehouse are of equal size. This result is known as the zero-inventory

© 2008 by Taylor & Francis Group, LLC



CH010.tex 30/10/2007 11: 22 Page 10-31

Inventory Control 10-31

ordering property. In fact, the result holds for many other systems also when demand is
deterministic.

With this background, we now proceed to consider some basic multi-echelon inventory
models facing deterministic end demand.

10.5.2 Serial Supply Chain Inventory Models

Consider a serial, two-stage SC consisting of a warehouse supplying a downstream retailer
who faces demand of D units/time period. The warehouse and retailer have order costs of
a0, a1, inventory holding costs of h0, h1, and the inventory at each facility is denoted by
I0, I1 (in appropriate units), respectively. Further, it is assumed that h0 < h1 as unit costs
and holding costs usually increase as we move downstream in the SC. We also assume that
the SC follows a nested coordination policy wherein the warehouse reorder interval (T0) is
a positive integer multiple (m) of the retailer’s reorder interval (T1); that is,

T0 = mT1; m = 1, 2, . . . (10.42)

Assumptions of the EOQ model are assumed to hold unless otherwise stated. Two control
policies are possible (see Section 10.2.3), namely centralized and decentralized SC control
and both are discussed below.

Decentralized Control of the Serial System

In this case, the warehouse and retailer make inventory decisions independent of the other
subject to the nested policy constraint. So the retailer solves his/her inventory problem
(using the EOQ model; Section 10.3.1) first and communicates the optimal reorder interval
(T ∗

1 ) to the warehouse. Thus, from Equation 10.9, we have

T ∗
1 =

√
2a1

Dh1
; Q∗

1 = DT ∗
1 (10.43)

The corresponding optimal cost is given by Z∗
1 =

√
2a1Dh1. The inventory plot for the

retailer is shown in the top panel of Figure 10.11. This is known as the retailer’s installation
stock and it follows the familiar “saw-tooth” pattern of the EOQ model.

Now, the warehouse sees a bulk demand of Q∗
1 units every T ∗

1 time units. Thus, the
warehouse inventory pattern is not a saw-tooth pattern and is represented by the step
function in the middle panel of Figure 10.11. It is fairly easy to show that in this case, the
average inventory at the warehouse (denoted Ī0) is given by

Ī0 =
Q1(m − 1)

2
(10.44)

Then, the total variable costs at the warehouse is given by

Z0(m) =
a0

T0
+

h0Q
∗
1(m − 1)

2
=

a0

mT ∗
1

+
h0DT ∗

1 (m − 1)
2

(10.45)

It is easy to show that Equation 10.45 is pointwise convex in the integer variable m and
so the minimum value is attained when the first difference (Equation 10.46) equals zero or
changes from negative to positive.

∆Z0(m) = Z0(m + 1) − Z0(m) (10.46)
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FIGURE 10.11 The concepts of installation and echelon inventories.

Substituting Equation 10.45 in 10.46 and simplifying, we can show that the optimal solution
is given by identifying the smallest positive integer, m∗, such that the following is true.

2a0

h0D(T ∗
1 )2

≤ m∗(m∗ + 1) (10.47)

Note that the left hand side of Equation 10.47 is a constant. The problem is a single variable
problem and efficient optimization techniques may be employed to find the optimal m∗ to
get Q∗

0 and T ∗
0 . This completes the analysis of the decentralized SC.

Centralized Control of the Serial System

In this setting, we are looking to optimize the reorder intervals at both facilities simultane-
ously. It is common practice to assume that all information like costs, inventory levels, and
the like at all facilities in the centralized network are known globally. We should note that
this places greater control in the hands of the manager(s), though obtaining such detailed
information in a timely manner may not be easy in practice. The optimization problem to
minimize the system-wide total variable costs (i.e., the sum of the ordering and holding
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costs at both facilities) is given by

Problem C: minZc =
(

a1

T1
+

a0

T0

)
+

[
h1Q1

2
+

h0Q1(m − 1)
2

]

=
1
T1

(
a1 +

a0

m

)
+ T1

[
h1D

2
+

h0D(m − 1)
2

]
(10.48)

subject to
T0 = mT1; m = 1, 2, . . .

T1 ≥ 0

Problem C is a nonlinear, integer programming problem in two variables, m and T1. Before
proceeding, though, let us pause to consider the average inventory expression at the ware-
house. Under more general SC structures, we may not get a nice expression for I0. Clark and
Scarf [51] introduced the concept of echelon inventories, which is defined as the total inven-
tory of a product at any particular stage in the SC and all subsequent downstream stages
linked to it. From this definition, the echelon inventory at the retailer (stage N) is identical
to its installation inventory. The echelon inventory helps us simplify the computation of Ī0
in many systems.

Consider Figure 10.11, where we assume that T0 = 3T1 ⇒ Q0 = 3Q1. Now, every T1 time
units, Q1 is released from warehouse inventory to the retailer resulting in the step function
shape of warehouse inventory level over time. However, note that this inventory merely
moves down the SC to the retailer. In a centralized SC, information on this inventory is
assumed to be known. So, by superimposing the two stages’ inventory curves, we get the
warehouse’s echelon levels (bottom panel of Figure 10.11) which has the familiar saw-tooth
pattern. Thus, the mean echelon inventory at the warehouse may be approximated in a
fashion similar to that of the retailer.

To complete the analysis, we are given h0 < h1. Define h′
0 = h0 and h′

1 = h1 −h0 as the
echelon inventory holding rates at the warehouse and retailer, respectively. Further, let
gi = h′

iD
2 ; i= 0, 1. Substituting these in Equation 10.48 and simplifying gives us

Zc =
1
T1

(
a1 +

a0

m

)
+ T1(g1 + mg0) (10.49)

Now, note that the form of Equation 10.49 is similar to the EOQ model objective function,
but with two variables. To solve this for optimal values, the following method may be used:
fix m to some value and compute the corresponding best value for the reorder interval
given by

T ′(m) =

√
(a1 + a0

m )
(g1 + mg0)

(10.50)

Again using the first difference argument, we can show that the optimal integer multiple,
m∗, is given by the smallest integer satisfying the following relation:

m∗(m∗ + 1) ≥ a0/g0

a1/g1
(10.51)

Equations 10.50 and 10.51 may be used to get the optimal reorder interval for the retailer
(T ∗

1 ) and this gives us the corresponding warehouse reorder interval (T ∗
0 = m∗T ∗

1 ). The
optimal variable costs for the serial SC is given below, completing the analysis.

Z∗
c =

√(
a1 +

a0

m

)
(g1 + mg0)
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Comments: (i) The above procedure may be generalized to a serial SC with N stages.
(ii) Schwarz [50] proved that the nested policy is indeed optimal for a serial SC. See Muck-
stadt and Roundy [52] for further details.

The models above represent the simplest multi-echelon inventory models. Several exten-
sions are possible and the reader is referred to [5,6,12,14,49,51,52] for more extensive dis-
cussions on multi-echelon inventory theory.

10.6 Inventory Management in Practice

One may wonder, given the many simplifications made in developing inventory management
models, if the models are of value in practice. The short answer is a resounding “Yes!” We
readily acknowledge that all the models are not applicable in all situations; real-world appli-
cations often use heuristics, simulations, and the like to manage inventories (in single and
multi-echelon settings). However, most of these are based on theoretical models like the ones
discussed in this chapter. Also, the focus in practice is often on getting good solutions rapidly
(and often optimal solutions are not achievable due to complex constraints, etc.). In many
situations, the models discussed previously can and have been applied in practice. A sample
of applications are listed in Table 10.2. All these cases are taken from the Interfaces journal.∗

TABLE 10.2 Examples of Inventory Management Applications in Practice
Reference Industry Company Comments

Lee and Billington [53] Computers Hewlett-Packard (HP) • Goal: Inventory management in
decentralized SC for HP Printers

• Inventory reduction of 10%–30%

Lin et al. [54]∗ Computers IBM • Goal: Decision support system (DSS) for
global SC (inventory) management

• Approx. $750 million in inventory and
markdown reductions

Koschat et al. [55] Print media Time Warner • Goal: Optimize printing orders and
distribution of magazines in three stage SC

• Solutions based on the newsvendor model
• $3.5 million increase in annual profits

Kapuscinski et al. [56] Computers Dell Inc. • Goal: Identify inventory drivers in SC for
better inventory management at Dell DCs

• Expected savings of about $43 million;
67% increase in inventory turns; improved
customer service

Bangash et al. [57] Electronics Lucent Technologies • Goal: DSS tool for inventory management
of multiple products

• Solution based on (s, S) policies
• $55 million in inventory reductions;

fill rates increased by 30%

Bixby et al. [58] Food Swift & Co. • Goal: Production management at
beef products facilities; DSS tool for sales

• Solution adapts production plans based on
inventories and customer orders dynamically

• $12.74 million in annual savings; better sales
force utilization

∗Franz Edelman Award winner.

∗“Interfaces, a bimonthly journal of INFORMS, is dedicated to improving the practical application of
OR/MS to decisions and policies in today’s organizations and industries. Each article provides details of
the completed application, along with the results and impact on the organization” (from the journal Web

applications reported in Interfaces, the purpose of which is to “. . . call out, recognize and reward outstanding
examples of management science and operations research practice in the world.”
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TABLE 10.3 Inventory Management Software
Vendors (sample)
Vendor Web site

i2 Technologies http://www.i2.com
Logility http://www.logility.com
Manhattan Associates http://www. manh.com
Oracle Corporation http://www.oracle.com
SAP http://www.sap.com

10.6.1 Inventory Management and Optimization Tools

At some point, most readers will want to implement some of the models discussed here and
elsewhere. Several tools exist for managing inventories, including analytical and optimization
applications. It is worth pointing out that several of the models described in this chapter
(e.g., EOQ, Newsvendor, etc.) may be easily implemented using a spreadsheet program.
This makes it easy to test out the models and perform what-if analysis. For large-scale
implementations, specialized software tools exist.

Most models require good data inputs and the recent trend in industry is to use enter-
prise resource planning (ERP) systems to manage large amounts of data. Often, inventory
management and SC management tools work in concert with ERP systems. Specialized
inventory management and optimization applications also exist independent of such large
(and expensive) ERP systems. In either case, many of these tools are capable of handling
large problems of varying degree of complexity. Table 10.3 lists a few inventory and SC
management software vendors that are publicly traded companies (in alphabetical order).
For a more extensive list, see Foster [59] and McCrea [60].

In concluding this section, we would like to reiterate that sophisticated tools are not
substitutes for sound analysis and good judgment. An understanding of the models being
used, their strengths, limitations, and applicability is paramount to successfully implement
a scientific inventory management program.

10.7 Conclusions

Although keeping a certain level of inventory might be necessary in many situations, one
should always consider making changes in the production or business systems so that the
optimum inventory level is held. Holding large amounts of inventory not only raises inventory
costs, it may also hide the inefficiencies of the system’s components. For instance, if an
unreliable supplier supplies a company with raw material, the company’s large inventory
level may hide the fact that the supplier is unreliable and may prevent managers from
looking for an alternative supplier. Conversely, if the inventory levels are too low, then the
system may become vulnerable to disruptions, leading to increased losses of money and
customer goodwill.

In this chapter, the objectives of maintaining inventories for raw material, work-in-
process, and finished products were explained. It was indicated that the purpose of studying
inventory systems is to design an optimum inventory policy for each particular case such
that the overall cost of maintaining it is minimized. The concept of ABC analysis was
presented as a simple method to classify inventories so as to ensure proper attention and
resources are given to critical and high value inventories. We discussed the various costs rel-
evant to holding inventories (inventory holding costs, ordering or set-up costs, and shortage
costs) and the influence they have on inventories.
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As mentioned at the outset, inventory management looks to answer the fundamental
questions of how often and how much to order. Several models of inventory analysis were
introduced to answer these questions under various settings. In each case, the relevant
variables were specified and the method to compute the optimal values was given. Models
for both deterministic and stochastic demand were presented. In reality, inventories are
held across the SC and inventories at one location usually depend on inventories at other
locations in the SC. We introduced multi-echelon inventory models that explicitly consider
multiple stocking locations. It must be pointed out that the models described in this chapter
are just a few representative cases of the existing models. Interested readers are referred to
references given in the bibliography for more extensive coverage of inventory control models.

10.8 Current and Future Research

The development and use of operations research techniques and mathematical models to
understand and control inventories continues. A very brief set of topics of current and future
research efforts is given below with some references to relevant research literature.∗

• Inventory Models continue to receive significant attention from researchers as
they are of practical value and represent significant theoretical challenges. As
noted previously, optimal policies for multi-echelon inventory models, even in the
deterministic demand case are not known for all SC structures and identifying
such policies would be of significant interest. In the case of stochastic multi-
echelon inventory management, there are even fewer generic results and the search
for better solutions continues.

• Interface Between Inventory Management Models and Other Business Functions:
In some sense, the models covered in this chapter (with the exception of the
newsvendor model, perhaps) represent “pure” inventory management models.
However, inventory management is not done in a vacuum and is significantly
influenced by other business functions like marketing, pricing, competition, and
the like, and research in areas at the interface of inventory management and other
business operations has been very active in recent times. For example, we have
assumed that demand is not influenced by any action we take; in reality, promo-
tions and markdowns have significant effect on the demand patterns. Elmaghraby
and Keskinocak [61], Monahan et al. [32], Netessine [62], and Petruzzi and Dada
[33] cover pricing issues in some depth. Another emerging area of interest is to
actively incorporate the effect of competitors in the analysis. Models in this cat-
egory usually use game theoretic methods in their analysis; see Cachon [63] and
Cachon and Netessine [64] for reviews. Cachon and Netessine [65] provide an
introduction to the methodologies of competitive analysis.

• Supply Chain Management and Inventories: Just as demand is influenced by
pricing, inventory decisions are often made in concert with pricing offered by
suppliers. Furthermore, in an attempt to coordinate SC members, contracts are
often used, especially in the decentralized SC case. Such contracts often involve
the use of (transfer) pricing to help compensate members in an equitable fashion
and align SC members. For reviews, see Cachon [47] and Tsay et al. [48].

∗Recent issues of many of the journals mentioned in the bibliography are excellent sources to identify
current advances in inventory management.
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We also have assumed that the inventories are placed at existing facilities whose
locations are given. Facility locations, transportation modes, and the like can have
a significant impact on inventory levels and ideally should be jointly optimized.
Sarmiento and Nagi [66] give a review of integrated SC models. For an overview
of the issues in transportation and inventory management, see Natarajan [67]
and Chapter 22 of this book. The placement of safety stocks in the SC is also
of strategic importance. However, the problem has been shown to be N P-hard
[68] and represents significant challenges; see Graves and Willems [69]. Billington
et al. [70] present an application of some of this research to the HP SC. Finally, the
advent of global SCs has seen inventories and facilities being spread worldwide.
This has increased the vulnerability of the SC to disruptions and has begun
to receive considerable interest, though only a limited number of models exist
currently. Rangarajan and Guide [71] discuss the unique challenges presented by
disruptions and review the relevant literature.

• Reverse Logistics and Closed-Loop SCs: We consider material flow to be from
upstream stages to downstream stages in the SC. However, material may also
flow in the reverse direction in the form of returns, defective parts, and the like.
This “reverse flow” must be managed, sometimes due to laws to this effect. They
can also represent a valuable income stream for a firm. The processes involved
in harvesting value from these products can be very different from the manu-
facturing processes involved in forward flow of material. Research into managing
inventories in the closed-loop SC is still in its infancy. The reader is referred to
Fleischmann et al. [72], Guide and Van Wassenhove [73], and Guide et al. [74].

10.8.1 Final Remarks

In conclusion, mathematical models for inventory management are abstractions of real sys-
tems. Nevertheless, they are often sufficient to optimally control an inventory system or,
at the very least, provide valuable insight into the behavior of the system and salient fac-
tors influencing it. As demonstrated by the examples presented earlier, these models, when
suitably applied, can lead to significant improvements and increased profitability. Despite
the long history and the many successes of inventory management methods, significant
challenges (of both practical and theoretical interest) remain.
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11.1 Introduction

In the past few decades, graph theory has been a powerful analytical tool for understanding
and solving various problems in operations research (OR). The study of graphs (or net-
works) traces back to the solution of the Königsberg bridge problem by Euler in 1735. In
Königsberg, the river Preger flows through the town dividing it into four land areas as shown
in Figure 11.1a. These land areas are connected by seven different bridges. The Königsberg
bridge problem is to find whether it is possible to traverse through the city on a route
that crosses each bridge exactly once, and return to the starting point. Euler formulated
the problem using a graph theoretical representation and proved that the traversal is not
possible. He represented each land area as a vertex (or node) and each bridge as an edge
between two nodes (land areas), as shown in Figure 11.1b. Then, he posed the question as
whether there exists a path such that it passes every edge exactly once and ends at the
start node. This path was later termed an Eulerian circuit. Euler proved that for a graph
to have an Eulerian circuit, all the nodes in the graph need to have an even degree.

Euler’s great insight lay in representing the Königsberg bridge problem as a graph problem
with a set of vertices and edges. Later, in the twentieth century, graph theory developed
into a substantial area of study that is applied to solve various problems in engineering and
several other disciplines [1]. For example, consider the problem of finding the shortest route

11-1
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FIGURE 11.1 Königsberg bridge problem: (a) shows the river flowing through the town dividing it into
four land areas A, B, C, and D. The land areas are connected by seven bridges numbered from 1 to 7.
(b) Graph theoretical representation of the Königsberg bridge problem. Each node represents a land area
and the edge between them represents the bridges connecting the land areas.

between two geographical points. The problem can be modeled as a shortest path problem
on a network, where different geographical points are represented as nodes and they are
connected by an edge if there exists a direct path between the two nodes. The weights on
the edges represent the distance between the two nodes (see Figure 11.2). Let the network
be G(V , E) where V is the set of all nodes, E is the set of edges (i, j) connecting the nodes,
and w is a function such that wij is the weight of the edge (i, j). The shortest path problem
from node s to node t can be formulated as follows:

minimize
∑

(i,j)∈ξ

wijxij

subject to
∑

{j|(i,j)∈ξ}
xij −

∑
{j|(j,i)∈ξ}

xij =

⎧⎨
⎩

1 if i = s
−1 if i = t
0 otherwise

xij ≥ 0, ∀(i, j) ∈ ξ

where xij = 1 or 0 depending on whether the edge from node i to node j belongs to the
optimal path or not, respectively. Many algorithms have been proposed to solve the shortest
path problem [1]. Using one such popular algorithm (Dijkstra’s algorithm [1]), we find the
shortest path from node 10 to node 30 as (10 - 1 - 3 - 12 - 30) (see Figure 11.2). Note that
this problem and similarly other problems considered in traditional graph theory require
finding the exact optimal path.

In the last few years there has been an intense amount of activity in understanding and
characterizing large-scale networks, which led to the development of a new branch of science
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FIGURE 11.2 Illustration of a typical optimization problem in OR. The objective is to find the shortest
path from node 10 to node 30. The values on the edges represent the distance between two nodes. Here, we
use the exact distances between different nodes to calculate the shortest path 10 - 1 - 3 - 12 - 30.

called “Network Science” [2]. The scale of the size of these networks is substantially different
from the networks considered in traditional graph theory. Further, these networks do not
have any pre-specified structure/order or any design principles. Also, the problems posed in
such networks are very different from traditional graph theory. These large-scale networks
are referred to as complex networks, and we will discuss the reasons why they are termed
“complex” networks later in Section 11.4. The following are examples of complex networks:

• World Wide Web: It can be viewed as a network where Web pages are the nodes
and hyperlinks connecting one webpage to another are the directed edges. The
World Wide Web is currently the largest network for which topological informa-
tion is available. It had approximately one billion nodes at the end of 1999 [3]
and is continuously growing at an exponential rate. A recent study [4] estimated
the size to be 11.5 billion nodes as of January 2005.

• Internet: The Internet is a network of computers and telecommunication devices
connected by wired or wireless links. The topology of the Internet is studied at
two different levels [5]. At the router level, each router is represented as a node and
physical connections between them as edges. At the domain level, each domain
(autonomous system, Internet provider system) is represented as a node and
inter-domain connections by edges. The number of nodes, approximately, at the
router level was 150,000 in 2000 [6] and at the domain level was 4000 in 1999 [5].

• Phone call network: The phone numbers are the nodes and every completed phone
call is an edge directed from the receiver to the caller. Abello et al. [7] constructed
a phone call network from the long distance telephone calls made during a single
day which had 53,767,087 nodes and over 170 million edges.

• Power grid network: Generators, transformers, and substations are the nodes
and high-voltage transmission lines are the edges. The power grid network of the
western United States had 4941 nodes in 1998 [8]. The North American power
grid consisted of 14,099 nodes and 19,657 edges [9] in 2005.
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• Airline network: Nodes are the airports and an edge between two airports repre-
sent the presence of a direct flight connection [10,11]. Barthelemy et al. [10] have
analyzed the International Air Transportation Association database to form the
world-wide airport network. The resulting network consisted of 3880 nodes and
18,810 edges in 2002.

• Market graph: Recently, Boginski et al. [12,13] represented the stock market data
as a network where the stocks are nodes and two nodes are connected by an edge
if their correlation coefficient calculated over a period of time exceeds a certain
threshold value. The network had 6556 nodes and 27,885 edges for the U.S. stock
data during the period 2000–2002 [13].

• Scientific collaboration networks: Scientists are represented as nodes and
two nodes are connected if the two scientists have written an article together.
Newman [14,15] studied networks constructed from four different databases span-
ning biomedical research, high-energy physics, computer science, and physics.
One of these networks formed from the Medline database for the period from
1961 to 2001 had 1,520,251 nodes and 2,163,923 edges.

• Movie actor collaboration network: Another well-studied network is the movie
actor collaboration network, formed from the Internet Movie Database [16], which
contains all the movies and their casts since the 1890s. Here again, the actors
are represented as nodes and two nodes are connected by an edge if two actors
have performed together in a movie. This is a continuously growing network with
225,226 nodes and 13,738,786 edges in 1998 [8].

The above are only a few examples of complex networks pervasive in the real world
[17–20]. Tools and techniques developed in the field of traditional graph theory involved
studies that looked at networks of tens or hundreds or in extreme cases thousands of nodes.
The substantial growth in the size of many such networks (see Figure 11.3) necessitates
a different approach for analysis and design. The new methodology applied for analyzing
complex networks is similar to the statistical physics approach to complex phenomena.

The study of large-scale complex systems has always been an active research area in vari-
ous branches of science, especially in the physical sciences. Some examples are ferromagnetic
properties of materials, statistical description of gases, diffusion, formation of crystals, and
so on. For instance, let us consider a box containing one mole (6.022× 1023) of gas atoms as
our system of analysis (see Figure 11.4a). If we represent the system with the microscopic
properties of the individual particles such as their position and velocity, then it would be

Change in scale

FIGURE 11.3 Pictorial description of the change in scale in the size of the networks found in many engi-
neering systems. This change in size and lack of any order necessitates a change in the analytical approach.
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Individual properties: Position
and velocity

Statistical properties: Pressure,
temperature

Individual properties: Degree,
neighbors, edge weights

Statistical properties: Degree,
distribution, small-worldnessPV � nRT

(a) (b)

FIGURE 11.4 Illustration of the analogy between a box of gas atoms and complex networks. (a) A mole
of gas atoms (6.022 × 1023 atoms) in a box. (b) An example of a large-scale network. For analysis, we need
to represent both the systems using statistical properties.

next to impossible to analyze the system. Rather, physicists use statistical mechanics to
represent the system and calculate macroscopic properties such as temperature, pressure,
and the like. Similarly, in networks such as the Internet and WWW, where the number of
nodes is extremely large, we have to represent the network using macroscopic properties
(such as degree distribution, edge-weight distribution, etc.), rather than the properties of
individual entities in the network (such as the neighbors of a given node, the weights on the
edges connecting this node to its neighbors, etc.) (see Figure 11.4b). Now let us consider the
shortest path problem in such networks (for instance, WWW). We rarely require specific
shortest path solutions such as from node A to node B (from Web page A to Web page B).
Rather it is useful if we know the average distance (number of hops) taken from any node to
any other node (any Web page to any other Web page) to understand dynamical processes
(such as search in WWW). This new approach for understanding networked systems pro-
vides new techniques as well as challenges for solving conceptual and practical problems in
this field. Furthermore, this approach has become feasible and has received a considerable
boost by the availability of computers and communication networks that have made the
gathering and analysis of large-scale datasets possible.

The objective of this chapter is to introduce this new direction of interdisciplinary research
(Network Science) and discuss the new challenges for the OR community. During the last
few years, there has been a tremendous amount of research activity dedicated to the study
of these large-scale networks. This activity was mainly triggered by significant findings in
real-world networks that we will elaborate later in the chapter. There was a revival of
network modeling that gave rise to many path breaking results [17–20] and provoked vivid
interest across different disciplines of the scientific community. Until now, a major part of
this research was contributed by physicists, mathematicians, sociologists, and biologists.
However, the ultimate goal of modeling these networks is to understand and optimize the
dynamical processes taking place in the network. In this chapter, we address the urgent need
and opportunity for the OR community to contribute to the fast-growing interdisciplinary
research on Network Science. The methodologies and techniques developed until now will
definitely aid the OR community in furthering this research.

The following is the outline of the chapter. In Section 11.2, we introduce different sta-
tistical properties that are prominently used for characterizing complex networks. We also
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present the empirical results obtained for many real complex networks that initiated a revival
of network modeling. In Section 11.3, we summarize different evolutionary models proposed
to explain the properties of real networks. In particular, we discuss Erdős–Rényi random
graphs, small-world networks, and scale-free networks. In Section 11.4, we discuss briefly
why these networks are called “complex” networks, rather than large-scale networks. We
summarize typical behaviors of complex systems and demonstrate how the real networks
have these behaviors. In Section 11.5, we discuss the optimization in complex networks
by concentrating on two specific processes, robustness and local search, which are most
relevant to engineering networks. We discuss the effects of statistical properties on these
processes and demonstrate how they can be optimized. Further, we briefly summarize a few
more important topics and give references for further reading. Finally, in Section 11.6, we
conclude and discuss future research directions.

11.2 Statistical Properties of Complex Networks

In this section, we explain some of the statistical properties that are prominently used in the
literature. These statistical properties help in classifying different kinds of complex networks.
We discuss the definitions and present the empirical findings for many real networks.

11.2.1 Average Path Length and the Small-World Effect

Let G(V , E) be a network where V is the collection of entities (or nodes) and E is the set
of arcs (or edges) connecting them. A path between two nodes u and v in the network G
is a sequence [u = u1, u2, . . ., un = v], where u′

is are the nodes in G and there exists an edge
from ui−1 to ui in G for all i. The path length is defined as the sum of the weights on the
edges along the path. If all the edges are equivalent in the network, then the path length
is equal to the number of edges (or hops) along the path. The average path length (l) of a
connected network is the average of the shortest paths from each node to every other node
in a network. It is given by

l ≡ 〈d(u, w)〉 =
1

N(N − 1)

∑
u∈V

∑
u �=w∈V

d(u, w)

where N is the number of nodes in the network and d(u, w) is the shortest path between u
and w. Table 11.1 shows the values of l for many different networks. We observe that despite
the large size of the network (w.r.t. the number of nodes), the average path length is small.
This implies that any node can reach any other node in the network in a relatively small
number of steps. This characteristic phenomenon, that most pairs of nodes are connected
by a short path through the network, is called the small-world effect.

The existence of the small-world effect was first demonstrated by the famous experi-
ment conducted by Stanley Milgram in the 1960s [24], which led to the popular concept of

TABLE 11.1 Average Path Length of Many Real Networks
Network Size (number of nodes) Average path length

WWW [21] 2 × 108 16
Internet, router level [6] 150,000 11
Internet, domain level [5] 4000 4
Movie actors [8] 212,250 4.54
Electronic circuits [22] 24,097 11.05
Peer-to-peer network [23] 880 4.28

Note that despite the large size of the network (w.r.t. the number of nodes), the average path
length is very small.
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six degrees of separation. In this experiment, Milgram randomly selected individuals from
Wichita, Kansas, and Omaha, Nebraska, to pass on a letter to one of their acquaintances by
mail. These letters had to finally reach a specific person in Boston, Massachusetts; the name
and profession of the target was given to the participants. The participants were asked to
send the letter to one of their acquaintances whom they judged to be closer (than them-
selves) to the target. Anyone who received the letter subsequently would be given the same
information and asked to do the same until it reached the target person. Over many trials,
the average length of these acquaintance chains for the letters that reached the targeted
node was found to be approximately 6. That is, there is an acquaintance path of an average
length 6 in the social network of people in the United States. Another interesting and even
more surprising observation from this experiment is discussed in Section 11.5.2. Currently,
Watts et al. [25] are involved in an Internet-based study to verify this phenomenon.

Mathematically, a network is considered to be small-world if the average path length
scales logarithmically or slower with the number of nodes N (∼logN). For example, say
the number of nodes in the network, N , increases from 103 to 106; then the average path
length will increase approximately from 3 to 6. This phenomenon has critical implications
on the dynamic processes taking place in the network. For example, if we consider the spread
of information, computer viruses, or contagious diseases across a network, the small-world
phenomenon implies that within a few steps it could spread to a large fraction of most of
the real networks.

11.2.2 Clustering Coefficient

The clustering coefficient characterizes the local transitivity and order in the neighborhood
of a node. It is measured in terms of the number of triangles (3-cliques) present in the net-
work. Consider a node i that is connected to ki other nodes. The number of possible edges
between these ki neighbors that form a triangle is ki(ki − 1)/2. The clustering coefficient of
a node i is the ratio of the number of edges Ei that actually exist between these ki nodes
and the total number ki(ki − 1)/2 possible, that is,

Ci =
2Ei

ki(ki − 1)

The clustering coefficient of the whole network (C) is then the average of C ′
is over all the

nodes in the network, that is, C = 1
n

∑
i Ci (see Figure 11.5). The clustering coefficient is

high for many real networks [17,20]. In other words, in many networks if node A is connected
to node B and node C, then there is a high probability that node B and node C are also

3

2

14

5
6

E1 = 3 and k1 = 5

C1 =

ΣCiC =

C2 = 1, C3 = 2/3, C4 = 2/3, C5 = 1, C6 = 0

2 ×E1

k1(k1− 1)

2 ×3

5(5 −1)
=

=

= 3/10

n
109
180

FIGURE 11.5 Calculating the clustering coefficient of a node and the network. For example, node 1 has
degree 5 and the number of edges between the neighbors is 3. Hence, the clustering coefficient for node 1
is 3/10. The clustering coefficient of the entire network is the average of the clustering coefficients at each
individual node (109/180).
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connected. With respect to social networks, it means that it is highly likely that two friends
of a person are also friends, a feature analyzed in detail in the so-called theory of balance [26].

11.2.3 Degree Distribution

The degree of a node is the number of edges incident on it. In a directed network, a node
has both an in-degree (number of incoming edges) and an out-degree (number of outgoing
edges). The degree distribution of the network is the function pk, where pk is the probability
that a randomly selected node has degree k. Here again, a directed graph has both in-degree
and out-degree distributions. It was found that most of the real networks including the
World Wide Web [27–29], the Internet [5], metabolic networks [30], phone call networks
[7,31], scientific collaboration networks [14,148], and movie actor collaboration networks
[33–35] follow a power-law degree distribution (p(k) ∼ k−γ), indicating that the topology
of the network is very heterogeneous, with a high fraction of small-degree nodes and a few
large-degree nodes. These networks having power-law degree distributions are popularly
known as scale-free networks. These networks were called scale-free networks because of the
lack of a characteristic degree and the broad tail of the degree distribution. Figure 11.6
shows the empirical results for the Internet at the router level and co-authorship network
of high-energy physicists. The following are the expected values and variances of the node
degree in scale-free networks,

E[k] =
{

finite if γ > 2
∞ otherwise V [k] =

{
finite if γ > 3
∞ otherwise

where γ is the power-law exponent. Note that the variance of the node degree is infinite
when γ < 3 and the mean is infinite when γ < 2. The power-law exponent (γ) of most of
the networks lies between 2.1 and 3.0, which implies that there is high heterogeneity with
respect to node degree. This phenomenon in real networks is critical because it was shown
that the heterogeneity has a huge impact on the network properties and processes such as
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FIGURE 11.6 The degree distribution of real networks. (a) Internet at the router level. Data courtesy
of Ramesh Govindan [6]. (b) Co-authorship network of high-energy physicists, after Newman [14].
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network resilience [9,36], network navigation, local search [32], and epidemiological processes
[37–41]. Later in this chapter, we will discuss the impact of this heterogeneity in detail.

11.2.4 Betweenness Centrality

The betweenness centrality (BC) of a node counts the fraction of shortest paths going
through the node. The BC of a node i is given by

BC(i) =
∑

s �=i �=t

σst(i)
σst

where σst is the total number of shortest paths from node s to t and σst(i) is the number of
these shortest paths passing through node i. If the BC of a node is high, it implies that this
node is central and many shortest paths pass through this node. BC was first introduced
in the context of social networks [42], and has been recently adopted by Goh et al. [43]
as a proxy for the load (li) at a node i with respect to transport dynamics in a network.
For example, consider the transportation of data packets in the Internet along the shortest
paths. If many shortest paths pass through a node then the load on that node would be high.
Goh et al. have shown numerically that the load (or BC) distribution follows a power-law,
PL(l) ∼ l−δ with exponent δ ≈ 2.2, and is insensitive to the detail of the scale-free network
as long as the degree exponent (γ) lies between 2.1 and 3.0. They further showed that there
exists a scaling relation l ∼ k(γ−1)/(δ−1) between the load and the degree of a node when
2 < γ ≤ 3. Later in this chapter, we discuss how this property can be utilized for local search
in complex networks. Many other centrality measures exist in literature and a detailed
review of these measures can be found in [44].

11.2.5 Modularity and Community Structures

Many real networks are found to exhibit a community structure (also called modular
structure). That is, groups of nodes in the network have high density of edges within the
group and lower density between the groups (see Figure 11.7). This property was first pro-
posed in social networks [40], where people may divide into groups based on interests, age,
profession, and the like. Similar community structures are observed in many networks which
reflect the division of nodes into groups based on the node properties [20]. For example,
in the WWW it reflects the subject matter or themes of the pages, in citation networks

FIGURE 11.7 Illustration of a network with community structure. Communities are defined as a group
of nodes in the network that have a higher density of edges within the group than between groups. In the
above network, the group of nodes enclosed within a dotted loop is a community.
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it reflects the area of research, in cellular and metabolic networks it may reflect functional
groups [45,46].

In many ways, community detection is similar to a traditional graph partitioning problem
(GPP). In GPP the objective is to divide the nodes of the network into k disjoint sets of
specified sizes such that the number of edges between these sets is the minimum. This
problem is NP-complete [47] and several heuristic methods [48–50] have been proposed to
decrease the computation time. GPP arises in many important engineering problems that
include mapping of parallel computations, laying out of circuits (VLSI design), and the
ordering of sparse matrix computations [48]. Here, the number of partitions to be made
is specified and the size of each partition is restricted. For example, in the mapping of
parallel computations, the tasks have to be divided between a specified number of processors
such that the communication between the processors is minimized and the loads on the
processors are balanced. However, in real networks, we do not have any a priori knowledge
about the number of communities into which we should divide or about the size of the
communities. The goal is to find the naturally existing communities in the real networks
rather than dividing the network into a pre-specified number of groups. As we do not know
the exact partitions of network, it is difficult to evaluate the goodness of a given partition.
Moreover, there is no unique definition of a community due to the ambiguity of how dense
a group should be to form a community. Many possible definitions exist in the literature
[42,51–54]. A simple definition given in [51,54] considers a subgraph as a community if each
node in the subgraph has more connections within the community than with the rest of
the graph. Newman and Girvan [52] have proposed another measure that calculates the
fraction of links within the community minus the expected value of the same quantity in
a randomized counterpart of the network. The higher this difference, the stronger is the
community structure. It is important to note that in spite of this ambiguity, the presence
of community structures is a common phenomenon across many real networks. Algorithms
for detecting these communities are briefly discussed in Section 11.5.3.

11.2.6 Network Resilience

The ability of a network to withstand removal of nodes/edges is called network resilience or
robustness. In general, the removal of nodes and edges disrupts the paths between nodes and
can increase the distances thus making the communication between nodes harder. In more
severe cases, an initially connected network can break down into isolated components that
cannot communicate anymore. Figure 11.8 shows the effect of the removal of nodes/edges on
a network. Observe that as we remove more nodes and edges, the network disintegrates into
many components. There are different ways of removing nodes and edges to test the robust-
ness of a network. For example, one can remove nodes at random with uniform probability
or by selectively targeting certain classes of nodes, such as nodes with high degree. Usually,
the removal of nodes at random is termed as random failures and the removal of nodes with
higher degree is termed as targeted attacks; other removal strategies are discussed in detail
in Ref. [55]. Similarly, there are several ways of measuring the degradation of the network
performance after the removal. One simple way to measure it is to calculate the decrease in
size of the largest connected component in the network. A connected component is a part of
the network in which a path exists between any two nodes in that component and the largest
connected component is the largest among the connected components. The less the decrease
in the size of the largest connected component, the better the robustness of the network. In
Figure 11.8, the size of the largest connected component decreases from 13 to 9 and then
to 5. Another way to measure robustness is to calculate the increase of the average path
length in the largest connected component. Malfunctioning of nodes/edges eliminates some
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Edge
failure

Node
failure

FIGURE 11.8 The effects of removing a node or an edge in the network. Observe that as we remove
more nodes and edges the network disintegrates into small components/clusters.

existing paths and generally increases the distance between the remaining nodes. Again, the
less the increase, the better the robustness of the network. We discuss more about network
resilience and robustness with respect to optimization in Section 11.5.1.

11.3 Modeling of Complex Networks

In this section, we give a brief summary of different models for complex networks. Most of
the modeling efforts focused on understanding the underlying process involved during the
network evolution and capture the above-mentioned properties of real networks. In specific,
we concentrate on three prominent models, namely, the Erdős–Rényi random graph model,
the Watts–Strogatz small-world network model, and the Barabási–Albert scale-free network
model.

11.3.1 Random Graphs

One of the earliest theoretical models for complex networks was given by Erdős and Rényi
[56–58] in the 1950s and 1960s. They proposed uniform random graphs for modeling complex
networks with no obvious pattern or structure. The following is the evolutionary model given
by Erdős and Rényi:

• Start with a set of N isolated nodes.
• Connect each pair of nodes with a connection probability p.

Figure 11.9 illustrates two realizations for the Erdős–Rényi random graph model (ER ran-
dom graphs) for different connection probabilities. Erdős and Rényi have shown that at
pc � 1/N , the ER random graph abruptly changes its topology from a loose collection of
small clusters to one which has a giant connected component. Figure 11.10 shows the change
in size of the largest connected component in the network as the value of p increases, for
N = 1000. We observe that there exists a threshold pc = 0.001 such that when p < pc, the
network is composed of small isolated clusters and when p > pc a giant component suddenly
appears. This phenomenon is similar to the percolation transition, a topic well studied in
both mathematics and statistical mechanics [17].
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p � 0.0 p � 0.05 p � 0.1

FIGURE 11.9 An Erdős–Rényi random graph that starts with N = 20 isolated nodes and connects any
two nodes with a probability p. As the value of p increases the the number of edges in the network increase.
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FIGURE 11.10 Illustration of percolation transition for the size of the largest connected component in
the Erdős–Rényi random graph model. Note that there exists pc = 0.001 such that when p < pc, the network
is composed of small isolated clusters and when p > pc a giant component suddenly appears.

In an ER random graph, the mean number of neighbors at a distance (number of hops)
d from a node is approximately <k>d, where <k> is the average degree of the network. To
cover all the nodes in the network, the distance (l) should be such that <k>l ∼N . Thus,
the average path length is given by l = log N

log<k> , which scales logarithmically with the number
of nodes N . This is only an approximate argument for illustration; a rigorous proof can be
found in Ref. [59]. Hence, ER random graphs are small-world. The clustering coefficient of
the ER random graphs is found to be low. If we consider a node and its neighbors in an
ER random graph, then the probability that two of these neighbors are connected is equal
to p (probability that two randomly chosen neighbors are connected). Hence, the clustering
coefficient of an ER random graph is p = <k>

N , which is small for large sparse networks.
Now, let us calculate the degree distribution of the ER random graphs. The total number
of edges in the network is a random variable with an expected value of pN (N − 1)/2, and
the number of edges incident on a node (the node degree) follows a binomial distribution
with parameters N − 1 and p,

p(ki = k) = Ck
N−1p

k(1 − p)N−1−k

This implies that in the limit of large N , the probability that a given node has degree k

approaches a Poisson distribution, p(k) = <k>ke−<k>

k! . Hence, ER random graphs are
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FIGURE 11.11 Comparison of networks with Poisson and power-law degree distribution of the same
size. Note that the network with Poisson distribution is homogenous in node degree. Most of the nodes
in the network have the same degree, which is close to the average degree of the network. However, the
network with power-law degree distribution is highly heterogenous in node degree. There are a few nodes
with large degree and many nodes with small degree.

statistically homogenous in node degree as the majority of the nodes have a degree close to
the average, and significantly small and large node degrees are exponentially rare.

ER random graphs were used to model complex networks for a long time [59]. The model
was intuitive and analytically tractable; moreover, the average path length of real networks
is close to the average path length of an ER random graph of the same size [17]. However,
recent studies on the topologies of diverse large-scale networks found in nature indicated
that they have significantly different properties from ER random graphs [17–20]. It has
been found [8] that the average clustering coefficient of real networks is significantly larger
than the average clustering coefficient of ER random graphs with the same number of
nodes and edges, indicating a far more ordered structure in real networks. Moreover, the
degree distribution of many large-scale networks is found to follow a power-law p(k) ∼ k−γ .
Figure 11.11 compares two networks with Poisson and power-law degree distributions. We
observe that there is a remarkable difference between these networks. The network with
Poisson degree distribution is more homogenous in node degree, whereas the network with
power-law distribution is highly heterogenous. These discoveries along with others related
to the mixing patterns of complex networks [17–20] initiated a revival of network modeling
in the past few years.

Nonuniform random graphs are also studied [31,60–64] to mimic the properties of real-
world networks, in specific, power-law degree distribution. Typically, these models specify
either a degree sequence, which is a set of N values of the degrees ki of nodes i= 1, 2, . . ., N
or a degree distribution p(k). If a degree distribution is specified then the sequence is formed
by generating N random values from this distribution. This can be thought of as giving
each node i in the network ki “stubs” sticking out of it and then pairs of these stubs are
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connected randomly to form complete edges [64]. Molloy and Reed [62] have proved that
for a random graph with a degree distribution p(k), a giant connected component emerges
almost surely when

∑
k≥1 k(k − 2)p(k) > 0, provided that the maximum degree is less than

N1/4. Later, Aiello et al. [31,60] introduced a two-parameter random graph model P (α,
γ) for power-law graphs with exponent γ described as follows: Let nk be the number of
nodes with degree k, such that nk and k satisfy log nk = α − γ log k. The total number of
nodes in the network can be computed, noting that the maximum degree of a node in the
network is eα/γ . Using the results from Molloy and Reed [62], they showed that there is
almost surely a unique giant connected component if γ <γ0 = 3.47875 . . . , whereas, there is
no giant connected component almost surely when γ >γ0.

Newman et al. [64] have developed a general approach to random graphs by using a
generating function formalism [65]. The generating function for the degree distribution
pk is given by G0(x) =

∑∞
k=0 pkxk. This function captures all the information present in

the original distribution since pk = 1
k!

dkG0
dxk |x=0. The average degree of a randomly chosen

node would be <k> =
∑

kkp(k) = G′
0(1). Further, this formulation helps in calculating other

properties of the network [64]. For instance, we can approximately calculate the relation for
the average path length of the network. Let us consider the degree of the node reached by
following a randomly chosen edge. If the degree of this node is k, then we are k times more
likely to reach this node than a node of degree 1. Thus, the degree distribution of the node
arrived by a randomly chosen edge is given by kpk and not pk. In addition, the distribution of
the number of edges from this node (one less than the degree) qk, is (k + 1)pk+1∑

kkpk
= (k + 1)pk+1

<k> .

Thus, the generating function for qk is given by G1(x) =
∑∞

k=0 (k + 1)pk+1xk

k = G′
0(x)

G′
0(1)

. Note
that the distribution of the number of first neighbors of a randomly chosen node (degree
of a node) is G0(x). Hence, the distribution of the number of second neighbors from the
same randomly chosen node would be G0(G1(x)) =

∑
k pk[G1(x)]k. Here, the probability

that any of the second neighbors is connected to the first neighbors or to one another scales
as N−1 and can be neglected in the limit of a large N . This implies that the average number
of second neighbors is given by

[
∂
∂xG0(G1(x))

]
x=1 = G′

0(1)G′
1(1). Extending this method of

calculating the average number of nearest neighbors, we find that the average number of

mth neighbors, zm, is [G′
1(1)]m−1

G′
0(1) =

[
z2
z1

]m−1
z1. Now, let us start from a node and

find the number of first neighbors, second, third . . . mth neighbors. Assuming that all the
nodes in the network can be reached within l steps, we have 1 +

∑l
m=1 zm = N . As for most

graphs N � z1 and z2 � z1, we obtain the average path length of the network l = N/z1
z2/z1

+ 1.
The generating function formalism can further be extended to include other features such
as directed graphs, bipartite graphs, and degree correlations [20].

Another class of random graphs that are especially popular in modeling social networks
is the exponential random graphs models (ERGMs) or p* models [66–70]. The ERGM
consists of a family of possible networks of N nodes in which each network G appears with
probability P (G) = 1

Z exp(−
∑

i θiεi), where the function Z is
∑

G exp(−
∑

iθiεi). This is
similar to the Boltzmann ensemble of statistical mechanics with Z as the partition function
[20]. Here, {εi} is the set of observables or measurable properties of the network such
as number of nodes with a certain degree, number of triangles, and so on. {θi} are an
adjustable set of parameters for the model. The ensemble average of a property εi is given
as 〈εi〉 =

∑
G εi(G)P (G) = 1

Z εiexp(−
∑

i θiεi) = ∂f
∂θi

. The major advantage of these models
is that they can represent any kind of structural tendencies such as dyad and triangle
formations. A detailed review of the parameter estimation techniques can be found in Refs.
[66,71]. Once the parameters {θi} are specified, the networks can be generated by using the
Gibbs or Metropolis–Hastings sampling methods [71].
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11.3.2 Small-World Networks

Watts and Strogatz [8] presented a small-world network model to explain the existence
of high clustering and small average path length simultaneously in many real networks,
especially social networks. They argued that most of the real networks are neither completely
regular nor completely random, but lie somewhere between these two extremes. The Watts–
Strogatz model starts with a regular lattice on N nodes and each edge is rewired with a
certain probability p. The following is the algorithm for the model:

• Start with a regular ring lattice on N nodes where each node is connected to its
first k neighbors.

• Randomly rewire each edge with a probability p such that one end remains the
same and the other end is chosen uniformly at random. The other end is chosen
without allowing multiple edges (more than one edge joining a pair of nodes) and
loops (edges joining a node to itself).

The resulting network is a regular network when p = 0 and a random graph when p = 1,
since all the edges are rewired (see Figure 11.12). The above model is inspired from social
networks where people are friends with their immediate neighbors such as neighbors on
the street, colleagues at work, and so on (the connections in the regular lattice). Also,
each person has a few friends who are a long way away (long-range connections attained
by random rewiring). Later, Newman [72] proposed a similar model where instead of edge
rewiring, new edges are introduced with probability p. The clustering coefficient of the
Watts–Strogatz model and the Newman model are

CWS =
3(k − 1)
2(2k − 1)

(1 − p)3 CN =
3(k − 1)

2(2k − 1) + 4kp(p + 2)

respectively. This class of networks displays a high clustering coefficient for small values of
p as we start with a regular lattice. However, even for small values of p, the average path
length falls rapidly due to the few long-range connections. This coexistence of high cluster-
ing coefficient and small average path length is in excellent agreement with the character-
istics of many real networks [8,72]. The degree distribution of both models depends on the
parameter p, evolving from a univalued peak corresponding to the initial degree k to a

RandomSmall-worldRegular

p = 0 p = 1
Increasing randomness

FIGURE 11.12 Illustration of the random rewiring process for the Watts–Strogatz model. This model
interpolates between a regular ring lattice and a random network, without changing the number of vertices
(N = 20) or edges (E = 40) in the graph. When p = 0 the graph is regular (each node has four edges); as p
increases, the graph becomes increasingly disordered until p = 1; all the edges are rewired randomly. After
Watts and Strogatz, 1998 [8].
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somewhat broader but still peaked distribution. Thus, small-world models are even more
homogeneous than random graphs, which is not the case with real networks.

11.3.3 Scale-Free Networks

As mentioned earlier, many real networks, including the World Wide Web [27–29], the
Internet [5], peer-to-peer networks [23], metabolic networks [30], phone call networks [7,31],
and movie actor collaboration networks [33–35], are scale-free, that is, their degree distri-
bution follows a power-law, p(k) ∼ k−γ . Barabási and Albert [35] addressed the origin of
this power-law degree distribution in many real networks. They argued that a static ran-
dom graph or Watts–Strogatz model fails to capture two important features of large-scale
networks: their constant growth and the inherent selectivity in edge creation. Complex net-
works like the World Wide Web, collaboration networks, and even biological networks are
growing continuously by the creation of new Web pages, start of new researches, and by
gene duplication and evolution. Moreover, unlike random networks where each node has the
same probability of acquiring a new edge, new nodes entering the network do not connect
uniformly to existing nodes, but attach preferentially to nodes of a higher degree. This
reasoning led them to define the following mechanism:

• Growth: Start with a small number of connected nodes say m0 and assume that
every time a node enters the system, m edges are pointing from it, where m < m0.

• Preferential attachment: Every time a new node enters the system, each edge of
the newly entered node preferentially attaches to an already existing node i with
degree ki with the following probability:

∏
i
=

ki∑
j kj

It was shown that such a mechanism leads to a network with power-law degree distribution
p(k) = k−γ with exponent γ = 3. These networks were called scale-free networks because of
the lack of a characteristic degree and the broad tail of the degree distribution. The average
path length of this network scales as log(N)

log(log(N)) and thus displays small-world property. The

clustering coefficient of a scale-free network is approximately C ∼ (log N)2

N , which is a slower
decay than C = <k>N−1 decay observed in random graphs [73]. In the years following the
proposal of the first scale-free model a large number of more refined models were introduced,
leading to a well-developed theory of evolving networks [17–20].

11.4 Why “Complex” Networks

In this section, we will discuss why these large-scale networks are termed as “complex”
networks. The reason is not merely because of the large size of the network, though the
complexity does arise due to the size of the network. One must also distinguish “complex
systems” from “complicated systems” [74]. Consider an airplane as an example. Even though
it is a complicated system, we know its components and the rules governing its functioning.
However, this is not the case with complex systems. Complex systems are characterized by
diverse behaviors that emerge as a result of nonlinear spatio-temporal interactions among
a large number of components [75]. These emergent behaviors cannot be fully explained
by just understanding the properties of the individual components/constituents. Examples
of such complex systems include ecosystems, economies, various organizations/societies,
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FIGURE 11.13 Illustration of self-similarity in the Sierpinski triangle. When we look at a small part
of the triangle at a different scale, then it looks similar to the original triangle. Moreover, at each scale we
look at the triangle, it is self-similar. This is a typical behavior of a scale invariant system.

the nervous system, the human brain, ant hills . . . the list goes on. Some of the behaviors
exhibited by complex systems are discussed below:

• Scale invariance or self-similarity: A system is scale invariant if the structure of
the system is similar regardless of the scale. Typical examples of scale invariant
systems are fractals. For example, consider the Sierpinski triangle in Figure 11.13.
Note that if we look at a small part of the triangle at a different scale, then it
still looks similar to the original triangle. Similarly, at whichever scale we look
at the triangle, it is self-similar and hence scale invariant.

• Infinite susceptibility/response: Most of the complex systems are highly sensitive
or susceptive to changes in certain conditions. A small change in the system
conditions or parameters may lead to a huge change in the global behavior.
This is similar to the percolation threshold where a small change in connection
probability induces the emergence of a giant connected cluster. Another good
example of such a system is a sand pile. When we are adding more sand particles
to a sand pile, they keep accumulating. But after reaching a certain point, an
addition of one more small particle may lead to an avalanche, demonstrating that
a sand pile is highly sensitive.

• Self-organization and emergence: Self-organization is the characteristic of a sys-
tem by which it can evolve itself into a particular structure based on interactions
between the constituents and without any external influence. Self-organization
typically leads to an emergent behavior. Emergent behavior is a phenomenon
in which the system global property is not evident from those of its individual
parts. A completely new property arises from the interactions between the dif-
ferent constituents of the system. For example, consider an ant colony. Although
a single ant (a constituent of an ant colony) can perform a very limited number
of tasks in its lifetime, a large number of ants interact in an ant colony, which
leads to more complex emergent behaviors.

Now let us consider the real large-scale networks such as the Internet, the WWW, and
other networks mentioned in Section 11.1. Most of these networks have power-law degree
distribution that does not have any specific scale [35]. This implies that the networks
do not have any characteristic degree and an average behavior of the system is not typical
(see Figure 11.11b). Due to these reasons, they are called scale-free networks. This heavy-
tailed degree distribution induces a high level of heterogeneity in the degrees of the vertices.
The heterogeneity makes the network highly sensitive to external disturbances. For exam-
ple, consider the network shown in Figure 11.14a. This network is highly sensitive when we
remove just two nodes in the network. It completely disintegrates into small components.
On the other hand, the network shown in Figure 11.14b, having the same number of nodes
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FIGURE 11.14 Illustration of high sensitivity phenomena in complex networks. (a) Observe that when
we remove the two highest degree nodes from the network, it disintegrates into small parts. The network
is highly sensitive to node removals. (b) Example of a network with the same number of nodes and edges
which is not sensitive. This network is not affected much when we remove the three highest degree nodes.
The network in (a) is highly sensitive due to the presence of high heterogeneity in node degree.

and edges, is not very sensitive. Most real networks are found to have a structure similar
to the network shown in Figure 11.14a, with a huge heterogeneity in node degree. Also,
studies [37–41] have shown that the presence of heterogeneity has a huge impact on epi-
demiological processes such as disease spreading. They have shown that in networks that
do not have a heavy-tailed degree distribution, if the disease transmission rate is less than a
certain threshold, it will not cause an epidemic or a major outbreak. However, if the network
has power-law or scale-free distribution, it becomes highly sensitive to disease propagation.
They further show that no matter what the transmission rate is, there exists a finite prob-
ability that the infection will cause a major outbreak. Hence, we clearly see that these real
large-scale networks are highly sensitive or infinitely susceptible. Further, all these networks
have evolved over time with new nodes joining the network (and some leaving) according to
some self-organizing or evolutionary rules. There is no external influence that controls the
evolution process or structure of the network. Nevertheless, these networks have evolved in
such a manner that they exhibit complex behaviors such as power-law degree distributions
and many others. Hence, they are called “complex” networks [76].

The above discussion on complexity is an intuitive explanation rather than one of tech-
nical details. More rigorous mathematical definitions of complexity can be found in
Refs. [77] and [78].

11.5 Optimization in Complex Networks

The models discussed in Section 11.3 are focused on explaining the evolution and growth
process of many large real networks. They mainly concentrate on the statistical properties
of real networks and network modeling. But the ultimate goal in studying and modeling the
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structure of complex networks is to understand and optimize the processes taking place on
these networks. For example, one would like to understand how the structure of the Inter-
net affects its survivability against random failures or intentional attacks, how the structure
of the WWW helps in efficient surfing or search on the Web, how the structure of social
networks affects the spread of diseases, and so on. In other words, to design rules for opti-
mization, one has to understand the interactions between the structure of the network and
the processes taking place on the network. These principles will certainly help in redesign-
ing or restructuring the existing networks and perhaps even help in designing a network
from scratch. In the past few years, there has been a tremendous amount of effort by the
research communities of different disciplines to understand the processes taking place on
networks [17–20]. In this chapter, we concentrate on two processes, namely node failures
and local search, because of their high relevance to engineering systems, and discuss a few
other topics briefly.

11.5.1 Network Resilience to Node Failures

All real networks are regularly subject to node/edge failures due to either normal malfunc-
tions (random failures) or intentional attacks (targeted attacks) [9,36]. Hence, it is extremely
important for the network to be robust against such failures for proper functioning. Albert
et al. [36] demonstrated that the topological structure of the network plays a major role
in its response to node/edge removal. They showed that most real networks are extremely
resilient to random failures. On the other hand, they are very sensitive to targeted attacks.
They attribute this to the fact that most of these networks are scale-free networks, which
are highly heterogenous in node degree. As a large fraction of nodes have small degree,
random failures do not have any effect on the structure of the network. On the other hand,
the removal of a few highly connected nodes that maintain the connectivity of the network
drastically changes the topology of the network. For example, consider the Internet: despite
frequent router problems in the network, we rarely experience global effects. However, if a
few critical nodes in the Internet are removed then it would lead to a devastating effect.
Figure 11.15 shows the decrease in the size of the largest connected component for both
scale-free networks and ER graphs due to random failures and targeted attacks. ER graphs
are homogenous in node degree; that is, all the nodes in the network have approximately
the same degree. Hence, they behave almost similarly for both random failures and targeted
attacks (see Figure 11.15a). In contrast, for scale-free networks, the size of the largest con-
nected component decreases slowly for random failures and drastically for targeted attacks
(see Figure 11.15b).

Ideally, we would like to have a network that is as resilient as scale-free networks to
random failures and as resilient as random graphs to targeted attacks. To determine the
feasibility of modeling such a network, Valente et al. [79] and Paul et al. [80] have studied
the following optimization problem: “What is the optimal degree distribution of a network
of size N nodes that maximizes the robustness of the network to both random failures and
targeted attacks with the constraint that the number of edges remain the same?”

Note that we can always improve the robustness by increasing the number of edges in
the network (for instance, a completely connected network will be the most robust network
for both random failures and targeted attacks). Hence the problem has a constraint on
the number of edges. Valente et al. [79] showed that the optimal network configuration
is very different from both scale-free networks and random graphs. They showed that the
optimal networks that maximize robustness for both random failures and targeted attacks
have at most three distinct node degrees and hence the degree distribution is three-peaked.
Similar results were demonstrated by Paul et al. [80]. They showed that the optimal network
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FIGURE 11.15 The size of the largest connected component as the percentage number of nodes (p)
removed from the networks due to random failures (♦) and targeted attacks (�). (a) ER graph with number
of nodes (N) = 10,000 and mean degree <k> = 4; (b) scale-free networks generated by the Barabási–Albert
model with N = 10,000 and <k> = 4. The behavior with respective to random failures and targeted attacks
is similar for random graphs. Scale-free networks are highly sensitive to targeted attacks and robust to
random failures.

design is one in which all the nodes in the network except one have the same degree, k1
(which is close to the average degree), and one node has a very large degree, k2 ∼N2/3,
where N is the number of nodes. However, these optimal networks may not be practically
feasible because of the requirement that each node has a limited repertoire of degrees.

Many different evolutionary algorithms have also been proposed to design an optimal
network configuration that is robust to both random failures and targeted attacks [81–85].
In particular, Thadakamalla et al. [84] consider two other measures, responsiveness and
flexibility, along with robustness for random failures and targeted attacks, specifically for
supply-chain networks. They define responsiveness as the ability of a network to provide
timely services with effective navigation and measure it in terms of the average path length
of the network. The lower the average path length, the better is the responsiveness of the net-
work. Flexibility is the ability of the network to have alternate paths for dynamic rerouting.
Good clustering properties ensure the presence of alternate paths, and the flexibility of
a network is measured in terms of the clustering coefficient. They designed a parameter-
ized evolutionary algorithm for supply-chain networks and analyzed the performance with
respect to these three measures. Through simulation they have shown that there exist
tradeoffs between these measures and proposed different ways to improve these properties.
However, it is still unclear as to what would be the optimal configuration of such survivable
networks. The research question would be “what is the optimal configuration of a network
of N nodes that maximizes the robustness to random failures, targeted attacks, flexibility,
and responsiveness, with the constraint that the number of edges remain the same?”
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Until now, we have focused on the effects of node removal on the static properties of
a network. However, in many real networks, the removal of nodes will also have dynamic
effects on the network as it leads to avalanches of breakdowns also called cascading failures.
For instance, in a power transmission grid, the removal of nodes (power stations) changes
the balance of flows and leads to a global redistribution of loads over all the network. In
some cases, this may not be tolerated and might trigger a cascade of overload failures [86],
as happened on August 10, 1996, in eleven U.S. states and two Canadian provinces [87].
Models of cascades of irreversible [88] or reversible [89] overload failures have demonstrated
that the removal of even a small fraction of highly loaded nodes can trigger global cascades
if the load distribution of the nodes is heterogenous. Hence, cascade-based attacks can be
much more destructive than any other strategies considered in Refs. [36,55]. Later, Motter
[90] showed that a defense strategy based on a selective further removal of nodes and edges,
right after the initial attack or failure, can drastically reduce the size of the cascade. Other
studies on cascading failures include Refs. [91–95].

11.5.2 Local Search

One of the important research problems that has many applications in engineering systems
is searching in complex networks. Local search is the process in which a node tries to find a
network path to a target node using only local information. By local information, we mean
that each node has information only about its first or perhaps second neighbors and it is
not aware of nodes at a larger distance and how they are connected in the network. This
is an intriguing and relatively little studied problem that has many practical applications.
Let us suppose some required information such as computer files or sensor data is stored
at the nodes of a distributed network or database. Then, to quickly determine the location
of particular information, one should have efficient local (decentralized) search strategies.
Note that this is different from neighborhood search strategies used for solving combinatorial
optimization problems [96]. For example, consider the networks shown in Figure 11.16a and
11.16b. The objective is for node 1 to send a message to node 30 in the shortest possible
path. In the network shown in Figure 11.16a, each node has global connectivity information
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FIGURE 11.16 Illustration of different ways of sending message from node 1 to node 30. (a) In this
case, each node has global connectivity information about the whole network. Hence, node 1 calculates the
optimal path and send the message through this path. (b) In this case, each node has only information
about its neighbors (as shown by the dotted curve). Using this local information, node 1 tries to send the
message to node 30. The path obtained is longer than the optimal path.
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about the network (i.e., how each and every node is connected in the network). In such a
case, node 1 can calculate the optimal path using traditional algorithms [1] and send the
message through this path (1 - 3 - 12 - 30, depicted by the dotted line). Next, consider
the network shown in Figure 11.16b, in which each node knows only about its immediate
neighbors. Node 1, based on some search algorithm, chooses to send the message to one of
its neighbors: in this case, node 4. Similarly, node 4 also has only local information, and uses
the same search algorithm to send the message to node 13. This process continues until the
message reaches the target node. We can clearly see that the search path obtained (1 - 4 -
13 - 28 - 23 - 30) is not optimal. However, given that we have only local information available,
the problem tries to design optimal search algorithms in complex networks. The algorithms
discussed in this section may look similar to “distributed routing algorithms” that are
abundant in wireless ad hoc and sensor networks [97,98]. However, the main difference is
that the former try to exploit the statistical properties of the network topology, whereas the
latter do not. Most of the algorithms in wireless sensor networks literature find a path to the
target node either by broadcasting or random walk and then concentrate on efficient routing
of the data from the start node to the end node [97,99]. As we will see in this section, the
statistical properties of the networks have a significant effect on the search process. Hence,
the algorithms in wireless sensor networks could be integrated with these results for better
performance.

We discuss this problem for two types of networks. In the first type of network, the global
position of the target node can be quantified and each node has this information. This
information will guide the search process in reaching the target node. For example, if we
look at the network considered in Milgram’s experiment each person has the geographical
and professional information about the target node. All the intermediary people (or nodes)
use this information as a guide for passing the messages, whereas, in the second type of
network, we cannot quantify the global position of the target node. In this case, during the
search process, we would not know whether a step in the search process is going toward
the target node or away from it. This makes the local search process even more difficult.
One such kind of network is the peer-to-peer network, Gnutella [100], where the network
structure is such that one may know very little information about the location of the target
node. Here, when a user is searching for a file, the user does not know the global position
of the node that has the file. Further, when the user sends a request to one of its neighbors,
it is difficult to find out whether this step is toward the target node or away from it. For
lack of a more suitable name, we call the networks of the first type spatial networks and the
networks of the second type nonspatial networks. In this chapter, we focus more on search
in non-spatial networks.

Search in Spatial Networks

The problem of local search goes back to the famous experiment by Stanley Milgram [24]
(discussed in Section 11.2) illustrating the short distances in social networks. Another impor-
tant observation of the experiment, which is even more surprising, is the ability of these
nodes to find these short paths using just local information. As pointed out by Kleinberg
[101–103], this is not a trivial statement because most of the time people have only local
information in the network. That is the information about their immediate friends or per-
haps their friends’ friends. They do not have global information about the acquaintances of
all people in the network. Even in Milgram’s experiment, the people to whom he gave the
letters had only local information about the entire social network. Still, from the results of
the experiment, we can see that arbitrary pairs of strangers are able to find short chains of
acquaintances between them by using only local information alone. Many models have been

© 2008 by Taylor & Francis Group, LLC



CH011.tex 30/10/2007 10: 27 Page 11-23

Complexity and Large-Scale Networks 11-23

proposed to explain the existence of such short paths [8,17–20,72]. However, these mod-
els are not sufficient to explain the second phenomenon. The observations from Milgram’s
experiment suggest that there is something more embedded in the underlying social net-
work that guides the message implicitly from the source to the target. Such networks which
are inherently easy to search are called searchable networks. Mathematically, a network is
searchable if the length of the search path obtained scales logarithmically with the number
of nodes N (∼log N) or lesser. Kleinberg demonstrated that the emergence of such a phe-
nomenon requires special topological features [101–103]. Considering a family of network
models on an n-dimensional lattice that generalizes the Watts–Strogatz model, he showed
that only one particular model among this infinite family can support efficient decentralized
algorithms. Unfortunately, the model given by Kleinberg is highly constrained and repre-
sents a very small subset of complex networks. Watts et al. [104] presented another model
that is based upon plausible hierarchical social structures and contentions regarding social
networks. This model defines a class of searchable networks and offers an explanation for
the searchability of social networks.

Search in Nonspatial Networks

The traditional search methods in nonspatial networks are broadcasting or random walk.
In broadcasting, each node sends the message to all its neighbors. The neighbors in turn
broadcast the message to all their neighbors, and the process continues. Effectively, all
the nodes in the network would have received the message at least once or maybe even
more. This could have devastating effects on the performance of the network. A hint of
the potential damages of broadcasting can be viewed by looking at the Taylorsville, NC,
elementary school project [105]. Sixth-grade students and their teacher sent out a sweet
email to all the people they knew. They requested the recipients to forward the email to
everyone they knew and notify the students by email so that they could plot their locations
on a map. A few weeks later, the project had to be canceled because they had received
about 450,000 responses from all over the world [105]. A good way to avoid such a huge
exchange of messages is by doing a walk. In a walk, each node sends the message to one
of its neighbors until it reaches the target node. The neighbor can be chosen in different
ways depending on the algorithm. If the neighbor is chosen randomly with equal probability,
then it is called random search, while in a high-degree search the highest degree neighbor
is chosen. Adamic et al. [32] have demonstrated that a high-degree search is more efficient
than random search in networks with a power-law degree distribution (scale-free networks).
A high-degree search sends the message to a more connected neighbor that has a higher
probability of reaching the target node and thus exploiting the presence of heterogeneity in
node degree to perform better. They showed that the number of steps (s) required for the
random search until the whole graph is revealed is s∼N3(1−2/γ) and for the high-degree
search it is s∼N (2−4/γ). Clearly, for γ > 2.0, the number of steps taken by high-degree
search scales with a smaller exponent than the random walk search. As most real networks
have power-law degree distribution with exponent (γ) between 2.1 and 3.0, a high-degree
search would be more effective in these networks.

All the algorithms discussed until now [32,101–104] have assumed that the edges in the
network are equivalent. But the assumption of equal edge weights (which may represent
the cost, bandwidth, distance, or power consumption associated with the process described
by the edge) usually does not hold in real networks. Many researchers [11,15,106–116],
have pointed out that it is incomplete to assume that all the edges are equivalent. Recently,
Thadakamalla et al. [117] have proposed a new search algorithm based on a network measure
called local betweenness centrality (LBC) that utilizes the heterogeneities in node degrees
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TABLE 11.2 Comparison of Different Search Strategies in Power-Law Networks
with Exponent 2.1 and 2000 Nodes with Different Edge-Weight Distributions

Beta Uniform Exp. Power-law
Search Strategy σ2 = 2.3 σ2 = 8.3 σ2 = 25 σ2 = 4653.8

Random walk 1107.71 1097.72 1108.70 1011.21
(202%) (241%) (272%) (344%)

Minimum edge weight 704.47 414.71 318.95 358.54
(92%) (29%) (7%) (44%)

Highest degree 379.98 368.43 375.83 394.99
(4%) (14%) (26%) (59%)

Minimum average node 1228.68 788.15 605.41 466.18
weight (235%) (145%) (103%) (88%)
Highest LBC 366.26 322.30 298.06 247.77

Note: The mean for all the edge-weight distributions is 5 and the variance is σ2. The
values in the table are the average distances obtained for each search strategy in these
networks. The values in the parentheses show the relative difference between the
average distance for each strategy with respect to the average distance obtained by the
LBC strategy. LBC search, which reflects both the heterogeneities in edge weights and
node degree, performed the best for all edge-weight distributions.

and edge weights. The LBC of a neighbor node i, L(i), is given by

L(i) =
∑

s �=n�=t
s,t∈local network

σst(i)
σst

where σst is the total number of shortest paths (shortest path means the path over which
the sum of weights is minimal) from node s to t. σst(i) is the number of these shortest paths
passing through i. If the LBC of a node is high, it implies that this node is critical in the local
network. Thadakamalla et al. assume that each node in the network has information about
its first and second neighbors and using this information the node calculates the LBC of each
neighbor and passes the message to the neighbor with the highest LBC. They demonstrated
that this search algorithm utilizes the heterogeneities in node degree and edge-weights to
perform well in power-law networks with exponent between 2.0 and 2.9 for a variety of edge-
weight distributions. Table 11.2 compares the performance of different search algorithms for
scale-free networks with different edge-weight distributions. The values in the parentheses
show the relative difference between the average distance for each algorithm with respect to
the average distance obtained by the LBC algorithm. In specific, they observed that as the
heterogeneity in the edge weights increase, the difference between the high-degree search
and LBC search increase. This implies that it is critical to consider the edge weights in the
local search algorithms. Moreover, given that many real networks are heterogeneous in edge
weights, it becomes important to consider an LBC-based search rather than a high-degree
search, as shown by Adamic et al. [32].

11.5.3 Other Topics

There are various other applications to real networks that include the issues related to the
structure of the networks and their dynamics. In this section, we briefly summarize these
applications and give some references for further study.

Detecting Community Structures

As mentioned earlier, community structures are typically found in many real networks.
Finding these communities is extremely helpful in understanding the structure and function
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of the network. Sometimes the statistical properties of the community alone may be very
different from the whole network and hence these may be critical in understanding the
dynamics in the community. The following are some of the examples:

• The World Wide Web: Identification of communities in the Web is helpful for
implementation of search engines, content filtering, automatic classification, auto-
matic realization of ontologies, and focused crawlers [51,118].

• Social networks: Community structures are a typical feature of a social network.
The behavior of an individual is highly influenced by the community that the
individual belongs to. Communities often have their own norms, subcultures that
are an important source of a person’s identity [42,52].

• Biological networks: Community structures are found in cellular [45,119], metabolic
[46], and genetic networks [120]. Identifying them helps in finding the functional
modules that correspond to specific biological functions.

Algorithmically, the community detection problem is the same as the cluster analysis
problem studied extensively by the OR community, computer scientists, statisticians, and
mathematicians [121]. One of the major classes of algorithms for clustering is hierarchical
algorithms that fall into two broad types, agglomerative and divisive. In an agglomerative
method, an empty network (n nodes with no edges) is considered and edges are added
based on some similarity measure between nodes (e.g., similarity based on the number of
common neighbors) starting with the edge between the pairs with the highest similarity.
This procedure can be stopped at any step and the distinct components of the network are
taken to be the communities. On the other hand, in divisive methods the edges are removed
from the network based on a certain measure (e.g., the edge with the highest betweenness
centrality [52]). As this process continues the network disintegrates into different communi-
ties. Recently, many such algorithms have been proposed and applied to complex networks
[18,122]. A comprehensive list of algorithms to identify community structures in complex
networks can be found in Ref. [122], where Danon et al. have compared them in terms of
sensitivity and computational cost.

Another interesting problem in community detection is to find a clique of maximum car-
dinality in the network. A clique is a complete subgraph in the network. In the network
G(V, E), let G(S) denote the subgraph induced by a subset S ⊆V . A network G(V, E) is
complete if each node in the network is connected to every other node, that is, ∀i, j ∈V ,
{i, j} ∈E. A clique C is a subset of V such that the induced graph G(C) is complete. The
maximum clique problem has many practical applications such as project selection, coding
theory, computer vision, economics, and integration of genome mapping data [123–125]. For
instance, Boginski et al. [13] solve this problem for finding maximal independent set in the
market graph which can form a base for forming a diversified portfolio. The maximum clique
problem is known to be NP-hard [47], and details on the various algorithms and heuristics
can be found in Refs. [125,126]. Further, if the network size is large, then the data may
not fit completely inside the computer’s internal memory. Then we need to use external
memory algorithms and data structures [127] for solving the optimization problems in such
networks. These algorithms use slower external memory (such as disks) and the resulting
communication between internal memory and external memory can be a major perfor-
mance bottleneck. Using external memory algorithms, Abello et al. [7] proposed decompo-
sition schemes that make large sparse graphs suitable for processing by graph optimization
algorithms.
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Spreading Processes

Diffusion of an infectious disease, computer virus, or information on a network consti-
tute examples of spreading processes. In particular, the spread of infectious diseases in a
population is called epidemic spreading. The study of epidemiological modeling has been
an active research area for a long time and is heavily used in planning and implementing
various prevention and control programs [128]. Recently, there has been a burst of activities
on understanding the effects of the network properties on the rate and dynamics of disease
propagation [17–20]. Most of the earlier methods used the homogenous mixing hypothesis
[129], which implies that the individuals who are in contact with susceptible individuals
are uniformly distributed throughout the entire population. However, recent findings (Sec-
tion 11.2) such as heterogeneities in node degree, presence of high clustering coefficients,
and community structures indicate that this assumption is far from reality. Later, many
models have been proposed [17–20,38,41,130] which consider these properties of the net-
work. In particular, many researchers have shown that incorporating these properties in
the model radically changes the results previously established for random graphs. Other
spreading processes that are of interest include spread of computer viruses [131–133], data
dissemination on the Internet [134,135], and strategies for marketing campaigns [136].

Congestion

The transport of packets or materials ranging from packet transfer in the Internet to the
mass transfer in chemical reactions in the cell is one of the fundamental processes occurring
on many real networks. Due to limitations in resources (bandwidth), the increase in the
number of packets (packet generation rate) may lead to overload at the node and unusually
long delivering times, in other words, congestion in networks. Considering a basic model,
Ohira and Sawatari [137] have shown that there exists a phase transition from a free flow
to a congested phase as a function of the packet generation rate. This critical rate is com-
monly called “congestion threshold” and the higher the threshold, the better is the network
performance with respect to congestion.

Many studies have shown that an important role is played by the topology and routing
algorithms in the congestion of networks [138–146]. Toroczkai et al. [146] have shown that
on large networks on which flows are influenced by gradients of a scalar distributed on
the nodes, scale-free topologies are less prone to congestion than random graphs. Routing
algorithms also influence congestion at nodes. For example, in scale-free networks, if the
packets are routed through the shortest paths then most of the packets pass through the hubs
and hence cause higher loads on the hubs [43]. Singh and Gupte [144] discuss strategies to
manipulate hub capacity and hub connections to relieve congestion in the network. Similarly
many congestion-aware routing algorithms [138,140,141,145] have been proposed to improve
performance. Sreenivasan et al. [145] introduced a novel static routing protocol that is
superior to the shortest path routing under intense packet-generation rates. They propose
a mechanism in which packets are routed through hub avoidance paths unless the hubs are
required to establish the route. Sometimes when global information is not available, routing
is done using local search algorithms. Congestion due to such local search algorithms and
optimal network configurations is studied in Ref. [147].

11.6 Conclusions

Complex networks are pervasive in today’s world and are continuously evolving. The sheer
size and complexity of these networks pose unique challenges in their design and analysis.
Such complex networks are so pervasive that there is an immediate need to develop new
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analytical approaches. In this chapter, we presented significant findings and developments
in recent years that led to a new field of interdisciplinary research, Network Science. We
discussed how network approaches and optimization problems are different in network sci-
ence from traditional OR algorithms and addressed the need and opportunity for the OR
community to contribute to this fast-growing research field. The fundamental difference is
that large-scale networks are characterized based on macroscopic properties such as degree
distribution and clustering coefficient rather than the individual properties of the nodes and
edges. Importantly, these macroscopic or statistical properties have a huge influence on the
dynamic processes taking place on the network. Therefore, to optimize a process on a given
configuration, it is important to understand the interactions between the macroscopic prop-
erties and the process. This will further help in the design of optimal network configurations
for various processes. Due to the growing scale of many engineered systems, a macroscopic
network approach is necessary for the design and analysis of such systems. Moreover, the
macroscopic properties and structure of networks across different disciplines are found to be
similar. Hence the results of this research can easily be migrated to applications as diverse
as social networks to telecommunication networks.
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12.1 Introduction

The word “simulation” can invoke many different images. Wind tunnels provide a physical
simulation environment for testing the aerodynamic properties of wings and cars. Water tun-
nels also provide a physical simulation environment for testing the hydraulic and acoustical
properties of submerged vehicles. Pilots train in flight simulators. There are Monte Carlo
simulation methods that allow for statistical analysis of many trials of mathematical equa-
tions. Computer models allow simulation of electrical circuits during their design to ensure
completeness. In the foundry industry, there is mold solidification simulation software, which
allows analysis of how the molten metal will solidify for a particular mold design.

This chapter focuses on discrete-event simulation. Discrete-event simulation is a computer-
based methodology that allows you to model an existing or proposed system, capturing key
characteristics and parameters of that system, such that the model emulates the behavior
and performance of the system as events take place over time. Examples of systems that
can be simulated include factories, warehouses, hospitals, amusement parks, military oper-
ations, airports, convenience stores, or supply chains. Analyzing the simulation output can
allow the user to:

• Better understand the behavior and performance of existing systems, including
determining the cause of different system responses.

• Predict the effect upon system performance due to a proposed change in the
system.

• Predict if a system design will have a performance that meets a company’s
specified goals.

12-1
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Simulation allows the analyst to draw inferences about new systems without building
them or about changes to existing systems without disturbing them. Consequently, it can
provide a very cost-effective means of analyzing multiple “what-if” scenarios before any
investment is made in capital, resources, or materials. Some examples of the types of sys-
tem changes, either in existing systems or in a system design, that simulation can evaluate
include:

• Introducing a lean manufacturing philosophy into an existing system.
• Modifying a supply chain by deleting or adding suppliers.
• Adding, replacing, or deleting resources (equipment, workers).
• Changing process/customer flow patterns.
• Changing scheduling or control rules.
• Modifying material handling methods.

12.1.1 When Should Simulation Be Used?

Of course, there are many other operations research modeling techniques that are described
in other chapters of this handbook. Techniques such as linear and integer programming are
analytical optimal methods—for the given input values, the mathematically optimal answer
will be returned. It is important to understand that discrete-event simulation is a heuristic—
although it seeks the optimal answer, it can not guarantee that it will deliver the optimal
answer. It uses numerical methods to track the changing state of the system over time.
Therefore, we say that simulation models are “run” rather than solved, generating a dynamic
series of system changing events while collecting observations of system performance that
are analyzed to estimate the true performance of the actual system being modeled [1].
Further, due to the stochastic input, each simulation run, or replication, of the same model
will have a different specific series of events yielding slightly different output measures.

So, why should you use simulation, when it does not guarantee the optimal? In many com-
plex manufacturing and service systems, for example, factories, hospitals, and amusement
parks, it is very difficult (some may say impossible) to exactly capture the relationships
and interactions of the system parameters in strict mathematical equations, as is required
of mathematical modeling techniques. Additionally, complex systems often have significant
sources of variability, for example, variable processing or service times, variable walking
times, probabilities of rework or re-entry into the line, nonstationary arrival rates, break-
downs or worker breaks, and the like. Variability is particularly evident in service systems
where customer behavior introduces another source of variability in addition to resource
variability. Simulation can directly incorporate most types of system variability into the
model, which is often difficult to incorporate in optimal techniques. Also, unlike queueing
models, which have certain underlying assumptions regarding arrival time and processing
time distributions, in simulation you can specify the distributions that most directly match
your data. Therefore, in complex, stochastic environments we often do not have a directly
applicable optimal technique that will return an answer in a reasonable amount of time. We
must rely on heuristics, such as simulation.

12.1.2 Examples of Successful Applications

There are many reported examples of successful application of discrete-event simulation in a
variety of environments. Evaluating different material control policies in a warehouse allowed
a company to avoid purchasing new equipment that they previously thought was necessary.
Simulation is routinely used in the automotive industry to investigate bottlenecks, evaluate
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different possible layouts and equipment, or to model the design plans for a completely
new facility. Customer service call centers have been simulated, leading to better and faster
call routing policies to improve response time. The introduction of lean manufacturing
concepts can be investigated with simulation to determine which concepts work best for
a particular company before investing in any physical changes. In the banking industry,
simulation is used to model the processing of transactions, identify bottlenecks, and develop
new processing strategies that allow transactions to be processed faster, thus saving the bank
money or increasing revenues. The benefit to the companies may be a one-time benefit of
hundreds of thousands of dollars for a larger project, or some companies use simulation
extensively throughout the year, yielding $50,000–$100,000 benefit per project.

Many more examples of successful applications can be found in papers in the Proceedings
of the Winter Simulation Conferences (WSC), which can be accessed via the WSC Web
site, www.wintersim.org. Some examples of tracks at the WSC 2006 conference that have
associated papers focused on specific application areas include manufacturing, aerospace
and military applications, logistics, transportation and distribution, risk analysis, homeland
security/emergency response, and biotechnology/health care. Additionally, four case study
tracks dedicated to presentations of simulation applications in a multitude of industries were
part of the conference. Although only abstracts are available for the case study presentations,
they provide another perspective of the types of simulation applications.

The Society for Modeling and Simulation International sponsors a Summer Computer
Simulation Conference, which also publishes a proceedings, as part of its annual Summer
Simulation Multiconference. Topical areas are similar to those mentioned above. More infor-
mation is available at the Society’s Web site, www.scs.org.

12.2 Basics of Simulation

Although there are many discrete-event simulation languages and a list of some languages
will follow later in this chapter, there are fundamentals about simulation and the simulation
modeling process that transcend software platforms. Fundamentally, a discrete-event simu-
lation model is stochastic (there is some type of randomness in the system), dynamic (the
system state changes over time), and system changes occur at discrete points in time [2].

12.2.1 Basic Definitions

Figure 12.1 is a graphical representation of an overview of the main ideas of a simula-
tion model. First, the model boundary must be established. For example, will your model
include the entire factory or only one department; will your model include the transporta-
tion method for patients arriving to the hospital or just start with the registration desk?
Setting the boundary defines the scope of the model. Within that boundary, entities move
through the system interacting with each other and triggering events. Entities may be parts,
people, or things and an event is an instantaneous occurrence at a discrete point in time
(hence the term “discrete-event”), typically associated with a change in the state of the
system. A discrete-event simulation tracks, over time, the state of the system, which is like
a snapshot of the system at any given time. Defining the system and in some ways governing
the entity flow are system parameters, for example, number of resources, queue space, and
so on. Affecting the system are external factors, such as supplier schedules and customer
orders, which provide some of the input parameters for the model.

Ultimately, your goal is to analyze the output from the model, which is the performance
measures of interest, for example, average time in the system, work in process, meeting due
dates, and so on. There is output at the end of each model run or replication. A run is
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FIGURE 12.1 Basic simulation modeling process.

typically the simulation executing over some length of simulation time or entity count, and
the output is based on all the observations that have been made as the state of the system
has changed over simulated time. When you repeat the simulation run for the same model
multiple times, you are making replications of that model, which differ slightly from each
other due to the stochastic inputs.

Entities have attributes, which are descriptors of the entity characteristics, such as part
or customer type, or routing through the system. Attributes are somewhat like a simulated
version of a route sheet in a factory—they contain information specific to a particular entity
that is attached to it for the duration of its time in the system. Attributes for an entity may
change their specific values during the simulation; for example, a part’s priority may get
higher as it gets closer to its due date. The system has parameters, which are descriptors
of the system characteristic, for example, the number of machines or workers, queue sizes,
and so on. Although some system parameters may change during one simulation run (for
example the number of workers may change according to a specified schedule), they typically
remain the same value throughout one run. There are also system variables, sometimes
called global variables, which take on different values throughout a simulation run based
on system conditions, for example, the number of entities in a queue, resource status (busy
or idle), or the number that have left the system. System variables are often used to track
time-persistent performance measures in the system.

Most popular simulation languages take a process-oriented approach to modeling entity
movement through a system, thinking of a series of events, delays, and activities for a specific
entity as a “process” [1,3]. Figure 12.2 illustrates a very simple process for one entity at a
single server or a single machine, with events, an activity, and a queue delay noted. First,
there is the arrival event for the entity. Then, as entities move through the system, they try
to access resources, for example, machine, worker, nurse, which are temporarily allocated to
a particular entity and made available again later to other entities. Queues are the waiting
lines for resources where entity movement is temporarily suspended if the resource is busy.
This type of entity delay is a status-dependent delay because the length of the delay is

© 2008 by Taylor & Francis Group, LLC



CH012.tex 22/10/2007 14: 5 Page 12-5

Simulation 12-5

Time line: 
Arrival
event

Start of
service
event 

End of
service
event 

Activity

“being served” 

Process

Queue
delay

FIGURE 12.2 Process-oriented view of entity movement.

based on the status of factors outside of that entity’s control. For example, the length of
time an entity spends in a queue is dependent upon the processing or service times of all
the entities before it in the queue. When the resource becomes available and is allocated to
the entity, the entity begins its service activity, which begins with a “start” event and ends
with an “end” event. Thus, activities, such as this “being served” activity, are triggered by
instantaneous events and have a specific duration, making them deterministic delays.

It should be noted, however, that although most discrete-event simulation languages
adopt a process orientation, behind the scenes they are still executed one event at a time.
This requires coordination between the event calendar and the simulation clock. The event
calendar can be thought of as the “to do” list of the simulation model, and processing
events from the event calendar moves the simulation clock forward in time. Future events
are scheduled on the event calendar. Similar to our personal “to do” list, after the simulation
has processed an event, it is deleted from the list. There are three pieces of information
associated with each event: (1) the entity that is associated with that event, (2) the time
the event is to occur, and (3) the type of event. For a single-server single-queue system, a
snapshot of the event calendar is shown below:

Entity Time Type of event

2 5.3 arrive to system
3 7.1 arrive to system
1 10.7 end processing

The event calendar is always sorted in chronological order. Figure 12.3 shows how the
event calendar operates. The simulation progresses by taking events one at a time from
the event calendar in chronological order and updating the simulation clock to be equal
to the event time. This means that the simulation clock time jumps forward in discrete
amounts instead of having continuous time progression. Then, the simulation processes the
model logic triggered by that event and its associated entity until the entity hits a delay.
All processing of the associated model logic, until the delay starts, occurs in zero simulated
time. Once that entity is in a delay, the simulation model must look for something else to
do. So, it returns to the event calendar, takes the next event off the calendar, and repeats
the procedure.

Our small event calendar above can illustrate the event calendar basic operation, assuming
a single-server, single-queue system. The simulation finds the next event is entity 2 arriving
at time 5.3. The simulation clock is immediately updated to time 5.3, and a new arrival
event is scheduled onto the event calendar, assuming entity 4 will arrive at time 11.2. The
simulation then attempts to move entity 2 through the logic of checking to see if the server
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FIGURE 12.3 How a simulation progresses through time.

is available. Since it is busy serving entity 1, entity 2 is placed in the queue and is now
in a queue delay. The simulation clock time remains 5.3 because the logic processing took
zero time. Consequently, the simulation goes back to the event calendar to find the most
imminent event to process. Because the event associated with entity 2 has been processed,
it is removed from the event calendar, resulting in the following updated event calendar:

Entity Time Type of event

3 7.1 arrive to system
1 10.7 end processing
4 11.2 arrive to system

The next event is entity 3 arriving at time 7.1. The simulation clock is immediately
updated from time 5.3 to time 7.1, and another arrival is scheduled on the event calendar,
assuming entity 5 will arrive at time 17.5. When the simulation processes entity 3 through
the logic of checking server availability, the server is still busy with entity 1. So, entity 3 is
also placed in the queue in a delay, and the updated event calendar is below:

Entity Time Type of event

1 10.7 end processing
4 11.2 arrive to system
5 17.5 arrive to system

When the simulation returns to the event calendar this time, it finds the next event is
“end processing” for entity 1 at time 10.7. The simulation clock updates from time 7.1 to
time 10.7. The logic for entity 1 is to end processing and leave the system. This triggers the
next entity in the queue, entity 2 in our example, to start its service. Entity 2 is now in a
delay for a service activity, which is a deterministic delay, and the end of service activity for
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entity 2—let’s assume it will occur at time 15.7—is put onto the event calendar in proper
chronological order as follows:

Entity Time Type of event

4 11.2 arrive to system
2 15.7 end processing
5 17.5 arrive to system

Our simulation again returns to the event calendar in search of the next event to pro-
cess, and this cycle repeats continuously until the simulation ends. There are two ways
a simulation run will end: either there is a specific “end of run” event scheduled on the
event calendar at a specified time or there are no events on the event calendar, causing the
simulation to simply run out of things to do and end.

Although this is a very short example, it illustrates the frequency with which the event
calendar is accessed and must consequently be re-sorted into chronological order. This is one
reason why the execution time for a discrete-event simulation model is directly related to the
number of events and how the lists are managed. Although most simulation languages had
traditionally used linked-lists to manage the event calendar and other lists in the simulation,
binary heaps, used for example in SIMAN, or Henriksen’s Algorithm, used for example in
SLAM and GPSS/H, provide faster execution times [4].

12.2.2 Need for Randomness

Because systems that are appropriate to analyze with discrete-event simulation are stochas-
tic, the ability to include randomness in the model is essential. Reliable random number and
random variate generation are at the heart of discrete-event simulation languages. A random
number is used in a simulation model anytime a sample is generated from a distribution
or when a probability must be checked, for example, determining if a part passes or fails
inspection. One random number generator characteristic that is of particular importance
for simulation languages is the need for a long cycle length, which is the number of ran-
dom values generated before the random number string starts to repeat. When modeling
large systems, many random numbers are needed during each run. Just a few years ago,
a well-researched linear congruential generator that could provide a cycle length of about
2.1 billion values was considered adequate and the norm. Recently, however, a combined
multiple recursive generator (e.g., used in Arena) provides a cycle length of 3.1× 1057 [3].
Having a long cycle length and the additional ability to specify different streams for differ-
ent distributions is needed for variance reduction techniques for output analysis, which is
discussed later in this chapter.

When the random number is used to generate a sample from a distribution, generating the
random number is the first step. If the distribution has a continuous cumulative distribution
function (CDF), then the inverse transform method is used. In this method, the CDF is set
equal to the random number and then solved for the sample value. This is the preferred
method of generating a variate. If the CDF is not continuous, then other mathematical
methods are used, but they still rely on having a random number.

12.2.3 Output Analysis for Discrete-Event Simulation

The main goal of modeling is to analyze output data regarding the performance measures
of interest to your system and make decisions or recommendations based on that analysis.
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For discrete-event simulation models, which are stochastic and dynamic, the randomness
inherent in the model inputs means the model outputs also exhibit randomness (see Fig-
ure 12.4). As previously mentioned, the stochastic input causes each simulation run, or
replication, of the same model to have slightly different output. Also, as simulation models
are run rather than solved, accurate output data analysis depends upon both an accurate
translation of the physical system into simulation model logic and setting the correct simu-
lation run control parameters so that the output will have appropriate statistical properties.
If this is done correctly, you can then use standard statistical analysis techniques, for exam-
ple, confidence intervals and paired-t tests. Therefore, you must know the type of output
analysis that you want to accomplish as you develop your model.

The first step for proper output analysis is classifying the type of system you are modeling
and the type of analysis needed as either a terminating system or a nonterminating system.
A terminating system has fixed starting conditions that are usually the same for every
system start, for example, empty (no parts or customers) and resources idle, and some
event defines the end time or closing time of the system, for example, store closing time
or the time the last diner leaves. Many service systems that are not open 24 hours a day
are terminating systems, for example, banks, restaurants, retail stores. A nonterminating
system might not have the same starting conditions each day and there is not a clear ending
event. Any 24-hour operation is a nonterminating system, for example, emergency rooms,
24-hour manufacturing plants, convenience stores. Additionally, any system that carries over
work from the previous day should also be considered nonterminating because the starting
conditions each day have a different level of work in process, and thus they are not the
same. Most manufacturing facilities exhibit this characteristic.

For systems classified as terminating systems, all the data collected during the simulation
run is included in the output analysis. These systems exhibit transient behavior when the
system starts up, which is important to include in the analysis. For nonterminating systems,
we are usually interested in the long-term, steady-state behavior of the system after the
transient or start-up conditions are gone. In these systems, only the steady-state data should
be included in the analysis. Therefore, we need slightly different approaches to properly
analyze each case.

Regardless of the type of system, the output performance measure of interest could be
an observation-based statistic (sometimes called discrete-time or tally statistic), a time-
persistent statistic (sometimes called discrete-change or continuous-time), or a simple run-
ning count. Examples of observation-based statistics include average customer or part time
in the system or average time in the queue. Letting Xj be a single entity’s observed value
with J total entities, then the average for replication i is calculated in Equation 12.1.

xi =

∑J
j=1 Xj

J
(12.1)

Examples of time-persistent statistics include average work in process, average number in
the queue, and utilization. To find the average of a time-persistent statistic, a system or
global variable tracks the value of the specific measure (e.g., the number in queue) over the
entire time of the simulation replication, as in Figure 12.5. To calculate the average, the
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FIGURE 12.5 Tracking the number in queue.

area under the curve is divided by the total time of the simulation replication from time 0
to T , as in Equation 12.2.

yi =
1
T

T∫
0

Y (t)dt (12.2)

Examples of simple running counts include the total number leaving the system, the
total number of bad parts, and total number of customers that cannot enter a queue that
is full. You simply increment a counter variable throughout the total time of the simulation
replication each time an entity matches the criteria for the count.

The next two sections discuss how to properly analyze these performance measures for
terminating and nonterminating systems.

Terminating System Analysis

As previously mentioned, stochastic input causes each simulation replication of the same
model to have a slightly different output. Therefore, the output from one simulation repli-
cation represents one sample from the population of all possible replications, paralleling a
physical experiment that takes sample observations from an entire population. In physical
experiments, we need to have population samples exhibit independence and be normally
distributed to apply many of the common statistical analysis techniques. The same is true
for simulation, where we commonly calculate a confidence interval about the mean value
and use that confidence interval to reach conclusions and make recommendations.

An advantage of statistical analysis in our simulated environment is that it is very easy to
insure independence of the output data between replications. To obtain independent output
data from multiple replications, when running your simulation, you specify (1) that the
statistics be cleared (set back to 0) between replications, (2) that the model be reinitialized
to the same starting conditions (usually empty and idle) between replications, and (3) that
a different random number seed is used for each replication to generate the model inputs.
Because these factors are easy to specify in simulation languages, it is easy to insure that
the assumption of independence will hold.

It is not quite as easy to demonstrate that the normality assumption will hold for any
simulated system. Fortunately, the performance measure of interest is typically an aver-
age over all the observations or all the time of each replication. For example, the output
“average time in the system” is the average over all the individual observations for each
entity that has exited the simulated system. Then, to find a point estimate of the mean
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over multiple replications, take the average of values that are themselves averages. Simu-
lation practitioners tend to agree that based on both practical experience with empirical
testing and theoretical general versions of the central limit theorem, it is valid to use stan-
dard statistical techniques, which have an assumption of normality, with output data from
discrete-event simulation models [3].

Suppose that we have modeled a terminating system and we are interested in the average
time that a part or customer spends in our system. Our typical analysis proceeds according
to the following steps:

Step 1: Run multiple independent replications.
Step 2: Record the output value for average time spent in our system, calculated by

Equation 12.1, from each replication (1 value per replication).
Step 3: Using the average time in system values from each replication as calculated in

Step 2, calculate the mean and standard deviation of these values.
Step 4: Calculate a confidence interval about the mean calculated in Step 3.
Step 5: Make recommendations based on your statistical analysis and knowledge of the

system and company goals.

For example, suppose 20 replications (n) had end of replication average time in the system
values (in minutes) of 12, 15, 10, 11, 12, 11, 16, 12, 17, 14, 13, 15, 11, 9, 10, 13, 12, 8,
12, 15. The mean (x̄) is 12.4 min with standard deviation (s) of 2.37 min. If we want a
99% confidence interval (CI) (α = 0.01), then the appropriate critical value from Student’s t
distribution is tα/2,n−1 = 2.86. From the general confidence interval Equation 12.3, the 99%
CI for time in the system is 12.4 ± 1.516 min or [10.884, 13.916].

x ± tα/2,n−1
S√
n

(12.3)

This confidence interval means that we have an approximately 99% confidence that the true
mean of the average time for parts in this system falls between 10.884 and 13.916 min [1].
The range of the confidence interval also gives you a sense of the variability in the system—
the wider the range at a given confidence level the more the uncertainty concerning average
time in the system.

Ultimately, it is still the responsibility of the analyst to appropriately use these data
values to reach a conclusion or make recommendations. Good, accurate statistical analysis
as described above is a key component for making appropriate recommendations. But you
must also consider the type of system, the type of company, and the goals the company has
for the specific system being modeled.

Nonterminating System Analysis

As previously mentioned, with nonterminating systems we are usually interested in the
long-term, steady-state behavior of the system after the transient or start-up conditions
are gone. Steady-state behavior does not mean that the system has no variability and that
performance measures have become a constant value. Steady-state behavior is when the
variability in the system has reached a more consistent level. This is the case in nontermi-
nating physical systems that have been in operation for a long time. When a system is brand
new, it typically starts in an empty and idle state. So, initially there is little competition for
resources, utilizations are low, and there are no queues at many resources. Consequently,
parts or customers have low time in the system values and very little of this time is nonvalue
added. As time goes on, however, queues start to build because there is more competition for
resources, time in the system values rise with more nonvalue added time (e.g., queue time)
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FIGURE 12.6 Time in the system starting from empty and idle system conditions.

and so on, to a certain point where the system starts to “stabilize” at some level of variability
about some mean values for performance measures of interest, as shown in Figure 12.6.

Looking at Figure 12.6, you might estimate that the initial start-up or transient conditions
end around observation 393. The data after this point could then be considered to be
reflecting the steady-state behavior of the physical system. When we develop a simulation
model of a nonterminating system to analyze its steady-state behavior, our goal is to only
analyze simulation output data from the time where our model is also exhibiting steady-
state behavior. If we start our simulation model with empty and idle conditions, as we did in
terminating system analysis, a plot of the output data would look similar to Figure 12.6. If
all of data from time 0 is included in the output data calculations, our values will be biased
and will not accurately reflect only the steady-state system behavior. Therefore, since we
only want to analyze data after the start-up transient conditions have ended, we must have a
way of identifying the point at which the start-up transient conditions end and eliminate the
biasing effect of initial transient data upon our steady-state statistical output data analysis.

There are a few methods to eliminate the effect of initial transient data. One method is
to select starting conditions for your simulation model other than empty and idle. The idea
is to “pre-load” the simulation to make it look more like an ongoing system at steady state
right from time 0. Then, all the data from each replication can be used for output analysis
since all the data is from a time where the simulation is emulating the steady-state behavior
of the physical system being modeled. Pre-loading the system involves creating entities with
attribute values assigned that would be placed in different queues throughout the system;
thus, when the simulation begins, resources throughout the system will immediately have
work to do and entities will soon be exiting the system. An advantage of this method is that
it is easy to explain to anyone, even if they are not familiar with simulation. A disadvantage
of this method is that if the system is large, you may need to pre-load many entities. This
means (1) you need to collect data from the physical system to approximate the typical
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number of entities in each queue and the part mix at each queue and (2) actually loading
all those entities into the simulation model can be tedious. For example, with 10 resources
and approximately 5 entities waiting at each there are 50 entities that must be entered. Also,
if the system being modeled is in the design phase, then this is not a feasible approach.

A second method is to allow the simulation to start in its typical empty and idle condition,
then delete initial transient phase data from the output analysis. Deleting early data is
easily accomplished in most simulation languages by simply specifying a warm-up period
time in the run control parameters for a model. With a warm-up period specified, only data
collected after that time is included in the output statistics provided by the simulation. This
requires estimating the point where the initial transient phase ends and steady state begins.
Typically, this is done by plotting the output performance measure of interest over time
for the output from one long replication of your model [4]. Then, by looking at the plot,
visually estimate when the data appears to stabilize and select that point as your warm-
up period length. To assist this process, plotting a moving average of the data instead of
the raw data is sometimes helpful, as shown in Figure 12.7. Figure 12.7 is the same raw
data for time in the system as Figure 12.6, but it has a moving average with a window of
width 50 superimposed. Looking at this graph, we might estimate that steady-state behavior
begins at approximately 500 observations. An advantage of this method is that it can be
applied when modeling either an existing or proposed system as it does not need data from
the physical system. A disadvantage is that determining the point at which the steady-
state behavior starts can still be difficult. Also, there is some amount of wasted data and
run time during the warm-up period. In some large systems, the warm-up period can be
significant.
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FIGURE 12.7 Time in the system starting from empty and idle system conditions, with a moving
average line of window width 50 imposed.
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A third method is to simply run the model for an extremely long time so that the initial
transient data is dominated by the steady-state data. With computer power and speed
continually improving, this method becomes more feasible. An advantage of this method is
that it is simple to implement. However, you still need to get a rough estimate of the point
in time that steady-state behavior begins to be certain you have a long enough run length
to truly dominate the initial transient data. This could be done using the second method
above. Another disadvantage is that some larger systems may have a long initial transient
phase, which requires a very long total run length to dominate the data.

After you have solved the problem of the initial transient data with one of the methods
above, then you need to get independent and normally distributed data so you can use the
standard statistical techniques just as we did with terminating system analysis. Perhaps
the easiest approach is to combine any of the above three methods with making multiple
independent replications. In other words, you implement a method that insures that the
effect of initial transient data has been eliminated, such that the output statistics in each
replication from the simulation reflect the steady-state behavior of the system. Then, when
multiple independent replications are run, by making the same specifications as discussed in
the previous section on terminating systems, we will have independent samples of the steady-
state performance measures of interest. Next, apply the same standard statistical analysis
techniques for mean, standard deviation, and confidence interval as shown in Equations
12.1–12.3. So, once the initial transient issue has been removed, simply follow the same
5-step analysis procedure used with terminating systems as described in Section 12.2.3.1.
One of the most common approaches is the truncated replication approach, because it is
easy to specify a warm-up period and to specify the running of independent replications.
This combines the second method above, eliminating the initial transient data by specifying
a warm-up period, with running multiple independent replications.

Another method for analyzing steady-state performance is batch means analysis, which
is quite different from the above techniques. Batch means analysis requires that the initial
transient data be truncated from only one long replication, and then it uses the remaining
steady-state data from that one replication for analysis. However, if all the steady-state indi-
vidual observations or time-persistent values from within that one long replication are used
to calculate a sample variance, there is a serious problem with bias in the variance calcula-
tion due to the significant correlation of data points from within one simulation replication.
Therefore, this does not allow for statistically accurate confidence interval construction.
Batch means analysis acknowledges this correlation and attempts to create large enough
batches of individual data points from within the one replication, such that the calculated
means of these batches will be statistically independent from each other [3]. These batch
means may then be treated as independent observations to be used in standard statistical
calculations. Steps in batch means analysis are:

Step 1: Truncate the initial transient data.
Step 2: Group the remaining data into batches of observations that are independent.

N batches of size m.
Step 3: Let Xj(j = 1, 2, . . ., N) be the mean of batch j.
Step 4: Treat Xj like independent observations of a steady-state performance measure,

then use standard statistical analysis techniques, such as confidence intervals.

Step 2 may need to be repeated with increasingly larger batch sizes (m) and a corresponding
reduction in the number of batches (N) until statistical testing indicates that the batch
means are no longer correlated.

An advantage of the batch means technique is that you only need one very long simulation
run. In a very complex system where one replication may take several hours of computing
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time, this can save valuable time. A disadvantage is that you must perform a statistical
analysis on the batch means testing for independence, and the proper batch size must be
determined. This technique may be more difficult to explain to someone not familiar with
simulation, and it is a bit more involved with respect to statistical tests than the previ-
ous methods. However, some simulation languages have a built-in capability for analyzing
simulation output via batch means.

Comparing Two Systems

Many times the reason that a simulation model is developed is to evaluate a change to the
current system. In this case, you need to do an analysis of the output performance mea-
sures from two simulation models, one of the current system configuration and one of the
changed/modified system, to estimate if there is indeed a significant difference in perfor-
mance due to the system modification. A common way to do this is to perform a paired-t test
using the output performance measures from the two simulation models, with H0 = there
is no difference between the mean performance and with H1 = there is a difference. This is
coupled with a simulation variance reduction technique called the common random num-
bers (CRN) method. CRN requires that within each simulation model different random
number streams are assigned to each distribution used, but between the two models, the
same random number stream should be used for the same type of distribution. For example,
if random number stream 1 is assigned to the interarrival distribution in the model of the
current system, then random number stream 1 is assigned to the interarrival distribution in
the model of the modified system. This is similar to what we do when conducting physical
experiments when we try to control all factors in the experiment other than the one factor
that we are modifying. Then, if a change is observed in the performance measure between
the experiments, we feel confident that the difference is due to the modification that we
made and not due to some chance variation from another system factor. The way to control
the other factors in a simulation experiment is to control the random number streams.

CRN is a variance reduction technique because it induces a positive correlation between
the outputs from the two simulations. When using paired-t tests to statistically compare
the output from the two systems, the difference between the performance measure for both
systems for each replication becomes the new performance measure of interest, as follows:

Output Output Difference
current system (A) modified system (B) XAi –XBi

XA1 XB1 D1
XA2 XB2 D2
. . .
. . .
XAn XBn Dn

Then, use Equation 12.3 to calculate a confidence interval about the mean of the dif-
ferences. If 0 is contained in the interval, then we fail to reject the null hypothesis and
assume the systems have no statistically significant difference at the specified confidence
level. If 0 is not contained in the interval, then we reject the null hypothesis and assume
there is a statistically significant difference between the systems. The variance reduction
occurs because we are taking the difference of positively correlated output, and then the
standard deviation of those differences, which is the square root of the variance calculation
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shown in Equation 12.4, is used in the confidence interval. Consequently, in Equation 12.4
the final covariance term is now greater than 0, making the variance of the difference less
than what it would be if the random variables in the difference were independent making
the covariance equal 0.

V ar(XA − XB) = V ar(XA) + V ar(XB) − 2Cov(XAXB) (12.4)

If you reject the null hypothesis and determine there is a difference between the system
performances, then you must decide if it is a difference that would be a benefit if the
modification occurred. Finally, a cost analysis should be done to insure that it would be a
cost effective change to implement.

Evaluating Multiple Potential Modifications to a System

At times there may be more than one system parameter that we are considering changing. In
this case, you should develop a design of experiments with those parameters. Once you have
identified the design points, you can modify the simulation model to emulate each design
point and run multiple replications at each point. The output from each simulation then
becomes the input to further statistical analysis, such as analysis of variance (ANOVA).

12.3 Simulation Languages and Software

There are many discrete-event simulation software products available. Although they all
have some differences to distinguish themselves in the marketplace, there are many common
features among all [1,4]:

• Graphical user interface to make model building easier.
• Sampling from several different distributions.
• Animation to visualize the model, possibly 3-D—this allows you to observe short-

term variability in the performance of the model and can help quickly identify
bottlenecks or quickly identify errors in the simulation model logic.

• Collect a variety of performance measure statistics and provide summary output
statistics, such as means or confidence intervals, in an output report.

• Provide data in tables and in graphical form.
• Easily run multiple independent replications.

Additionally, there are features that many, although not all, simulation environments
share:

• Extended statistical analysis, either as an add-on or integrated into the package—
this may include both input data analysis (e.g., fitting data to a distribution) and
output data analysis (e.g., comparing systems for statistical differences, batch
means analysis).

• Import CAD drawings as a foundation for developing animation.
• Interfacing with other software, such as spreadsheets.
• Creating Visual Basic interfaces to ease changing the parameter specification for

the model to create different scenarios.

Some characteristics that will set simulation languages apart include the level and sophis-
tication of material handling or warehousing logic and the price of the package. Although
some simulation software companies offer a bare-bones version of their packages for under
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$1000, prices for versions that allow you to model a reasonably sized system range from
approximately $1300 on the low end to mid-range of about $15,000 to $30,000 and up for
specialized versions.

There are two main categories of simulation languages: general-purpose and simulator.
A general-purpose language can be used to model any environment, manufacturing, ser-
vice, business processes, and so on. The terminology used in the modeling constructs is
very generic, for example, entity, resource, and process. A simulator is a language that is
customized for a particular type of industry, for example, electronic chip manufacturing,
hospital, call center. The terminology used in a simulator is specific to the environment,
for example, wave solder machine, nurse, phone line. There is a tradeoff between ease and
quickness of building a model and flexibility to capture a wide variety of real-world complex
system logic. A general-purpose language offers a lot of flexibility regarding the structure
of the physical system logic that can be properly accommodated in the simulation model.
However, it may take longer to develop a model to make sure that the generic logic con-
structs are put together to properly emulate the logic of a specific type of environment. On
the other hand, a simulator has logic constructs that are more structured to match typical
physical system logic for a particular industry. Therefore, it has less flexibility to model
anything and everything that might be encountered in all systems. But a model can usually
be developed faster using a simulator compared to a general-purpose language, assuming
the simulator is properly matched to an environment for which it was intended.

One additional comment regarding simulators: some simulators can still seem like a very
general-purpose tool within an industry. For example, a manufacturing simulator, such as
ProModel, is applicable in a wide variety of manufacturing environments. However, some
simulators for more specific environments, for example, electronics manufacturing, may not
be perfectly applicable to all types of systems within that larger category. Therefore, if you
are considering a simulator, you must make sure that the structured logic of the simulator
is truly applicable to your specific system.

12.3.1 A Sampling of Discrete-Event Simulation Software

This section contains a sampling of the many discrete-event simulation software packages
available. All the following software run on a PC, with a typical operating system require-
ment of either Windows 98, Windows 2000, or Windows XP. They also take the process-
oriented approach to modeling. Software is discussed in alphabetical order.

Arena

Arena is a general-purpose simulation software that can model manufacturing or service sys-
tems, and it is a product of Rockwell Automation [3,5]. The underlying simulation language
is SIMAN. The Basic version is focused on business process modeling; however, Standard
and Professional versions can model any environment, including continuous systems. It has
a graphical interface for model building with logic modules, whose parameters you specify,
connected with arrows designating entity flow. It includes input data analysis with dis-
tribution fitting through its built-in input analyzer and it allows more detailed statistical
analysis of output data through its built-in output analyzer along with graphical chart
capability. Standard output statistics, such as means and confidence intervals, are provided
in the standard output report in numerical tables. Arena can model a variety of material
handling devices including fork lifts, automated guided vehicles (AGVs), and different types
of conveyors. Version 10.0 also includes specialized logic to more easily model continuous
manufacturing that uses tanks, regulators, and pipes. It allows interfacing with various
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other software applications. Arena has built-in capability to easily run and analyze multiple
scenarios with its process analyzer, and you can add-on OptQuest for Arena to perform
optimization. OptQuest was developed by Dr. Fred Glover and is offered by OptTek Sys-
tems, Inc., as an add-on to several simulation packages [6]. It is based on several methods,
including tabu search, scatter search, and neural networks.

AutoMod

AutoMod, available through Applied Materials, Inc. [7,8], can be used to model a wide
range of applications; however, it is primarily applied to manufacturing and it includes sig-
nificant material handling capabilities. It has built-in templates for bridge cranes, conveyors,
power and free systems, automated storage and retrieval systems (AS/RS), and path-based
movement (automated guided vehicles (AGVs), fork lifts, humans). It has 3-D graphics and
template models of some specific environments to speed model development. However, it
also is a simulation language to be used in a variety of manufacturing environments. In
Version 11.0 you can create “composite systems,” which allow the reuse of model objects
through the encapsulation of submodels and models that are saved as library objects. It
can also link to other software through ActiveX. Output may be viewed as numerical tables
or a variety of graphical charts. They also have the product AutoStat, which can help
with determining the warm-up period, sensitivity analysis, design of experiments, and opti-
mization using evolutionary strategies. Another product, AutoView, provides postprocessed
animation capability, allowing playback and creation of presentation graphics.

Extend

Extend simulation software refers to a family of products by Imagine That, Inc., that covers
a range of applications, including continuous systems, manufacturing, and service systems
[9,10]. All products have similar structure and capability. Models are built by combining
different iconic blocks, representing a logic step or calculation, according to the proper logic
flow for entities. During a simulation run, the user may change simulation parameters on
the fly to observe the near-term effect of changes. Data relating to a specific block, for
example, a queue block, may be viewed via plots and tables by double clicking the block.
Output from a replication may be displayed in a table or plot, exported to another program
or copied to a different area of the worksheet. An evolutionary optimization tool is included
in the software. Extend also has the capability of creating a hierarchical block by grouping
together blocks defining the logic of a submodel representing part of the larger system.
These hierarchical blocks may be stored for future use. Extend supports the COM model
and ODBC without any additional programming by the user. The Extend blocks are open
source, so they may be customized to a specific need. Also, Extend has been chosen as
a simulation engine by third-party applications. The Extend Suite product includes Proof
Animation from Wolverine Software [11].

Flexsim

Flexsim, developed by Flexsim Software Products, Inc., is an object-oriented simulator
aimed at all types of manufacturing environments, including both discrete-event systems
and continuous flow systems [12,13]. It allows a hierarchical approach to modeling, making
use of inheritance. Everything in Flexsim is open to customization and users can create
their own new objects using C++. All models are built and run in 3-D. Input data can
be imported from databases and spreadsheets using ODBC or Dynamic Data Exchange
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connections, and output can be exported to word processors or spreadsheets. The output
can be viewed in reports and graphs.

GPSS/H

GPSS/H is a widely used version of the GPSS simulation language originally released by
IBM in 1962, and it is available through Wolverine Software Corporation [14]. It is a general-
purpose language that can model any manufacturing or service system that can be thought
of as a queueing system. Models are built using a text-based interface, as opposed to a
graphical interface commonly used in most other simulation languages. GPSS/H has built-
in file and screen input and output, allowing data to be read into and out of standard
text files that can be interfaced with standard spreadsheets. Customized output can also
be created. GPSS/H has an interactive debugger to assist verification, and it uses Proof
Animation, another Wolverine Software product [11], which can be viewed postprocessed
after the simulation completes or while it runs. Because of GPSS/H’s flexibility and speed
of execution, it is sometimes used as the simulation engine for simulators developed for
specific environments. With GPSS/H’s structure and text-based model building interface,
it tends to be more frequently used by experienced modelers with more complex systems.

Micro Saint Sharp

Micro Saint Sharp is a general-purpose object-oriented simulation language by Micro Analy-
sis and Design, Inc. [15,16]. It was developed specifically to increase model execution speed,
and allows users to turn off all interfaces for significant speed-up. Micro Saint Sharp can
be used to model any system that can be represented by a flowchart. It uses task network
modeling with activities represented as nodes and arrows connecting nodes into sequences of
activities. The user defines the structure of the task network and then defines the objects in
the network. It has a symbolic animation that animates the network diagram. This can be
helpful for quickly gaining insight into the entity flow and can help with debugging. Charts
showing dynamically changing outputs can also be presented. Alternately, you can also use
their animation tool called Animator, which gives a more realistic view of the system. Micro
Saint Sharp has a plug-in interface allowing for some modularity to customize how you use
the software. Its options include OptQuest for optimization [6], the Animator tool discussed
above, and interoperability using COM services.

ProModel

ProModel Corporation has several simulation products available, including ProModel,
MedModel, and ServiceModel [17,18]. These are simulators because they are written for a
specific industry. ProModel is applicable in manufacturing and warehousing environments,
MedModel is specifically for modeling healthcare systems, and ServiceModel is designed for
service industries. However, within these broad industry categories, they are very generally
applicable to many specific environments. These products use object-oriented modeling con-
structs. Although the rest of this section focuses on ProModel, the capabilities are similar
across these three products.

ProModel is a simulator aimed at general manufacturing environments. Models can usu-
ally be built graphically with the set of modeling elements provided (e.g., resources); how-
ever, complete programming is available if necessary for very unique physical system logic.
Animation is developed when the model logic is being specified, and you can create both
2-D and 3-D perspectives. In ProModel you can also specify costing information that can
be associated with a specific resource, location, or entity, which is reported in the output
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report. The representation of output data can be in tabular form or in graphics and charts.
There is a run time interface that can be used at the start of a run to make changes to system
parameters for just that run, or it can be used to define and store multiple scenarios of the
system for experimentation. Two optimization capabilities are available. SimRunner, which
was developed by ProModel Corp. specifically for their products, uses genetic algorithms
and evolutionary strategies. It can be used to aid model analysis by determining the number
of replications needed to estimate performance measure mean values to a specific precision,
or to aid with steady-state analysis by estimating the proper warm-up period to eliminate
transient data and estimating run time. It can also be used to optimize a user-specified
performance measure by evaluating various combinations of user-defined input factors. The
OptQuest for ProModel add-on is another optimization alternative.

QUEST

QUEST from Delmia Corporation is a manufacturing environment simulator that has a
graphical model building interface [1,19]. It is a 3-D simulation environment that can inte-
grate 2-D and 3-D CAD drawings to more accurately capture the layout of the factory
being modeled. It can also interface with spreadsheets and production software, such as
manufacturing execution systems (MES), material requirements planning (MRP), enter-
prise requirements planning (ERP), and scheduling packages. QUEST has an emphasis in
its capability to model a variety of material handling types, including fork lifts, conveyors,
power and free, humans, automated guided vehicles (AGVs), kinematic devices (robots),
and automated storage and retrieval systems (AS/RS). Output can be displayed numerically
in tables or graphically using various charts, or exported to a spreadsheet.

SIMUL8

SIMUL8 is a product of SIMUL8 Corporation and has a Standard and Professional version
[1,20]. It has a graphical model-building interface, allowing icons representing logic to be
placed and connected by arrows showing entity flow. It also allows user-defined icons that can
be saved and reused. SIMUL8 is a general-purpose language; however, it has been frequently
used to model service industries or business processes, and it also has some specialized logic
capability for modeling tanks and pipes found in continuous fluid manufacturing processes.
On the input side, it can interface with Excel and in the Professional version it can also
interface with databases. Output can be viewed as either numbers in tables or graphically
via plots, pie charts, and the like. Output can also be exported directly to Excel or MiniTab,
or a file option allows you to send the date to other file types. The professional version has
additional input data fitting help with STAT::FIT, a product of Geer Mountain Software
Corp. [21], and optimization capability through OptQuest for SIMUL8.

WITNESS

WITNESS 2006 is a product of Lanner Group, Inc., and has a manufacturing performance
edition (MPE), a manufacturing simulator, and a service and process performance edition
(SAPPE), a service industry simulator [22]. Its manufacturing version can model both dis-
crete manufacturing and continuous flow manufacturing. Models are built using a building
block design, having a modular and hierarchical structure. It can interface with databases,
spreadsheets, and other applications. It also has a Virtual Reality module that can integrate
with the standard system to provide 3-D modeling capability. It has a simulation scenario
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manager to assist with experimentation, and the results can be exported to other applica-
tions. WITNESS has an optimizer integrated with its standard system, which is based on
a variant of simulated annealing.

12.3.2 Summary

There is a wide variety of discrete-event simulation software available. With the exception of
GPSS/H, all the other software mentioned here have graphical interfaces for model building.
Most have user-friendly modules that typically represent several lines of simulation language
code put together in a particularly structured way to capture a small logic element of the
physical system, for example, an entity accessing a resource for service. In software that has a
hierarchical structure, modules at higher levels have more lines of code within each module
with a specific structure, and they consequently allow less flexibility to capture complex
or unusual entity flows or control methods that may be present in the physical systems
being modeled. Then, it is necessary to go lower in the hierarchy to modules that represent
fewer lines of code with more elementary logic statements to buy the user more modeling
flexibility. Although the graphical module approach tends to blur the lines of “modeling”
and “programming,” it is important to remember that underlying all the software mentioned
above is a simulation language and as the “picture” of the system is developed on the screen,
actual code is being created to capture that picture. So, remember that when building a
simulation model, all rules of programming apply, including garbage-in-garbage-out.

Additional information about the simulation software discussed above is available at the
following Web sites:

Arena: www.arenasimulation.com
AutoMod: www.automod.com
Extend: www.imaginethatinc.com
Flexsim: www.flexsim.com
GPSS/H: www.wolverinesoftware.com
Micro Saint: www.maad.com
ProModel: www.promodel.com
QUEST: www.delmia.com
SIMUL8: www.simul8.com
WITNESS: www.witness-for-simulation.com or www.lanner.com

12.4 Simulation Projects—The Bigger Picture

Any time you are developing a model of a physical system, there are several steps in the
process that will help to make the modeling project a success, and simulation is no dif-
ferent. The steps are nothing more than the scientific process learned in grade school,
but with a few added simulation details. Some slightly different procedures can be found
in Refs. [1–3].

Step 1: Identify the problem: A statement is needed of the problem that is initiating
the model development. For example, the manager of a facility may be concerned that the
amount of work in process (WIP) is exceeding the maximum level that the corporation
desires.

Step 2: State your objectives: Based on the problem statement, exactly what ques-
tions will be addressed by modeling this system? Specify what performance measures will
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be evaluated, what system changes will be studied, and what type of analysis of output data
is required. For example, with the problem identified in Step 1, we may need to evaluate the
utilization of resources and time spent in the system in addition to our main performance
measure of interest WIP. Possible system changes might focus on first identifying if a single
bottleneck station exists, and specifying possible changes that could be investigated, such
as adding a resource, modifying the set-up operation, or changing the scheduling or control
policies in the system. The type of analysis for this problem may be comparing the steady-
state WIP performance of different modifications of the system to determine which best
adheres to the corporate maximum WIP level. This may also be the best time to decide if
simulation is the correct modeling tool for this situation.

Step 3: Identify, collect, and prepare input data: Identify the input needed to
develop the model. What are the entities, the resources, and other system parameters? Are
processing times, interarrival rates, and other system parameters known or must a data
collection scheme be developed? If equipment failure is important to incorporate, does the
company have reasonable records of time between failures and downtime? If data must be
collected, it may take a few weeks or months to get enough data points for analysis, par-
ticularly for events/activities that occur less regularly, such as breakdowns. Therefore, it is
a good idea to develop the collection plan and begin that process as soon as possible, even
before you start model development.

Step 4: Formulate the model: Creating a logic flow diagram of the physical system
being modeled is the first step in formulating the model. Further, it is independent of the
particular simulation software that will be used for the project. Developing the logic flow
diagram requires visiting the existing physical system or studying the plans for a proposed
physical system and talking to all parties involved with the system to ensure that the
modeler understands the way that system works or how it is proposed to work. The logic
flow diagram also becomes an effective communication tool between the modeler and the
system experts to help all parties have confidence that the appropriate level of understanding
and detail of system operations will be properly included in the model. Once the logic flow
diagram is complete, it can be translated into a simulation model in a specific simulation
language.

Step 5: Verify and validate the model: First, verify that the model is behaving as
you think it should according to your logic flow diagram. This includes debugging the model
and doing some preliminary output data analysis to determine if it is reasonable given the
model inputs and parameters. Second, validate that the model is accurately representing
the physical system, that is, did we really understand the system correctly and build the
right model? Validation can be a challenging part of the simulation modeling process. For
both verification and validation, simple animation can be helpful to identify bottlenecks or
basic logic problems in the model.

Some verification strategies include:

1. Test a large model in stages. Break the bigger problem into logical subproblems,
for example, individual work stations or one department.

2. Send a single entity through the model at a time. If there are multiple possible
routes, force a single entity to take each route to ensure you have the proper
routing in your model.

3. Replace the random times with constant values, for example, the means of the
distributions, so that you can predict with certainty how long it should take an
entity to complete a specific route (combine with number 2).

4. Make a single replication during verification, first with constant times, then with
the randomness put back into the model. Look at the output data in each case,
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and use your engineering judgment. Are these the performance measure output
values you expect?

5. Ask an expert—show this output to a person familiar with the physical system
and get their opinion. You can also ask an outside expert familiar with simulation
modeling but not necessarily with the specific system for their opinion on your
modeling approach as well as the output data.

6. Perform some sensitivity analysis. Change an input parameter in a certain direc-
tion and see if the output data responds as expected. For example, in a moderately
loaded system, if you increase the number of arrivals per unit time, you would
expect higher utilization, longer queues, and longer time in the system.

Validation can occur simultaneously with verification. In particular, numbers 5 and 6
above are also validation strategies. Number 5, ask the expert, can be taken one step
further if you are modeling an existing system. You can put the data from the model
beside actual performance measure data from the physical system and ask the expert if
they are reasonably close.

Step 6: Experiment and analyze the results: Once the model is verified and
validated, it can be used for its intended purpose—allow you to experiment with sys-
tem modifications. Depending upon the type and number of modifications, an appropriate
experimental design is developed. The proper statistical analysis is then done with means,
standard deviations, confidence intervals, paired t-tests, and so on.

Step 7: Conclusions and recommendations: Using the data from Step 6, reach your
conclusions based on the simulation output results, and specify what you recommend for
the modification or design of that system to address the objective identified in Step 2.

12.5 Summary

Discrete-event simulation is an important heuristic tool in the OR tool kit. It is applicable
when the performance of a large, complex system needs to be evaluated, but we cannot
properly capture the system dynamics in straightforward equations that could be used in
an optimal technique. This chapter has presented an overview of discrete-event simulation,
including discussion of basic definitions and operations of simulation, output analysis, some
examples of where simulation has been applied, simulation languages, and the steps of a
simulation project.

In addition to the software Web sites previously listed, there are some other readily acces-
sible sources for simulation information. Attending simulation conferences gives you quick
access to the latest information in both technical language developments and how people
in other companies are using simulation. Conferences also provide an excellent networking
opportunity to meet others facing similar problems. In a small- or medium-sized company,
you might be the only person engaged in simulation modeling, and you may feel isolated
with no one to bounce off ideas. Making contacts at a conference allows you to develop a
support network for your ideas or problems in the future. Further, most conferences have
a vendor area, which allows you to speak with many vendors in a short period of time and
make some comparisons of products. Three examples of conferences are the Winter Simu-
lation Conference (WSC) held in December at www.wintersim.org, the Summer Computer
Simulation Conference typically held in July and sponsored by the Society for Modeling and
Simulation International at www.scs.org, and the Simulation Solutions Conference usually
held in the spring at www.simsol.org.
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Another source of information is simulation software surveys that periodically appear in
professional society journals. For example, OR/MS Today [23], a publication of INFORMS
(Institute for Operations Research and the Management Sciences), reported a simulation
software survey in December of 2005, which has since been updated on their Web site [24].

For further reading about simulation modeling in general, please consult some of the
textbooks previously referenced in this chapter [1–4,25].
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A metaheuristic is a general algorithmic framework for finding solutions to optimization
problems. Within this framework underlying local heuristics are guided and adapted to
effectively explore the solution space. Metaheuristics are designed to be robust. That is,
solutions to a wide variety of optimization problems can be found with relatively few mod-
ifications. Examples of metaheuristics include simulated annealing (SA), tabu search (TS),
iterated local search (ILS), evolutionary algorithms (EA), evolutionary programs (EP),
greedy randomized adaptive search procedure (GRASP), memetic algorithms (MA), vari-
able neighborhood descent (VND), genetic algorithms (GA), scatter search (SS) and ant
colony optimization (ACO). In addition, there are many hybrid approaches combining fea-
tures of several of these techniques simultaneously.

Standard references are available for each particular metaheuristic as well as reference
and textbooks that compare and contrast a wider variety of metaheuristic approaches.
My aim here is not to do a complete survey, but to address how to attack a practical
discrete optimization problem (DOP). Metaheuristics are one popular algorithmic approach
for generating solutions to DOPs. Consequently, the primary focus of this chapter is how
to develop a particular metaheuristic for a DOP.

13-1
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Metaheuristics attempt to find better solutions to a DOP by either maintaining a collection
of solutions, a population, or a single solution. Examples of population-based metaheuris-
tics include EA, EP, GA, ACO, and MA. The interested reader is referred to Goldberg [1],
Back [2], Dasgupta and Michalewicz [3], and Moscato [4] for more information on these
and other population-based techniques. Single solution metaheuristics include SA, TS, ILS,
GRASP, VND, and SS. The books by Glover and Laguna [5] and van Laarhoven and Aarts
[6] cover tabu search and simulated annealing, respectively. The books by Michalewicz and
Fogel [7] and Hoos and Stutzle [8] compare and contrast a wide variety of metaheuristics.
In particular, Ref. [8] provides a unified framework for 12 metaheuristics. Throughout this
chapter the discussion is limited to single solution metaheuristics.

The focus of this chapter is on how to find high-quality solutions for a DOP. The intended
audience is an individual with a DOP in need of answers to the following questions. If I have
a feasible solution how do I know if it is a good one? Which solution strategy should I start
with if I don’t want to invest too much of my time? How do I improve upon these solutions to
develop better ones? Further, the DOP of interest is assumed to be nonstandard in some way
so that traditional approaches (branch and bound or linear programming relaxations) are
not applicable or do not provide tight enough bounds on the optimal value. The contents of
this chapter reflect my own preferences for how to go about answering the above questions.
I begin by developing a neighborhood structure for traversing the space of feasible solutions
and embed this within a multistart local search heuristic (see Sections 13.3 and 13.7) with a
random initial feasible solution. (It may not always be possible to generate random feasible
solutions, but for the problems I have faced it has been.) After implementing multistart, I
now have some idea of the diversity of local optima both with respect to solution value and
placement within the feasible space. Next, I embed this same neighborhood structure within
a simulated annealing heuristic. I use a standard set of parameter values (see Section 13.4).
I am not interested in fine-tuning the search parameters. I simply want to get an idea
if the search terrain is difficult. If I am not happy with the solutions I have found with
SA, I develop a tabu search heuristic. A basic tabu search (see Sections 13.5 and 13.6)
is straightforward to implement given a previously defined neighborhood structure. In my
experience, tabu search is able to find the same quality (typically with respect to objective
value but may include other desirable features as well) of solutions as simulated annealing
but in significantly less time and with significantly fewer function evaluations (typically an
order of magnitude decrease). If basic tabu search is unable to improve upon the solutions
found by multistart and simulated annealing, then I begin adding more advanced features
to tabu search (see Sections 13.8 and 13.9).

The chapter is organized as follows. First, a framework for single solution metaheuris-
tics is given. A description of a prototypical class of DOPs (network location problems)
is provided next. Following this section are three sections describing multistart heuristics,
simulated annealing, and tabu search, respectively. Section 13.3 on multistart heuristics uti-
lizes the notation developed in Section 13.2 to explain first-improving and best-improving
two interchange heuristics. Section 13.4 on simulated annealing provides an outline of two
basic implementations of one approach to SA and provides recommendations on parame-
ter selections. Section 13.5 presents the basic features of tabu search. The following three
sections contain applications of metaheuristics in the location of actuators for noise control
(Section 13.6), selecting nature reserve sites (Section 13.7), and the placement of vibrational
dampers in large flexible space structures (Section 13.8). Section 13.6 is a nonstandard loca-
tion problem with a complex performance measure. Traditional approaches are not applica-
ble and the utility of a basic tabu search is demonstrated. The nature reserve site selection
problem in Section 13.7 applies two known location models in an attempt to find meaning-
ful solutions. The performance of multistart heuristics, tabu search, and branch and bound
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are compared. Section 13.8 describes an unusual location problem. A traditional optimiza-
tion model is developed. LP-relaxations, branch and bound, simulated annealing, and tabu
search are highlighted as solution techniques. A recency-based diversification scheme, an
advanced feature of tabu search, is shown to be necessary so that high quality solutions can
be uncovered. Section 13.9 presents additional features to augment the basic tabu search
described earlier in Section 13.5. We close with a short discussion in Section 13.10.

13.1 Mathematical Framework for Single
Solution Metaheuristics

Metaheuristics can be divided into those that work with a collection of solutions and those
that are guided by a single solution. For those that work with a single solution consider the
following definitions and notation. Without loss of generality, we assume that the perfor-
mance measure is to be minimized.

A state space,
∑

, is the set of all feasible states (solutions). A state S denotes an ele-
ment of

∑
. To qualitatively distinguish between the states we define a function c. The

domain of c is
∑

and its range is typically R (the set of real numbers). c(S) is the cost
of state S. A move set ∆ defines the set of moves from one state to another. The entries
in ∆ are denoted by δ. The set of allowable moves from a state S is denoted ∆(S). Note
that δ ∈ ∆(S) maps

∑
→

∑
. The outcome of applying all moves δ ∈ ∆(S) to S defines

the set of states reachable from S. The set of reachable states is typically referred to as the
neighborhood of S. The value of a move δ(S), c(δ(S)) − c(S), is the difference between the
cost of the new state and the cost of S. Thus, moves are improving if their value is negative
(downhill).

Each metaheuristic begins with an initial state S0 ∈
∑

, chosen at random or constructed
algorithmically. Each metaheuristic generates a sequence of moves, δ1,δ2, . . ., δn, which deter-
mines a sequence of states through which the search proceeds. The mechanism by which
a move is selected is one of the critical differences between competing metaheuristics. For
example, if the search mechanism is a greedy local search, then at state St the next move
selected is δt where

c(δt(St)) = min
δ∈∆(St)

c(δ(St))

13.2 Network Location Problems

We will use network location problems as a platform for illustrating the development of
metaheuristics throughout this chapter. For additional information on network location
theory the interested reader is referred to Mirchandani and Francis [9] and Nickel and
Albandoz [10]. Network location theory typically addresses the question of where to locate
desirable facilities to interact with customers who must travel to the facility to obtain
a particular good or service. In these instances, a customer is assumed to prefer nearby
facilities. The prototypical problems for desirable facilities are the p-median and p-center
problems. In the p-median problem, the location of p facilities is determined so that the
average travel distance for all customers is minimized. However, there are certain types of
service for which all customers desire to be within a minimum threshold distance. Emergency
medical services is one such example. The performance measure in the p-center problem is
to minimize the maximum distance (or time) traveled by a customer to the nearest facility.
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Although both the p-median and p-center problem are NP-complete, in practice each of
these problems has many high quality local optima that are not difficult to uncover.

Facilities that customers prefer not to have nearby are called undesirable or obnoxious.
Examples of undesirable facilities include garbage incinerators, hazardous waste dumps, and
nuclear power plants. Both the scarcity of available land for siting undesirable facilities
and an increase in public awareness of the potential dangers of living near such facilities
have made locating undesirable facilities a difficult and sensitive problem. Many disparate
factors—costs, politics, and social perceptions—affect the location choice. In addition, unde-
sirable facilities may be mutually obnoxious as in the case of missile silos.

Formulating an optimization problem associated with the location of desirable or undesir-
able facilities varies with respect to several criteria including the feasible region—discrete or
continuous; the number of facilities to be located—one or many; the performance measure—
single or multiobjective; the feasible solution space—a tree (acyclic) network or a network
that allows cycles; and the interactions considered—the distances between facilities or the
distances between facilities and customers. For the desirable facility location problem we
consider discrete, multiple facility, single objective models in which only the interactions
between the facilities and the customers are of importance. For the undesirable facility
location problem we consider discrete, multiple facility, single objective models in which
only the interactions between the facilities are of importance. All six models appear in the
literature and are summarized below. In each model, we are given an undirected network
and the corresponding shortest path distance matrix. For the undesirable facility problems
the performance measure seeks a set of facilities X of size p that maximizes some function
of the distance between the members of X while for the desirable facility problems we seek
a set of facilities X of size p that minimizes some function of the distance between the
members of X and the members of the (discrete) feasible region denoted, without loss of
generality, as the vertices of the network, V .

There is not complete agreement in the literature on the names for these problems. The
names given above are consistent with most of the literature. The p-dispersion problem max-
imizes the minimum distance between any two facilities. For example, missile silos should
be placed as far from one another as possible to reduce the number of facilities destroyed in
a single attack. The p-defense-sum maximizes the average distance between facilities. These
two models, perhaps because of their applicability, have received the most attention in the
literature. See Kincaid and Yellin [11] for additional information on the undesirable location
problems. Although there are no reported applications of the p-dispersion-sum problem to
date, a closely related problem formulation in Kincaid and Berger [12] has been used to
locate structural dampers on large, flexible, space, truss structures (see Section 13.8 of this
chapter). As is seen in Table 13.1, three of these four problems are strongly NP-hard. Opti-
mization problems (more precisely the decision problem associated with an optimization
problem), which are still NP-hard even when all numbers in the input are bounded by some

TABLE 13.1 Discrete Network Location Problems
Name Performance Measure Complexity

p-median minX⊆V

∑
j∈V mini∈Xdij NP-Complete

p-center minX⊆V maxj∈V mini∈Xdij NP-Complete
p-dispersion maxX⊆V mini∈X minj∈Xdij NP-Complete
p-dispersion-sum maxX⊆V mini∈X

∑
j∈X dij Str. NP-Hard

p-defense maxX⊆V

∑
i∈X minj∈Xdij Str. NP-Hard

p-defense-sum maxX⊆V

∑
i∈X

∑
j∈X dij Str. NP-Hard
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polynomial in the length of the input, are labeled strongly NP-hard. The interested reader
is referred to the seminal reference on complexity theory [13].

13.3 Multistart Local Search

Local searches are the centerpiece of many metaheuristics for DOPs. A typical local search
is an interchange heuristic. For network location problems an interchange heuristic begins
with a feasible solution—a set of p locations—and a set of potential site locations, V .
Although we use V , the set of vertices in the underlying network for our set of potential
site locations, the set can be any predetermined finite set of points on the network. Next,
we define a set of moves ∆ so that we can examine other nearby solutions. Here, we focus
on interchange heuristics that swap one site currently in the solution with one site not in
the solution, although other move sets are clearly possible. Consequently, a move δij ∈ ∆
interchanges i, one of the p chosen sites, and j, one of the potential sites not yet chosen
(j ∈V \{k}; often we will abuse notation and simply write j ∈V − k). Algorithm 13.1 below
describes a rudimentary two interchange search. At Step 2, if the first move (interchange)
that leads to an improvement in the objective value is chosen then we have a first-improving
two interchange search. We note that in our version of a first-improving search one complete
iteration searches all of ∆ with, possibly, multiple improving moves accepted. An alternative
at Step 2 is to search among all possible interchanges and select an interchange that yields
the largest improvement in the objective value. This latter version is called a best-improving
two interchange search. Since we will consider no other move sets beyond the two inter-
change we can drop, without confusion, the two interchange identifier and refer to these
heuristics simply as first-improving and best-improving. Further comparisons of these two
approaches are made in Section 13.7. Algorithm 13.1 stops when no more improvements can
be made, that is, when X(t) is a local optima with respect to the two interchange neigh-
borhood. Ideally, the solution, X(t), at which the search stops is a global optima. However,
there is no guarantee of this for any of the location problems we have discussed nor is it
true for most DOPs of interest.

Algorithm 13.1: Rudimentary Two Interchange Search

Step 0: Choose X(0) by selecting p entries in V and set t ← 0.
Step 1: If no move δi,j ∈ ∆t is improving, stop.

X(t) is a local optima with respect to ∆t.
Step 2: Choose an improving δ∗

i,j ∈ ∆t.
Step 3: Apply δ∗

i,j to X(t) yielding X(t+1). Increment t if no moves remain in ∆t.
Return to Step 1.

Algorithm 13.1 becomes a multistart local search by wrapping a loop around it that
generates distinct starting solutions for Step 0. These solutions can be randomly generated
or determined by another heuristic. In the latter case, the heuristics are often constructive.
Greedily adding a site that improves the performance measure the most until p sites are
selected is one such example. Multistart local searches are easy to implement and provides
a metric for testing the quality of solutions generated by any competing metaheuristic. One
way to make an effective comparison is to assume a budget for the number of solutions to
be examined. If the metaheuristic cannot produce better solutions than a multistart local
search within the same budget the approach should be abandoned for that problem.
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13.4 Simulated Annealing

Simulated annealing (SA) was first proposed and used in statistical mechanics by Metropolis
et al. [14]. Not until Kirkpatrick et al. [15] and Cerny [16], however, was simulated anneal-
ing implemented as a heuristic for an NP-Hard combinatorial optimization problem, the
traveling salesman problem. There are two basic approaches to implementing SA. The first
is championed by van Laarhoven and Aarts [6], while the second is well represented by
Johnson et al. [17]. It is the latter approach that we will take. SA consists of a loop over a
block of code that generates a random move δ ∈ ∆(S). If δ(S), where S is the current state
of the procedure, yields a decrease in the objective function value, c(δ(S)) < c(S), then δ(S)
is immediately accepted as the new current state. However, if δ(S) yields an increase in the
objective function value, then δ(S) still may be accepted with some positive probability as
the new current state. Typically (and in our implementation) this probability remains fixed
for a predetermined number of random moves and is then decreased in a uniform manner.

Markov chain theory provides a basis for determining when simulated annealing produces
good results. Lundy and Mees [18] as well as Aarts and Van Laarhoven [19] provide detailed
descriptions as to how Markov chain theory is used to prove convergence of simulated
annealing. In particular, they show that at each temperature (each probability of acceptance
of a non-improving state) a homogeneous Markov chain is generated; the transition matrix
associated with the Markov chain is irreducible; and the state space is connected. Unfortu-
nately, theoretical convergence to a global optimum is only guaranteed when the number
of states visited is exponentially long. Consequently, practical implementations require a
knowledge of how to determine problem parameters so that the number of examined solu-
tions is not too many and the final solution quality is high. For an extensive survey of results
obtained by simulated annealing algorithms see Collins et al. [20] and Johnson et al. [17].

The paradigm for simulated annealing is physical annealing. If a metal or a crystal is
cooled too quickly (a greedy search), then the end product is poor. The metal may be brit-
tle and break easily or the crystal structure may be irregular. Slower cooling is the preferred
method. As a result of this physical analogy the problem parameters in SA are referred to
as the initial temperature, T0, the final temperature, Tf , and the cooling rate, Tempfac-
tor. However, as nice as this analogy is there are limitations. Johnson et al. [17] provide
an extensive set of experiments with SA’s problem parameters for the graph partitioning
problem (GPP). Selecting the values for these problem parameters can be a daunting task.
We will discuss two readily available implementations. One is given in Numerical Recipes
[21] and the other is given in Johnson et al. [17].

Although the physical annealing paradigm is helpful in explaining the process to scientists,
it does not really explain how the algorithm works in practice. I like to think of simulated
annealing as a game similar to one I played in the car on long trips. There are a set of
holes and a ball bearing in an enclosed hand-held game. The goal is to get the ball bearing
into a particular hole without getting stuck in any of the other holes. There are plastic
ridges that form a maze and, as you tilt the game, you are able to move through the maze.
In simulated annealing’s version of this game the objective function is traced out by the
plastic ridges and you try to get the ball bearing to end up in the hole associated with the
lowest valley (global minimum). The only control parameter is how vigorously you shake
the game to move the ball bearing out of undesirable holes. However, you are not allowed
to look at the game to see if you are in the correct hole (valley). The game proceeds by
successively decreasing the amount of shaking. Eventually the shaking is unable to allow an
escape from a hole. Hopefully, you are in the hole that is the global minimum. Of course
this oversimplifies simulated annealing but the visual image is a good one.
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The parameter T0 drives the probability of accepting nonimproving states—
exp(−∆obj/T ). For a fixed change in the objective function, T0 controls the amount of
shaking you are allowed to do. Moreover, if T0 is large enough you can shake your way
out of any local optima. Tempfactor denotes the rate at which T is to be decreased, while
sample size denotes the maximum number of moves sampled at each T . As there is no formal
stopping condition, a final value for the parameter T , Tf , must be specified. In Ref. [21],
additional parameters (nsucc and nover) are included for exiting the local improvement
phase of the algorithm early if a pre-specified (nover) number of successful (nsucc) moves
has been achieved. If these parameters are not chosen appropriately, simulated annealing will
produce poor results and exceedingly long execution times. A pseudocode for this version
of simulated annealing is given below.

T = T0
nsucc = 0
while (T > Tf ) do

do i= 1, sample size
[generate random move, compute ∆obj]
if (∆obj< 0 or uniform(0,1)< exp(−∆obj/T))then

[update system, obj = obj + ∆obj]
nsucc =nsucc +1

endif
if (nsucc ≥nover) exit loop

continue
T = T ·Tempfactor

end do

The parameters sample size, Tempfactor, nover, T0, and Tf are often problem specific.
As was shown by Lundy and Mees [18], the value of T0 must be much larger than the
difference between the worst objective function value and the best objective function value
to guarantee convergence to a globally optimal solution. Rather than specify a value for Tf

a maximum iteration bound as suggested in Ref. [18] may be used. Some experimentation
is involved in selecting the appropriate combination of Tempfactor, and sample size, the
maximum number of moves generated at each value of the parameter T (length of the
Markov chain).

Johnson et al. [17] discuss the usefulness of these parameters for the GPP. Moreover,
rather than use the somewhat unnatural parameters nsucc and nover they show that a
lower initial value of T0 achieves the same effect. In particular they found that rather
than selecting a value of T0 at which nearly every move (uphill or downhill) is selected,
a value of T0 at which 30%–60% of the moves examined are accepted is more effective.
They recommend a value of 40% for GPP and call this parameter initprob. In addition,
experiments with Tf led them to conclude that simulated annealing for the GPP should
be stopped when five consecutive temperatures led to less than 2% (labeled minpercent in
their parameter list) of the moves being accepted. Borrowing a term from physical annealing,
the authors refer to this as the SA process being frozen. In the pseudocode below frozen
is a counter used to determine when the frozen state occurs. Similar experiments led to
recommended values of Tempfactor = 0.95 and sample size = 16 N (here N = ∆(S) is the
neighborhood size). Lastly, the recommended choices for the above parameter values are
such that a suite of replications should be performed and the best solution found during
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the num reps replications recorded. Below is the pseudocode for this version of simulated
annealing.

Randomly select or construct an initial solution S.
Select T0 so that initprob = 0.40.
while (frozen < 5) do

do i= 1, sample size
[generate move, compute ∆obj]
if (∆obj< 0 or uniform(0,1)< exp(−∆obj/T))then

[update system, obj = obj + ∆obj]
nsucc =nsucc + 1
if current solution is best save it.

endif
continue
T = T ·Tempfactor
if nucc/sample size<minpercent

frozen= frozen + 1
else frozen = 0

end do

The robustness of the parameter choices given by Ref. [17] for the GPP is difficult to prove.
However, independent of Ref. [17], Kincaid [22] found that similar values worked well for two
location problems. Moreover, in Kincaid and Yellin [11] this version of simulated annealing
was shown to work well for yet another location problem. Of course there is no guarantee
that these parameter choices are best for every DOP, but they have proven robust enough to
serve as an excellent starting choice. In addition to the selection of these parameter values,
Ref. [17] also gives critical recommendations on how to improve simulated annealing.

For example, rather than randomly select a move δ ∈ ∆(S) use a random permutation
of ∆(S) and examine each move in order. Second, as we are starting at a value of T0
that does not randomly reorder the entire structure of an initial solution, starting from a
better than random solution is preferred. In particular, if the starting solution is constructed
by a process that is distinct from the mechanism used to improve solutions in simulated
annealing. Third, computing exp(−∆obj/T ) is expensive. The recommended approach is to
implement a table lookup scheme, which cuts the computation time of exp(−∆obj/T ) by a
third. For further details about these speedups see Ref. [17].

13.5 Plain Vanilla Tabu Search

Tabu search and, more generally, adaptive memory programming continues to have startling
success in efficiently generating high-quality solutions to difficult practical optimization
problems. Glover and Laguna [5] provides 42 vignettes, each of which describes a differ-
ent application of tabu search by researchers and practitioners. The applications include
standard problems such as the p-median problem, job shop scheduling, and the quadratic
assignment problem, as well as unusual applications including polymer chemistry, forest
management, and the control of flexible space structures (see Section 13.8).

If the topology of the solution space is such that there are no steep valleys or ridges then
only the most basic features of tabu search may be needed. We describe such a basic tabu
search in this section and call it plain vanilla tabu search (PVTS) to clearly distinguish it
from the more general methodology that tabu search encompasses.
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The definitions and notations that follow are taken from Glover [23,24] and Kincaid and
Berger [12]. For network location problems PVTS begins with an initial state S0, p entries
of V , chosen either at random or by some constructive heuristic. Next PVTS generates a
sequence of moves δ0, δ1, . . . which determines a sequence of states through which the search
proceeds. The mechanism by which a move is selected is crucial. PVTS, at state St, selects
the greatest available one-move improvement. That is, a next move δt is defined to be

c(δt(St)) = min
δ∈∆−τ+α

c(δ(St))

As will be described below, τ restricts the move set and α extends the move set. Without
the addition of τ and α the above equation would describe the move selection criterion in
a greedy local improvement search and the search would conclude with a local optima. In
effect, PVTS selects the largest downhill move, if one is available, or the least uphill move.
Hence, there is no natural stopping criteria and the length of the sequence of generated
moves must be specified.

PVTS attempts to avoid entrapment in local optima by keeping a list of previously
selected moves and deleting them from the move set ∆ for a state S in the hope of avoiding
a return to a previously observed state. A list of move attributes of length tabusize, called
a tabu list and designated by τ , is constructed and updated during each iteration of the
search. An example of a move for a location problem is to swap a pair of vertices (i, j) ∈V ,
where i is currently selected and j is not. The attributes of this move are the indices i and j,
and the designations drop for i and add for j are often applied.

An admissible move in PVTS is a move δ ∈ ∆ that is either not on the tabu list τ or
one that meets an aspiration level criterion. A best admissible move is one that yields the
greatest improvement or the least degradation in the objective function value (or any other
performance measure). The best admissible move is appended to the tabu list after the
examination of all moves δ ∈ ∆. Once the tabu list becomes full, which occurs after tabu
size iterations, the oldest move is removed. Moreover, it is possible for a move in τ to be
selected provided that it meets one (or more) aspiration level criterion. The purpose of an
aspiration level criterion is to choose good moves by allowing the tabu status of a move to
be overridden if the move satisfies a particular condition. We label the set of tabu moves
that meet an aspiration criterion α. The goal is to do this in a manner that retains the
search’s ability to avoid returning to a previously generated state (cycling).

Tabu restrictions and aspiration level criteria play a dual role in constraining and guiding
the search process. Tabu restrictions allow a move to be regarded as admissible if they do
not apply, while aspiration criteria allow a move to be regarded as admissible if they do
apply. There are at least three ways to avoid cycling (see Ref. [23]), which prevent the move
from S to δ(S):

1. δ(S) has been visited previously.
2. δ has been applied to S previously. [retracing]
3. δ−1 has been applied to S previously.

The first criterion is the strongest and is the only one of the three that fully assures cycling
will not occur. This criterion would require the search to store every state visited. Typically,
this requires too much memory and too large a computational effort to perform the necessary
comparisons. If a tabu move is deemed admissible, provided that only condition (2) is met,
then it is possible to reverse the move as soon as it is made. Hence, it makes sense to
test condition (3) in addition to (2). By using conditions (2) and (3) to avoid cycling and
allowing a tabu move that leads from state x to S(x) to be made—unless the move from
S(x) to x had occurred previously—the attempt to prevent a return to an earlier location
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will be more strongly supported than relying solely on condition (2). Conditions (2) and (3)
together are a close approximation of (1).

As it is impractical to store a large number of states, we need to find a way to store the
same information in a compressed form. One possibility for compressed storage is to use the
objective function value. The standard aspiration level criterion is an example of storing
information in such a compressed form. This criterion has the property that if the tabu
move (i, j) yields a state with the best objective function value encountered in any previous
iteration, then the move is allowed. If δ ∈ τ ⊆ ∆(S) and c(δ(S)) < cbest, then δ is admissible.
The tabu status is overridden, because the move δ meets the aspiration level criterion.
Cycling is avoided here since if δ(S) had appeared previously, then c(δ(S)) < cbest would
not be possible. This particular aspiration criterion is easy to implement but treats all states
with the same objective function value as if they were the same state. However, Kincaid and
Berger [12] found this simple aspiration level criterion to perform as well as more complicated
ones for a damper placement problem (see problem DPP1, described in Section 13.8).

13.6 Active Structural Acoustic Control (ASAC)

The optimization model in this section has a distinct network location flavor (Section 13.2),
but the performance measure is nonstandard. Once a set of candidate locations is chosen,
the solution of a complex valued least squares problem must be solved to provide the metric
for comparing sets of candidate locations. In addition, the utility of plain vanilla tabu search
(Section 13.5) is demonstrated.

Most air carriers use turboprop aircraft to transport passengers between local or nearby
airports and their hubs. Turboprop aircraft are preferred for short hops due to their superior
fuel efficiency at low speeds. However, the benefits of decreased fuel cost and increased travel
range come at the price of increased levels of cabin noise and vibration. Turboprop noise
levels are typically 10–30 dB louder than commercial jet noise levels.

Turboprop noise is fundamentally different from jet noise. The former is caused by peri-
odic sources such as rotating engine parts, rotating props, and by vortices shed from the
propellers. Turboprop noise spectrum is dominated by a few low-frequency tones. On the
other hand, jet noise is caused by random sources such as the mixing of high speed, high
temperature gases. Jet noise spectrum is dominated by high frequency broad band noise.
Jet noise can be controlled by putting sound absorbing material in the walls of the fuselage.
This passive treatment is not effective for propeller noise.

Interior noise levels are of concern to commercial airlines for three reasons. First, the
airlines must provide a comfortable working environment for their employees. Occupational
Safety and Health Administration (OSHA) mandates ear protection or restricted working
hours for employees who are exposed to high levels of noise. Second, the airlines must
attract customers. Uncomfortable noise levels may encourage the public to seek alternate
travel options. Third, the airlines must consider safety issues. High noise and vibration levels
cause fatigue in the airframe as well as fatigue in the passengers and crew.

Active control methods attempt to counteract propeller noise by introducing a secondary
(or multiple secondary) sound source that is of the same frequency and amplitude as the pro-
peller noise, but is 180◦ out of phase. Thus, in theory, the result is a complete silencing of the
propeller noise source. We consider an acoustic control model in which the control inputs,
which are used to reduce interior noise, are applied directly to a vibrating structural acoustic
system (e.g., an aircraft fuselage). The feasibility of this approach has been demonstrated by
using measured data from the aft cabin of a Douglas DC-9 fuselage. A simplified model of the
ASAC problem is used to explain the process. Assume that an aircraft fuselage is represented
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as a cylinder with rigid end caps and that a turboprop propeller is represented as an acoustic
point source with a frequency related to the propeller blade passage frequency. Piezoelectric
actuators bonded to the fuselage skin are represented as line force distributions in the axial
and azimuthal directions. With this simplified model, the point source produces predictable
pressure waves that are exterior to the cylinder. These periodic pressure waves cause pre-
dictable structural vibrations in the cylinder wall and predictable noise levels in the interior
space. The noise level at any interior microphone location depends on the control forces
applied at each piezoelectric actuator location. For a given set of sensor and actuator loca-
tions, the control forces that minimize the average acoustic response are easy to calculate.
However, methods for choosing good locations for the sensors and actuators are needed.

Here we will fix p microphone locations (sensors) and seek to determine the best set of
k actuator locations chosen from a set of q � k potential locations for the active controls.
The goal is to determine the force inputs and sites for the piezoceramic actuators so that
(1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell
is not increased; and (3) the power requirements needed to drive the actuators are not
excessive.

To model objective (1) a p by k complex transfer matrix H is determined. Each entry
of H provides the contribution of each of the potential k actuators sites to interior noise
reduction at each of the fixed p error microphone locations whenever a unit amplitude
input is applied to actuator site k. Objective (2) requires more information which will not
be described here. Lastly, since power is directly related to the magnitude of the force inputs
required, objective (3) can be measured by considering either the Euclidean or max norm
of the actuator force input vector.

A complex transfer matrix H can be generated (either experimentally or with a math-
ematical model) for the complete set of q actuator sites. A column j of H yields the con-
tribution of a unit amplitude input at actuator site j in controlling the noise at each of
the p sensors. Hence, given a particular set of k columns (actuators) the submatrix of H
induced by these columns, Hk, is the associated transfer matrix. Once a particular set of k
actuator sites have been selected then a force (amplitude and phase) must be selected for
each actuator so that the resultant force cancels out �p as nearly as possible. In the acoustic
literature the force vector �f is chosen as the solution of the complex least squares problem

min
f

‖Hk �f + �p ‖2 (13.1)

We note that although the usual convention is to have a subtraction operator in
Equation 13.1, the acoustic literature uniformly displays the plus operator. Thus, we adhere
to acoustic literature convention. The solution to Equation 13.1 is found by solving

Hk∗Hk �f = −Hk∗�p (13.2)

for �f (* denotes the complex conjugate transpose). This means that each time a different
set of k columns of H is selected a new complex least squares problem must be solved.

If there exists a column of H which is collinear with �p, then we would need only pick
this single actuator site, driven at the appropriate amplitude, and total silencing would
be achieved. Typically this situation does not exist. However, a likely set of columns for
a starting solution are the k columns of H most nearly collinear with �p. To find these
columns, we determine the angle between each actuator j site and �p. This is done by
calculating the dot product of each column of the H matrix, �hj , with the vector p and
dividing that product by the product of the norms of each. That is, the expression:

�hj · �p

‖�hj‖2‖�p ‖2
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1st control cross
section at x � 1.41m

FIGURE 13.1 Laboratory cylinder for ASAC test.

would calculate the cosine of the angle between the two vectors. As the actuators that would
be most effective, theoretically, in silencing the outside noise source would be those either
in phase or 180◦ out of phase, we seek cosine values close to either 1 or −1. Thus, the
k initial actuators are chosen that have the absolute value of the cosine closest to one. This
greedy heuristic for constructing initial solutions performed better than randomly selecting
actuator sites.

The performance of this set of k columns (or any set of k columns for that matter) is
measured on a decibel scale given by the expression below.

10 log10
‖Hk �f + �p ‖2

‖�p ‖2
(13.3)

The decibel value computed in Equation 13.3 compares the interior noise norm with actuator
controls in place with the norm of the uncontrolled interior noise. Thus, a negative decibel
(dB) level signifies a decrease in interior cylinder noise due to the control effects of the actu-
ators. An analogous decibel expression computes the vibration level on the cylinder shell.

As we mentioned earlier, a set of experiments with a laboratory test article (see Fig-
ure 13.1) have been performed and reported on in Palumbo et al. [25]. For these experiments
the transfer matrices were generated experimentally. The predicted performance of the best
actuator sites found for the mathematical model by tabu search are shown to correlate well
with the actual measured performance.

The cylinder in Figure 13.1 is a cartoon of the laboratory test article. The cylinder in
the laboratory tests is 3.6 m long and 1.68 m in diameter. The outer shell is a nine-layer
filament wound graphite epoxy composite. Total skin thickness is 1.7 mm. In an effort to
make the cylinder as similar as possible to a commercial fuselage the cylinder is stiffened
with composite stringers and ring frames. To complete the fuselage effect, three inner trim
panel sections are attached. Each trim panel has a honeycomb core sandwiched between
two graphite epoxy laminate sheets. The interested reader is referred to Lyle and Silcox [26]
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TABLE 13.2 Experimental Results with Actuator/Sensor Location
PVTS PVTS Modal Analysis

Freq. (Hz) Predicted (dB) Measured (dB) Measured (dB)

210 −5.3 −4.4 −2.1
230 −3.8 −2.5 −1.2
275 −5.7 −3.9 −2.7

for a detailed description of the laboratory test article. The monopole noise source was a
100 W electrodynamic loudspeaker. An array of eight piezoceramic patches was installed
on one of the trim panels. A set of six microphones was swept along a boom throughout
the interior of the cylinder (near the shell) and data were taken at 462 locations. The 462
transfer functions at these locations were used to construct transfer matrices (462 by 8)
for three frequencies—210, 230, and 275 Hz—of interest. The 230 Hz case has weak acoustic
modes but strong structural modes.

The laboratory test was done with only eight potential actuator sites of which four were to
be selected. Table 13.2 catalogs the performance of PVTS versus standard acoustical tech-
niques in the selection of the best set of eight sensors. The acoustical techniques (cf. [25])
involve engineers examining visual and numerical displays of the modal decomposition of the
interior pressure field �p and the individual actuator responses. Dominant modes in the inte-
rior pressure field are matched with dominant modes in the actuator responses. The columns
marked PVTS compare the predicted noise reduction versus the actual noise reduction mea-
sured in the laboratory. The column marked modal analysis shows noise reduction levels
achieved in laboratory tests run prior to the PVTS selection of actuator and sensor locations.

The good news in Table 13.2 is that the measured values for PVTS are nearly 1 dB better
than the modal decomposition analysis solutions. Hence, even for this relatively easy case
(only four actuators) the optimization approach proved superior. A second positive feature
is that the predicted performance, although always at least a 1 dB overestimate, is still a
reasonable predictor of the measured performance. This provides evidence that the model
assumptions made in the optimization approach are not too far off. A third positive result of
these experiments is that the acoustic engineers now believe that the optimization approach
is an important contributor in finding good solutions to the ASAC problems.

Much additional work has been done on this problem. The methodology in this section
was used to select actuator locations for an actual aircraft that was flight tested. Upon
completion of the flight test experiments the technology was transferred for development to
a private corporation. For additional information see Refs. [25] and [27–30].

13.7 Nature Reserve Site Selection

A variety of heuristic solution techniques are highlighted in this section for two distinct
network location models—the maximal covering species problem (MCSP) and the maximal
expected coverage problem (MECP). For MCSP, a set of computational experiments eval-
uating the performance of competing multistart searches (Section 13.3) with tabu search
(Section 13.5) is provided. For MECP, results for a tabu search are presented and are
contrasted with results for a linear programming approximation for MECP. In both MCSP
and MECP experiments with two types of tabu list structures are given.

In recent decades, human population growth and land development patterns have threat-
ened to destroy many ecosystems and, as a direct result, the species that are part of and
depend upon these ecosystems for survival. Consequently, nature reserves and parks are
being identified and established as much for species preservation and the maintenance of
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biological diversity as they are for human enjoyment. As selection of nature reserve sites
has become more complex, methods drawn from operations research have been introduced
to aid in the solution of this problem. One approach has been the species set cover prob-
lem (SSCP) [31], which seeks to minimize investment while protecting all target species.
A related model is the selection of a network of reserve sites so as to maximize preserva-
tion for a specified level of investment. This latter model is closely related to the maximal
covering location problem. Consequently it is referred to as the MCSP [32,33]. In both the
MCSP and the SSCP, a species is said to be covered if the species is present in at least
one site selected for the reserve system. Further, these models assume that the presence or
absence of a species in a site can be known with certainty. If, instead, we assume that the
information as to where a species resides in an ecosystem is not known with certainty or if
the foraging range of a species makes it difficult to pinpoint a home site, then probabilistic
models are needed. One such model is the MECP. To be able to formulate an MECP the
probability that a species is present in a given site must be specified. These probabilities
are assumed to be independent. That is, the probability that one species is located in a
particular site is independent of any other species’ presence or absence.

We develop and test the performance of heuristics for both MCSP and MECP. Following
the literature [34,35] we use the Oregon Terrestrial Vertebrate dataset [36] as a testbed.
This dataset has location information for 426 terrestrial vertebrate species for the state
of Oregon. The data is organized by partitioning the state into 441 regular hexagons (see
Figure 13.2). The bulk of the material found in this section appears in [37].

Both MCSP and MECP are NP-Hard [34] and thus solution by exact methods (e.g., branch
and bound) can be troublesome for problem sizes of interest to the ecological commu-
nity. Hence, heuristics are popular alternatives and include greedy adding and interchange
heuristics, which require significantly less time, but may yield suboptimal solutions. (See
Refs. [35] and [38] for a more complete summary and comparison of previous computational
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FIGURE 13.2 Hexagon partition and numbers for the state of Oregon.

© 2008 by Taylor & Francis Group, LLC



Ch013.tex 22/10/2007 14: 8 Page 13-15

Metaheuristics for Discrete Optimization Problems 13-15

experience.) In addition to heuristics, relaxation and approximation techniques are available.
Of particular interest here is the linearized maximal expected covering problem (LMECP)
developed by Camm et al. [34] as an approximation to MECP.

An additional issue is the utility of the information provided by the optimization model to
the ecological community. Both MECP and MCSP are, at best, approximations of the true
optimization model. Hence, the provision of a single solution is problematic. As in many
public sector decision problems, tradeoffs are essential and the ability to provide a decision
maker with a collection of high-quality solutions from which a network of reserve sites can
be selected is a worthy goal.

13.7.1 Problem Formulations and Data Details

The MCSP can be formulated as the following binary integer program [39,40].

max
∑
i∈I

yi

subject to yi ≤
∑

j∈Mi

xj , ∀i ∈ I

∑
j∈J

xj = k

yi, xj ∈ {0, 1}, ∀i ∈ I,∀j ∈ J

where yi and xj are binary decision variables, defined such that

yi =
{

1 if species i is covered in the reserve network
0 otherwise

xj =
{

1 if site j is selected for the reserve
0 otherwise

In addition, I is the set of all species, J is the set of all potential reserve sites, and Mi is
the set of sites in which species i resides.

The MCSP objective function maximizes the total number of species covered by the
reserve system. The first constraint states that for a species to be covered, it must be present
in one or more of the sites selected for the reserve system. The next constraint restricts the
number of sites selected to k. Finally, the last constraint requires that all decision variables
are binary. Extensions of this model are possible [41] and include budget constraints and
objective function coefficients to reflect the conservation value of a species.

The MECP can be formulated as a binary nonlinear integer program [34]

max
∑
i∈I

⎡
⎣1 −

∏
j∈J

(1 − pijxj)

⎤
⎦

subject to
∑
j∈J

xj = k

xj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J

where xj are binary decision variables, defined such that

xj =
{

1 if site j is selected for the reserve
0 otherwise
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In addition, I is the set of all species, J is the set of all potential reserve sites, pij is the
probability that species i exists and will survive at site j, and k denotes the number of
sites to be selected for the reserve. The MECP objective function maximizes the expected
number of species covered by the reserve system. The first constraint restricts the number of
sites selected to k. The remaining constraints require that all decision variables are binary.

The final model is the LMECP established in Ref. [34]. The development of LMECP is not
duplicated here as the final model provides little insight without the complete derivation.
LMECP is a binary integer linear program. The error in the approximation of LMECP to
MECP can be controlled by the number of breakpoints. A more accurate approximation
of the MECP is obtained with more breakpoints, but at the expense of additional decision
variables. Following Ref. [34], the number of breakpoints is set at 10 for each run of the
model for all values of k tested. Similar extensions for MECP exist as for MCSP [41].

The Oregon Terrestrial Vertebrate dataset [36] has location information on 426 species
spread over a grid made up of 441 hexagons (see Figure 13.2). For each hexagon, a proba-
bility is assigned to each species existence. The probabilities are categorized as follows:

• 0.00: Not present—The habitat is unsuitable for the species.
• 0.10: Possible—The habitat is of questionable suitability for the species, but

expert local opinion is that the species might occur in the site.
• 0.80: Probable—The site contains suitable habitat for the species and there have

been verified sightings in nearby sites; local expert opinion is that it is highly
probable that the species occurs in the site.

• 0.95: Confident—A verified sighting of the species has occurred in the last two
decades.

Notice that the time span for the most confident classification is 20 years, while survival
data on the species is not included.

For the MCSP the probability that species i is found in hexagon (site) j must be either
0 or 1. Following Ref. [35] let entries of 0.00 and 0.10 be mapped into 0 and entries of 0.80
and 0.95 be mapped into 1. Unfortunately, such certainty is not guaranteed, leading to the
designation of soft for these datasets. There are a variety of reasons for this lack of certainty.
Terrestrial vertebrates are ambulatory and the location in which they are observed may not
be their primary residence. In addition, the certainty of the observation itself may be in
question if the species is viewed from a distance or if it is based upon an interview with a
time lag. Lastly, population dynamics may affect the certainty of a species location.

13.7.2 MCSP Interchange Heuristics

We test the performance of both first-improving and best-improving heuristics for MCSP
on the terrestrial vertebrate species survey data from the Biodiversity Research Consortium
for the state of Oregon [36]. We note that a similar set of experiments was done in Ref. [35]
for the same dataset. These authors found that when compared to the 18 heuristics tested in
Ref. [38], the number of species covered by a first-improving heuristic was always equal to or
better than the number covered by the best solution found across all 18 heuristics, for each
value of k from 1 to 24. We provide a similar set of experiments as in Ref. [35]. However, we
also compare first-improving’s performance against best-improving as well as embed first-
improving within a tabu search in Section 13.4. For comparative purposes, MCSP is solved
exactly. The results are recorded in Tables 13.3 through 13.7.

The first two columns in Table 13.3 list the number of sites to be selected and the corre-
sponding optimal objective function value. Only 23 sites are needed to cover all 426 species.
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TABLE 13.3 Comparative Results of Optimal
Solution versus Interchange Heuristics

Best-Imp. Best-Imp. First-Imp.
Sites Opt 1 Start Multi-Start Multi-Start

1 254 254 254 254
2 318 318 318 318
3 356 356 356 356
4 374 374 374 374
5 384 383 384 384
6 390 388 390 390
7 395 393 395 395
8 400 397 400 400
9 403 400 403 403

10 406 401 406 405
11 408 403 408 408
12 410 406 410 410
13 412 407 412 412
14 414 410 414 414
15 416 411 416 416
16 418 412 417 417
17 419 413 419 418
18 420 414 419 420
19 422 415 421 421
20 423 416 422 422
21 424 418 423 422
22 425 419 423 423
23 426 420 424 424
24 426 421 425 425
25 426 421 426 426

TABLE 13.4 Frequency of Best
Observed Solutions for First-Improving
Sites # Reps Freq.

1 1 50
2 3 13
3 1 48
4 1 41
5 1 43
6 2 25
7 6 9
8 21 1
9 11 3

10 1 9
11 12 3
12 12 3
13 3 3
14 1 1
15 21 1
16 3 5
17 3 8
18 25 2
19 47 1
20 47 1
21 17 4
22 19 5
23 7 8
24 7 5
25 7 5

TABLE 13.5 Comparison of First-Improving and Tabu Search Solutions
First-Imp TabuA TabuB

Sites Opt 50 Reps 2k Asp 2k Asp

16 418 417 418 0 418 1
17 419 418 419 0 419 1
18 420 420 420 0 420 0
19 422 421 421 0 421 0
20 423 422 422 0 422 0
21 424 422 423 0 423 0
22 425 423 424 0 424 1
23 426 424 425 0 425 1
24 426 425 426 0 426 2

TABLE 13.6 Tabu Search Results for MECP
k MECP Locations of Sites

1 217.4 319
2 288.5 135, 395
3 330.7 55, 135, 438
4 354.2 55, 135, 375, 438
5 368.1 55, 135, 274, 375, 438
6 376.7 55, 121, 135, 274, 375, 438
7 384.2 47, 55, 135, 289, 319, 395, 438

10 398.4 9, 46, 135, 268, 274, 345, 357, 375, 428, 440
13 407.2 9, 20, 27 121, 135, 268, 274, 314, 345, 357, 375, 428, 440
15 411.9 9, 46, 75, 121, 135, 141, 268, 273, 314, 324, 345, 357, 375, 428, 440

The third column of Table 13.3 records the objective for a single replication of the best-
improving heuristic for k = 1, . . ., 18 when the first k sites are chosen as the initial starting
solution. The progress of the search is even more surprising as this is such a poor starting
solution. All of the first k sites are clumped together in the northeast corner of Oregon
(see Figure 13.2). The maximum relative error between the best-improving solution and the
optimal solution is 1.67%.

Columns 4 and 5 of Table 13.3 record the best solutions found with 50 restarts of the
best-improving and first-improving heuristics, respectively. Starting solutions for each of
the multiple starts are obtained by randomly permuting the 441 sites and then selecting
the first k indices as the initial set of selected sites. In column 5 the optimal solution was
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TABLE 13.7 Tabu Search Results for MECP—with Replications

Previous Avg Tabu Avg Avg
k Best MECP Tenure # Asp Itrs

7 384.2 384.11 20 0.6 18.7
383.95 10 0.1 18.1
384.22 4 3.1 19.5

10 398.4 398.22 20 0.7 18.2
398.36 10 1.5 21.7
398.36 5 5.7 22.0

13 407.2 407.23 20 0.9 27.6
407.20 10 0.9 27.3
407.22 7 6.8 25.6

15 411.9 411.67 20 1.8 26.6
411.67 10 1.3 26.5
411.84 8 5.2 24.3
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FIGURE 13.3 Average number of iterations: first-improving versus best-improving.

found at least once (see Table 13.4) out of the 50 starts for all values of k from 1 to 15. For
k > 15 the best solution differs by at most two sites from the optimal solution. For k > 18
neither heuristic is able to uncover the optimal solution. Table 13.4 records the frequency
with which these best solutions are found for first-improving search over the 50 replications.

How do the performances of first-improving and best-improving compare? The solution
quality is nearly identical. See columns 4 and 5 of Table 13.3 for the best solutions found.
The boldface values highlight the differences between the two heuristics. Out of the 25
experiments there are 21 ties, three wins for best-improving, and one win for first-improving.
However, both the average CPU time and the average number of iterations decreases dra-
matically for first-improving when compared to best-improving as k increases. Instead
of increasing with the problem size parameter k, as in the case for best-improving, the
average number of iterations remains nearly constant between two and three for the first-
improving heuristic. Figure 13.3 plots the average number of iterations required for both
best-improving and first-improving, thus illustrating a dramatic difference between the two
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approaches. Please recall that one iteration of first-improving requires a complete perusal
of all possible two interchanges, and that multiple moves can be accepted during a single
iteration—for example, when k = 10 each iteration of first-improving (or best-improving)
examines k(n − k) = 10(431) moves (interchanges). The difference is that best-improving
selects only one move in ∆ while first-improving may select many improving moves. The
CPU times for best-improving are growing much faster than for first-improving, with nearly
an order of magnitude difference when k = 25. As both approaches provide solutions of sim-
ilar quality, first-improving is the clear winner for MCSP.

13.7.3 Tabu Search for MCSP

Next we develop a simple tabu search for MCSP. We embed first-improving within tabu
search. We note, however, that after the first two to three iterations very few improving
interchanges exist. Consequently, after iteration three first-improving behaves like best-
improving. The entire neighborhood is searched for every iteration to find an improving
or at least a nonimproving solution. The question to resolve is whether the ability of tabu
search to move away from local optima and continue searching for other local optima will
outperform the first-improving approach of the previous section [24,42].

One of the decisions that must be made to implement a tabu search is when to terminate
the search. We follow the typical practice and set an iteration limit. As the first-improving
heuristic required between two and three iterations for each of the 50 random starts, we
let the maximum number of iterations be 100. Other decisions required to implement tabu
search include how long a move should remain tabu (also called the tabu tenure of a move)
and whether both the site dropped and the site added should be tabu or only one of the
pair. We experiment with two different types of tabu moves. First, the complete move (drop
and add) is made tabu—TabuA. Second, only the dropped sites are tabu—TabuB. That
is, adding a dropped site back into the solution is tabu. Finally, we must decide what the
aspiration criterion will be and if it should be invoked. Again, following standard practice
[42] our aspiration criterion allows the tabu status of a move to be ignored if its objective
value is better than the current best objective value.

The first-improving heuristic finds optimal solutions for all k ≤ 15 and the frequency with
which optimal solutions are uncovered is large (see Table 13.4) for k ≤ 6. Consequently,

the objective value for both types of tabu lists, with a tabu tenure of 2k. These values
are compared to the optimal objective value (column 2) and to the best values found by the
first-improving heuristic of the previous section (column 3). Both implementations of tabu
search find the same or better objective values than 50 replications of first-improving. TabuA
and TabuB yield the same objective values for all k. TabuA was relatively insensitive to the
tabu tenure parameter and values between k and 3k typically yield the same solutions. The
tabu tenure value was less robust for TabuB. We report values found with a tabu tenure of
2k for both TabuA and TabuB. The only exceptions are for k = 22, 23, and 24 for TabuB. For
k = 22 and 23 a tabu tenure of size k was best, while for k = 24 a tabu tenure of 1.5k yielded

met the aspiration criteria, while the aspiration criteria were met several times for TabuB.
In particular, the aspiration criterion for TabuB always led to the best observed solution
for the entire run. It is not surprising that TabuB utilizes the aspiration criteria since the
percentage of available moves held tabu by this approach is much greater than for TabuA.

How does the computational effort for tabu search compare with our earlier winner—
first-improving multistart? The average number of iterations needed by first-improving is
nearly constant at 2.5 across all values of k. The average number of restarts, before the best
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observed value out of 50 restarts is found, is 15.7 for k between 11 and 25. For all k ≤ 15 the
best observed value over the 50 replications is optimal. But for k ≥ 16 it is not. Moreover, for
k ≥ 16 the number of replications needed to uncover the best observed solutions (see Table
13.4) varies between 1 and 47 (k = 19, 20). We argue that, a priori, it is impossible to know
how many restarts will be needed and since at least 47 must be done, 50 is a reasonable choice
for the number or restarts. How does this compare with tabu search? For TabuA the average
iteration at which the best solution is found is 19.8 with a range from 3 to 42. For TabuB
the average is 24.0 and the range is from 3 to 59. Since at least 59 iterations are needed,
60 iterations is a reasonable choice as an iteration limit for TabuB, while a 50 iteration
limit suffices for TabuA. (We note that if a best-improving search is embedded within our
tabu search 100 iterations are needed to ensure high quality solutions.) The CPU times
for TabuA (50 iterations) increases linearly from a time of 9.1 s when k = 16 to 13 s when
k = 24. TabuB follows a similar pattern with 15 s needed to complete 60 iterations of TabuB
for k = 24. Letting the tabu search CPU times serves as a constraint for first-improving
then 25 restarts of first-improving (on average) can be completed in 13 s (28 restarts in 15 s)
when k = 24. Only three restarts for best-improving can be completed in 15 s for k = 24.
Thus, TabuA and TabuB easily dominate best-improving when a CPU budget is imposed.
When restricted to 25 (or 28) restarts the results for first-improving (column 3, Table 13.5)
remain the same with the exception of k = 19 and k = 20. The best observed solution has an
objective value of 420 for k = 19 and 421 for k = 20 when restricted to 25 (or 28) restarts.
We note as well that, like the multistart approach, tabu search uncovers a number of local
optima that may be recorded as the search progresses.

13.7.4 Heuristics for MECP and LMECP

Following Ref. [34], the resulting LMECP with 10 breakpoints for the Oregon Terrestrial
Vertebrate dataset has 2256 real variables, 441 binary variables, and 1279 constraints. The
AMPL model and data were obtained from the authors of Ref. [34]. The LMECP model
was run for various values of k. As was mentioned in Ref. [34], running the model for k = 7
sites was quite lengthy. This was true for our implementation as well with over four wall
clock hours required for k = 7 (computing environment was a network of Pentium 4s).

Next, we develop and test the performance of a tabu search for MECP. As we will see,
the solutions generated by these approaches are competitive with the approximate solutions
generated by LMECP and require far fewer computational resources. We begin with a
simple tabu search approach. The embedded heuristic is a best-improving two-interchange
heuristic described earlier for MCSP. Unlike MCSP, first-improving found inferior solutions
(on average) when compared with best-improving for MECP. For example, 10 replications of
a first-improving tabu search for k = 10 had an average best objective value of 397.97 while
10 replications of a best-improving tabu search for k = 10 had an average best objective
value of 398.36. While it is still true that a first-improving tabu search requires only two to
three iterations to find its best solution, we chose the higher solution quality for our reported
results in this section. As was the case for TabuA for MCSP, the solution quality found by
our tabu search for MECP is not particularly sensitive to the tenure of the tabu moves.
That is, tabu tenures from 6 up to 20 yield the same best solutions. We note, however, that
for shorter tabu tenures the aspiration criterion is invoked more frequently. The stopping
condition is as before—an iteration limit. For all k ≤ 15 the maximum iterations allowed
is 50. The same simple aspiration criterion as before is also used—the tabu status of a move
is ignored if it leads to a solution whose value is better than the current best. Initial solutions
are generated as we did for MCSP. Randomly permute the 441 sites and select the first k
as the initial set of sites. Table 13.6 records the best solutions found by our tabu search.
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The results for k = 1 to k = 7 in Table 13.6 are nearly identical to the solution reported in
Ref. [34] for LMECP. In Table 13.6 the sites that are different than those chosen in Ref. [34]
are in boldface. The solution values in column 2 are identical to those in Ref. [34] except for
k = 6 where there is a difference of 0.2. One pair of sites that are different (289 and 274) is
adjacent, so this is a small change. But the other pair (47 to 121) has a spatial separation
of three hexagons, which is a significant change. Unlike LMECP computation time is not
restrictive so we report solutions on larger values of k as well. In general, heuristics for
the larger values of k run in minutes while LMECP took more than 4 wall clock hours
for k = 7.

Table 13.7 records experiments with three different tabu restrictions, one row for each
type of tabu move in columns 3 through 6. In each case 10 replications are performed. Each
set of 10 replications takes roughly 15 min on a Pentium IV computer for k = 15. Computing
times are shorter for smaller values of k. The first row, for each k, is the approach recorded
in Table 13.6—both the site added and the site removed are tabu. The second row, for
each k, makes it tabu to add a site that has been removed. The third row, for each k, makes
it tabu to remove a site that has been added. Column 3 gives the average best objective
value over the replications. Column 5 records the average number of tabu interchanges that
meet the aspiration criterion, while column 6 records the average iteration at which the best
solution was observed. Clearly the third method makes the greatest use of the aspiration
criterion, which can be partly explained by the restriction that the tabu tenure can be no
larger than k. If the tabu tenure is larger than k then no interchanges would be allowed. We
found that a tabu tenure of 
k/2� worked best. All implementations of tabu search were able
to uncover the best observed solution. Although all three versions of tabu search performed
well our recommendation is that the tabu restriction associated with row 3 of Table 13.7 is
the best (tabu to add a site that has been removed). Moreover, we note that for all three
tabu restrictions the solution quality is worse if the aspiration criterion is omitted.

13.8 Damper Placement in Flexible Truss Structures

The damper placement problem described in this section is similar to the p-dispersion-sum
problem (Section 13.2). A tabu search is developed for this problem that includes more
advanced features than those described in Section 13.5. In particular a recency-based diver-
sification scheme is shown to yield high-quality solutions. A comparison is made between
starting tabu search from a random set of damper locations versus using the result of a lin-
ear programming relaxation to generate an initial solution. In addition, tabu search results
are compared to an off the shelf branch and bound code as well as simulated annealing.

The demand for larger-sized space structures with lower mass has led to the development
of highly flexible structures where, in effect, every point can move relative to the next.
Traditionally, structural motion is viewed more simply in terms of a sum of several dozen or
more independent motions called natural motions. The problem of controlling the motion
of a flexible structure is then reduced to controlling the natural motions. Associated with
each natural motion are three parameters: a mode that is a natural spatial shape, a natural
frequency that expresses the rate of oscillation, and a natural decay rate that is a measure
of the time required for the motion to decay. The contribution of each natural motion to
the overall motion depends on the degree to which it is excited by external forces.

The overall structural motion of a flexible truss structure can be reduced by the use of
structural dampers that both sense and dissipate vibrations. We focus on where to locate
these dampers so that vibrations arising from the control or operation of the structure and
its payloads, or from cyclic thermal expansion and contraction of the space structure, can
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FIGURE 13.4 CSI Phase I Evolutionary Model (CEM).

be damped as effectively as possible. There are several mechanisms available for vibrational
damping. We consider the replacement of some of the truss members by active dampers
that sense axial displacement (strain) and induce a compensating displacement. A related
option is to replace some of the truss members with passive dampers which dissipate strain
energy due to their material properties. Each of these techniques for damping increases
the weight and cost of the truss structure, as well as changing the stiffness properties of
the structure. Hence, structural designers are required to locate as few dampers as possible
and still maintain an appropriate level of vibrational damping. The results in the following
sections are taken primarily from Kincaid [43].

13.8.1 Optimization Models

The CSI Phase I Evolutionary Model (CEM) in Figure 13.4 is an example of a large flexible
space truss structure. (Please ignore the manual/optimal labeling in Figure 13.4 as it only
shows up in color. Moreover, the labeling is not referenced in the ensuing discussion.) Let
nmode denote the number of modes and nmemb denote the number of truss members in
the structure. A normal modes analysis of a finite element model of this structure yielded
a 10 (nmode) by 1507 (nmemb) modal strain energy matrix. Let D denote this matrix with
row index set I and column index set J. The entries in the matrix have been normalized so
that each dij denotes the percentage of the total modal strain energy imparted in mode i
to truss member j.

In this section, we formulate two DOPs. The goal in each of the problems is to select p
truss members to be replaced by active (or passive) dampers so that the modal damping
ratio is maximized for all significant modes. Maximizing the modal damping ratio is a widely
accepted goal in damper placement problems (cf. [44]). However, the modal damping ratio
is difficult to determine explicitly and, consequently, the placement of active (or passive)
dampers has proved difficult (cf. [45] and [46]). Both active and passive dampers dissipate
forces that are internal to the structure and are most effective replacing truss members
with maximum extension or compression. The truss elements with maximum internal dis-
placement are those with the largest strain energy over all modes. Given a finite element
model and the results of a normal modes analysis, the modal strain energy in each candidate
location (truss member) for each significant normal vibration mode can be estimated quite
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accurately. The damping achieved with active dampers depends on the properties of the
damper and the control law that is implemented. We use a force-feedback control law (cf.
[46]) yielding damping ratios that are directly proportional to the fraction of modal strain
energy.

The first damper placement problem (DPP1) assumes that the damping effectiveness
of each active (or passive) damper is the same over all vibrational frequencies of interest.
Hence, the maximization of the modal damping ratio for all modes can be accomplished by
selecting the p damper locations that maximize the minimum sum of modal strain energy
over the p chosen locations. Padula and Sandridge [45] formulate DPP1 as a mixed binary
integer linear program. Their formulation is given below.

max β

subject to
nmemb∑

j=1

dijxj ≥ β ∀ i = 1, . . ., nmode

nmemb∑
j=1

xj = p

β ∈ R, xj ∈ {0, 1} ∀ j = 1, . . ., nmemb

Alternatively, DPP1 may be viewed as a combinatorial optimization problem. That is, given
D we seek to find the nmode by p submatrix whose smallest row sum is as large as possible.
Let Z(X) = mini∈I

∑
j∈X dij and let | · | denote the cardinality of the set X. Then DPP1

becomes

max
X⊆J

Z(X)

subject to |X| = p

Heuristic algorithms for DPP1 were first introduced by Kincaid and Berger [12] for a
tetrahedral truss structure developed for NASA at the MIT Space Engineering Research
Center (cf. [51]). This symmetric structure had 600 truss members and 34 vibrational modes
of interest. The heuristics tested in Ref. [12] included a variety of tabu search heuristics for
DPP1. DPP1 was studied as a maxminsum location problem on tree graphs in Ref. [47].
Characterizations of the optimal solutions for small values of p were obtained.

Unlike active dampers, each passive damper has a particular frequency, ω̂, at which its
damping effectiveness is best. The damping effectiveness, e(ω), deteriorates the further
the modal frequency, ω, is from ω̂. A typical graph of e(ω), where the y-axis e(ω), des-
ignates the fraction of mean strain energy dissipated by the passive damper, is roughly
ski-sloped shaped. Let ωi for all i= 1, . . ., nmode denote the frequencies of the nmode sig-
nificant modes of vibration for CEM. We note that in the special case when ω̂ is identical
for each of the passive dampers, and we replace each entry dij of D with e(ωi) · dij (where
e= (e(ω1), . . ., e(ωnmode))), then DPP1 is an appropriate model.

Although there are some manufacturing restrictions, passive dampers can be designed so
that ω̂ occurs at nearly any frequency of interest. Table 13.8 lists the 10 modes considered
in the CEM model and their frequency ωi in Hz. In particular, we assume that passive
dampers can be designed so that ω̂ is any one of the nmode frequencies (vibrational modes)
of interest. Further, we assume there is no advantage in designing the passive dampers to
have ω̂ at a value other than ω1, . . ., ωnmode.
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TABLE 13.8 Ten Modes for CEM and Their Frequencies

Mode 1 2 3 4 5 6 7 8 9 10

ωi,Hz 1.498 2.434 2.590 4.994 5.648 5.740 6.150 6.726 6.801 7.830

To extend model DPP1, we make nmode copies of D and pre-multiply each row i of each
copy of D by ek(ωi)—the damping effectiveness associated with mode i when the peak
design frequency is ωk. Each of the resulting nmode strain energy matrices corresponds
to one of the potential design variable values of ω̂. In addition, a new set of constraints
must be added to allow at most one of the xkj variables to be 1 for each j. The resulting
mixed binary integer linear program is given below. For CEM, there will be 15,070 binary
variables, 1 continuous variable, and 1518 constraints. We note that in practice this model
would require nmode prototype passive dampers to be built and tested, so that the damping
effectiveness values are available. This formulation, DPP2, is new and is given below.

max β

subject to
nmode∑

k=1

nmemb∑
j=1

ek(ωi)dijxkj ≥ β ∀ i = 1, . . ., nmode

nmode∑
k=1

xkj ≤ 1 ∀ j = 1, . . ., nmemb

nmode∑
k=1

nmemb∑
j=1

xkj = p

β ∈ R, xkj ∈ {0, 1} ∀j = 1, . . ., nmemb; k = 1, . . ., nmode

We illustrate DPP2 with the following small example. In this example, there are two
modes to be damped, and four truss members that may be replaced with p = 2 passive
dampers. The mean strain energy matrix D is

(
.25 .30 .20 .25
.10 .20 .50 .20

)

Each of the p passive dampers may be manufactured so that its peak damping effective-
ness coincides with ω1 (mode 1) or ω2 (mode 2). Assume that e1(ω1) = 0.25, e1(ω2) = 0.20
e2(ω1) = 0.15, and e2(ω2) = 0.30. There are

(
4
2

)

=6 combinations of two truss members to be
replaced with passive dampers. Coupled with the two manufacturing design choices for each
passive damper, we get a total 24 possible solutions. Consider the solution that replaces
truss members (columns) 2 and 3 with passive dampers. The passive dampers replacing
truss members 2 and 3 are designed to damp most effectively for mode 1 and mode 2,
respectively. The corresponding objective function value is

min{e1(ω1)d12 + e2(ω1)d13, e1(ω2)d22 + e2(ω2)d2}

= min{(.25)(.30) + (.15)(.20), (.20)(.20) + (.30)(.50)}

= .105
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13.8.2 Tabu Search for DPP

The basic solution approach for TS consists of a construction phase that generates a starting
solution and an improvement phase that seeks to iteratively improve upon the starting solu-
tion. After max–it iterations of the improvement phase we do one of the following; intensify
the search by restarting the improvement phase at the current best solution: or diversify the
search by restarting the improvement phase in an unexplored region of the solution space;
or stop and display the best solution found.

TS begins with an initial state S0 ∈
∑

that is either chosen at random or constructed
algorithmically. For our dataset, D, random solutions are easily generated. The p columns
are randomly chosen from the nmemb = 1507 available entries. Several possibilities exist for
constructing an initial state. One heuristic is to pick the p column indices corresponding to
the p largest entries of D. This heuristic did not perform any better than randomly selecting
p column indices of D. A second heuristic is based on solving the linear programming
(LP) relaxation of the integer programming formulation presented in Section 13.2. Solve
the LP-relaxation and pick the p largest of the nonzero decision variables in the LP optimal
solution as our initial state X0. Tables 13.9 through 13.11 catalog the performance of this
second heuristic.

The improvement phase is a greedy local improvement scheme. That is, from a state St, we
select a move that generates the greatest one move improvement in the objective function.
That is, we select a move δt from among all p · (nmemb− p) pairwise interchanges that
satisfies c(δt(S′

t)) = maxδ∈∆(St) c(δ(St)). Once the interchange is made, the set of all pairwise
interchanges is generated again, and a move that improves the objective function the most is
selected. This process continues until there are no more local changes available that lead to
an improved solution. An important step in defining a local optimization scheme is specifying
a method for perturbing the current solution to obtain other solutions. The neighborhood
structure we use in our implementation of TS is the p(nmemb − p) neighborhood structure.
The nmemb column indices of D are partitioned into two sets, set X of size p and set X ′

of size (nmemb − p) (X ′ is the complement of X in the column index set J). To generate
neighbors, we swap one entry from the set Xwith one entry from the set X ′. As an example,
suppose we let J = {1, 2, 3, 4, 5} and p = 2. If X = {1, 3} and X ′ = {2, 4, 5}, then one neighbor
would be X = {2, 3} and X ′ = {1, 4, 5}. The size of this neighborhood is O(p(nmemb − p)).
Every member of the neighborhood is examined before the best admissible move is selected.

The primary goal of the short-term memory component of TS is to permit the heuristic
to go beyond points of local optimality, while still making high-quality moves. Choosing the
best admissible move is a critical step at each iteration of the improvement scheme. It is

TABLE 13.9 Best Objective Function Value Comparisons
P LP U. Bnd IP/BB (%) Tabu (%)

8 1.6144 1.6131 81.9 94.1
16 3.1629 3.1110 89.3 95.3
32 5.8867 5.8838 96.4 98.5

TABLE 13.10 Greedy Local Improvement Schemes with Different Initial Solutions
P Random % Time (min) IP/BB (%) Time (min) LP (%) Time (min)

8 81.3 3 84.7 1 88.6 1
16 86.9 18.5 92.4 4.5 94.3 1
32 90.1 37 97.9 2 98.4 4
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TABLE 13.11 Performance of Tabu Search with Different Initial Solutions
P Random (%) Time (min) IP/BB (%) Time (min) LP (%) Time (min)

8 88.6 14 84.7 14 94.1 14
16 95.3 210 3.3 56 95.3 56
32 98.2 270 97.9 57 98.5 57

this step that embodies the aggressive orientation of the short-term memory. Each of the
candidate moves is evaluated in turn. Initially, the evaluation of the candidate moves can
be based on the change produced in the objective function value. As the search progresses,
however, the form of evaluation employed becomes more adaptive and may incorporate
references to intensification and diversification.

Search methods that are based on local optimization often rely on diversification strate-
gies to increase their effectiveness in exploring the solution space. Some of the strategies
are designed with the chief purpose of preventing cycling, while others attempt to impart
additional robustness or vigor to the search. Kelly et al. [48] discuss two designs for diver-
sification strategies—recency-based and frequency-based. We use a recency-based diversifi-
cation scheme in our implementation of TS.

A recency-based diversification scheme is intended to direct the search to a solution that
is “maximally diverse” with respect to the local minimum most recently visited. There are
two important concepts in this scheme—separation and quality. First, two solutions are
considered to be increasingly diverse as their separation increases. Separation is measured
as the minimum number of moves (pairwise interchanges) necessary to get from one to
the other. Next we want an estimate of the probability that a particular solution will be
encountered in a set of solutions equally separated from a given solution. We assume that
the probability of traversing between any two solutions separated by a fixed number of swaps
decreases with the difference between the two objective function values. Hence, among the
set of solutions separated from a given solution at a fixed distance, we are interested in
those with the best (highest quality) objective function value. Therefore, a new solution
is considered to be maximally diverse from the current best solution if it is maximally
separated and the objective function value is close to, or better than, the objective function
value of our current solution.

For the damper placement problem associated with D, we let the separation between
two solutions A and B, d(A, B), be the minimum number of two interchanges needed to
produce solution B from solution A. Furthermore, we assume that highest quality objective
function values are more difficult to obtain at a fixed distance than other solutions. A state
S is described by (X, X ′). Given two states SA and SB , if XA(i) �= XB(j) for all i, j = 1 . . . p

then d(A, B) = p. For D there are
(

nmemb − p
p

)

solutions at a distance p from any state X,
which are too many to consider. To reduce the number of solutions examined, we implement
a greedy search that interchanges each X(i) for all i= 1, . . ., p with each of the nmemb − p
indices in X ′. For each i the interchange that improves the objective function value the
most or degrades it the least is selected.

In summary, our version of TS has a construction phase that generates an initial fea-
sible solution to DPP1 and DPP2. The improvement phase searches the entire O(nmemb
(nmemb −p)) move set (neighborhood) and selects the best admissible move. The tabu
size = 25 and the aspiration criterion is met if the new objective function value is larger
than the best objective function value yet generated. After repeating the improvement phase
max–it times, a recency-based diversification scheme generates a new starting solution and
the process is repeated.
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13.8.3 Computational Results

Metaheuristic search strategies such as simulated annealing and tabu search can be used
to generate solutions to the damper placement problem. However, by themselves these
metaheuristics provide little information concerning the quality of the solution found. A
traditional method for obtaining a bound on the optimal objective function value of a inte-
ger linear program is to solve the associated linear programming relaxation. That is, if xj

is restricted to be either 0 or 1, then it is relaxed by replacing the 0, 1 restriction with
0 ≤xj ≤ 1. The objective function value associated with the optimal solution to the linear
programming relaxation then serves as an upper bound on the optimal objective function
value for the original integer linear program if the objective was to maximize some linear
function.

The optimal objective function value of the linear programming (LP) relaxation of DPP1
and DPP2, then, provides an upper bound on the optimal objective function value for DPP1
and DPP2. In addition, if the optimal solution to the LP relaxation resulted in all xj having
values of 0 or 1, then we would have the true optimum to DPP1 or DPP2. It is unusual for
this to occur, but it does show the strength of using an LP relaxation strategy. We make
use of the upper bound obtained via the LP relaxation of DPP1 and DPP2 to evaluate the
performance of our metaheuristics. Generally, there is no guarantee that this will be a tight
upper bound but, as can be seen in Table 13.9, for DPP1 associated with the CEM, the LP
relaxation does indeed provide a tight upper bound.

A traditional solution strategy for binary integer linear programs that makes use of lin-
ear programming relaxations is branch and bound. Given a solution to an LP relaxation,
a typical branch and bound scheme fixes one or more of the fractional design variables
to either 0 or 1, resolves the LP relaxation, and repeats this process until an all binary
solution is found (a feasible solution to the original binary integer linear program). At this
point the branch and bound process may continue fixing fractional design variables on other
unexplored branches until the optimal binary solution is found, or stop with the current
feasible (suboptimal) solution. For more details on branch and bound the interested reader
is referred to Parker and Rardin [49].

We solved the LP relaxation of DPP1 using a commercially available branch and bound
code for linear integer programs. This code provides (slightly) improved upper bounds
(column 3 of Table 13.9) as well as a feasible solution to DPP1. The objective function
values listed in Table 13.9 under the IP/BB column were generated in this manner. All
objective function values in Tables 13.9 through 13.11 are given as a percentage of the
best-known upper bound (column 3 of Table 13.9). Table 13.9 compares the quality of
solutions generated by solving DPP1 with this branch and bound scheme (with a limit
of 10,000 iterations) to tabu search. The solutions generated in column 4, labeled Integer
Program/Branch and Bound (IP/BB) took roughly 3000 times as long to generate as those
in column 6 for tabu search. Column 1 in Table 13.9 (as well as Tables 13.10 and 13.11)
designates the number of active dampers to be placed. Column 2 of Table 13.9 lists the
optimal objective function value of the LP relaxation of DPP1 (an upper bound on the
optimal value of DPP1), while column 3 is the upper bound generated during the branch
and bound scheme (a slight improvement over the LP relaxation value). Columns 4 and
5 of Table 13.11 provide the best objective function values generated by the branch and
bound scheme and tabu search, respectively. When p = 32 Table 13.11 illustrates that the
optimal objective function value of DPP1 lies between 5.7943 (98.5%) and 5.8838, and
that the solution corresponding to 5.7943 is feasible to DPP1 (all entries are 0 or 1). As
can be seen from Table 13.11, tabu search consistently outperforms the branch and bound
approach.
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Tabu search can be used to further improve the branch and bound solution of DPP1 or
the LP relaxation solution of DPP1. In the latter case, fractional solutions will be present
and a mechanism for choosing a subset of the optimal decision variables must be found.
We picked the p (where p = 8, 16, or 32) decision variables with the largest nonzero value
(closest to 1). For example, when p = 8 the LP solution had 12 nonzero decision variables
in the optimal solution. Of these 12, 5 had a value of 1. When p = 32 there were even fewer
choices to be made. The optimal solution of the LP relaxation of DPP1 had only 35 nonzero
decision variables of which 29 had a value of 1.

Tables 13.10 and 13.11 summarize the performance of tabu search under three different
initial (starting) solutions—random (columns 2 and 3), the DPP1 solution generated by
branch and bound (column 4 and 5), and the LP relaxation of DPP1 (columns 6 and 7).
Reported timings are for a 16 MHz Intel 386-class microcomputer. The solutions generated
by branch and bound for DPP1 in Table 13.9 were computed on a CONVEX computer in
about 4 min. This corresponds to approximately 200 h of computational effort on the 386
microcomputer. Table 13.10 gives the best objective function values (as a percent of the
best known upper bound) obtained using a greedy local improvement search (tabu size = 0,
no aspiration, and no diversification), as well as the time required for convergence to a local
optimum. Table 13.11 catalogs the additional improvement gained by implementing tabu
search versus a greedy local improvement search. When p = 16 and p = 32 (p = 8) and one of
the hot starts (LP relaxation or IP/BB) is used our implementation of TS sets max–it = 100
(50). In addition, when p = 8 and p = 16 we allow one restart using the recency-based diver-
sification scheme of Section 13.8.2. The quality of solutions when p = 32 is so good after 100
iterations that the recency-based diversification and restart are not implemented. For the
randomly generated starting solutions we allowed TS to run longer—7 restarts when p = 16
and 5 restarts when p = 32. The diversification scheme is most effective with the random
starting solution version of TS. For example, when p = 8, the best solution found in the first
set of max–it = 50 iterations was achieved at iteration 23 with a value of 1.313 (81.4%); the
diversification scheme generated a new starting solution with a value of 1.326 (82.2 %); and
the best solution found during the final set of max–it iterations was achieved at iteration 5
with a value of 1.429 (88.6%).

Table 13.12 records the performance of simulated annealing for DPP1. Column 4 is the
average (over the number of replications given in column 2) of the final objective function
value as a percentage of the best-known upper bound (column 3 of Table 13.9). For simulated
annealing this typically is not the best objective function value generated, and column 3
records the best value ever generated over the given number of replications. Although Ref.
[17] reports that starting SA with a good initial solution produced better results than using
randomly generated starting solutions, this was not the case for DPP1. We used the p largest
nonzero entries from the optimal solution of the LP relaxation of DPP1 and better results
were not obtained. Simulated annealing is predicated upon a certain amount of randomness
and as observed in Ref. [17] either many replications or one extremely long run should
be performed. We have opted for 10 replications (except for p = 32 for which a single run
took 10 h) instead of one long run. In addition, we have used the set of parameters given in
Ref. [17] for our implementation of simulated annealing. Johnson et al.’s [17] experiments
are extensive and the resulting set of parameters is quite robust. Column 5 gives the average
CPU times for the simulated annealing runs. When multiplied by the number of replications
this makes simulated annealing 10 to 100 times slower than tabu search with nearly the
same objective function values.

Both TS and SA solutions select truss members to replace with dampers in the same
general area of the CEM truss. The TS solution contains four longeron truss members near
the tower, two diagonal truss members near the cross piece in front of the tail, and two
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TABLE 13.12 Simulated Annealing for CSI-Phase I Design
P Reps Best Obj (%) Final Obj (%) Avg CPU (min) TS Best (%)

8 10 89.2 88.0 169 94.1
16 10 95.4 94.1 310 95.3
32 1 98.5 97.8 626 98.5

diagonal truss members in or near the tail. The SA solution contains two longeron and one
diagonal truss members near the tower, three diagonal truss members near the cross piece
in front of the tail, and two diagonal truss members in or near the tail. Hence, the SA
solution places more dampers (five) in the tail end of the structure and uses more diagonal
truss members (six) than the TS solution.

We do not report on the computational experiments for DPP2 here. However, the LP
relaxation becomes an even better starting solution as p increases. (It takes roughly five
passive dampers to get the same performance as one active damper resulting in larger values
of p.) In fact, a greedy local improvement scheme would have produced the same results as
TS when p = 80.

As a result of the computational experiments, several conclusions may be drawn. The LP
relaxation of DPP1 and DPP2 provide good, low cost (computationally) upper bound on
the optimal value of the DPP problems for CEM. The combination of the LP relaxation
hot start and tabu search yields the highest quality solutions and the smallest run-times.
Simulated annealing produces nearly as high of quality solutions as tabu search, but, for
DPP1, is about 100 times slower.

13.9 Reactive Tabu Search

The utility of several advanced features of tabu search is highlighted in this section. A
dynamic memory structure is explained and tested as well as a frequency-based diversifi-
cation scheme. The main goal of this section is to illustrate the salient features of reactive
tabu search. We do this by examining the terrain of a function f : [−10, 10] × [−10, 10] → R.
As we can plot the domain and range of f together in R

3 we are able to visualize key
features of the search mechanism. The function we chose is a frequent test problem for
global (continuous) optimization routines (see Hansen [50], Jansson and Knuppel [51], and
Levy et al. [52]). The function is

f(x, y) =

(
5∑

i=1

i(cos((i − 1)x + i))

)⎛
⎝ 5∑

j=1

j(cos((j + 1)y + j))

⎞
⎠ ; x, y ∈ [−10, 10]

and is referred to as Levy No. 3 in the literature.
The Maple command plot 3d(sum(i*cos((i-1)*x+i),i=1..5)*sum(j*cos((j+1)*

y+j), j=1..5), x=-10..10, y=-10..10, grid=[50,50]); generates the plot in Fig-
ure 13.5 for f(x, y) over the interval [−10, 10] for both x and y. The resolution is a grid of
50 points along each axis (every 0.4 units) for a total of 2500 plotted points.

For our computational experiments we require a DOP. To discretize the domain of
f(x, y) for x, y ∈ [−10, 10] we impose a regular grid of 800 points along each axis (every
0.025 units) for a total of 640,000 points. We were unable to plot f(x, y) at this resolution
but Figure 13.5 provides a reasonable picture of the discrete valued function at 2500 points.
It is known that Levy No. 3 has 9 global minima and 760 local minima. The nearest points
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FIGURE 13.5 Levy No.3 evaluated over 50 by 50 grid.

TABLE 13.13 9 Points on Grid
Closest to 9 Global Optima

x y f(x,y)

4.975 −1.425 −176.540
−1.300 −1.425 −176.505
−7.600 −1.425 −176.458

4.975 4.850 −176.397
−1.300 4.850 −176.363
−1.300 −7.700 −176.354
−7.600 4.850 −176.316
−7.600 −7.700 −176.307

to the 9 global optima on the 800 by 800 grid are given in Table 13.13. We don’t know how
many of the 640,000 points are local minima but we suspect that it is at least 760. Nearly
all the results in this section are taken from Kincaid and Laba [29].

13.9.1 Basic Features of Reactive Tabu Search

We begin by describing the neighborhood structure we imposed on the 800 by 800 grid
version of Levy No. 3. Given an interior point (x, y) of the grid the neighbors of this point
are all of the compass points—North, Northeast, East, Southeast, South, Southwest, West,
and Northwest—generated by adding or subtracting the grid size (0.025) from (x, y). For
example, the grid point (x, y + 0.025) is the North neighbor of (x, y). At each iteration of
tabu search the eight neighbors of the current point are evaluated and the best neighbor
among the non-tabu and tabu neighbors that satisfy the aspiration criteria is selected (where
best means lowest f(x, y) value). The aspiration criteria checks to see if the function value
at a tabu neighbor is better than the best observed function value. If so, the tabu neighbor
satisfies the aspiration criteria. Once a best neighbor is selected it becomes the new current
point and the (x, y) coordinates of the best neighbor are placed on the tabu list.

The tabu list is a collection of (x, y) coordinates of previously selected best neighbors. To
detect whether it is necessary to increase (or decrease) the number of points that are stored
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on the tabu list we must keep track of points that are visited more than once. The idea is
that if the search continues to return to the same point several times then it is likely that
the search is cycling and one of the functions of a tabu list is to avoid cycling. Here, instead
of maintaining the frequency with which each point (640,000 of them) is uncovered by the
search, we maintain the frequency distribution of collections of points. In particular, we
place a coarser 50 by 50 grid over the finer 800 by 800 grid. Each point of the coarse grid is
mapped to a 16 by 16 set of grid points (256 point in total) on the fine grid. We maintain the
frequency data for each of the 50 by 50 grid points (2500 total points). We call each of these
coarse grid points a zone. Moreover, we make further use of these zones in conjunction with
the tabu list. A pass through reactive tabu search may terminate for a variety of reasons
(to be described later) and restart at a new point. Upon completion of a single pass the
frequency data on the 2500 zones are used to update a matrix describing which zones are
to remain tabu in subsequent passes. In particular if the frequency of a zone on a pass is
greater than 16 (the number of grid points on a horizontal or vertical line through a zone)
then that zone will be labeled tabu. So, in addition to the tabu list the search also checks
to see if any of the neighbors is in a tabu zone.

The name reactive tabu search (RTS) was coined by Battiti and Tecchiolli [53], who first
described the procedure. The basic features include a tabu list whose length is dynamic and a
mechanism for detecting and escaping from a basin of local minima. We initialize the length
of the tabu list, memsize to 1000. If the frequency of a zone is larger than 256, indicating
that each of the 256 points in the zone are visited once on average, then we conclude that
we are likely to cycle and memsize is increased. That is, memsizenew = 1.2 memsizeold.
Conversely, if memsize has not increased for memsize iterations then we decrease memsize.
That is, memsizenew = 1.0/1.2 memsizeold.

Starting points from nontabu zones are generated randomly on the 800 by 800 grid. Tabu
zones are determined as described earlier, but with one additional feature. Upon completion
of a single pass of the search if the frequency of a zone is greater than 16 then that zone,
along with its eight adjacent neighboring zones, are labeled tabu with regard to finding
new starting points. The idea is to keep the random starting point away from zones that
have been previously searched. The x and y coordinates of a potential starting point are
each generated from a uniform [−10, 10] distribution. If the point (x, y) is a member of a
tabu zone (including the eight neighboring zones) then the point is discarded. This process
is repeated until a new starting point from a non-tabu zone is found. We could have been
a bit more sophisticated by sampling from only the tabu zones, but in our computational
experiments no more than ten tries were required to find a new starting point from a
nontabu zone even after 50 passes of the search.

There are two ways for one pass of RTS to terminate—if a basin is found or if the frequency
of a zone is large. A basin is a collection of local minimums of similar magnitude from which
it is difficult for a tabu search armed only with a tabu list and an aspiration criteria to
escape. For Levy No. 3, we say that the search has entered a basin if the difference between
the best value of f(x, y) and the worst value of f(x, y) is less than 30.0 for more than 1024
iterations. The number 1024 was selected with the idea that we would traverse at least
four zones and 30.0 was selected as a rough estimate. We knew that the range of f(x, y)
was roughly 350 and we wanted to avoid the flat regions of the solution space. In practice,
the range of f would not be known and the allowable range for basin detection would be
a percentage of the best known maximum and minimum values. When a basin is detected
the search restarts at a point generated from two features of the basin—the coordinates of
the best point in the basin and the distance between the best and worst points in the basin.
We call this latter value the diameter of the basin. By distance we mean the maximum of
the difference between the x and y coordinates of the two points. Then we generate all eight
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neighbors of the best point at a distance of six times the diameter of the basin. We used a
value of six so that we would be certain to evaluate points outside the basin. Among these
eight points we select the non-tabu point with lowest function value. If all eight points are
tabu we generate a new point randomly.

The second means of terminating a single pass of RTS is to avoid repetition of a particular
point even though the search has been increasing the value of memsize, that is, detecting
when the search is likely to be stuck in a cycle from which the simple increase in the length
of the tabu list will not let the search escape. In other words, the search is stalled in a
deep valley or a collection of valleys. Here again, our search relies on zones rather than on
individual points. If the frequency of any zone is greater than 512 then we restart reactive
tabu search at a new (randomly generated) grid point. The choice of 512 follows from
deciding that if each point in a zone is visited (on average) twice then the search is most
likely cycling. Clearly this number must be larger than 256, the zone frequency at which
memsize is increased.

13.9.2 Computational Experiments

One of the goals of this section is to provide visual examples of the features of RTS. To
do this we compare RTS with a more traditional tabu search. The traditional scheme has
the same neighborhood structure, tabu zones, and aspiration criteria as RTS, but has a
fixed tabu list size of 1500 and no capability to detect or escape from basins. The tabu list
size of 1500 was determined by experimentation. Indeed the performance of the traditional
tabu search is sensitive to this parameters value. In our experiment 1500 produced the best
results. Thus, the traditional tabu search does not have the ability to alter the length of
the tabu list, nor does it make any attempt to discover basins and escape from them. The
only mechanism for terminating a pass of the search is the detection of cycling associated
with stalling in a deep valley or a collection of valleys. As in RTS, if the frequency of a
zone is greater than 512 then we restart the search at a new randomly generated grid point.
To avoid extremely long passes we set a maximum of 5000 iterations per pass. Finally, the
traditional tabu search generates its random starting points just as in RTS.

Figure 13.6 summarizes the performance of the traditional tabu search on Levy No. 3.
Figure 13.6 plots two data items, the f(x, y) values on the z-axis and the (x, y) values. The
numbers from 1 to 7 denote a single pass of the search started at a randomly generated
grid point. Clearly the fixed memory size of 1500 and the aspiration criteria are able to
force the search out of small local minima and in most cases avoid cycling. Five of the
seven passes terminate due to the maximum iteration limit. Only passes 1 and 2 detect
the presence of cycling associated with stalling in a deep valley before 5000 iterations are
complete. Notice that three of the nine best solutions are uncovered by the search and that
to get to these three solutions relatively deep valleys were explored and escaped. Besides
these nine valleys with minima on the order of −176 there are many valleys with minima
on the order of −145 and −116 in the landscape (see Figure 13.5). Although not illustrated
here, we observed that both the traditional search and RTS have great difficulty escaping
from the −145 and −116 valleys using only a tabu list and aspiration criteria. The lowest
point in pass 4 in Figure 13.6 has an objective value on the order of −116. The total number
of iterations (neighborhood searches) generated by the seven passes was 31,658.

Figures 13.7 and 13.8 summarize the performance of RTS on Levy No. 3. Figure 13.8 adds
the f(x, y) values as the z-axis to the (x, y) values recorded in Figure 13.7. Each number
(in both figures) denotes a single pass of the search. The checkerboard pattern in Figure
13.7 is most easily explained by Figure 13.8. Here we see that each checkerboard maps into
a series of adjacent valleys (local minima). The unexamined spaces of the checkerboard
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most likely correspond to hills (local maximum) and were avoided by the search. Pass 1 is
nearly the same as the one generated by the traditional tabu search. The difference is that
in Figure 13.6 the search terminated due to a repeated solution (iteration 1725), but in
Figure 13.8 RTS terminates due to the detection of a basin (iteration 2943). The variable
length of the tabu list accounts for RTS not terminating at the same iteration (1725) as the
traditional tabu search scheme. Clearly the valley for pass 1 in Figure 13.8 is not a basin (a
collection of local minima). What must be happening is that the search is circling around
the valley at nearly a constant height. Hence, since the change in the objective value is less
than 30.0 (points at nearly the same depth of the valley) for more than 1024 iterations, the
basin escape mechanism of RTS is activated.

As a result the starting point of the search for pass 2 is generated from the characteris-
tics of the detected basin (best point and diameter). Starting solutions for passes 3–6 are
generated in the same manner. That is, passes 3, 4, and 5 all terminate due to the detection
of a basin. In each of these cases RTS detects what we initially had in mind for a basin—a
collection of local minima (valleys). Each of the passes (2–5) contains a pair of small valleys
that fulfill the basin criteria. Pass 6 terminates with a repeated zone and, therefore, pass 7
is a randomly generated starting point. Pass 7 finds a point with function value −176 at
iteration 1145 and then spends the next 3200 iterations escaping from this valley and uncov-
ering several small nearby valleys. These valleys trigger the basin escape mechanism and
pass 7 concludes. As in the traditional search results, three of the seven passes find −176
solutions. Two of these −176 solutions (passes 1 and 7) were uncovered by the traditional
method as well.
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Lastly we examine the length of the tabu list—memsize—in RTS. Figure 13.9 catalogs the
value of memsize over the search history (iterations) for passes 6 and 7 of RTS summarized
in Figures 13.7 and 13.8. What is the impact of allowing memsize to change? The value
of memsize increases from 833 at iteration 2363 to 2489 at iteration 2369. The growth of
memsize in iterations 2363–2369 comes just as the search is trying to escape from valley 3.
Valley 4 is a deep local minima. Its lowest point has a value on the order of −141. The
value of memsize increases again at iteration 3087 while in valley 4. Presumably this assists
the search in escaping from the −176.540 local minima at iteration 3496. After iteration
4377 the search falls back into valley 2, from which it escapes for a second time on iteration
5055. Next the search falls into valley 3 again, from which it is unable to escape prior to the
search meeting its repeated solution condition. Thus, pass 6 stops at iteration 5917 with a
memsize of 6193. These latter increases of memsize were not large enough to drive it away
from the previously discovered valleys. The search is restarted for pass 7 and memsize is
reset to 1000. Unlike pass 6 there is only one deep valley traversed (with −176.316 at its
minimum). The other six valleys are all relatively shallow, with the last two causing the
basin escape mechanism to be activated and the search restarted. The −176.316 solution is
uncovered at iteration 1145 in the third valley traversed. The value of memsize is increased
from 833 on iteration 2153 to 2489 on iteration 2159. This enables the search to escape from
the −176.316 valley on iteration 2222.

13.10 Discussion

The thrust of this chapter has been on the implementation details and performance of
local search heuristics (Sections 13.3 and 13.7), tabu search (Sections 13.5 through 13.9)
and simulated annealing (Sections 13.4 and 13.8). The focus on tabu search represents my
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own bias. I believe that the tabu search framework allows greater flexibility and allows for
more insight about the problem structure to be built into the search than do most other
metaheuristics. Plain vanilla tabu search (Section 13.5) is straightforward to implement
with only one parameter to set—the length of time moves should remain on the tabu list.
In addition there are a variety of advanced features that can significantly improve the
performance of tabu search if the search terrain proves difficult (Sections 13.8 and 13.9).
The material presented in Sections 13.1 through 13.5 is amplified by the results presented
in Sections 13.6 through 13.9.

Returning to the questions asked at the outset: If I have a feasible solution, how do
I know if it is a good one? My recommendation here would be to begin with a plain
vanilla tabu search (Section 13.5). If the best solutions found by PVTS are not significantly
better than your current feasible solution then you need not look further. However, having
other high-quality solutions available may provide additional insights into the optimization
model you are trying to solve and you may wish to continue the search. Which solution
strategy should I start with if I don’t want to invest too much of my time? The easiest to
implement are multistart local searches (Section 13.4). However, if you have been solving
other problems with simulated annealing and tabu search it is typically not difficult to adapt
these codes to new problems. The section of the code dedicated to evaluating the quality
of a given solution must change, but often much of the remaining code requires only minor
changes.

The contents of this chapter reflect my own preferences for how to go about answering
the above questions. As I suggested at the outset, when faced with a nonstandard DOP, I
begin by developing a neighborhood structure for traversing the space of feasible solutions
and embed this within a multistart local search heuristic (see Sections 13.3 and 13.7) with
a random, constructed, or known initial feasible solution. Section 13.6 provides an example
of a construction scheme for generating initial solutions while in Section 13.8 rounded linear
programming relaxation solutions are used. Multistart provides a benchmark for compar-
ing the performance of any other solution approach chosen for implementation as well as
information about the search terrain. Next, I suggest embedding the neighborhood struc-
ture within a simulated annealing heuristic. I use the standard set of parameter values (see
Section 13.4) without any fine-tuning. If simulated annealing is unable to improve upon the
solutions found by multistart, I often stop any further computational tests and conclude
that the search terrain is not difficult and that the solutions I have found with multistart
are good enough. If simulated annealing is able to uncover better solutions than multistart,
or if I have a competing solution found by a different approach that is better (e.g., in Sec-
tion 13.6 the modal analysis approach for actuator placement problem), then I proceed to
develop a tabu search for the problem. If basic tabu search (see Sections 13.5 and 13.6)
is unable to improve upon the solutions found by multistart and simulated annealing then
I begin adding advanced features to my tabu search (see Sections 13.8 and 13.9). In my
experience, tabu search is able to find the same quality of solutions as simulated annealing
but in significantly less time and with significantly fewer function evaluations (typically an
order of magnitude decrease).
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14.1 Introduction

We all want to maximize our gains and minimize our losses, but decisions have uncertain
outcomes. What if you could choose between an expected return of $1000 with no chance of
losing any amount, or an expected return of $5000 with a chance of losing $50,000. Which
would you choose? The answer depends upon how risk-averse you are. Many would happily
take the nearly certain $1000, and some would take the risk with hope of greater profit.
This chapter is concerned with how to extend mathematical programming models to deal
with such uncertainty.

Sources of uncertainty could be due to at least three different conditions [1]:

• ignorance, such as not knowing exactly how much oil is in a reserve;
• noise, such as measurement errors, or incomplete data;
• events that have not yet occurred, such as future product demand.

The effects of uncertainty on decision-making include variations in actual returns or
resources consumed, but there could be a catastrophic effect that one seeks to avoid com-
pletely. Losing money in an investment is not good, but losing so much that a firm goes
bankrupt is catastrophic. Losing additional lives due to a mis-estimate of where and when
some tragedy will strike is bad, but losing an ability to recover is catastrophic. Uncertainty
creates a range of concerns about the volatility of one policy versus another, and the one with
better expected value may miss essential points of concern. One hedge against uncertainty
is to diversify, keeping a greater level of flexibility in what recourses are available.

In any problem that requires optimization under uncertainty we must first answer some
basic questions: “How do we represent uncertainty?” “What are our attitudes towards risk?”
In addition, robust optimization raises the question, “What is a robust solution?” A naive
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approach to robust optimization is to define a robust solution as one that remains optimal, or
feasible, under any realization of the data. Unfortunately, such a definition is very restrictive
and may lead to infeasible models for reasonable problems. In the following sections we
define some alternative robust optimization models, each of which captures some aspect of
volatility or flexibility.

One useful perspective is to ask how much degradation we are willing to accept in our
objective to reduce the risk that our solution is infeasible. Suppose we have two candidate
solutions, x1 and x2, and we can measure their performance (such as by computing the
expected value of each). Based on this performance, we prefer x1 to x2. Suppose, how-
ever, that there is uncertainty in the constraint Dx ≥ d such that less than 1% variation
in uncertain values of D causes x1 to violate the constraints by as much as 50%—that
is, 1.01Dx1 < 1

2d [2]. One must consider the price of robustness [3] but avoid being overly
conservative. In particular, one typically does not want to use the most pessimistic model,
where each uncertain coefficient is replaced by its most pessimistic value [4]:

Dx ≥ d

where Dij = min
D

{Dij} and di = max
d

{di}. Replacing the stochastic constraint, Dx ≥ d, with

this pessimistic one rules out x1 and leaves only those x that absolutely guarantee feasibility.
It also ignores correlations among the coefficients in D and between D and d, and it is not
influenced by their probability of occurrence.

The rest of this chapter is organized as follows. Section 14.2 presents a succinct description
of each model that was proposed in the early development of operations research (1950s).
Section 14.3 presents robust optimization from its beginnings to now. Section 14.4 presents
some additional applications. The last section is a summary and an indication of avenues
for further research. Most terms are defined here, but see the Mathematical Programming

14.2 Classical Models

The fallacy of averages [6] is the misconception resulting from the replacement of each
uncertain parameter with its expected value. This can lead to poor results in supporting
decision making for at least two reasons: (1) the parameters may be correlated—namely,
E[XY ] �= E[X] E[Y ], and (2) the functions may not be linear, so f(E[X]) �= E[f(X)].

Consider the simple two-asset investment problem using only the expected returns:

max 1000 x1 + 50,000 x2 : x ≥ 0, x1 + x2 = 1

where xi is the portion of the total budget, as a percentage, invested in the i-th asset. This
is a totally deterministic problem; the solution is to invest everything into asset 2, giving
an expected return of $50,000 per amount invested. Suppose there is a correlation between
investment outcomes such that the return from asset 1 could be much greater than the
return from asset 2. In particular, suppose we have three scenarios with their probabilities
of occurrence and the returns they generate, shown in Table 14.1.

Notice that the properties of asset returns do not depend upon the actual levels of invest-
ment. The total investment could be $1,000,000 to reap the net returns, or it could be $1.
This is what is implied by the constraint x1 + x2 = 1, where xi is the portion of the capital
invested in asset i.

We shall revisit this finance application as we explain modeling approaches to deal with
the uncertainty, but this chapter is concerned with the broad view, beyond this application.

© 2008 by Taylor & Francis Group, LLC
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TABLE 14.1 Scenarios That Are Uncertain
Scenario Probability Asset 1 Return Asset 2 Return

1 0.2 1050 −2,000,000
2 0.4 975 1,000,000
3 0.4 1000 125,000

Expected Return: 1000 50,000

It is thus imperative that you examine Section 14.4 to learn how robust optimization applies
to a variety of applications and how it compares with other approaches. Seeing how different
models apply will help to clarify the basic terms and concepts, particularly those developed
in Section 14.3.

There are three classical models that are still used today: mean-risk, recourse, and chance-
constrained. A brief discussion of each will give us a base from which to present robust
optimization.

14.2.1 Mean-Risk Model

The first mathematical programming model of uncertainty was Markowitz’s mean-risk model
[7,8] for the portfolio selection problem. Markowitz rejected the hypothesis that an investor
should simply maximize expected returns. Instead, he suggested that investors consider
expected return a desirable objective to maximize, but only while also considering risk
undesirable, to be minimized. Recognizing that these two objectives are usually in conflict,
he considered them in a bi-objective model.

Consider the example in Table 14.1. One measure of risk is the expected square of how
much the actual return differs from the expected return. Let R1 and R2 denote the (random)
returns from the two assets, and let p = E[R] denote their expected values. We have already
noted that E[R1] = 1000 and E[R2] = 50,000. However, the potential for a $2,000,000 loss is
daunting, so let us assess the risk of some arbitrary mixture of investments.

The total return is R1x1 + R2x2, so the square deviation from the mean is:

E
[
(R1x1 + R2x2 − (p1x1 + p2x2))2

]
= E

[
((R1 − p1)x1 + (R2 − p2)x2)2

]
= E

[
(R1 − p1)2

]
x2

1 + E
[
(R2 − p2)2

]
x2

2 + 2x1x2E [(R1 − p1)(R2 − p2)]

We write this as the quadratic form: (x1, x2)V
(

x1
x2

)
, where V is the variance-covariance

matrix:

V =

[
E

[
(R1 − p1)2

]
E [(R1 − p1)(R2 − p2)]

E [(R1 − p1)(R2 − p2)] E
[
(R2 − p2)2

]
]

=

[
σ2

1 σ12

σ12 σ2
2

]

To obtain the variances and covariance, we consider each scenario’s contribution.

σ2
1 = 0.2(2500) + 0.4(625) + 0.4(0)

σ2
2 = 0.2(4.2025 × 1012) + 0.4(9.025 × 1011) + 0.4(5.625 × 109)

σ12 = 0.2(−1.025 × 108) + 0.4(−2.375 × 107) + 0.4(0)

Thus,

V =

[
750 −30,000,000

−30,000,000 1,203,750,000,000

]
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FIGURE 14.1 Expected return and risk as functions of x2 .

and the risk is measured by x ′Vx = 750x2
1 − 2x1x2(3.00 × 106) + 1.20375× 1012x2

2 (approx-
imating the coefficient of x2

2). If we invest everything into asset 2, this means x1 = 0 and
x2 = 1. In that case, the risk is 1.20375 × 1012, reflecting not only a chance of much greater
return than what is “expected,” but also a risk of a great loss. At the other extreme, if we
invest everything into asset 1, x= (1, 0) and the risk is only 750, reflecting a much more
conservative investment. Figure 14.1 plots the expected return as a (linear) function of how
much is invested into asset 2 and the risk as a (quadratic) function. (To fit on the same
plot, the risk is scaled by 10−7.)

Markowitz’s mean-risk model is

max
x∈X

px − λx′V x

where X = {x≥ 0 :
∑

ixi = 1}. We sometimes allow no investment by replacing the equation
with the inequality

∑
ixi ≤ 1. These are equivalent as we could add a risk-free asset with

zero return, also called the slack variable.
Depending upon the choice of λ, this also represents the constrained mathematical pro-

gram that maximizes expected return subject to a limit on risk:

P: max
x∈X

px : x′V x ≤ r

Reciprocally, one could view the mean-risk model as one of minimizing risk subject to a
required expected return:

Q: min
x∈X

x′V x : px ≥ µ

All three mathematical programs are related; for each λ, there is a corresponding r and µ
for which x∗(λ) is the optimal solution in P and Q, respectively.

THEOREM 14.1 Define X= {x∈ R
n
+ :

∑n
i=1 xi ≤ 1}, and let x∗ ∈ argmax{px−λx′V x:

x∈X} for λ > 0, with µ= px∗and r = x∗′Vx∗. Then,

x∗ ∈ argmax{px : x′V x ≤ r, x ∈ X} and x∗ ∈ argmin{x′V x : px ≥ µ, x ∈ X}
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PROOF 14.1 We have

px∗ − λx∗′V x∗ ≥ px − λx′V x for all x ∈ X

⇒ px∗ ≥ px − λ(x′V x − r) ≥ px for all x ∈ X : x′V x ≤ r

Similarly,

px∗ − λx∗′V x∗ ≥ px − λx′V x for all x ∈ X

⇒ x∗′V x∗ ≤ x′V x + 1
λ (µ − px) ≤ x′V x for all x ∈ X : px ≥ µ �

There is also a converse, due to the Lagrange multiplier rule and the fact that the
quadratic risk function is convex (i.e., V is positive semi-definite).

THEOREM 14.2 If x∗ solves P or Q, there exists λ ≥ 0 such that x∗solves the mean-risk
model.

PROOF 14.2 Suppose x∗ solves P. Applying the Lagrange multiplier rule, there exist α,
µ, µ0 ≥ 0 such that

p − 2αx∗′V + µ − µ01 = 0, αx∗′V x∗ = αr, µx∗ = 0, µ0

n∑
i=1

x∗
i = µ0

Defining λ = 2α, these are the Karush–Kuhn–Tucker conditions for the optimality of x∗ in
the mean-risk model. A similar proof applies if we suppose x∗ solves Q. �

Example 14.1

Suppose we have three independent assets with p = (3, 2, 1), plus a risk-free choice with zero
return. Consider the following mean-risk model:

max 3x1 + 2x2 + x3 − λ(x2
1 + x2

2 + x2
3) : x ≥ 0, x1 + x2 + x3 ≤ 1

where 1 − (x1 + x2 + x3) is the level of investment in the risk-free asset. Letting λ vary, the
parametric solutions yield the efficient frontier, shown in Figure 14.2.

Setting λ = 0 ignores risk and gives the maximum expected return. This is achieved by
investing all capital into asset 1 (i.e., x1 = 1) because it has the greatest expected return.
This remains true for 0≤λ ≤ 1

2 . As we increase λ past 1
2 , we penalize the risk of putting

all capital into one asset and begin to invest into the next one, which is asset 2, having an
expected return of 2. Splitting the investment between assets 1 and 2 gives a greater overall
objective value:

px − λx′V x for x = (x1, 1 − x1, 0) = 3x1 + 2(1 − x1) − λ(x2
1 + (1 − x1)2)

= x1 + 2 − λ(2x2
1 − 2x1 + 1)

which is maximized at x1 = 1 + 2λ
4λ .

For λ sufficiently great, splitting the risk is better than investing in just one asset because
the square of x1 outweighs the linear expected return. The greater the price of risk (λ), the
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FIGURE 14.2 Efficient frontier of example portfolio model.
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FIGURE 14.3 Splitting the investment to reduce risk for λ > 0.

greater the split. Figure 14.3 shows how the optimal split, x1(λ), x2(λ) = 1 −x1(λ), varies
as functions of λ (x2(λ) = 0 for 0≤λ ≤ 1

2 ).
At λ = 1 1

2 , asset 3 comes into play, and the optimality conditions are:

pi − 2λxi − 1
3

(∑
k

pk − 2λ

)
= 0 for i = 1, 2, 3

Thus,

xi =
pi − (2 + 2

3λ)
2λ
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TABLE 14.2 Optimal Asset Investments as Functions of λ
Asset Investment

λ x∗
1 x∗

2 x∗
3 px∗ x∗′Vx∗

0 −
1
2

1 0 0 3 1

1
2

− 1
1
2

1
2

+
1
4λ

1
2

−
1
4λ

0 2
1
2

+
1
4λ

2
1
2

−
1
4

λ −
1
8λ

1
1
2

− 3
1
3

+
1
2λ

1
3

1
3

−
1
2λ

2 +
1
λ

1
3

+
1

2λ2

≥3
3
2λ

1
λ

1
2λ

3
λ

7
2λ2

which remains valid for 11
2 ≤λ ≤ 3. At λ > 3, the price of risk is so great that

∑
i xi < 1. The

levels are x(λ) = 1
2λ (3, 2, 1)—that is, the portion of investment in an asset is proportional

to its expected return (Table 14.2).
If you draw a vertical line in Figure 14.2, the expected return is the maximum possible if

the risk is limited to be on or to the left of that line. That is the solution to problem P. If you
draw a horizontal line, the risk is the minimum possible if the expected return is required to
be on or above that line. That is the solution to problem Q. So, we can generate the efficient
frontier in Figure 14.2 by letting the price of risk, λ, vary between 0 and ∞. In practice, a
decision maker would choose a point on the efficient frontier based on risk tolerance.

14.2.2 Recourse Model

The second mathematical programming model of uncertainty was Dantzig’s recourse [9].
The two-stage recourse model has two vectors of decision variables: x must be specified
before uncertain parameters become known, and y is chosen after the uncertain parame-
ters become known. A classical example is to have a linear program (LP) with uncertain
demand. The first-stage variables (x) specify production and process operation levels. Once
the demand is known, the second-stage variables (y) take recourse in deciding what to do
about any excess or shortage.

The two-stage recourse model is thus:

min
x∈X

{
f(x) + E

[
min

y∈Y (x)
{Φ(y; x)}

]}

When the underlying mathematical program is linear, we have the form:

min {cx + E[min {Φ(y; x) : y = d − Dx}] : Ax ≥ b}

where Φ penalizes over- and under-satisfaction of joint constraints, Dx + y = d.
When the number of possible realizations is finite, we call each realization a scenario and

define a second-stage variable for each scenario. Let yk denote the second-stage variable for
scenario k. Then, the entire recourse model can be put into one large mathematical program:

min cx +
K∑

k=1

skCk|yk| : Ax ≥ b, yk + Dkx = dk, for k = 1, . . ., K

where sk is the probability that scenario k prevails and K is the number of scenarios. Note
that if there are additional constraints on y, such as yk ≥ 0 for all k, there could be no
feasible solution. Otherwise, Ck is a linear penalty on the magnitude of yk, and every x
that satisfies Ax ≥ b is a feasible candidate since it is feasible to let yk = dk −Dkx for all k.
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To turn this into a linear program, we replace the absolute value with the difference of
the positive and negative part: yk = uk−vk. Then, the LP recourse model is given by:

min cx +
∑

k

skCk(uk + vk) : Ax ≥ b

yk + Dkx = dk, (uk, vk) ≥ 0, uk ≥ yk, vk ≥ −yk, for k = 1, . . ., K

Every optimal solution has uk
i = max{0, yk

i } and vk
i = max{0,−yk

i }, with yk =
uk − vk. Having partitioned each yk

i , we could have different costs for slack (uk
i = yk

i > 0)
and surplus (uk

i = −yk
i > 0).

As an example, consider the following transportation problem:

min
m∑

i=1

n∑
j=1

cijxij : x ≥ 0

n∑
j=1

xij ≤ Si for i = 1, . . ., m

m∑
i=1

xij ≥ Dj for j = 1, . . ., n

where xij is the amount shipped from source i to destination j.
Suppose demand is uncertain and there is recourse in the face of shortage or excess. Let

fj denote the unit cost of a shortage (demand exceeds the amount shipped) for demand
market j, and let gj denote the unit cost of excess (demand is less than the amount shipped).
For example, f could be a spot market price or a cost of loss of good will, and g could be
a salvage cost (net of the production cost). Then, Φ(y) =

∑
jΦj(y), where

Φj(y) =
{

fjy if y ≥ 0
−gjy if y ≤ 0

We extend the transportation model to include our recourse function by introducing for
each market j in scenario k two additional non-negative variables, ŷjk and y̌jk, reflecting
over-supply and unmet demand, respectively. Letting sk be the probability of scenario k,
we have E[Φj(y)] =

∑
ksk(fj ŷjk + gj y̌jk), so the recourse model is

min
m∑

i=1

n∑
j=1

cijxij +
∑

k

sk(fj ŷ
k
j + gj y̌k

j ) : x ≥ 0

n∑
j=1

xij ≤ Si for i = 1, . . ., m

m∑
i=1

xij + ŷk
j − y̌k

j = Dk
j for j = 1, . . ., n, k = 1, . . ., K

This modeling approach extends to the n-stage recourse model in a natural fashion.
Besides production, the finance community found applications in setting up portfolios of
investments [10]. The stages correspond to time, and the uncertainty is with the asset prices.
Each recourse variable adjusts for the decisions of the previous stages. Deficits in capital
can be made up by borrowing and surpluses can be added to reserve capital.
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14.2.3 Chance-Constrained Model

The third model to appear as a certainty equivalent was the chance-constrained model, by
Charnes, Cooper, and Symonds [11]. Their motivating application was planning production
levels in the face of uncertain sales. The general model has the form:

max cx : x ∈ X, P (Dx ≥ d) ≥ α

where α ∈ [0,1].
For the portfolio problem indicated by Table 14.1, consider the chance constraint:

P (R1x1 + R2x2 ≥µ) ≥α, where µ is a specified return and α is an acceptable level of its
probability.

Let sk denote the probability of scenario k and apply Bayes’ Law to obtain:

P (R1x1 + R2x2 ≥ µ) =
3∑

k=1

P
(
(Rk

1 − Rk
2)x1 ≥ µ − Rk

2 | k
)
sk

where we substituted x2 = 1 −x1. We determine which scenarios (if any) satisfy the condi-
tion (Rk

1 −Rk
2)x1 ≥µ−Rk

2 . Let K(x) be this set of scenarios, so

P (R1x1 + R2x2 ≥ µ) =
∑

k∈K(x)

sk

In particular, consider µ= 0, so the chance constraint bounds the probability that the
investment will not lose money. This chance constraint will hold for any α ∈ [0, 1] if we
set x1 = 1; it will hold for α ≤ 0.8 if we set x1 = 0. To determine thresholds between these
extremes consider the three scenarios shown in Table 14.3.

For µ= 0, the chance constraint is the probability that there be no loss. In this case, the
condition to include scenario 1 is x1 ≥ 0.995; scenarios 2 and 3 always hold because x1 ≤ 1.

Thus, we have:

P (R1x1 + R2x2 ≥ 0) =
{

1 if x1 ≥ 0.995
0.8 otherwise

The chance-constrained model is

max px : x ∈ X, P (R(x) ≥ µ) ≥ α

In our example, X ={(x1, x2) ≥ 0: x1 +x2 =1} and R(x)=R1x1 +R2x2 =R2 +(R1 −R2)x1.
Hence, px = 50,000 − 49,000x1, and, for µ= 0, our model is

max −49,000x1 : 0 ≤ x1 ≤ 1, x1 ≥ 0.995

The solution is x∗
1 = 0.995. For µ > 1050, the solution is x∗ = (0, 1) if α ≤ 0.8, and the problem

is infeasible if α > 0.8.

TABLE 14.3 Conditions to Compute
Probability of Minimum Return
Scenario (k) Condition for k Included in K(x)

1 x1 ≥
2,000,000 + µ

2,001,050

2 x1 ≤
1,000,000 − µ

999,025

3 x1 ≤
125,000 − µ

124,000
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A class of models for which the chance-constrained paradigm is especially well suited is
when a government regulation stipulates that some limit cannot be violated more than some
specified portion of time. One example is sulfur emissions: P (Dx ≤ d) ≥α requires that the
probability that the sulfur emitted (Dx) is within a prescribed limit (d) and must be at
least some specified level (α). Similar chance-constrained models for water quality control
are described in Ref. [12].

14.3 Robust Optimization Models

The modeling paradigm called “robust optimization” emerged from dissatisfaction with lim-
itations of the three classical models, which do not quite capture major effects of relatively
small variations. Gupta and Rosenhead [13] first introduced the notion of “robustness” into
an optimal solution, where they meant it to favor flexibility in what recourses are subse-
quently available. Given two policies, x1 and x2, with x1 preferred on the basis of expected
return, they considered the relative flexibility of how many and what recourses are available
in each case. Unlike the mean-risk model, they need not have variances available. Unlike the
recourse model, they need not have some estimated cost structure precisely defined. Unlike
the chance-constrained model, they need not know any probability distributions. They can
choose based on some qualitative information. For example, if x represents levels of pro-
duction, they can prefer x2 if it admits a greater number of recourse alternatives. The key
in their definition of a robust solution is the flexibility it allows after the uncertain values
become known.

A second view of robustness is the degree to which a solution is sensitive to the underlying
assumptions (beyond data values, such as functional relations). Drawing from the concept of
robust statistics, Mulvey et al. [14] introduced the concept of model and solution robustness
using a penalty function much like the recourse model. (An example in statistics is the use of
the median, rather than the mean, to estimate a parameter. The median is robust because
it does not change with small fluctuations in the data on each side of the median, while
the mean does.) Unlike the recourse model, the robust model could penalize risk as in the
Markowitz model without requiring scenarios to be defined. This has evolved into a collection
of robust optimization models, which we will now describe in a general way, followed by a
section of specific applications that should help clarify how these general models may arise.

14.3.1 Worst-Case Hedge

A form of robustness is to choose a policy that does as well as possible under worst possible
outcomes, regardless of the probability of occurrence. This view is that of a two-person
game, where the choice of policy x is made first, then some “player” chooses an outcome c
that is worst for that x. This is the worst-case model:

min
x∈X

max
c

cx : Dx ≥ d for all [D d]

To avoid having an infinite number of constraints, and to correlate the objective coefficients
with the constraint data, this is modelled by discretizing the set of uncertain values into a
finite set of scenarios:

min
z,x∈X

z : z ≥ ckx, Dkx ≥ dk for k = 1, . . ., K

The solution to this problem is sometimes called the absolute robust decision [15] (also see
[16]). Note that z is introduced to equal maxk ckx∗ in every optimal solution, x∗.
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This is pessimistic, and it may be unrealistic. The constraints require x to be feasible
in every possible realization of [D d], regardless of its probability of occurrence. The worst
objective value (over possible c-values) may be appropriate when all constraints are deter-
ministic, which we consider in the special case of interval uncertainty in the next section.

14.3.2 Simple Case of Interval Uncertainty

Consider the worst-case robust optimization model:

min
x∈X

max
c∈C

cx

(Only the objective coefficients are uncertain.) Let ĉ denote a central value in the box [c, c],
such as its expected, or most likely, value. Define a central value solution:

x̂ ∈ argmin{ĉx : x ∈ X}

In this section, we consider the restricted case where we have a box of uncertainty whose
endpoints are proportional to the central value vector: c = (1 − ε)ĉ and c = (1 + ε)ĉ for some
ε ∈ [0, 1). Let P(ĉ, ε) = {c∈ [c, c] :

∑n
j=1 cj = K}, where K =

∑
i ĉi. We call the equation the

constant-sum constraint.
Let Q(ε) denote the robust optimization problem:

min
x∈X

max
c∈P(ĉ,ε)

cx

where X is any subset of binary vectors. The following theorem demonstrates that the cen-
tral solution also solves every robust formulation that allows percentage deviations within a
constant proportion of its central value. The proof is based on the fact that the constant-sum
constraint restricts the uncertain parameter to balance coefficients at their upper bounds
with those at their lower bounds. Our method of proof is based on the duality theorem of
linear programming.

THEOREM 14.3 Let ε ∈ [0, 1). Then, x∗ is an optimal solution to Q(0) if, and only if,
x∗ is an optimal solution to Q(ε).

PROOF 14.3 We begin with some notation and general observations. Let σ(x) =
{j:xj �= 0} (called the “support set” of x). Also, let 1 denote the vector of all ones:
(1, 1, . . ., 1)′. The following identities follow from the definitions of K and σ : ĉx=∑

j∈σ(x) ĉj = K −
∑

j /∈σ(x) ĉj , and ĉ(1 −x) = K − ĉx=
∑

j /∈σ(x)ĉj . Let L= (1 − ε) and
U = (1 + ε). The dual of the linear program, max

c∈P(ĉ,ε)
cx, is

min πK + Uµĉ − Lλĉ : λ, µ ≥ 0, and π + µj − λj = xj for all j = 1, . . ., n

The dual variable π is associated with the constant-sum constraint, and λ, µ are associated
with the lower and upper bound constraints on c, respectively.

Let xε be an optimal solution to Q(ε). Our proof divides into two cases, depending on
whether ĉx0 is greater or less than 1

2K.

Case 1: ĉx0 ≥ 1
2K.

Consider the dual solution π = 1, µ= 0, and λ′ = 1 −x0. This is dual-feasible, where λ ≥ 0
because x0 ≤ 1. The dual objective value satisfies

πK + Uµĉ − Lλĉ = K − Lĉ(1 − x0) = K − L(K − ĉx0) = εK + Lĉx0
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Therefore,
max

c∈P(ĉ,ε)
cx0 ≤ εK + Lĉx0 (14.1)

Now we define cε
j = Lĉj for j /∈σ(xε). As we assume that ĉx0 ≥ 1

2K, it follows that ĉxε ≥
1
2K, which implies that ĉ(1 −xε) ≤ 1

2K. Consequently, we have

cεxε = K −
∑

j /∈σ(xε)

cε
j

= K − L
∑

j /∈σ(xε)

ĉj

= K − L(K − ĉxε) = εK + Lĉxε

which gives us the bound:
max

c∈P(ĉ,ε)
cxε ≥ εK + Lĉxε (14.2)

Using Equations 14.1 and 14.2, we then obtain the following chain of inequalities:

max
c∈P(ĉ,ε)

cxε ≥ εK + Lĉxε ≥ εK + Lĉx0 ≥ max
c∈P(ĉ,ε)

cx0 ≥ max
c∈P(ĉ,ε)

cxε

Thus, equality must hold throughout. This establishes the following two results:

max
c∈P(ĉ,ε)

cx0 = max
c∈P(ĉ,ε)

cxε (first = last expression)

ĉx0 = ĉxε (second = third expression and L > 0)

which completes this case.

Case 2: ĉx0 ≤ 1
2K.

The dual objective value of any dual-feasible solution is an upper bound on the primal value,
cx0. Choose π = 0, µ′ = x0, and λ = 0. This is clearly dual-feasible, and its dual objective
value is Uĉx0. Therefore,

max
c∈P(ĉε)

cx0 ≤ Uĉx0 (14.3)

Now consider the value of ĉxε. Suppose ĉxε ≤ 1
2K. Then define cε

j = Uĉj for j ∈σ(xε), and
note that cε ∈ P(ĉ, ε). This is feasible (i.e., cε ∈ P(ĉ, ε)) because cεxε ≤ 1

2K. It follows that
cεxε = Uĉxε, so we have maxc∈P(ĉ,ε) cxε ≥Uĉxε. On the other hand, suppose ĉxε > 1

2K.
Then, define cε

j = Lĉj for j /∈σ(xε), and note that cε ∈ P(ĉ, ε). It follows from our analysis
in Case 1 that maxc∈P(ĉ,ε) cxε ≥ εK + Lĉxε. Taken together, this gives us the bound:

max
c∈P(ĉ,ε)

cxε ≥ min{Uĉxε, εK + Lĉxε} (14.4)

Using Equations 14.3 and 14.4, we then obtain the following chain of inequalities:

max
c∈P(ĉ,ε)

cxε ≥ min{Uĉxε, εK + Lĉxε} ≥ min{Uĉx0, εK + Lĉx0}

= Uĉx0 ≥ max
c∈P(ĉ,ε)

cx0 ≥ max
c∈P(ĉ,ε)

cxε

The equality in this chain follows from our assumption that ĉx0 ≤ 1
2K. We conclude that

equality must hold throughout, and maxc∈P(ĉ,ε)cx
0 = maxc∈P(ĉ,ε) cxε. Furthermore,

this shows that Uĉx0 = min {Uĉxε, εK + Lĉxε} (fourth expression = second), so either
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Uĉx0 = Uĉxε or Uĉx0 = εK + Lĉxε. In the former case, we have immediately that ĉx0 = ĉxε.
In the latter case, we have the following chain of inequalities:

Uĉx0 ≤ εK + Lĉx0 ≤ εK + Lĉxε = Uĉx0

As equality must hold throughout, we conclude ĉx0 = ĉxε. �

Example 14.2

Let X = {(1, 0), (0, 1), (1, 1)} and ĉ = (1, 2). The central solution is x̂= (1, 0), and the worst-
case model is

min
x∈X

max
c

c1x1 + c2x2 :

1 − ε ≤ c1 ≤ 1 + ε

2 − 2ε ≤ c2 ≤ 2 + 2ε

c1 + c2 = 3
For each x, the maximization problem is a linear program with one equality constraint.

Therefore, an optimal c occurs at one of the four basic solutions. Of these, only two are
feasible: c = (1 ± ε, 3 − c1). The robust optimization problem is thus:

min
x∈X

max{(1 + ε)x1 + (2 − ε)x2, (1 − ε)x1 + (2 + ε)x2}

We have

max {(1 + ε)x1 + (2 − ε)x2, (1 − ε)x1 + (2 + ε)x2} = ĉx + max {ε(x1 − x2), ε(x2 − x1)}

The robust optimization model is thus equivalent to

min
x∈X

{ĉx + ε|x1 − x2|}

The central solution yields ĉ1 + ε, which dominates the value of x= (0, 1). The value of
x= (1, 1) is ĉ1 + ĉ2, which is 3. This is greater than the central solution value for ε < 1.
The relations that make this example result in the optimality of the central solution are
used in the proof. In particular, if c2 > ĉ2, we must have c1 = (1 − ε)ĉ1, in which case
c2 = K − c1 = ĉ2 − εĉ1. Thus, cx = ĉx− 2εĉ1x2 ≤ ĉx, so c = ĉ is a better value than c for
any x, whence ĉ is a maximum of the rival “player,” for any x.

Now consider the following variation of the portfolio problem. Instead of allowing capital
to be split among assets in arbitrary fashion, let xj be a binary variable that equals 1 if we
select asset j (0 otherwise). Then, let X = {x∈ {0, 1}n : ax ≤ b}, where aj is the amount of
capital needed to invest in asset j and b is the total budget.

The interval uncertainty model of Theorem 14.3 assumes that the return is known to be
within the bounds, (1− ε)ĉ to (1 + ε)ĉ for some ε ∈ [0, 1), and that the sum of the returns
is the same for all possible realizations. Theorem 14.3 tells us that the assets selected are
those that solve the central value problem:

max
x∈X

ĉx

which is a knapsack problem.
Our example in Table 14.1 does not satisfy these interval assumptions. However, if we

keep the same expected returns, with ĉ = (1000, 50000), the solution for a2 ≤ b < a1 + a2 is
x∗ = (0, 1), assuming the actual returns satisfy

(1 − ε)(1000, 50000) ≤ R ≤ (1 + ε)(1000, 50000)

for some ε ∈ [0, 1) and R1 + R2 = 51000.
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The motivating application for Theorem 14.3 was the following sensor placement problem
[17]. We are given a water distribution network that could be contaminated by some entry
at a node. Sensors can be placed on the pipes (arcs) to detect the contaminant when it flows
by, and we wish to minimize the expected number of nodes that the contaminant reaches
undetected. Let xij denote a binary variable that is 1 if, and only if, node j is contaminated
without detection, given the entry is at node i. (These are actually auxiliary variables in a
model where the primary variables are where to place the sensors.) The problem is

min
x∈X

∑
i

∑
j∈Ri

αixij

where Ri is the set of reachable nodes from node i.
The contaminant entry probabilities (α) are estimated using data and expert judgment,

and they are subject to error. We know
∑

i αi = 1, and we assume (1− ε)α̂ ≤α ≤ (1 + ε)α̂,
where α̂ is the central value (viz., the original estimate). The situation meets the assump-
tions of Theorem 14.3, so we can solve the worst-case robust optimization model by solving
the central problem:

min
x∈X

∑
i

∑
j∈Ri

α̂ixij

Yaman et al. [18] proved a similar theorem for the minimum spanning tree problem, where
they defined the central solution to be a permanent solution, as it remains optimal under
perturbations of the data.

14.3.3 Minimax Regret

Another robust optimization model is to minimize the regret, which we now define. For each
scenario (k), let zk be the optimal objective value if the data were known with certainty—
that is,

zk = max
x∈X

{ckx : Dkx ≥ dk}

(The problem could be minimization, but the regret value given below is the same—the
greatest amount that a candidate solution deviates from zk.)

For the robust deviation decision, define the objective value of x∈X : Dkx≥ dk to be the
maximum regret:

f(x) = max
k

{zk − ckx}

For the relative robust decision, assume zk > 0 for all k, and define the objective value of
x∈X : Dkx≥ dk to be the maximum regret normalized by zk:

f(x) = max
k

zk − ckx

zk
= 1 − min

k

ckx

zk

Then, the certainty equivalent models are, respectively:

min
x∈X

max
k

{zk − ckx} : Dkx ≥ dk for all k = 1, . . ., K

and

max
x∈X

min
k

{
ckx

zk

}
: Dkx ≥ dk for all k = 1, . . ., K
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FIGURE 14.4 Regret functions for each scenario in example.

For the investment problem (Table 14.1), we have z1 = 1050, z2 = 1,000,000, and z3 =
125,000. Figure 14.4 shows the regret functions, zk −Rkx (with x2 = 1 −x1) for k = 1, 2, 3.
The minimum regret solution is x∗ = ( 2

3 , 1
3 ).

As long as the solution is obtained for each scenario, it is useful to present how that
solution fares in the other scenarios. This gives rise to a square array of the form:

Policy 1 2 · · · K

x1 z1 c2x1 · · · cKx1

x2 c1x2 z2 · · · cKx2

...
...

. . .
...

xK c1xK c2xK · · · zK

The off-diagonal terms are well defined when the policy is feasible (for example, x1 is
feasible in scenario 2). Otherwise, the table could show the infeasibility, or there can be
some recourse function to penalize the infeasibility consistently across scenarios.

One might add other information, such as the probability of each scenario, if available.
One can then compare these solutions with the minimax robust solution for additional
judgments about its quality. For the example, we have the array shown in Table 14.4.

The normalized regret problem is

max
0≤x1≤1

min
{

1050x1 − 2,000,000(1−x1)
1050

,
975x1 +1,000,000(1 − x1)

1,000,000
,
1000x1 +125,000(1−x1)

125,000

}

The solution is x∗ = (0.9995, 0.0005).
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TABLE 14.4 Scenario Solutions for Example

Scenario

Policy 1 2 3 E[x] x′V x

x1 = (1, 0) 1050∗ 975 1000 1000 750
x2 = (0, 1) −2,000,000 1,000,000∗ 125,000 50,000 1,203,750,000,000
x3 = (0, 1) −2,000,000 1,000,000 125,000∗ 50,000 1,203,750,000,000

x∗ = ( 2
3 , 1

3 ) −1,331,233 333,983 42,333 17,333 133,736,667,000

∗Optimal.

TABLE 14.5 Uncertainty Sets for Example Investment Problem

ω {R : |R1 − 1000| + |R2 − 50,000| ≤ ω}

<75000 ∅
[75000, 950025) {(1000, 125000)}
[950025, 2050050) {(1000, 125000), (975, 1000000)}
≥2050050 {(1000, 125000), (975, 1000000), (1050, −2000000)}

14.3.4 Uncertainty Sets

Ben-Tal and Nemirovski [2,19] introduced the model:

max
(z,x)

z : x ∈ X

z ≤ ckx, yk = max {0, dk − Dkx}, ‖yk‖ ≤ rk for k = 1, . . ., K

The key here is the representation of uncertainty by limiting the violation (y) by r. For
rk = 0, we require yk = 0, which means we require that the constraint for scenario k hold:
Dkx≥ dk. Thus, this includes the worst-case model with all scenarios required to hold for
x to be feasible. More generally, with r > 0, the feasible set is ellipsoidal, and it includes the
Markowitz mean-risk model by defining the norm to be

√
y′V y. Furthermore, the objective

constraints can be merged with the others, so the uncertainty of c can be included in the
uncertainty of [D d].

We use the extended framework by Chen et al. [20]. Let (D̂, d̂) be some central (or
reference) value, and define the uncertain set of data: Uω = {(D, d) : ‖(D, d) − (D̂, d̂)‖ ≤ω},
where ω ≥ 0 is called the budget of uncertainty. Then, the feasible region is defined as

X(ω) = {x ∈ X : Dx ≥ d for all [D d] ∈ Uω}

An important observation by Chen et al. [20] is that under mild assumptions the set of x
satisfying the chance constraint, P (Dx≥ d) ≥α, contains X(ω) for some ω.

For the investment problem in Table 14.1, let the central value of the returns be their
expected values. Then, using the absolute value norm, we have the uncertainty sets shown
in Table 14.5.

This particular approach is among the most active areas of robust optimization research.
See Ref. [21] for an overview and recent results in theory, algorithm design, and applications.

14.4 More Applications

In this section, we describe more applications and apply different robust optimization models
to them.

Job Sequencing. A batch of n jobs arrives into a system and each must be processed on a
machine. We can decide the order. Job j takes tj minutes to be completed. If we sequence
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the jobs as 1, 2, . . ., n, job 1 will be in the system t1 minutes and job 2 will be in the
system t1 + t2 minutes; in general, job j will be in the system t1 + · · · + tj minutes. The
total job-time in the system is the sum:

T =
n∑

i=1

(n − i + 1)ti

If each job’s time is known with certainty, an optimal sequence, one which minimizes total
job-time T , is by descending order: t1 ≤ t2 ≤ · · · ≤ tn. This is called the shortest processing
time (SPT) rule.

In general, a sequence is represented by a permutation, π = (π1, . . ., πn), so the total
job-time in the system is

T (π) =
n∑

i=1

(n − i + 1)tπi

Suppose the job-times are not known with certainty. One rule is to order them by their mean
values. In particular, if ti is uniformly distributed on [ai, bi], the mean value is mi = 1

2 (ai + bi)
and the variance is 1

12 (bi − ai)2. To illustrate, consider four jobs with intervals [5, 50], [15, 45],
[22, 40], and [31, 35]. Sequencing by their means, the expected total job-time is given by:

E[T (π)] = 4m1 + 3m2 + 2m3 + m4 = 4(27.5) + 3(30) + 2(31) + 33 = 295

A worst-case robust solution sorts the jobs by their max times. That sequence is π = (4, 3,
2, 1), and the expected total job-time is

E[T (π)] = 4b4 + 3b3 + 2b2 + b1 = 4(35) + 3(40) + 2(45) + 50 = 400

Suppose the job-times are independent. Their variances are σ2 = 1
12 (452, 302, 182, 42) =

(168 3
4 , 75, 27, 1 1

3 ). Thus, for π = (1, 2, 3, 4),

V (T (π)) = 16(1683
4 ) + 9(75) + 4(27) + 1 1

3 = 3,4841
3

For π = (4, 3, 2, 1), V (T (π)) = 733.1, which is much less.
More generally, Figure 14.5 shows the efficient frontier of E[T ] versus V (T ); the mean-

value ordering is at one end, and the max-value ordering is at the other.
Newsboy Problem. This is a classical problem in operations research, which formed the

basis for the early inventory models. A newspaper is concerned with controlling the number
of papers to be distributed to newsstands. The cost of a paper varies, and the demand is
a random variable, d, with probability function P (d). Unsold papers are returned, where
millions of dollars are lost in the production cost. It is possible, however, for a newsstand to
order more papers the same day. There are holding and shortage costs. The profit function
for ordering Q papers with demand d is given by:

f(Q, d) =
{

(p − c)Q − g(d − Q) if Q ≤ d
(p − c)d − (c − s)(Q − d) if Q ≥ d

where p = sales price, c = cost, g = shortage cost, and s = salvage value of unsold papers.
(s = 0 in the original newsboy problem, but we include it here, as it appears in the more
general extensions.)

The decision variable is Q, the amount ordered. An expected-value model seeks to maxi-
mize E[f(Q, d)] =

∑
d f(Q, d)P (d). If demand has a significant variance, the newsboy could

miss opportunities for sales, or he could be stuck with a lot of rather worthless newspapers.
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FIGURE 14.5 Efficient frontier for mean-variance model of scheduling example.

The worst-case robust optimization model seeks to maximize mindf(Q, d). For known
demand, the optimal ordering quantity is the demand and the maximum profit is z(d) =
(p − c)d. Thus, the minimax regret model is:

min
Q

max
d

{z(d) − f(Q, d)}

For example, suppose d has only two values: d < d̄. Then, the worst-case robust optimization
model is:

max
d≤Q≤d̄

F (Q)

where

F (Q) = min
d

{f(Q, d)}

= min{f(Q, d), f(Q, d̄)}
= min{(p − c)d − (c − s)(Q − d), (p − c)Q − g(d̄ − Q)}
= min{(p − s)d − (c − s)Q, (p − c + g)Q − gd̄}

The solution occurs where (p − s)d − (c− s)Q= (p − c + g)Q− gd̄, which is at Q∗ =
p − s

p − s + g d + g
p − s + g d̄. This is independent of the cost of a newspaper (c) because both

outcomes incur the cost cQ.
The absolute minimax regret model is given by:

max{z(d) − f(Q, d), z(d̄) − f(Q, d̄)} = max{(c − s)(Q − d), g(d̄ − Q)}

⇒ Q∗ =
c − s

c − s + g
d +

g

c − s + g
d̄

This says that the minimax regret ordering quantity is in the interval bounded by the two
possible demands, where the weight on the lower bound is the cost minus salvage value
and the weight on the upper bound is the shortage cost. Thus, if the salvage value or the

© 2008 by Taylor & Francis Group, LLC



CH014.tex 22/10/2007 14: 9 Page 14-19

Robust Optimization 14-19

shortage cost is nearly zero, the minimax absolute regret solution is near the lower bound,
accepting the possible shortage (d − d). If the shortage cost dominates, the solution is near
the upper bound, accepting the possible excess (d̄ − d). If c− s = g, the solution is at the
midpoint because the shortage and excess recourse costs are the same.

Assuming z(d) > 0 for all d, the normalized regret model is

max
Q

min
d

f(Q, d)
z(d)

For the two-demand case,

min
{

f(Q, d)
z(d)

,
f(Q, d̄)
z(d̄)

}
= min

{
1 − (c − s)(Q − d)

(p − c)d
, 1 − g(d̄ − Q)

(p − c)d̄

}

⇒ Q∗ =
dd̄(c − s + g)
(c − s)d̄ + gd

This is also in the interval [d, d̄], with coefficients

Q∗ =
(c − s)d̄

(c − s)d̄ + gd
d +

gd

(c − s)d̄ + gd
d̄

Unlike the absolute regret solution, these coefficients depend upon the bounds. In particu-
lar, as d̄ → ∞, Q∗ → d(1 + g

c−s ), whereas in the absolute regret solution, Q∗ → ∞ (assuming
gd > 0), as does the worst-case robust optimization solution.

Revenue Management [22]. A hotel can sell a room for a low price of $100, or it can hold
the room in hope of a customer who will pay the regular price of $160. The regular demand
is uncertain, but the hotel estimates that its demand will have one room available with
probability 0.25; the probability of no surplus rooms is 0.75. The decision is whether to sell
now at the lower price.

Table 14.6 shows the decision process and the outcome possibilities. The maximum
expected revenue is $120 by holding the room. However, it has a high variance, compared to
a zero variance for selling. A worst-case robust solution is to sell because we are guaranteed
$100, while holding the room could result in zero revenue.

The maximum revenue for each possible outcome is z0 = 160 (hold) and z1 = 100 (sell).
The minimax absolute regret solution is thus:

min{max{z0 − 100, z1 − 100},︸ ︷︷ ︸
Sell

max{z0 − 160, z1 − 0}︸ ︷︷ ︸
Hold

}

= min{60, 100} = 60 (sell)

The relative regret solution is:

min
{

max
{

z0 − 100
z0 ,

z1 − 100
z1

}
, max

{
z0 − 160

z0 ,
z1 − 0

z1

}}

= min{ 3
8 , 1} = 3

8 (sell)

TABLE 14.6 Outcomes for Sell or Hold Decision

Demand Surplus Expected
Decision 0 ≥1 Revenue Variance

Sell 100 100 100 0
Hold 160 0 120 4800
Probability 0.75 0.25
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In this example, the worst-case robust optimization model has the same decision as the
two minimax regret models, which is to sell the room at the discount price. These run
counter to the expected-value solution, but a risk term could be added, as in the Markowitz
modeling paradigm, in which case there is a price of risk that renders the optimal solution
to sell.

Transportation Problem. Another classical OR problem is a min-cost shipment from
sources to destinations. Let xij = amount shipped from source i to destination j. The data
are unit shipment costs (cij), supplies (si), and demands (dj). Here is the standard model:

min
m∑

i=1

n∑
j=1

cijxij : x ≥ 0

n∑
j=1

xij ≤ si (supply limit)

m∑
i=1

xij ≥ dj (demand requirement)

When m = n and si = dj = 1 for all i, j, this is the standard assignment problem, and xij = 1
if person i is assigned to job j (otherwise, xij = 0).

Let us first assume that s and d are known, so the uncertainty is only in the costs. A
worst-case robust optimization model has the form:

min
x∈X

max
c∈C

m∑
i=1

n∑
j=1

cijxij

where X = {x≥ 0 :
∑n

j=1 xij ≤ si,
∑m

i=1 xij ≥ dj}, and C is the set of possible cost matrices.
The assignment problem satisfies the conditions of Theorem 14.3 if there exists a central

value (ĉ) and
C =

{
c : (1 − ε)ĉ ≤ c ≤ (1 + ε)ĉ,

∑
i,j

cij =
∑
i,j

ĉij

}

In that case, the central solution is all we need to solve this for all ε ∈ (0, 1).
If this interval uncertainty is not the case, or if this is not the assignment problem,

suppose there is a finite set of scenarios, indexed by k = 1, . . ., K. The worst-case robust
optimization model is given by:

min z : x ∈ X, z ≥
m∑

i=1

n∑
j=1

ck
ijxij for k = 1, . . ., K

Define the minimum cost for each scenario:

zk = min
x∈X

m∑
i=1

n∑
j=1

ck
ijxij

The absolute minimax regret model is the linear program:

min z : x ∈ X, z ≥
m∑

i=1

n∑
j=1

ck
ijxij − zk for k = 1, . . ., K
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The relative minimax regret model is also a linear program:

min z : x ∈ X, z ≥
m∑

i=1

n∑
j=1

ck
ijxij − zk for k = 1, . . ., K

Now consider uncertain supplies or demands. The recourse model puts additional variables
associated with each scenario:

min
∑
i,j

E[cij ]xij + Φ(u, v) :

∑
j

xij − uk
i = sk

i , ∀i

∑
i

xij − vk
j = dk

j , ∀j

for k = 1, . . ., K

where Φ penalizes supply shortage (uk
i > 0) and demand shortage (vk

j > 0).
The robust optimization model introduced by Mulvey et al. [14] includes penalty functions

akin to the Markowitz mean-variance model:

min
∑
i,j

E[cij ]xij +
∑

k

λk

( ∑
i

U2
ik +

∑
j

V 2
jk

)
: x ≥ 0

∑
j

xij − uk
i = sk

i , Uik ≥ 0, Uik ≥ uk
i ∀i

∑
i

xij + vk
j = dk

j , Vjk ≥ 0, Vjk ≥ vk
j ∀j

for k = 1, . . ., K

where λ > 0 is a vector of parameters that represents a cost of shortage. The penalty costs
can vary by scenario, which could include the probability of the scenario’s occurrence.
If

∑
i xij ≤ sk

i , Uik = 0 is feasible, so there is no penalty. Similarly, if
∑

j xij ≥ dk
j , Vjk = 0 is

feasible, so there is no penalty. If either Uik > 0 for some i or Vjk > 0 for some j, the penalty is
λk times the sum-squares of those shortages. If we follow the Markowitz modeling paradigm,
we have only one risk parameter, with λk = λ for all k.

Example 14.3

Figure 14.6 shows a 2× 3 transportation network with supply and demand data for two
scenarios.

1

2

1

2

3

d1 � (15, 20)

d2 � (10, 25)

d3 � (5, 15)

s1 � (20, 35)

s2 � (10, 25)

DemandSupply

FIGURE 14.6 Transportation network example.
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TABLE 14.7 Optimal Flows for Transportation Example

Policy Flow Cost Shortage

Scenario 1 5 10 5 365 0
10 0 0

Scenario 2 0 20 15 720 0
20 5 0

Recourse 0 20 15 750∗ 15∗

20 5 0
∗Expected value.

The unit costs are given by:

c1 =
[
10 12 15
12 15 18

]
and c2 =

[
15 12 10
13 14 15

]

The optimal solution to each scenario is shown in Table l4.7, along with a recourse solution
that requires demand feasibility in each scenario.

The minimax regret models are infeasible because they require a flow to satisfy supply
and demand constraints for each scenario. This means x is restricted by:

∑
j

xij ≤ min
k

sk
i , ∀i

∑
i

xij ≥ max
k

dk
j , ∀j

This is infeasible whenever
∑

i minksk
i <

∑
j maxkdk

j , as in the example.
We consider a robust optimization model that penalizes shortages but does not require

supply and demand feasibility in all scenarios. Further, we use a common risk penalty
parameter (λ). For this problem, we thus have the robust optimization model:

min E[c]x + λ
∑

k

( ∑
i

uk
i +

∑
j

vk
j

)
:

∑
j

xij − uk
i ≤ sk

i ,∀i, k

∑
i

xij + vk
j ≥ dk

j ,∀j, k

x, u, v ≥ 0

With λ = 0 and the added constraints uk
i = 0 for all i, k, we obtain the recourse model

solution shown in Table 14.7. Here we allow shortages to occur at a supply node (uk
i > 0)

or at a demand node (vk
j > 0); the penalty is the same, namely λ for each unit. Figure 14.7

shows the expected cost versus shortage as λ varies.
The curves are mostly flat, except that there is a sharp ramp from λ = 5.8 to λ = 6.25.

Table 14.8 shows the optimal flows; note the rise in x12, then suddenly to the flows that
comprise the optimal solution for scenario 1.
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FIGURE 14.7 Costs and shortages for transportation example.

TABLE 14.8 Optimal Flows as
Functions of λ

λ x∗

0–5.9
[
0 0 0
0 0 0

]

6
[
0 4.4 0
0 0 0

]

6.02–6.24
[
0 10 0
0 0 0

]

≥6.29
[

5 10 5
10 0 0

]
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As an alternative, consider an uncertainty-set robust optimization model, where the sup-
plies and demands are correlated to be feasible:

D =
{

(s, d) ≥ 0 :
∑

i

si ≥
∑

j

dj

}

In particular, we could have a central value and maintain constant-sum supplies and constant-
sum demands, allowing individual supplies and demands to vary independently within the
two degrees of freedom lost for the constant-sum equations. Then,

Uω = {(s, d) ∈ D : ‖(s, d) − (ŝ, d̂)‖ ≤ ω}

The robust optimization model is

min
∑
i,j

cijxij : x ≥ 0,
{∑

j

xij ≤ si,
∑

i

xij ≥ dj

}
∀(s, d) ∈ Uw

The robust models for cost uncertainty can be included as well. The net result is that we
can find a shipment (or assignment) that is feasible in all admissible scenarios (i.e., in Uω),
and for which we minimize the maximum cost (or maximum regret).

A problem with this uncertainty-set model is the likelihood of infeasibility. As in the
example, we could wind up with the impossibility:

min
(s,d)∈Uω

( ∑
i

si −
∑

j

dj

)
< 0

If the central value has surplus supply (i.e.,
∑

i ŝi >
∑

j d̂j), this infeasibility can be mit-
igated by choosing ω sufficiently small. This is appropriate when the robustness sought is
with respect to insensitivity to small perturbations in the data.

The standard transportation problem can be modified in several ways. One is to suppose
the network is sparse—not every supplier can ship to every consumer. This is realistic and
makes the deterministic problem much more tractable for very large networks. However,
the topology of the network could then become a source of uncertainty, which renders the
robust optimization models difficult to solve. Another extension is to add uncertain bounds
on the flows: x≤U , where U is the capacity of arc <i, j>. If major variations are allowed,
the bounds could control the topology by having Uij = 0 mean that arc xij is absent. There
could also be gains or losses during shipment, and those values could be uncertain. Again,
if large variations are possible, a 100% loss value essentially removes the arc from the
network. In general, robust optimization models can deal effectively with insensitivity to
small fluctuations in the data, but allowing the topology to change is a hard problem.

Capacity Expansion. Consider the following power system problem [23,24]. Electricity
can be generated by different types of plants, like coal-fired boilers, oil-fired turbines, and
nuclear power plants. During a cycle, like 24 hours, the demand for electricity varies, and
that load is sorted into the load–duration curve, as shown in Figure 14.8. The curve is
approximated by three steps, called modes: (1) base, which is ongoing demand for electricity
throughout the region being serviced; (2) peak, which is the greatest amount, but for a short
duration, usually during mid-day for temperature control in business and residence; and (3)
intermediate, which is between the base and peak loads.
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FIGURE 14.8 Load–duration curve for example electric power system.

The approximation allows us to model electricity generation and demand satisfaction as
a linear program:

min
∑

i

fixi +
∑

j

Tj

∑
i

cijyij : x, y ≥ 0

∑
j

yij − xi ≤ 0 (capacity limit)

Tj

∑
i

yij ≥ dj (demand)

where xi is the amount of capacity of type i that is made available (fi = annualized capital
cost), and yij is the level of operation of plant i to fulfill demand during mode j (cij is its
unit operating cost). The demand, dj , is by mode (base, intermediate, and peak).

The capacity decisions (x) must be made before the demands are known. Then, y must
operate within those capacity limits, which could result in a shortage (where dj is greater
than expected) or excess capacity (where dj is less than expected).

One robust optimization model is to prepare for the worst case—that is, the greatest
demand in each mode. This is likely to be overly pessimistic because demands might shift,
rather than move in parallel across modes, in which case we would inevitably incur excess
capacity.

Here is a scenario-based robust optimization model:

min fx + E[ζ] + λ1E[(ζ − E[ζ])2] + λ2E[‖κk‖2] + λ3E[‖δk‖2]

κk
i ≥ xi −

∑
j

yk
ij ∀i, k (excess capacity)

δk
j ≥ dk

j − T k
j

∑
i

yk
ij ∀j, k (shortage)

x, y, κ, δ ≥ 0,

where κk is the excess capacity vector and δk is the shortage vector for scenario k. (Note:
κk

i = max{0, xi −
∑

j yk
ij} and δk

j = max{0, dk
j −T k

j

∑
i yk

ji}.) The random variable, ζ, is
defined over scenarios:

P
(
ζ =

∑
j

T k
j

∑
i

cijy
k
ij

)
= sk
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The multipliers are
λ1 = usual price of risk, as in the Markowitz mean-risk model
λ2 = price of having excess capacity
λ3 = price of having shortage.

To illustrate, Table 14.9 gives data for four types of plants (taken from Refs. [16] and
[21]), and Table 14.10 gives the demands for each of four scenarios.

Now consider the regret models. We have

zk = min
∑

i

fixi +
∑

j

Tj

∑
i

cijyij : x, y ≥ 0

∑
j

yij − xi ≤ 0 (capacity limit)

Tj

∑
i

yij ≥ dk
j (demand)

(Note: T and c are the same for all scenarios.)
Table 14.11 shows the table introduced in Section 14.3.3. The diagonal values are the

scenario optima, z1, . . ., z4. The off-diagonal entries reflect the cost of (xp, ykp), the best
possible response to scenario k given that the capacity decisions (xp) were fixed assuming
scenario (p). We assume each scenario is equally-likely, so sk = 1

4 ,∀k.
Table 14.12 shows the optimal capacities for each of the seven policies—x1, . . ., x4 are

the scenario optima; xA, xR are the absolute and relative minimax regret solutions, and xE

is the expected-cost optimum.

TABLE 14.9 Supply Options and Associated
Costs for Example

Annualized Operating Cost
Plant Capital Cost (same for all modes)

A 200 30
B 500 10
C 300 20
D 0 200

TABLE 14.10 Demand Loads and Durations for Scenarios
Base Intermediate Peak

Scenario Load Duration Load Duration Load Duration

1 8 24 6 12 4 6
2 8.67 24 7 10 1.33 5
3 9 24 7.33 10 1.67 4
4 8.25 24 5 12 2.5 4

TABLE 14.11 Scenario Optima over Scenarios
Scenario

Expected
Policy 1 2 3 4 Cost

1 10,680.0∗ 10,608.1 10,899.4 10,110.0 10,574.38
2 11,620.4 10,381.3∗ 11,398.8 9,980.2 10,855.13
3 10,860.0 10,614.3 10,859.4∗ 10,200.0 10,633.43
4 12,560.0 11,210.6 12,561.0 9,605.0∗ 11,484.15

E[Cost] 10,715.0 10,898.1 10,889.4 10,055.0 10,055.00∗

Minimax Regret Solutions
Absolute 11,048.6 10,749.9 11,228.0 9,973.6 10,750.05
Relative 11,081.1 10,771.2 11,267.2 9,965.7 10,771.30
∗Optimal.
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TABLE 14.12 Optimal Capacities
Plant

Policy A B C D

x1 4.00 8.00 6.00 0
x2 8.33 8.67 0.00 1.00
x3 9.00 9.00 0.00 0
x4 2.50 8.25 5.00 2.25
xA 4.34 8.25 5.00 0.41
xR 4.30 8.25 5.00 0.45
xE 4.75 8.25 5.00 0

The absolute regret solution uses slightly more capacity of plant A, thus reducing the
amount of plant D needed to fulfill demand; otherwise, the two regret solutions are essen-
tially the same. The expected value solution is constrained to satisfy demand for each
scenario, and it does so without plant D. The difference with the regret solutions is the
amount of plant A capacity made available.

The total excess capacity in each case is 0, 1, 1.25, or 2.25, depending on the scenario
and policy. The expected value solution has 2.25 excess capacity of plant A in scenario 1,
while the regret solutions have only 2.05. All three solutions have no excess capacity in the
other plants.

Facility Location. A standard facility location problem is to choose the coordinates of a
point that minimizes the total (weighted) distance to each of a set of given points. The
points could represent population centers in a region and the weights are the populations.
The facility is one of service, like a hospital, and the objective is to provide an overall best
service by being centrally located. Here is a basic model:

min
x,y

m∑
i=1

widi(x, y)

where w ≥ 0 and di is the distance from (xi, yi) to (x, y). The distance is typically given by
some norm: di(x, y) = ‖(xi, yi) − (x, y)‖.

Suppose the problem is unweighted and we use the city-block distance (L1 norm):

min
x,y

m∑
i=1

(|xi − x| + |yi − y|)

First, we note that we can optimize each coordinate separately. Second, the minimum L1
placement is the median, given as follows. Let π be a permutation of the x values such
that xπ1 ≤xπ2 ≤ · · · ≤xπm

. If m is odd, the median is the mid-point, xπ m+1
2

Thus, 5 is the

median of 1,2,5,9,50. If m is even, the median can be any point in the interval such that half
the points are less and half are greater. Thus, any value in the interval (5, 9) is a median
of 1,2,5,9,50,90. We do the same thing to compute the median of {yi} to obtain the median
coordinate in the plane. We leave as an exercise that a median is the location problem
solution when using the L1 norm.

Now consider the Euclidean norm (L2). The location problem is given by:

min
x,y

m∑
i=1

√
(xi − x)2 + (yi − y)2

The solution to this problem is the mean: (x∗, y∗) = 1
m

∑m
i=1(xi, yi). Compared to the

median, this is very sensitive to the given coordinates, especially to outliers—a few points
far from the others. For that reason, the median is a more robust solution than the mean.
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The family of norms, Lp(v) = (
∑

j |vj |p)
1
p , approaches L∞ = maxj{|vj |}. The location

problem for the Lp norm is given by:

min
x,y

m∑
i=1

wi(|xi − x|p + |yi − y|p) 1
p

and as p → ∞
min
x,y

m∑
i=1

wi max{|xi − x|, |yi − y|}

In statistical estimation, Lp is more robust than Lp+1 because it is less sensitive to the data
(both the weights and the given coordinates).

However, a robust optimization model does not sum the distances at all. It defines the
problem as:

min
x,y

max
i

{widi(x, y)}

We call this solution the center of the convex hull of the given points. It is insensitive to
small changes in the coordinates or weights of non-extreme points, and in that sense the
center is a robust solution. While there are two concepts of robustness, median vs. mean and
center vs. L∞, both pertain to insensitivity to the given data, but they have different kinds
of sensitivities. The median, which is optimal with summing the L1 norms, is insensitive
to perturbations of all data values; it depends upon only their relative values. The center
depends upon the data of the outliers, which are extreme points of the convex hull. (The
converse is not true—not all extreme points are outliers.)

Figure 14.9 illustrates this for 9 points. Table 14.13 shows the objective values for each
of the three location points.

Engineering Design. The engineering design problem specifies outputs (y) as a function
of inputs that consist of decision variables (x) and (non-controllable) parameters (p):

y = F (x, p)

0 20 40 60 80 100
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20
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40

50

60

70

80

90

100
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Center

FIGURE 14.9 Median, mean, and center are respective solutions for facility location using
∑

L1,
∑

L2,
and max L1 objectives.
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TABLE 14.13 Median, Mean, and Center Distances Using
∑

L1,
∑

L2, and max L1 Objectives

x y
∑

L1
∑

L2 Max L1

Median 60 30 575∗ 164.39 130
Mean 55.56 46.11 595.56 156.56∗ 109.44
Center 50 50 605 157.88 100∗

∗Optimal.

TABLE 14.14 Variations in Output Current for (R, L) ∈ R×L(ymin,ymax)L
R L ymin ymax max {|ymin − 10|, |ymax − 10|} y s |y − 10|

1 1 21.5 38.4 28.4 29.95 11.95 19.95
1 2 10.8 19.4 9.4 15.10 6.08 5.10
1 3 7.2 13.0 3.0 10.10 4.38 0.10
2 1 13.1 20.7 10.7 16.90 5.37 6.90
2 2 9.0 15.2 5.2 12.10 4.38 2.10
2 3 6.6 11.5 3.4 9.05 3.46 0.95
3 1 8.0 12.2 2.2 10.10 2.97 0.10
3 2 6.8 10.7 3.2 8.75 2.76 1.25
3 3 5.5 9.1 4.5 7.30 2.54 2.70

Some parameters are random variables. If the actual value of a decision variable is ran-
dom, the optimization model uses the mean of its distribution as the decision variable and
accounts for its variation in some way.

There is a target value, denoted T , and a robust design is one that chooses x (or its
mean) to minimize some combination of the distance between y and the target, E [‖y −T‖],
and variation around that, typically with a standard deviation risk metric. The model is
similar to the Markowitz mean-risk model, but not quite the same. We illustrate with some
examples.

Electric circuit example [25,26]. We want to build an AC circuit with output current
given by

y =

√
V

R2 + (2πfL)2

where V is the input voltage, R is the resistance, f is the frequency, and L is the self-
inductance. Resistance and self-inductance are decision variables, restricted to the sets
R= {1 ohm, 2 ohms, 3 ohms} and L = {1 henry, 2 henries, 3 henries}, respectively. Volt-
age and frequency are not decision variables, but they have some noise—that is, V and f
are random variables with known means and variances.

For each (R, L) ∈ R × L, there are observed deviations in y with ymin, ymax being the
minimum and maximum noise values, shown in Table 14.14. The y is the observed mean
value of y, and s is its observed standard deviation. The last column is the distance of the
mean from the target of 10 amps.

The design parameters that minimize the distance from the target is (R, L) = (1, 3), (3, 1).
The former has a deviation of 4.38, while the latter has a deviation of 2.97. Thus, the lat-
ter would be preferred. However, the overall min-deviation solution is with (R, L) = (3, 3),
though its distance from the target is 2.70. One worst-case robust optimization model is
given by:

min
R∈R
L∈L

max{|ymin(R, L) − 10|, |ymax(R, L) − 10|}

The solution to this model is (R, L) = (3, 1).
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TABLE 14.15 Design Variables and Parameters Data

Variable/ Standard
Parameter Mean Deviation Range

FPR µFPR 0.1 1.25 ≤ µFPR ≤ 1.6
JVR µJVR 100 0.6 ≤ µJVR ≤ 0.9
CET µCET 1.5 2400 ≤ µCET ≤ 4000
HCPR µHCPR 0.5 10.2 ≤ µHCPR ≤ 25
LCPR µLCPR 0.1 1.15 ≤ µLCPR ≤ 4.9
htce 0.891 0.0033 n/a
hte 0.933 0.0033 n/a
ltc 0.9 0.0033 n/a

Using the extreme values (ymin, ymax) is overly conservative, as they are obtained by a
large number of experiments. Instead, consider a mean-risk model, where two objectives are
to minimize the deviation from the target, |y(R, L) − 10|, and the standard deviation about
the mean, s(R, L). We define a solution (R, L) to be robust if there does not exist another
solution (R′, L′) for which |y(R′, L′) − 10| ≤ |y(R, L) − 10| and s(R′, L′) ≤ s(R, L). Here we
have three robust solutions: (1, 3), (3, 2), and (3, 3).

Engine design example [27]. We have five design variables: fan pressure ratio (FPR),
exhaust jet velocity ratio (JVR), combustor exit temperature (CET), high compressor pres-
sure ratio (HCPR), and low compressor pressure ratio (LCPR). In addition, there are three
parameters: high turbine compressor efficiency (htce), high turbine efficiency (hte), and
low turbine efficiency (lte). The design variables and the parameters are each normally
distributed with given standard deviations, shown in Table 14.15.

The aircraft’s range is a nonlinear function of the design variables and parameters. The
robust optimization model has the form of Markowitz’s mean-risk model, except that the
design engineer uses standard deviation instead of variance:

max µRange − λσRange

where λ > 0 is chosen to reflect the relative importance of robustness.
Figure 14.10 gives four solutions. One is the expected-value solution (λ = 0), one is the

worst-case robust solution (λ = ∞), and two are in between. The maximum expected range
has a chance of having the aircraft’s range be less than that of the worst-case robust solu-
tion. The optimal robust solution results with µRange = 2200.52 and σRange = 54.1189, so
µRange ± 3σRange = [2038.1658, 2362.8792]. The optimal expected range results with µRange =
2671.1454 and σRange = 225.7006, so µRange ± 3σRange = [1994.0436, 3348.2472]. Which solu-
tion is best (among the four) depends on what value we place on the range. If being less than
2050 has dire consequences, the robust solution is preferred over the expected-value solution.

14.5 Summary

We have seen that robust optimization can be a worst-case model, minimax regret, or a
model of uncertainty that simply restricts the solution space in a way that avoids “too much”
deviation from some central value. Collectively, these capture much of the essence of the
classical models within their scope, except that robust optimization avoids the explicit need
for probability distribution information within the model. This difference has been key,
but current research is building a more inclusive framework, addressing the desire to use
whatever information is available.

In this view, robust optimization falls firmly in the tradition of stochastic programming
paradigms. Historically, robust optimization has emerged from the three classical paradigms,
as shown in Figure 14.11. The diagram represents fundamental concepts, like risk, flexibility,
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FIGURE 14.10 Solutions to the engine design example.
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FIGURE 14.11 Historical perspective of stochastic programming modeling paradigms.

recourse, and the meaning of constraining for robustness. An algorithmic view would add
divisions by underlying structures, like continuous versus discrete.

The key elements of robust optimization are volatility and flexibility. The former asks for
a solution that is relatively insensitive to data variations and hedges against catastrophic
outcomes. The latter is concerned with keeping options open in a sequential decision process
having recourses for the effects of earlier decisions.

An area of concern, which we did not have space to present fully, is the computational
difficulty to solve instances of a robust optimization model. Kouvelis and Yu [15] address
this with complexity theory; the uncertainty set model by Ben-Tall and Nemirovski [2,19]
exploits the tractability of semi-definite conic programming; and, Carr et al. [17] show a pro-
gression of incremental computational difficulty for a particular sensor placement problem,
starting with the simple case expressed in Theorem 14.3.
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15.1 Introduction

Project management techniques continue to be a major avenue to accomplishing goals and
objectives in various organizations ranging from government, business, and industry to
academia. The techniques of project management can be divided into three major tracks as
summarized below:

• Qualitative managerial principles
• Computational decision models
• Computer implementation tools.

This chapter focuses on computational network techniques for project management. Net-
work techniques emerged as a formal body of knowledge for project management during
World War II, which ushered in a golden era for operations research and its quantitative
modeling techniques.

15-1
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Badiru (1996) defines project management as the process of managing, allocating, and
timing resources to achieve a given objective expeditiously. The phases of project manage-
ment are:

1. Planning
2. Organizing
3. Scheduling
4. Controlling.

The network techniques covered in this chapter are primarily for the scheduling phase,
although network planning is sometimes included in the project planning phase too. Every-
one in every organization needs project management to accomplish objectives. Consequently,
the need for project management will continue to grow as organizations seek better ways
to satisfy the constraints on the following:

• Schedule constraints (time limitation)
• Cost constraints (budget limitation)
• Performance constraints (quality limitation).

The different tools of project management may change over time. Some tools will come
and go over time. But the basic need of using network analysis to manage projects will always
be high. The network of activities in a project forms the basis for scheduling the project.
The critical path method (CPM) and the program evaluation and review technique (PERT)
are the two most popular techniques for project network analysis. The precedence diagram-
ming method (PDM) has gained popularity in recent years because of the move toward
concurrent engineering. A project network is the graphical representation of the contents
and objectives of the project. The basic project network analysis of CPM and PERT is
typically implemented in three phases (network planning phase, network scheduling phase,
and network control phase), which has the following advantages:

• Advantages for communication
It clarifies project objectives.
It establishes the specifications for project performance.
It provides a starting point for more detailed task analysis.
It presents a documentation of the project plan.
It serves as a visual communication tool.

• Advantages for control
It presents a measure for evaluating project performance.
It helps determine what corrective actions are needed.
It gives a clear message of what is expected.
It encourages team interactions.

• Advantages for team interaction
It offers a mechanism for a quick introduction to the project.
It specifies functional interfaces on the project.
It facilitates ease of application.
It creates synergy between elements of the project.

Network planning is sometimes referred to as activity planning. This involves the identifi-
cation of the relevant activities for the project. The required activities and their precedence
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relationships are determined in the planning phase. Precedence requirements may be deter-
mined on the basis of technological, procedural, or imposed constraints. The activities are
then represented in the form of a network diagram. The two popular models for network
drawing are the activity-on-arrow (AOA) and the activity-on-node (AON) conventions. In
the AOA approach, arrows are used to represent activities, whereas nodes represent starting
and ending points of activities. In the AON approach, nodes represent activities, whereas
arrows represent precedence relationships. Time, cost, and resource requirement estimates
are developed for each activity during the network planning phase. Time estimates may be
based on the following:

1. Historical records
2. Time standards
3. Forecasting
4. Regression functions
5. Experiential estimates.

Network scheduling is performed by using forward pass and backward pass computational
procedures. These computations give the earliest and latest starting and finishing times for
each activity. The slack time or float associated with each activity is determined in the
computations. The activity path with the minimum slack in the network is used to deter-
mine the critical activities. This path also determines the duration of the project. Resource
allocation and time-cost tradeoffs are other functions performed during network scheduling.

Network control involves tracking the progress of a project on the basis of the network
schedule and taking corrective actions when needed; an evaluation of actual performance
versus expected performance determines deficiencies in the project.

15.2 Critical Path Method

Precedence relationships in a CPM network fall into the three major categories listed below:

1. Technical precedence
2. Procedural precedence
3. Imposed precedence

Technical precedence requirements are caused by the technical relationships among activi-
ties in a project. For example, in conventional construction, walls must be erected before the
roof can be installed. Procedural precedence requirements are determined by policies and
procedures. Such policies and procedures are often subjective, with no concrete justification.
Imposed precedence requirements can be classified as resource-imposed, project-imposed,
or environment-imposed. For example, resource shortages may require that one task be
scheduled before another. The current status of a project (e.g., percent completion) may
determine that one activity be performed before another. The environment of a project, for
example, weather changes or the effects of concurrent projects, may determine the prece-
dence relationships of the activities in a project.

The primary goal of a CPM analysis of a project is the determination of the “critical
path.” The critical path determines the minimum completion time for a project. The com-
putational analysis involves forward pass and backward pass procedures. The forward pass
determines the earliest start time and the earliest completion time for each activity in the
network. The backward pass determines the latest start time and the latest completion time
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for each activity. Figure 15.1 shows an example of an activity network using the activity-on-
node convention. Conventionally the network is drawn from left to right. If this convention
is followed, there is no need to use arrows to indicate the directional flow in the activity
network. The notations used for activity A in the network are explained below:

A: Activity identification
ES: Earliest starting time
EC: Earliest completion time
LS: Latest starting time
LC: Latest completion time
t: Activity duration

During the forward pass analysis of the network, it is assumed that each activity will begin
at its earliest starting time. An activity can begin as soon as the last of its predecessors
is finished. The completion of the forward pass determines the earliest completion time of
the project. The backward pass analysis is a reverse of the forward pass. It begins at the
latest project completion time and ends at the latest starting time of the first activity in the
project network. The rules for implementing the forward pass and backward pass analyses
in CPM are presented below. These rules are implemented iteratively until the ES, EC, LS,
and LC have been calculated for all nodes in the network.

Rule 1: Unless otherwise stated, the starting time of a project is set equal to time zero.
That is, the first node in the network diagram has an earliest start time of zero.

Rule 2: The earliest start time (ES) for any activity is equal to the maximum of
the earliest completion times (EC) of the immediate predecessors of the activity.
That is,

ES=Maximum {Immediately Preceding ECs}

Rule 3: The earliest completion time (EC) of an activity is the activity’s earliest start
time plus its estimated duration. That is,

ES=ES+ (Activity Time)

Start

A
t D

B   E G

C   F H

I

Finish

ES         EC

LS         LC

FIGURE 15.1 Example of activity network.
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Rule 4: The earliest completion time of a project is equal to the earliest completion
time of the very last node in the network. That is,

EC of Project=EC of last activity

Rule 5: Unless the latest completion time (LC) of a project is explicitly specified,
it is set equal to the earliest completion time of the project. This is called the
zero-project-slack assumption. That is,

LC of Project=EC of Project

Rule 6: If a desired deadline is specified for the project, then

LC of Project=Specified Deadline

It should be noted that a latest completion time or deadline may sometimes be
specified for a project based on contractual agreements.

Rule 7: The latest completion time (LC) for an activity is the smallest of the latest
start times of the activity’s immediate successors. That is,

LC=Minimum {Immediately Succeeding LS’s}

Rule 8: The latest start time for an activity is the latest completion time minus the
activity time. That is,

LS=LC− (Activity Time)

15.2.1 CPM Example

Table 15.1 presents the data for an illustrative project. This network and its extensions
will be used for other computational examples in this chapter. The AON network for the
example is given in Figure 15.2. Dummy activities are included in the network to designate
single starting and ending points for the project.

TABLE 15.1 Data for Sample Project for CPM Analysis
Activity Predecessor Duration (Days)
A – 2
B – 6
C – 4
D A 3
E C 5
F A 4
G B,D,E 2

Start

A
2

D
3

B
6

E
5

G
2

C
4

F
4

End

FIGURE 15.2 Project network for illustrative example.
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15.2.2 Forward Pass

The forward pass calculations are shown in Figure 15.3. Zero is entered as the ES for the
initial node. As the initial node for the example is a dummy node, its duration is zero. Thus,
EC for the starting node is equal to its ES. The ES values for the immediate successors of
the starting node are set equal to the EC of the START node and the resulting EC values are
computed. Each node is treated as the “start” node for its successor or successors. However,
if an activity has more than one predecessor, the maximum of the ECs of the preceding
activities is used as the activity’s starting time. This happens in the case of activity G,
whose ES is determined as Max {6,5,9} = 9. The earliest project completion time for the
example is 11 days. Note that this is the maximum of the immediately preceding earliest
completion times: Max {6,11} = 11. As the dummy ending node has no duration, its earliest
completion time is set equal to its earliest start time of 11 days.

15.2.3 Backward Pass

The backward pass computations establish the latest start time (LS) and latest completion
time (LC) for each node in the network. The results of the backward pass computations
are shown in Figure 15.4. As no deadline is specified, the latest completion time of the
project is set equal to the earliest completion time. By backtracking and using the network
analysis rules presented earlier, the latest completion and start times are determined for
each node. Note that in the case of activity A with two successors, the latest completion
time is determined as the minimum of the immediately succeeding latest start times. That

Start

A
2

D
3

B
6

E
5

G
2

C
4

F
4

End
0             0 

0             2 2             6

0             6 9               11 

2
5

0     
4  4  

9

11 11

FIGURE 15.3 Forward pass analysis for CPM example.
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FIGURE 15.4 Backward pass analysis for CPM example.
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is, Min{6,7} = 6. A similar situation occurs for the dummy starting node. In that case, the
latest completion time of the dummy start node is Min {0,3,4} = 0. As this dummy node has
no duration, the latest starting time of the project is set equal to the node’s latest completion
time. Thus, the project starts at time 0 and is expected to be completed by time 11.

Within a project network, there are usually several possible paths and a number of activ-
ities that must be performed sequentially and some activities that may be performed con-
currently. If an activity has ES and LS times that are not equal, then the actual start
and completion times of that activity may be flexible. The amount of flexibility an activity
possesses is called a slack. The slack time is used to determine the critical activities in the
network as discussed below.

15.2.4 Determination of Critical Activities

The critical path is defined as the path with the least slack in the network diagram. All the
activities on the critical path are said to be critical activities. These activities can create
bottlenecks in the network if they are delayed. The critical path is also the longest path
in the network diagram. In some networks, particularly large ones, it is possible to have
multiple critical paths. If there is a large number of paths in the network, it may be very
difficult to visually identify all the critical paths.

The slack time of an activity is also referred to as its float. There are four basic types
of activity slack as described below:

• Total Slack (TS). Total slack is defined as the amount of time an activity may
be delayed from its earliest starting time without delaying the latest completion
time of the project. The total slack time of an activity is the difference between
the latest completion time and the earliest completion time of the activity, or the
difference between the latest starting time and the earliest starting time of the
activity.

TS = LC − EC
Or

TS = LS − ES

Total slack is the measure that is used to determine the critical activities in a
project network. The critical activities are identified as those having the minimum
total slack in the network diagram. If there is only one critical path in the network,
then all the critical activities will be on that one path.

• Free Slack (FS). Free slack is the amount of time an activity may be delayed
from its earliest starting time without delaying the starting time of any of its
immediate successors. Activity free slack is calculated as the difference between
the minimum earliest starting time of the activity’s successors and the earliest
completion time of the activity.

FS = Min{Succeeding ES’s} − EC

• Interfering Slack (IS). Interfering slack or interfering float is the amount of time
by which an activity interferes with (or obstructs) its successors when its total
slack is fully used. This is rarely used in practice. The interfering float is computed
as the difference between the total slack and the free slack.

IS = TS − FS
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• Independent Float (IF). Independent float or independent slack is the amount
of float that an activity will always have regardless of the completion times
of its predecessors or the starting times of its successors. Independent float is
computed as:

IF = Max{0,(ESj − LCi − t)}

where ESj is the earliest starting time of the preceding activity, LCi is the latest
completion time of the succeeding activity, and t is the duration of the activity
whose independent float is being calculated. Independent float takes a pessimistic
view of the situation of an activity. It evaluates the situation whereby the activ-
ity is pressured from either side, that is, when its predecessors are delayed as
late as possible while its successors are to be started as early as possible. Inde-
pendent float is useful for conservative planning purposes, but it is not used
much in practice. Despite its low level of use, independent float does have practi-
cal implications for better project management. Activities can be buffered with
independent floats as a way to handle contingencies.

In Figure 15.4 the total slack and the free slack for activity A are calculated, respec-
tively, as:

TS = 6 − 2 = 4 days
FS = Min{2, 2} − 2 = 2 − 2 = 0

Similarly, the total slack and the free slack for activity F are:

TS = 11 − 6 = 5 days
FS = Min{11} − 6 = 11 − 6 = 5 days

Table 15.2 presents a tabulation of the results of the CPM example. The table contains
the earliest and latest times for each activity as well as the total and free slacks. The results
indicate that the minimum total slack in the network is zero. Thus, activities C, E, and G
are identified as the critical activities. The critical path is highlighted in Figure 15.4 and
consists of the following sequence of activities:

Start → C → E → G → End

The total slack for the overall project itself is equal to the total slack observed on the
critical path. The minimum slack in most networks will be zero as the ending LC is set equal
to the ending EC. If a deadline is specified for a project, then we would set the project’s
latest completion time to the specified deadline. In that case, the minimum total slack in
the network would be given by:

TSMin = Project Deadline − EC of the last node

TABLE 15.2 Result of CPM Analysis for Sample Project
Activity Duration ES EC LS LC TS FS Criticality

A 2 0 2 4 6 4 0 –
B 6 0 6 3 9 3 3 –
C 4 0 4 0 4 0 0 Critical
D 3 2 5 6 9 4 4 –
E 5 4 9 4 9 0 0 Critical
F 4 2 6 7 11 5 5 –
G 2 9 11 9 11 0 0 Critical
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FIGURE 15.5 CPM network with deadline.

This minimum total slack will then appear as the total slack for each activity on the
critical path. If a specified deadline is lower than the EC at the finish node, then the project
will start out with a negative slack. That means that it will be behind schedule before it even
starts. It may then become necessary to expedite some activities (i.e., crashing) to overcome
the negative slack. Figure 15.5 shows an example with a specified project deadline. In this
case, the deadline of 18 days comes after the earliest completion time of the last node in
the network.

15.2.5 Using Forward Pass to Determine the Critical Path

The critical path in CPM analysis can be determined from the forward pass only. This
can be helpful in cases where it is desired to quickly identify the critical activities without
performing all the other calculations needed to obtain the latest starting times, the latest
completion times, and total slacks. The steps for determining the critical path from the
forward pass only are:

1. Complete the forward pass in the usual manner.
2. Identify the last node in the network as a critical activity.
3. Work backward from the last node. Whenever a merge node occurs, the criti-

cal path will be along the path where the earliest completion time (EC) of the
predecessor is equal to the earliest start time (ES) of the current node.

4. Continue the backtracking from each critical activity until the project starting
node is reached. Note that if there is a single starting node or a single ending
node in the network, then that node will always be on the critical path.

15.2.6 Subcritical Paths

In a large network, there may be paths that are near critical. Such paths require almost as
much attention as the critical path as they have a high potential of becoming critical when
changes occur in the network. Analysis of subcritical paths may help in the classification
of tasks into ABC categories on the basis of Pareto analysis. Pareto analysis separates
the “vital” few activities from the “trivial” many activities. This permits a more efficient
allocation of resources. The principle of Pareto analysis originated from the work of Italian
economist Vilfredo Pareto (1848–1923). Pareto discovered from his studies that most of the
wealth in his country was held by a few individuals.
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TABLE 15.3 Analysis of Sub-Critical Paths
Path No. Activities on Path Total Slack λ (%) λ′

1 A,C,G,H 0 100 10
2 B,D,E 1 97.56 9.78
3 F,I 5 87.81 8.90
4 J,K,L 9 78.05 8.03
5 O,P,Q,R 10 75.61 7.81
6 M,S,T 25 39.02 4.51
7 N,AA,BB,U 30 26.83 3.42
8 V,W,X 32 21.95 2.98
9 Y,CC,EE 35 17.14 2.54
10 DD,Z,FF 41 0 1.00

For project control purposes, the Pareto principle states that 80% of the bottlenecks are
caused by only 20% of the tasks. This principle is applicable to many management processes.
For example, in cost analysis, one can infer that 80% of the total cost is associated with only
20% of the cost items. Similarly, 20% of an automobile’s parts cause 80% of the maintenance
problems. In personnel management, about 20% of the employees account for about 80% of
the absenteeism. For critical path analysis, 20% of the network activities will take up 80% of
our control efforts. The ABC classification based on Pareto analysis divides items into three
priority categories: A (most important), B (moderately important), and C (least important).
Appropriate percentages (e.g., 20%, 25%, 55%) may be assigned to the categories.

With Pareto analysis, attention can be shifted from focusing only on the critical path
to managing critical and near-critical tasks. The level of criticality of each path may be
assessed by the steps below:

1. Sort paths in increasing order of total slack.
2. Partition the sorted paths into groups based on the magnitudes of their total

slacks.
3. Sort the activities within each group in increasing order of their earliest starting

times.
4. Assign the highest level of criticality to the first group of activities (e.g., 100%).

This first group represents the usual critical path.
5. Calculate the relative criticality indices for the other groups in decreasing order

of criticality.

Define the following variables:
α1 = the minimum total slack in the network
α2 = the maximum total slack in the network
β = total slack for the path whose criticality is to be calculated.

Compute the path’s criticality as:

λ =
α2 − β

α2 − α1
(100%)

The above procedure yields relative criticality levels between 0% and 100%. Table 15.3
presents a hypothetical example of path criticality indices. The criticality level may be
converted to a scale between 1 (least critical) and 10 (most critical) by the expression below:

λ′ = 1 + 0.09λ

15.2.7 Gantt Charts

When the results of a CPM analysis are fitted to a calendar time, the project plan becomes
a schedule. The Gantt chart is one of the most widely used tools for presenting a project
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FIGURE 15.6 Gantt chart based on earliest starting times.
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FIGURE 15.7 Gantt chart based on latest starting times.

schedule. A Gantt chart can show planned and actual progress of activities. The time scale
is indicated along the horizontal axis, while horizontal bars or lines representing activities
are ordered along the vertical axis. As a project progresses, markers are made on the activity
bars to indicate actual work accomplished. Gantt charts must be updated periodically to
indicate project status. Figure 15.6 presents the Gantt chart using the earliest starting (ES)
times from Table 15.2. Figure 15.7 presents the Gantt chart for the example based on the
latest starting (LS) times. Critical activities are indicated by the shaded bars.

Figure 15.6 shows the Gantt chart for the example based on earliest starting time. From
the CPM network computations, it is noted that activity F can be delayed from day two
until day seven (i.e., TS = 5) without delaying the overall project. Likewise, A, D, or both
may be delayed by a combined total of 4 days (TS = 4) without delaying the overall project.
If all the 4 days of slack are used up by A, then D cannot be delayed. If A is delayed by 1 day,
then D can only be delayed by up to 3 days without causing a delay of G, which determines
project completion. CPM computations also reveal that activity B may be delayed up to
3 days without affecting the project completion time.

In Figure 15.7, the activities are scheduled by their latest completion times. This repre-
sents a pessimistic case where activity slack times are fully used. No activity in this schedule
can be delayed without delaying the project. In Figure 15.7, only one activity is scheduled
over the first 3 days. This may be compared to the schedule in Figure 15.6, which has
three starting activities. The schedule in Figure 15.7 may be useful if there is a situation
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that permits only a few activities to be scheduled in the early stages of the project. Such
situations may involve shortage of project personnel, lack of initial budget, time for project
initiation, time for personnel training, allowance for learning period, or general resource con-
straints. Scheduling of activities based on ES times indicates an optimistic view. Scheduling
on the basis of LS times represents a pessimistic approach.

15.2.8 Gantt Chart Variations

The basic Gantt chart does not show the precedence relationships among activities. The
chart can be modified to show these relationships by coding appropriate bars, as shown by
the cross-hatched bars in Figure 15.8. Other simple legends can be added to show which
bars are related by precedence linking. Figure 15.9 shows a Gantt chart that presents a com-
parison of planned and actual schedules. Note that two tasks are in progress at the current
time indicated in the figure. One of the ongoing tasks is an unplanned task. Figure 15.10
shows a Gantt chart on which important milestones have been indicated. Figure 15.11 shows
a Gantt chart in which bars represent a combination of related tasks. Tasks may be com-
bined for scheduling purposes or for conveying functional relationships required in a project.
Figure 15.12 presents a Gantt chart of project phases. Each phase is further divided into

  0   1   2   3   4   5   6   7   8   9   10   11

G

F

E

D

C

B

A

FIGURE 15.8 Coding of bars that are related by precedence linking.
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FIGURE 15.9 Progress monitoring Gantt chart.
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FIGURE 15.10 Milestone Gantt chart.
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FIGURE 15.11 Task combination Gantt chart.
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FIGURE 15.12 Phase-based Gantt chart.

parts. Figure 15.13 shows a Gantt chart for multiple projects. Multiple project charts are
useful for evaluating resource allocation strategies. Resource loading over multiple projects
may be needed for capital budgeting and cash flow analysis decisions. Figure 15.14 shows
a project slippage chart that is useful for project tracking and control. Other variations of
the basic Gantt chart may be developed for specific needs.
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FIGURE 15.13 Multiple projects Gantt chart.
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FIGURE 15.14 Project slippage tracking Gantt chart.

15.2.9 Activity Crashing and Schedule Compression

Schedule compression refers to reducing the length of a project network. This is often accom-
plished by crashing activities. Crashing, sometimes referred to as expediting, reduces activ-
ity durations, thereby reducing project duration. Crashing is done as a tradeoff between
shorter task duration and higher task cost. It must be determined whether the total cost
savings realized from reducing the project duration is enough to justify the higher costs
associated with reducing individual task durations. If there is a delay penalty associated
with a project, it may be possible to reduce the total project cost even though individual
task costs are increased by crashing. If the cost savings on delay penalty is higher than the
incremental cost of reducing the project duration, then crashing is justified. Under conven-
tional crashing, the more the duration of a project is compressed, the higher the total cost
of the project. The objective is to determine at what point to terminate further crashing in
a network. Normal task duration refers to the time required to perform a task under normal
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TABLE 15.4 Normal and Crash Time and Cost Data
Activity Normal Duration Normal Cost Crash Duration Crash Cost Crashing Ratio
A 2 $210 2 $210 0
B 6 400 4 600 100
C 4 500 3 750 250
D 3 540 2 600 60
E 5 750 3 950 100
F 4 275 3 310 35
G 2 100 1 125 25

$2775 $3545
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FIGURE 15.15 Example of fully crashed CPM network.

circumstances. Crash task duration refers to the reduced time required to perform a task
when additional resources are allocated to it.

If each activity is assigned a range of time and cost estimates, then several combinations
of time and cost values will be associated with the overall project. Iterative procedures are
used to determine the best time and cost combination for a project. Time-cost trade-off
analysis may be conducted, for example, to determine the marginal cost of reducing the
duration of the project by one time unit. Table 15.4 presents an extension of the data for
the earlier example to include normal and crash times as well as normal and crash costs for
each activity. The normal duration of the project is 11 days, as seen earlier, and the normal
cost is $2775.

If all the activities are reduced to their respective crash durations, the total crash cost
of the project will be $3545. In that case, the crash time is found by CPM analysis to be
7 days. The CPM network for the fully crashed project is shown in Figure 15.15. Note that
activities C, E, and G remain critical. Sometimes, the crashing of activities may result in a
new critical path. The Gantt chart in Figure 15.16 shows a schedule of the crashed project
using the ES times. In practice, one would not crash all activities in a network. Rather,
some heuristic would be used to determine which activity should be crashed and by how
much. One approach is to crash only the critical activities or those activities with the best
ratios of incremental cost versus time reduction. The last column in Table 15.4 presents the
respective ratios for the activities in our example. The crashing ratios are computed as:

r =
Crash Cost − Normal Cost

Normal Duration − Crash Duration

This method of computing the crashing ratio gives crashing priority to the activity with
the lowest cost slope. It is a commonly used approach in CPM networks.

Activity G offers the lowest cost per unit time reduction of $25. If our approach is to
crash only one activity at a time, we may decide to crash activity G first and evaluate the
increase in project cost versus the reduction in project duration. The process can then be
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FIGURE 15.16 Gantt chart of fully crashed CPM network.

TABLE 15.5 Selected Crashing Options for CPM Example
Option No. Activities Crashed Network Duration Time Reduction Incremental Cost Total Cost

1. None 11 – – 2775
2. G 10 1 25 2800
3. G,F 10 0 35 2835
4. G,F,D 10 0 60 2895
5. G,F,D,B 10 0 200 3095
6. G,F,D,B,E 8 2 200 3295
7. G,F,D,B,E,C 7 1 250 3545

repeated for the next best candidate for crashing, which is activity F in this case. After F
has been crashed, activity D can then be crashed.

This approach is repeated iteratively in order of activity preference until no further
reduction in project duration can be achieved or until the total project cost exceeds a
specified limit.

A more comprehensive analysis is to evaluate all possible combinations of the activities
that can be crashed. However, such a complete enumeration would be prohibitive, as there
would be a total of 2c crashed networks to evaluate, where c is the number of activities that
can be crashed out of the n activities in the network (c <= n). For our example, only 6 out
of the 7 activities in the sample network can be crashed. Thus, a complete enumeration will
involve 26 = 64 alternate networks. Table 15.5 shows 7 of the 64 crashing options. Activity
G, which offers the best crashing ratio, reduces the project duration by only 1 day. Even
though activities F, D, and B are crashed by a total of 4 days at an incremental cost of $295,
they do not generate any reduction in project duration. Activity E is crashed by 2 days
and it generates a reduction of 2 days in project duration. Activity C, which is crashed by
1 day, generates a further reduction of 1 day in the project duration. It should be noted that
the activities that generate reductions in project duration are the ones that were identified
earlier as the critical activities.

Figure 15.17 shows the crashed project duration versus the crashing options, while Fig-
ure 15.18 shows a plot of the total project cost after crashing versus the selected crashing
options. As more activities are crashed, the project duration decreases while the total project
cost increases. If full enumeration were performed, Figure 15.17 would contain additional
points between the minimum possible project duration of 7 days (fully crashed) and the
normal project duration of 11 days (no crashing). Similarly, the plot for total project cost
(Figure 15.18) would contain additional points between the normal cost of $2775 and the
crash cost of $3545.
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FIGURE 15.18 Project cost as a function of crashing options.

Several other approaches exist for determining which activities to crash in a project
network. Two alternate approaches are presented below for computing the crashing ratio, r.

Let r = Criticality Index

or

Let r =
Crash Cost − Normal Cost

(Normal Duration − Crash Duration)(Criticality Index)
.

The first approach uses a critical index criterion, giving crashing priority to the activity
with the highest probability of being on the critical path. In deterministic networks, this
refers to the critical activities. In stochastic networks, an activity is expected to fall on the
critical path only a percentage of the time. The second approach is a combination of the
approach used for the illustrative example and the criticality index approach. It reflects
the process of selecting the least-cost expected value. The denominator of the expression
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represents the expected number of days by which the critical path can be shortened. For
different project networks, different crashing approaches should be considered, and the one
that best fits the nature of the network should be selected.

15.3 PERT Network Analysis

Program evaluation review technique (PERT) is an extension of CPM that incorporates
variability in activity durations into project network analysis. PERT has been used exten-
sively and successfully in practice. In real life, activities are often prone to uncertainties that
determine the actual durations of the activities. In CPM, activity durations are assumed to
be deterministic. In PERT, the potential uncertainties in activity durations are accounted
for by using three time estimates for each activity. The three time estimates represent the
spread of the estimated activity duration. The greater the uncertainty of an activity the
wider the range of the estimates.

15.3.1 PERT Estimates and Formulas

PERT uses three time estimates (optimistic, most likely, and pessimistic) to compute the
expected duration and variance for each activity. The PERT formulas are based on a sim-
plification of the expressions for the mean and variance of a beta distribution. The approx-
imation formula for the mean is a simple weighted average of the three time estimates,
with the end points assumed to be equally likely and the mode four times as likely. The
approximation formula for PERT is based on the recognition that most of the observations
from a distribution will lie within plus or minus three standard deviations, or a spread of
six standard deviations. This leads to the simple method of setting the PERT formula for
standard deviation equal to one-sixth of the estimated duration range. While there is no
theoretical validation for these approximation approaches, the PERT formulas do facilitate
ease of use. The formulas are presented below:

te =
a + 4m + b

6

s =
(b − a)

6
where
a = optimistic time estimate
m = most likely time estimate
b = pessimistic time estimate a < m < b
te = expected time for the activity
s2 = variance of the duration of the activity

After obtaining the estimate of the duration for each activity, the network analysis is
carried out in the same manner previously illustrated for the CPM approach. The major
steps in PERT analysis are summarized below:

1. Obtain three time estimates a, m, and b for each activity.
2. Compute the expected duration for each activity by using the formula for te.
3. Compute the variance of the duration of each activity from the formula for s2.
4. Compute the expected project duration, Te. As in the case of CPM, the duration

of a project in PERT analysis is the sum of the durations of the activities on the
critical path.
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5. Compute the variance of the project duration as the sum of the variances of the
activities on the critical path. The variance of the project duration is denoted by
S2. It should be recalled that CPM cannot compute the variance of the project
duration, as variances of activity durations are not computed.

6. If there are two or more critical paths in the network, choose the one with the
largest variance to determine the project duration and the variance of the project
duration. Thus, PERT is pessimistic with respect to the variance of project dura-
tion when there are multiple critical paths in the network. For some networks,
it may be necessary to perform a mean-variance analysis to determine the rela-
tive importance of the multiple paths by plotting the expected project duration
versus the path duration variance.

7. If desired, compute the probability of completing the project within a specified
time period. This is not possible under CPM.

15.3.2 Modeling of Activity Times

In practice, a question often arises as to how to obtain good estimates of a, m, and b. Several
approaches can be used to obtain the time estimates for PERT. Some of the approaches are:

• Estimates furnished by an experienced person
• Estimates extracted from standard time data
• Estimates obtained from historical data
• Estimates obtained from simple regression or forecasting
• Estimates generated by simulation
• Estimates derived from heuristic assumptions
• Estimates dictated by customer requirements.

The pitfall of using estimates furnished by an individual is that they may be inconsistent,
as they are limited by the experience and personal bias of the person providing them.
Individuals responsible for furnishing time estimates are usually not experts in estimation,
and they generally have difficulty in providing accurate PERT time estimates. There is often
a tendency to select values of a, m, and b that are optimistically skewed. This is because a
conservatively large value is typically assigned to b by inexperienced individuals.

The use of time standards, on the other hand, may not reflect the changes occurring in the
current operating environment due to new technology, work simplification, new personnel,
and so on. The use of historical data and forecasting is very popular because estimates
can be verified and validated by actual records. In the case of regression and forecasting,
there is the danger of extrapolation beyond the data range used for fitting the regression
and forecasting models. If the sample size in a historical data set is sufficient and the data
can be assumed to reasonably represent prevailing operating conditions, the three PERT
estimates can be computed as follows:

â = t − kR

m̂ = t

b̂ = t + kR

where
R = range of the sample data
t = arithmetic average of the sample data
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k = 3/d2
d2 = an adjustment factor for estimating the standard deviation of a population

If kR >t, then set a = 0 and b = 2t. The factor d2 is widely tabulated in the quality con-
trol literature as a function of the number of sample points, n. Selected values of d2 are
presented below.

n 5 10 15 20 25 30 40 50 75 100

d2 2.326 3.078 3.472 3.735 3.931 4.086 4.322 4.498 4.806 5.015

As mentioned earlier, activity times can be determined from historical data. The pro-
cedure involves three steps:

1. Appropriate organization of the historical data into histograms.
2. Determination of a distribution that reasonably fits the shape of the histogram.
3. Testing of the goodness-of-fit of the hypothesized distribution by using an appro-

priate statistical model. The chi-square test and the Kolmogrov-Smirnov (K-S)
test are two popular methods for testing goodness-of-fit. Most statistical texts
present the details of how to carry out goodness-of-fit tests.

15.3.3 Beta Distribution

PERT analysis assumes that the probabilistic properties of activity duration can be modeled
by the beta probability density function. The beta distribution is defined by two end points
and two shape parameters. The beta distribution was chosen by the original developers of
PERT as a reasonable distribution to model activity times because it has finite end points
and can assume a variety of shapes based on different shape parameters. While the true
distribution of activity time will rarely ever be known, the beta distribution serves as an
acceptable model. Figure 15.19 shows examples of alternate shapes of the standard beta

0.2 0.4 0.6 0.8 1

Shape parameters: [α,β]

[1,2.9]

[1,1] 
    [3,3] 

[0.001,0.001] 

[3.41,0.59] 

f (t)

t

FIGURE 15.19 Alternate shapes of the beta distribution.
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distribution between zero and one. The uniform distribution between 0 and 1 is a special
case of the beta distribution with both shape parameters equal to one.

The standard beta distribution is defined over the interval 0 to 1, while the general beta
distribution is defined over any interval a to b. The general beta probability density func-
tion is given by:

f(t) =
Γ(α + β)
Γ(α)Γ(β)

· 1
(b − a)α+β−1 · (t − a)α−1(b − t)β−1

for a ≤ t ≤ b and α > 0, β > 0

where
a = lower end point of the distribution
b = upper end point of the distribution
α and β are the shape parameters for the distribution.

The mean, variance, and mode of the general beta distribution are defined as:

µ = a + (b − a)
α

α + β

σ2 = (b − a)2
αβ

(α + β + 1)(α + β)2

m =
a(β − 1) + b(α − 1)

α + β − 2

The general beta distribution can be transformed into a standardized distribution by
changing its domain from [a, b] to the unit interval [0, 1]. This is accomplished by using the
relationship ts = a + (b − a)ts, where ts is the standard beta random variable between 0 and
1. This yields the standardized beta distribution, given by:

f(t) =
Γ(α + β)
Γ(α)Γ(β)

tα−1(1 − t)β−1; 0 < t < 1; α, β > 0

= 0; elsewhere

with mean, variance, and mode defined as:

µ =
α

α + β

σ2 =
αβ

(α + β + 1)(α + β)2

m =
a(β − 1) + b(α − 1)

α + β − 2

15.3.4 Triangular Distribution

The triangular probability density function has been used as an alternative to the beta distri-
bution for modeling activity times. The triangular density has three essential parameters: a
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FIGURE 15.20 Triangular probability density function.

minimum value (a), a mode (m) and a maximum (b). It is defined mathematically as:

f(t) =
2(t − a)

(m − a)(b − a)
; a ≤ t ≤ m

=
2(b − t)

(b − m)(b − a)
; m ≤ t ≤ b

with mean and variance defined, respectively, as:

µ =
a + m + b

3

σ2 =
a(a − m) + b(b − a) + m(m − b)

18
Figure 15.20 presents a graphical representation of the triangular density function. The

three time estimates of PERT can be inserted into the expression for the mean of the
triangular distribution to obtain an estimate of the expected activity duration. Note that
in the conventional PERT formula, the mode (m) is assumed to carry four times as much
weight as either a or b when calculating the expected activity duration. By contrast, under
the triangular distribution, the three time estimates are assumed to carry equal weights.

15.3.5 Uniform Distribution

For cases where only two time estimates instead of three are to be used for network analysis,
the uniform density function may be assumed for activity times. This is acceptable for
situations where extreme limits of an activity duration can be estimated and it can be
assumed that the intermediate values are equally likely to occur. The uniform distribution
is defined mathematically as:

f(t) =
1

b − a
; a ≤ t ≤ b

= 0; otherwise

with mean and variance defined, respectively, as:

µ =
a + b

2

σ2 =
(b − a)2

12
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FIGURE 15.21 Uniform probability density function.

Figure 15.21 presents a graphical representation of the uniform distribution, for which the
expected activity duration is computed as the average of the upper and lower limits of the
distribution. The appeal of using only two time estimates a and b is that the estimation
error due to subjectivity can be reduced and the estimation task simplified.

Other distributions that have been explored for activity time modeling include the nor-
mal distribution, lognormal distribution, truncated exponential distribution, and Weibull
distribution. Once the expected activity durations have been computed, the analysis of the
activity network is carried out just as in the case of single-estimate CPM network analysis.

15.4 Statistical Analysis of Project Duration

Regardless of the distribution assumed for activity durations, the central limit theorem
suggests that the distribution of the project duration will be approximately normally dis-
tributed. The theorem states that the distribution of averages obtained from any probability
density function will be approximately normally distributed if the sample size is large and
the averages are independent. In mathematical terms, the theorem is stated as follows.

15.4.1 Central Limit Theorem

Let X1, X2, . . ., XN be independent and identically distributed random variables. Then the
sum of the random variables is normally distributed for large values of N . The sum is defined
as:

T = X1 + X2 + · · · + XN

In activity network analysis, T represents the total project length as determined by the
sum of the durations of the activities of the critical path. The mean and variance of T are
expressed as:

µ =
N∑

i=1

E[Xi]

σ2 =
N∑

i=1

V [Xi]

where
E[Xi] = expected value of random variable Xi

V[Xi] = variance of random variable Xi.
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FIGURE 15.22 Area under the normal curve.

When applying the central limit theorem to activity networks, one should note that the
assumption of independent activity times may not always be satisfied. Because of precedence
relationships and other interdependencies of activities, some activity durations may not be
independent.

15.4.2 Probability Calculation

If the project duration Te can be assumed to be approximately normally distributed based
on the central limit theorem, then the probability of meeting a specified deadline Td can be
computed by finding the area under the standard normal curve to the left of Td. Figure 15.22
shows an example of a normal distribution describing the project duration.

Using the familiar transformation formula below, a relationship between the standard
normal random variable z and the project duration variable can be obtained:

z =
Td − Te

S

where
Td = specified deadline
Te = expected project duration based on network analysis
S = standard deviation of the project duration.

The probability of completing a project by the deadline Td is then computed as:

P (T ≤ Td) = P

(
z ≤ Td − Te

S

)

The probability is obtained from the standard normal table. Examples presented below
illustrate the procedure for probability calculations in PERT.

15.4.3 PERT Network Example

Suppose we have the project data presented in Table 15.6. The expected activity durations
and variances as calculated by the PERT formulas are shown in the last two columns of
the table. Figure 15.23 shows the PERT network. Activities C, E, and G are shown to be
critical, and the project completion time is 11 time units.
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TABLE 15.6 Data for PERT Network Example
Activity Predecessors a m b te s2

A – 1 2 4 2.17 0.2500
B – 5 6 7 6.00 0.1111
C – 2 4 5 3.83 0.2500
D A 1 3 4 2.83 0.2500
E C 4 5 7 5.17 0.2500
F A 3 4 5 4.00 0.1111
G B,D,E 1 2 3 2.00 0.1111
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FIGURE 15.23 PERT network example.

The probability of completing the project on or before a deadline of 10 time units
(i.e., Td = 10) is calculated as shown below:

Te = 11

S2 = V[C] + V[E] + V[G]

= 0.25 + 0.25 + 0.1111

= 0.6111

S =
√

0.6111

= 0.7817

P (T ≤ Td) = P (T ≤ 10)

= P

(
z ≤ 10 − Te

S

)

= P

(
z ≤ 10 − 11

0.7817

)

= P (z ≤ −1.2793)

= 1 − P (z ≤ 1.2793)

= 1 − 0.8997

= 0.1003
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Thus, there is just over 10% probability of finishing the project within 10 days. By contrast,
the probability of finishing the project in 13 days is calculated as:

P (T ≤ 13) = P

(
z ≤ 13 − 11

0.7817

)

= P (z ≤ 2.5585)

= 0.9948

This implies that there is over 99% probability of finishing the project within 13 days.
Note that the probability of finishing the project in exactly 13 days will be zero. That
is, P (T = Td) = 0. If we desire the probability that the project can be completed within a
certain lower limit (TL) and a certain upper limit (TU), the computation will proceed as
follows: Let TL = 9 and TU = 11.5. Then,

P (TL ≤ T ≤ TU) = P (9 ≤ T ≤ 11.5)

= P (T ≤ 11.5) − P (T ≤ 9)

= P

(
z ≤ 11.5 − 11

0.7817

)
− P

(
z ≤ 9 − 11

0.7817

)

= P (z ≤ 0.6396) − P (z ≤ −2.5585)

= P (z ≤ 0.6396) − [1 − P (z ≤ 2.5585)]

= 0.7389 − [1 − 0.9948]

= 0.7389 − 0.0052

= 0.7337

That is, there is 73.4% chance of finishing the project within the specified range of duration.

15.5 Precedence Diagramming Method

The precedence diagramming method (PDM) was developed in the early 1960s as an exten-
sion of PERT/CPM network analysis. PDM permits mutually dependent activities to be
performed partially in parallel instead of serially. The usual finish-to-start dependencies
between activities are relaxed to allow activities to overlap. This facilitates schedule com-
pression. An example is the requirement that concrete should be allowed to dry for a number
of days before drilling holes for handrails. That is, drilling cannot start until so many days
after the completion of concrete work. This is a finish-to-start constraint. The time between
the finishing time of the first activity and the starting time of the second activity is called
the lead–lag requirement between the two activities. Figure 15.24 shows the basic lead–lag
relationships between activity A and activity B. The terminology presented in Figure 15.24
is explained as follows.

SSAB (Start-to-Start) lead: Activity B cannot start until activity A has been in
progress for at least SS time units.

FFAB (Finish-to-Finish) lead: Activity B cannot finish until at least FF time units
after the completion of activity A.
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FIGURE 15.24 Lead–lag relationships in PDM.

FSAB (Finish-to-Start) lead: Activity B cannot start until at least FS time units
after the completion of activity A. Note that PERT/CPM approaches use
FSAB = 0 for network analysis.

SFAB (Start-to-Finish) lead: This specifies that there must be at least SF time
units between the start of activity A and the completion of activity B.

The leads or lags may, alternately, be expressed in percentages rather than time units.
For example, we may specify that 25% of the work content of activity A must be completed
before activity B can start. If the percentage of work completed is used for determining
lead–lag constraints, then a reliable procedure must be used for estimating the percent com-
pletion. If the project work is broken up properly using work breakdown structure (WBS),
it will be much easier to estimate percent completion by evaluating the work completed
at the elementary task level. The lead–lag relationships may also be specified in terms of
at most relationships instead of at least relationships. For example, we may have at most
FF lag requirement between the finishing time of one activity and the finishing time of
another activity. Splitting of activities often simplifies the implementation of PDM, as will
be shown later with some examples. Some of the factors that will determine whether or
not an activity can be split are technical limitations affecting splitting of a task, morale of
the person working on the split task, set-up times required to restart split tasks, difficulty
involved in managing resources for split tasks, loss of consistency of work, and management
policy about splitting jobs.

Figure 15.25 presents a simple CPM network consisting of three activities. The activities
are to be performed serially and each has an expected duration of 10 days. The conventional
CPM network analysis indicates that the duration of the network is 30 days. The earliest
times and the latest times are as shown in the figure.

The Gantt chart for the example is shown in Figure 15.26. For a comparison, Figure 15.27
shows the same network but with some lead–lag constraints. For example, there is an SS
constraint of 2 days and an FF constraint of 2 days between activities A and B. Thus,
activity B can start as early as 2 days after activity A starts, but it cannot finish until
2 days after the completion of A. In other words, at least 2 days must separate the finishing
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FIGURE 15.25 Serial activities in CPM network.
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FIGURE 15.26 Gantt chart of serial activities in CPM example.
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FIGURE 15.27 PDM network example.

time of A and the finishing time of B. A similar precedence relationship exists between
activity B and activity C. The earliest and latest times obtained by considering the lag
constraints are indicated in Figure 15.27.

The calculations show that if B is started just 2 days after A is started, it can be completed
as early as 12 days as opposed to the 20 days obtained in the case of conventional CPM.
Similarly, activity C is completed at time 14, which is considerably less than the 30 days
calculated by conventional CPM. The lead–lag constraints allow us to compress or overlap
activities. Depending on the nature of the tasks involved, an activity does not have to
wait until its predecessor finishes before it can start. Figure 15.28 shows the Gantt chart
for the example incorporating the lead–lag constraints. It should be noted that a portion
of a succeeding activity can be performed simultaneously with a portion of the preceding
activity.

A portion of an activity that overlaps with a portion of another activity may be viewed
as a distinct portion of the required work. Thus, partial completion of an activity may be

parts. Even though there is no physical break or termination of work in any activity, the
distinct parts (beginning and ending) can still be identified. This means that there is no
physical splitting of the work content of any activity. The distinct parts are determined on
the basis of the amount of work that must be completed before or after another activity, as

A1 and A2. The duration of A1 is 2 days because there is an SS = 2 relationship between
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FIGURE 15.28 Gantt chart for PDM example.
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FIGURE 15.29 Partitioning of activities in PDM example.

activity A and activity B. As the original duration of A is 10 days, the duration of A2 is
then calculated to be 10 − 2 = 8 days.

Likewise, activity B is partitioned into parts B1, B2, and B3. The duration of B1 is 2 days
because there is an SS = 2 relationship between activity B and activity C. The duration
of B3 is also 2 days because there is an FF = 2 relationship between activity A and activ-
ity B. As the original duration of B is 10 days, the duration of B2 is calculated to be
10 − (2 + 2) = 6 days. In a similar fashion, activity c is partitioned into C1 and C2. The
duration of C2 is 2 days because there is an FF = 2 relationship between activity B and
activity C. As the original duration of C is 10 days, the duration of C1 is then calculated
to be 10 − 2 = 8 days. Figure 15.30 shows a conventional CPM network drawn for the three
activities after they are partitioned into distinct parts. The conventional forward and back-
ward passes reveal that all the activity parts are performed serially and no physical splitting
of activities has been performed. Note that there are three critical paths in Figure 15.30,
each with a length of 14 days. It should also be noted that the distinct parts of each activity
are performed contiguously.

Figure 15.31 shows an alternate example of three serial activities. The conventional CPM
analysis shows that the duration of the network is 30 days. When lead–lag constraints are

© 2008 by Taylor & Francis Group, LLC



CH015.tex 22/10/2007 14: 10 Page 15-30

15-30 Operations Research and Management Science Handbook

0        A1  2 2 A2       

  0       2      2      8   
10 

              2     10  
        2      10 

                 2
B1    4    4 B2 10 B3

          2          4  6 10 10      2         12 
4

4
          12 

      4       C1      12  12      C2        14 

  8        12    12  2      14 

FIGURE 15.30 CPM network of partitioned activities.
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FIGURE 15.31 Another CPM example of serial activities.
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FIGURE 15.32 Compressed PDM network.

introduced into the network as shown in Figure 15.32, the network duration is compressed
to 18 days.

In the forward pass computations in Figure 15.32, note that the earliest completion time
of B is time 11, because there is an FF = 1 restriction between activity A and activity B.
As A finishes at time 10, B cannot finish until at least time 11. Even though the earliest
starting time of B is time 2 and its duration is 5 days, its earliest completion time cannot
be earlier than time 11. Also note that C can start as early as time 3 because there is
an SS = 1 relationship between B and C. Thus, given a duration of 15 days for C, the
earliest completion time of the network is 3 + 15 = 18 days. The difference between the
earliest completion time of C and the earliest completion time of B is 18− 11 = 7 days,
which satisfies the FF = 3 relationship between B and C.

In the backward pass, the latest completion time of B is 15 (i.e., 18− 3 = 15), as there is
an FF = 3 relationship between activity B and activity C. The latest start time for B is time
2 (i.e., 3− 1 = 2), as there is an SS = 1 relationship between activity B and activity C. If we
are not careful, we may erroneously set the latest start time of B to 10 (i.e., 15 − 5 = 10).
But that would violate the SS = 1 restriction between B and C. The latest completion time
of A is found to be 14 (i.e., 15− 1 = 14), as there is an FF = 1 relationship between A
and B. All the earliest times and latest times at each node must be evaluated to ensure
that they conform to all the lead–lag constraints. When computing earliest start or earliest
completion times, the smallest possible value that satisfies the lead–lag constraints should
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FIGURE 15.33 CPM expansion of second PDM example.
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FIGURE 15.34 Compressed PDM schedule based on ES times.

be used. By the same reasoning, when computing the latest start or latest completion times,
the largest possible value that satisfies the lead–lag constraints should be used.

Manual evaluations of the lead–lag precedence network analysis can become very tedious
for large networks. A computer tool may be needed to implement PDM. If manual analysis
must be done for PDM computations, it is suggested that the network be partitioned into
more manageable segments. The segments may then be linked after the computations are
completed. The expanded CPM network in Figure 15.33 was developed on the basis of the
precedence network in Figure 15.32. It is seen that activity A is partitioned into two parts,
activity B is partitioned into three parts, and activity C is partitioned into two parts. The
forward and backward passes show that only the first parts of activities A and B are on the
critical path, whereas both parts of activity C are on the critical path.

Figure 15.34 shows the corresponding earliest-start Gantt chart for the expanded network.
Looking at the earliest start times, one can see that activity B is physically split at the
boundary of B2 and B3 in such a way that B3 is separated from B2 by 4 days. This implies
that work on activity B is temporarily stopped at time 6 after B2 is finished and is not
started again until time 10. Note that despite the 4-day delay in starting B3, the entire
project is not delayed. This is because B3, the last part of activity B, is not on the critical
path. In fact, B3 has a total slack of 4 days. In a situation like this, the duration of activity
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FIGURE 15.35 Compressed PDM schedule based on LS times.

B can actually be increased from 5 days to 9 days without any adverse effect on the project
duration. It should be recognized, however, that increasing the duration of an activity may
have negative implications for project cost, personnel productivity, and morale.

If physical splitting of activities is not permitted, then the best option available in
Figure 15.34 is to stretch the duration of B3 so as to fill up the gap from time 6 to time 10.
An alternative is to delay the starting time of B1 until time 4 so as to use up the 4-day
slack right at the beginning of activity B. Unfortunately, delaying the starting time of B1
by 4 days will delay the overall project by 4 days, as B1 is on the critical path as shown in
Figure 15.33. The project analyst will need to evaluate the appropriate tradeoffs between
splitting of activities, delaying activities, increasing activity durations, and incurring higher
project costs. The prevailing project scenario should be considered when making such trade-
off decisions. Figure 15.35 shows the Gantt chart for the compressed PDM schedule based
on latest start times. In this case, it will be necessary to split both activities A and B even
though the total project duration remains the same at 18 days. If activity splitting is to
be avoided, then we can increase the duration of activity A from 10 to 14 days and the
duration of B from 5 to 13 days without adversely affecting the entire project duration.
The benefit of precedence diagramming is that the ability to overlap activities facilitates
flexibility in manipulating individual activity times and reducing project duration.

15.5.1 Reverse Criticality in PDM Networks

Care must be exercised when working with PDM networks because of the potential for
misuse or misinterpretation. Because of the lead and lag requirements, activities that do
not have any slacks may appear to have generous slacks. Also, “reverse critical” activities
may occur in PDM. Reverse critical activities are activities that can cause a decrease in
project duration when their durations are increased. This may happen when the critical
path enters the completion of an activity through a finish lead–lag constraint. Also, if a
“finish-to-finish” dependency and a “start-to-start” dependency are connected to a reverse
critical task, a reduction in the duration of the task may actually lead to an increase in
the project duration. Figure 15.36 illustrates this anomalous situation. The finish-to-finish
constraint between A and B requires that B should finish no earlier than 20 days. If the
duration of task B is reduced from 10 days to 5 days, the start-to-start constraint between
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FIGURE 15.36 Reverse critical activity in PDM network.

B and C forces the starting time of C to be shifted forward by 5 days, thereby resulting in
a 5-day increase in the project duration.

The preceding anomalies can occur without being noticed in large PDM networks. One
safeguard against their adverse effects is to make only one activity change at a time and
document the resulting effect on the network structure and duration. The following catego-
rizations are used for the unusual characteristics of activities in PDM networks.

Normal Critical (NC): This refers to an activity for which the project duration
shifts in the same direction as the shift in the duration of the activity.

Reverse Critical (RC): This refers to an activity for which the project duration
shifts in the reverse direction to the shift in the duration of the activity.

Bi-Critical (BC): This refers to an activity for which the project duration increases
as a result of any shift in the duration of the activity.

Start Critical (SC): This refers to an activity for which the project duration shifts
in the direction of the shift in the start time of the activity, but is unaffected
(neutral) by a shift in the overall duration of the activity.

Finish Critical (FC): This refers to an activity for which the project duration shifts
in the direction of the shift in the finish time of the activity, but is unaffected
(neutral) by a shift in the overall duration of the activity.

Mid Normal Critical (MNC): This refers to an activity whose mid-portion is nor-
mal critical.

Mid Reverse Critical (MRC): This refers to an activity whose mid-portion is
reverse critical.

Mid Bi-Critical (MBC): This refers to an activity whose mid-portion is bi-critical.
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A computer-based decision support system can facilitate the integration and consistent
usage of all the relevant information in a complex scheduling environment. Task precedence
relaxation assessment and resource-constrained heuristic scheduling constitute an example
of a problem suitable for computer implementation. Examples of pseudocoded heuristic
rules for computer implementation are shown below:

IF: Logistical conditions are satisfied
THEN: Perform the selected scheduling action

IF: condition A is satisfied and
condition B is false and
evidence C is present or
observation D is available

THEN: precedence belongs in class X

IF: precedence belongs to class X
THEN: activate heuristic scheduling procedure Y

The function of the computer model will be to aid a decision maker in developing a task
sequence that fits the needs of concurrent scheduling. Based on user input, the model will
determine the type of task precedence, establish precedence relaxation strategy, implement
task scheduling heuristic, match the schedule to resource availability, and present a rec-
ommended task sequence to the user. The user can perform “what-if” analysis by making
changes in the input data and conducting sensitivity analysis. The computer implementation
can be achieved in an interactive environment as shown in Figure 15.37. The user will pro-
vide task definitions and resource availabilities with appropriate precedence requirements.
At each stage, the user is prompted to consider potential points for precedence relaxation.
Wherever schedule options exist, they will be presented to the user for consideration and
approval. The user will have the opportunity to make final decisions about task sequence.

15.6 Software Tools for Project Management

There are numerous commercial software packages available for project management.
Because of the dynamic changes in software choices on the market, it will not be effec-
tive to include a survey of the available software in an archival publication of this nature.
Any such review may be outdated before the book is even published. To get the latest on
commercial software capabilities and choices, it will be necessary to consult one of the fre-
quently published trade magazines that carry software reviews. Examples of such magazines
are PC Week, PC World, and Software. Other professional publications also carry project
management software review occasionally. Examples of such publications are Industrial
Engineering Magazine, OR/MS Today Magazine, Manufacturing Engineering Magazine,
PM Network Magazine, and so on. Practitioners can easily get the most current software
information through the Internet. Prospective buyers are often overwhelmed by the range
of products available. However, there are important factors to consider when selecting a
software package. Some of the factors are presented in this section.

The proliferation of project management software has created an atmosphere whereby
every project analyst wants to have and use a software package for every project situation.
However, not every project situation deserves the use of project management software.
An analyst should first determine whether or not the use of software is justified. If this
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FIGURE 15.37 Decision support model for PDM.

evaluation is affirmative, then the analyst will need to determine which specific package
out of the many that are available should be used. Some of the important factors that may
indicate the need for project management software are:

1. Multiple projects are to be managed concurrently.
2. A typical project contains more than 20 tasks.
3. The project scheduling environment is very complex.
4. More than five resource types are involved in each project.
5. There is a need to perform complementing numerical analysis to support project

control functions.
6. The generation of graphics (e.g., Gantt, PERT charts) are needed to facilitate

project communication.
7. Cost analysis is to be performed on a frequent basis.
8. It is necessary to generate forecasts from historical project data.
9. Automated reporting is important to the organization.

10. Computerization is one of the goals of the organization.
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A close examination of a project will reveal whether it fits the criteria for using project
management software. Only very small and narrowly focused projects will not need the help
of software for effective management. Some of the important factors for software selection
are summarized below:

1. Cost
2. Need
3. Complexity of project scope and plan
4. Diversity of resource types
5. Frequency of progress tracking
6. Need for versatile report generation
7. Ease of use and learning curve requirement
8. Supporting analytical tools (e.g., optimization add-on, economic analysis)
9. Hardware requirements

10. General characteristics (e.g., software version, vendor accessibility, technical support).

Some of the above factors may be more important than others in specific project situ-
ations. A careful overall analysis should be done by the project analyst. With more and
more new programs and updates appearing in the market, a crucial aspect of the project
management function is keeping up with what is available and making a good judgment in
selecting a software tool.

The project management software market continues to be very competitive. Many pack-
ages that were originally developed for specific and narrow applications, such as data anal-
ysis and conventional decision support, now offer project management capabilities. For
example, SAS/OR, a statistical analysis software package that is popular on large comput-
ers, has a PC-based version that handles project management. Similarly, AutoCAD, the
popular computer-aided design software, now has a project management option within it.
The option, called AutoProject, has very good graphics and integrated drafting capabilities.

Some of the most popular project management software packages include InstaPlan 5000,
Artemis Project, Microsoft Project for Windows, Plantrac II, Advanced Project Work-
bench, Qwiknet Professional, Super Project Plus, Time Line, Project Scheduler, Primav-
era, Texim, ViewPoint, PROMIS, Topdown Project Planner, Harvard Project Manager,
PCS (Project Control System), PAC III, VISION, Control Project, SAS/OR, Autoproject,
Visual Planner, Project/2, Timesheet, Task Monitor, Quick Schedule Plus, Suretrak Project
Scheduler, Supertime, On Target, Great Gantt, Pro Tracs, Autoplan, AMS Time Machine,
Mac-Project II, Micro Trak, Checkpoint, Maestro II, Cascade, OpenPlan, Vue, and Cosmos.
So prolific are the software offerings that the developers are running out of innovative pro-
ductive names. At this moment, new products are being introduced while some are being
phased out. Prospective buyers of project management software should consult vendors for
the latest products. No blanket software recommendation can be offered in this chapter as
product profiles change quickly and frequently.

15.6.1 Computer Simulation Software

Special purpose software tools have found a place in project management. Some of these
tools are simulation packages, statistical analysis packages, optimization programs, report
writers, and others. Computer simulation is a versatile tool that has a potential for enhanc-
ing project planning and control analysis. Computer simulation is a tool that can be effec-
tively utilized to enhance project planning, scheduling, and control. At any given time, only
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a small segment of a project network will be available for direct observation and analysis.
The major portion of the project either will have been in the past or will be expected in
the future. Such unobservable portions of the project can be studied by simulation.

Using the historical information from previous segments of a project and the prevailing
events in the project environment, projections can be made about future expectations of the
project. Outputs of simulation can alert management to real and potential problems. The
information provided by simulation can be very helpful in projecting selection decisions.
Simulation-based project analysis may involve the following components:

• Activity time modeling
• Simulation of project schedule
• What-if analysis and statistical modeling
• Management decisions and sensitivity analysis.

15.7 Conclusion

This chapter has presented the basic techniques of activity network analysis for project
management. In business and industry, project management is rapidly becoming one of
the major tools used to accomplish goals. Engineers, managers, and OR professionals are
increasingly required to participate on teams in complex projects. The technique of network
analysis is frequently utilized as a part of the quantitative assessment of such projects. The
computational approaches contained in this chapter can aid project analysts in developing
effective project schedules and determining the best way to exercise project control whenever
needed.
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16.1 Introduction

Quality has been defined in different ways by various experts and the operational definition
has even changed over time. The best way is to start from the beginning and look at the ori-
gin and meaning of the word. Quality, in Latin qualitas, comes from the word qualis, meaning
“how constituted” and signifying “such as a thing really is.” The Merriam-Webster dictio-
nary defines quality as “. . .peculiar and essential character . . . a distinguishing attribute. . . .”
Thus, a product has several or infinite qualities. Juran and Gryna [1] looked at multiple
elements of fitness of use based on various quality characteristics (or qualities), such as
technological characteristics (strength, dimensions, current, weight, ph values), psycholog-
ical characteristics (beauty, taste, and many other sensory characteristics), time-oriented
characteristics (reliability, availability, maintainability, safety, and security), cost (purchase
price, life cycle cost), and product development cycle. Deming also discussed several faces
of quality; the three corners of quality relate to various quality characteristics and focus
on evaluation of quality from the viewpoint of the customer [2]. The American Society for
Quality defines quality as the “totality of features and characteristics of a product or service
that bear on its ability to satisfy a user’s given needs” [3]. Thus the quality of a process or
product is defined and evaluated by the customer. Any process has many processes before
it that are typically called the suppliers and has many processes after it that are its cus-
tomers. Thus, anything (the next process, environment, user) the present process affects is
its customer.

16-1
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FIGURE 16.1 Quality, customer satisfaction, and target values.

One of the most important tasks in any quality program is to understand and evaluate the
needs and expectations of the customer and to then provide products and services that meet
or exceed those needs and expectations. Shewhart states this as follows: “The first step of
the engineer in trying to satisfy these wants is, therefore, that of translating as nearly as pos-
sible these wants into the physical characteristics of the thing manufactured to satisfy these
wants. In taking this step, intuition and judgment play an important role as well as the broad
knowledge of human element involved in the wants of individuals. The second step of the
engineer is to set up ways and means of obtaining a product which will differ from the arbi-
trary set standards for these quality characteristics by no more than may be left to chance”
[4]. One of the objectives of quality function deployment (QFD) is exactly to achieve this
first step proposed by Shewhart. Mizuno and Akao have developed the necessary philosophy,
system, and methodology to achieve this step [5]. QFD is a means to translate the “voice of
the customer” into substitute quality characteristics, design configurations, design parame-
ters, and technological characteristics that can be deployed (horizontally) through the whole
organization: marketing, product planning, design, engineering, purchasing, manufacturing,
assembly, sales, and service [5,6]. Products have several characteristics, and an “ideal” state
or value of these characteristics must be determined from the customer’s viewpoint. This
ideal state is called the target value (Figure 16.1). QFD is a methodology to develop target
values for substitute quality characteristics that satisfy the requirements of the customer.
The purpose of statistical process control is to accomplish the second step mentioned by
Shewhart, and his pioneering book [4] developed the methodology for this purpose.

16.2 Quality Control and Product Life Cycle

Dynamic competition has become a key concept in world-class design and manufacturing.
Competition is forcing us to provide products and services with less variation than our com-
petitors. Quality effort in many organizations relies on a combination of audits, process and
product inspections, and statistical methods using control charts and sampling inspection.
These techniques are used to control the manufacturing process and meet specifications in
the production environment. We must now concentrate on achieving high quality by start-
ing at the beginning of the product life cycle. It is not enough for a product to work well
when manufactured according to engineering specifications. A product must be designed for
manufacturability and must be insensitive to variability present in the production environ-
ment and in the field when used by the customer. Reduced variation translates into greater
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FIGURE 16.2 Cost to fix problems vs. product life cycle.

repeatability, reliability, and ultimately cost savings to both the producer and the consumer
and thus the whole society.

Figure 16.2 shows how the cost to fix or solve problems increases as we move downstream
in the product life cycle. Another way to emphasize the early and proactive activities related
to quality is to evaluate Figure 16.3, which shows that approximately 90% of the life cycle
cost is determined by the concept and development phases of the life cycle.

Different quality improvement methods should be applied for the different phases of
the product life cycle. During the phase of design and development of products, design
of experiments should be utilized to select the optimal combination of input components
and minimize the variation of the output quality characteristic, as shown in Figure 16.4.
Sometimes, we use offline quality engineering to refer to the quality improvement efforts
including experiment design and robust parameter design, because these efforts are made
off the production line.

As opposed to offline quality engineering, online quality control refers to the techniques
employed during the manufacturing process of products. Statistical quality control (SQC)
is a primary online control technique for monitoring the manufacturing process or any
other process with key quality characteristics of interest. Before we use statistical quality
control to monitor the manufacturing process, the optimal values of the mean and standard
deviation of the quality characteristics are determined by minimizing the variability of
the quality characteristics through experimental design and process adjustment techniques.
Consequently, the major goal of SQC (SPC) is to monitor the manufacturing process, keep
the values of mean and standard deviation stable, and finally reduce variability.

The manufactured products need to be inspected or tested before they reach the customer.
Closely related to the inspection of output products, acceptance sampling is defined as the
inspection and classification of samples from a lot randomly and decision about disposition
of the lot.
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At different phases of the product life cycle, the modeling approaches in operations
research and management science (OR/MS) described in the first part of this handbook
are widely used. For example, as a collection of statistical and optimization methods, the
response surface methodology (RSM) is a specialized experimental design technique in off-
line quality engineering. The basic idea of RSM is to fit a response model for the output
variable and then explore various settings of the input design variables with the purpose
to maximize or minimize the response [7]. For online quality control and inspection efforts,
various optimization modeling approaches are involved for process adjustment, economic
design of control charts, and optimization of specifications, and so on [8,9].

Six Sigma methodology is one of the most distinctive applications of quality improve-
ment effort with the involvement of OR/MS approaches. As a collection of optimization,
statistical, engineering, and management methods, Six Sigma methodology emerged in man-
ufacturing industry, and has been widely practiced in many industries including energy,
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health care, transportation, and financial services. The next section will describe the basic
ideas of Six Sigma, and its relationship with the quality control effort.

16.3 New Trends and Relationship to Six Sigma

Industrial, manufacturing, and service organizations are interested in improving their pro-
cesses by decreasing the process variation because the competitive environment leaves little
room for error. Based on the ideal or target value of the quality characteristic from the view-
point of the customer, the traditional evaluation of quality is based on average measures
of the process/product and their deviation from the target value. But customers judge the
quality of process/product not only on the average measure, but also by the variance in each
transaction with the process or use of the product. Customers want consistent, reliable, and
predictable processes that deliver best-in-class levels of quality. This is what the Six Sigma
process strives to achieve. Six Sigma has been applied by many manufacturing companies
such as GE, Motorola, and service industries including health care systems.

Six Sigma is a customer-focused, data-driven, and robust methodology, which is well
rooted in mathematics and statistics [10–12]. A typical process for Six Sigma quality
improvement has six phases: Define, Measure, Analyze, Improve, Control, and Technol-
ogy Transfer, denoted by (D)MAIC(T). Traditionally, a four-phase process, MAIC is often
referred in the literature [13]. We extend it to the six-phase process, (D)MAIC(T). We want
to emphasize the importance of the define (D) phase as the first phase for problem definition
and project selection and technology transfer (T) as the never-ending phase for continuous
applications of the Six Sigma technology to other parts of the organization to maximize the
rate of return on the investment in developing this technology.

The process of (D)MAIC(T) stays on track by establishing deliverables at each phase, and
by creating engineering models over time to reduce the process variation. Each of the six
phases answers some target questions, and this continuously improves the implementation
and the effectiveness of the methodology [8].

Define—What problem needs to be solved?
Measure—What is the current capability of the process?
Analyze—What are the root causes for the process variability?
Improve—How to improve the process capability?
Control—What controls can be put in place to sustain the improvement?
Technology Transfer—Where else can these improvements be applied?

In each phase, there are several steps that need to be implemented. For each step, many
quality improvement methods, tools, and techniques are used. We next describe the six
phases in more detail.

Phase 0: Define (D)
Once an organization decides to launch a Six Sigma process improvement project, they need
to first define the improvement activities. Usually the following two steps are taken in the
define phase:

Step 0.1: Identify and prioritize customer requirements. Methods such as benchmarking
surveys, spider charts, and customer needs mapping must be put in place to ensure that the
customer requirements are properly identified. The critical to quality (CTQ) characteristics
are defined from the viewpoint of customers, which are also called external CTQs. We need
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to translate the external CTQs into internal CTQs that are key process requirements. This
translation is the foremost step in the measure phase.

Step 0.2: Select projects. Based on customer requirements, the target project is selected
by analyzing the gap between the current process performance and the requirement of
customers. Specifically, we need to develop a charter for the project, including project
scope, expectations, resources, milestones, and the core processes.

Phase 1: Measure (M)
Six Sigma is a data-driven approach that requires quantifying and benchmarking the process
using actual data. In this phase, the performance or process capability of the process for
the CTQ characteristics are evaluated.

Step 1.1: Select CTQ characteristics. This step uses tools such as QFD and FMECA
to translate the external CTQs established in the define phase into internal requirements
denoted by Y ’s. Some of the objectives for this step are:

• Define, construct, and interpret the QFDs.
• Participate in a customer needs mapping session.
• Apply failure mode, effect, and criticality analysis (FMECA) to the process of

selecting CTQ characteristics.
• Identify CTQs and internal Y ’s.

Step 1.2: Define performance standards. After identifying the product requirements,
Y ’s, measurement standards for the Y ’s are defined in this step. QFD, FMECA, as well as
process mapping can be used to establish internal measurement standards.

Step 1.3: Validate measurement system. We need to learn how to validate measurement
systems and determine the repeatability and reproducibility of these systems using tools
such as gage R&R. This determination provides for separation of variability into components
and thus into targeted improvement actions.

Phase 2: Analyze (A)
Once the project is understood and the baseline performance is documented, it is time to do
an analysis of the process. In this phase, the Six Sigma approach applies statistical tools to
validate the root causes of problems. The objective is to understand the process in sufficient
detail so that we are able to formulate options for improvement.

Step 2.1: Establish product capability. This step determines the current product capabil-
ity, associated confidence levels, and sample size by process capability analysis, described in
Section 16.5. The typical definition for process capability index, Cpk, is Cpk =

min
{

USL − µ̂
3σ̂ , µ̂ − LSL

3σ̂

}
, where USL is the upper specification limit, LSL is the lower spec-

ification limit, µ̂ is the point estimator of the mean, and σ̂ is the point estimator of the
standard deviation. If the process is centered at the middle of the specifications, which is
also interpreted as the target value, that is, µ̂= USL + LSL

2 = y0, then 6σ process means that
Cpk = 2.

Step 2.2: Define performance objectives. The performance objectives are defined to
establish a balance between improving customer satisfaction and available resources. We
should distinguish between courses of actions necessary to improve process capability ver-
sus technology capability.

Step 2.3: Identify variation sources. This step begins to identify the causal variables
that affect the product requirements, or the responses of the process. Some of these causal
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variables might be used to control the responses Y ’s. Experimental design and analysis
should be applied for the identification of variation sources.

Phase 3: Improve (I)
In the improvement phase, ideas and solutions are implemented to initialize the change.
Experiments are designed and analyzed to find the best solution using optimization
approaches.

Step 3.1: Discover variable relationships. In the previous step, the causal variables X’s
are identified with a possible prioritization as to their importance in controlling the Y ’s. In
this step, we explore the impact of each vital X on the responses Y ’s. A system transfer
function (STF) is developed as an empirical model relating the Y ’s and the vital X’s.

Step 3.2: Establish operating tolerances. After understanding the functional relationship
between the vital X’s and the responses Y ’s, we need to establish the operating tolerances
of the X’s that optimize the performance of the Y ’s. Mathematically, we develop a variance
transmission equation (VTE) that transfers the variances of the vital X’s to variances of Y ’s.

Step 3.3: Optimize variable settings. The STF and VTE will be used to determine the
key operating parameters and tolerances to achieve the desired performance of the Y ’s.
Optimization models are developed to determine the optimum values for both means and
variances for these vital X’s.

Phase 4: Control (C)
The key to the overall success of the Six Sigma methodology is its sustainability. Performance
tracking mechanisms and measurements are put in place to assure that the process remains
on the new course.

Step 4.1: Validate measurement system. The measurement system tools first applied in
Step 1.3 will now be used for the X’s.

Step 4.2: Implement process controls. Statistical process control is a critical element in
maintaining a Six Sigma level. Control charting is the major tool used to control the vital
few X’s. Special causes of process variations are identified through the use of control charts,
and corrective actions are implemented to reduce variations.

Step 4.3: Documentation of the improvement. We should understand that the project
is not complete until the changes are documented in the appropriate quality management
system, such as QS9000/ISO9000. A translation package and plan should be developed for
possible technology transfer.

Phase ∞: Technology Transfer (T)
Using the infinity number, we convey the meaning that transferring technology is a never-
ending phase for achieving Six Sigma quality. Ideas and knowledge developed in one part
of the organization can be transferred to other parts of the organization. In addition, the
methods and solutions developed for one product or process can be applied to other similar
products or processes. With technology transfer, the Six Sigma approach starts to create
phenomenal returns.

16.4 Statistical Process Control

A traditional approach to manufacturing and addressing quality is to depend on produc-
tion to make the product and on quality control to inspect the final product and screen out
the items that do not meet the requirements of the next customer. This detection strategy
related to after-the-fact inspection is mostly uneconomical, as the wasteful production has
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FIGURE 16.5 A process control system.

already been produced. A better strategy is to avoid waste by not producing the unac-
ceptable output in the first place and thus focus more on prevention. Statistical process
control (SPC) is an effective prevention strategy to manufacture products that will meet
the requirements of the customer [14]. We will discuss the following topics in this section.

1. What is a process control system?
2. What are different types of variation and how do they affect the process output?

We will discuss two types of variation based on common or system causes and
special or assignable causes.

3. How can a control chart or statistical methods tell us whether a problem is due
to special causes or common causes?

4. What is meant by a process being in statistical control?
5. What are control charts and how are they used?
6. What benefits can be expected from using control charts?

16.4.1 Process Control System

A process control system can be described as a feedback system as shown in Figure 16.5.
Four elements of that system are important to the discussions that will follow:

1. The process—by the process, we mean the whole combination of people, equip-
ment, input materials, methods, and environment that work together to produce
output. The total performance of the process—the quality of its output and its
productive efficiency—depends on the way the process has been designed and
built, and on the way it is operated. The rest of the process control system is
useful only if it contributes to improved performance of the process.

2. Information about performance—much information about the actual performance
of the process can be learned by studying the process output. In a broad sense,
process output includes not only the products that are produced, but also any
intermediate “outputs” that describe the operating state of the process, such as
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temperatures, cycle times, and the like. If this information is gathered and inter-
preted correctly, it can show whether action is necessary to correct the process
or the just-produced product. If timely and appropriate actions are not taken,
however, any information-gathering effort is wasted.

3. Action on the process—action on the process is future-oriented, as it is taken
when necessary to prevent the production of nonconforming products. This action
might consist of changes in the operations (e.g., operator training, changes to the
incoming materials, etc.) or the more basic elements of the process itself (e.g.,
the equipment—which may need rehabilitation, or the design of the process as a
whole—which may be vulnerable to changes in shop temperature or humidity).

4. Action on the output—action on the output is past-oriented, because it involves
detecting out-of-specification output already produced. Unfortunately, if current
output does not consistently meet customer requirements, it may be necessary
to sort all products and to scrap or rework any nonconforming items. This must
continue until the necessary corrective action on the process has been taken and
verified, or until the product specifications have been changed.

It is obvious that inspection followed by action only on the output is a poor substitute
for effective first-time process performance. Therefore, the discussions that follow focus on
gathering process information and analyzing it so that action can be taken to correct the
process itself.

Process control plays a very important role during the effort for process improvement.
When we try to control a process, analysis and improvement naturally result; and when we
try to make an improvement, we naturally come to understand the importance of control.
We can only make a breakthrough when we have achieved control. Without process control,
we do not know where to improve, and we cannot have standards and use control charts.
Improvement can only be achieved through process analysis.

16.4.2 Sources of Variation

Usually, the sources of variability in a process are classified into two types: chance causes and
assignable causes of variation. Chance causes, or common causes, are the sources of inherent
variability, which cannot be removed easily from the process without fundamental changes
in the process itself. Assignable causes, or special causes, arise in somewhat unpredictable
fashion, such as operator error, material defects, or machine failure. The variability due to
assignable causes is comparatively larger than chance causes, and can cause the process to go
out of control. Table 16.1 compares the two sources of variation, including some examples.

TABLE 16.1 Sources of Variation
Common or Chance Causes Special or Assignable Causes

1. Consist of many individual causes 1. Consist of one or just a few individual
causes

2. Any one chance cause results in only a 2. Any one assignable cause can result
minute amount of variation. (However, in a large amount of variation
many of chance causes together result in
a substantial amount of variation)

3. As a practical matter, chance variation 3. The presence of assignable variation
cannot be economically eliminated—the can be detected (by control charts) and
process may have to be changed to reduce action to eliminate the causes is usually
variability economically justified

4. Examples: 4. Examples:
• Slight variations in raw materials • Batch of defective raw materials
• Slight vibrations of a machine • Faulty setup
• Lack of human perfection in reading • Untrained operator

instruments or setting controls
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16.4.3 Use of Control Charts for Problem Identification

Control charts by themselves do not correct problems. They indicate that something is
wrong and it is up to you to take the corrective action. Assignable causes are the factors
that cause the process to go out of control. They are due to change in the condition of
manpower, materials, machines, or methods or a combination of all of these.

Assignable causes relating to manpower:

• New or wrong man on the job
• Careless workmanship and attitudes
• Improper instructions
• Domestic, personal problems
Assignable causes relating to materials:
• Improper work handling
• Stock too hard or too soft
• Wrong dimensions
• Contamination, dirt, etc.
• Improper flow of materials
Assignable causes relating to machines or methods:
• Dull tools
• Poor housekeeping
• Machine adjustment
• Improper machine tools, jigs, fixtures
• Improper speeds, feeds, etc.
• Improper adjustments and maintenance
• Worn or improperly located locators

When assignable causes are present, as shown in Figure 16.6, the probability of noncon-
formance may increase, and the process quality deteriorates significantly. The eventual goal
of SPC is to improve the process quality by reducing variability in the process. As one of
the primary SPC techniques, the control chart can effectively detect the variation due to
the assignable causes and reduce process variability if the identified assignable causes can
be eliminated from the process.

?
? ?

? ?
? ?

? ?
 ? ?

Time

Prediction

Location changed

Both spread and location change

Spread changed

FIGURE 16.6 Unstable and unpredictable process with presence of assignable causes.
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16.4.4 Statistical Control

Statistically, SPC techniques aim to detect changes over time in the parameters (e.g., mean
and standard deviation) of the underlying distribution for the process. In general, the sta-
tistical process control problem can be described as below [15]. Let X denote a random
variable for a quality characteristic with the probability density function, f(x; θ), where θ
is a set of parameters. If the process is operating with θ = θ0, it is said to be in statistical
control; otherwise, it is out of control. The value of θ0 is not necessarily equal to the target
(or ideal) value of the process. Due to the effort of experimental design and process adjust-
ment techniques, a process is assumed to start with the in-control state [7,16,17]. After a
random length of time, variability in the process will possibly cause deterioration or shift
of the process. This shift can be reflected by a change in θ from the value of θ0, and the
process is said to be out of control. Therefore, the basic goal of control charts is to detect
changes in θ that can occur over time.

A process is said to be operating in statistical control when the only source of variation
is common causes. The status of statistical control is obtained by eliminating special causes
of excessive variation one by one.

Process capability is determined by the total variation that comes from common causes.
A process must first be brought into statistical control, and then its capability to meet
specifications can be assessed. We will discuss the details of process capability analysis in
the next section.

16.4.5 Control Charts

The basic concept of control charts was proposed by Walter A. Shewhart of the Bell Tele-
phone Laboratories in the 1920s, which indicates the formal beginning of statistical quality
control. The effective use of the control chart involves a series of process improvement activ-
ities. For a process variable of interest, one must observe data from a process over time, or
monitor the process, and apply a control chart to detect process changes. When the control
chart signals the possible presence of an assignable cause, efforts should be made to diagnose
the assignable causes and implement corrective actions to remove the assignable causes so
as to reduce variability and improve the process quality. The long history of control chart-
ing application in many industries has proven its effectiveness for improving productivity,
preventing defects and providing information about diagnostic and process capability.

A typical control chart is given in Figure 16.7. The basic model for Shewhart control charts
consist of a center line, an upper control limit (UCL) and a lower control limit (LCL) [18].

UCL = µs + Lσs

Center line = µs (16.1)
LCL = µs − Lσs

where µs and σs are the mean and standard deviation of the sample statistic, such as sample
mean (X-bar chart), sample range (R chart), and sample proportion defective (p chart). Lσs

is the distance of the control limits from the center line and L is most often set at three. To
construct a control chart, one also needs to specify the sample size and sampling frequency.
The common wisdom is to take smaller samples at short intervals or larger samples at
longer intervals, so that the sampling effort can be allocated economically. An important
concept related to the sampling scheme is the rational subgroup approach, recommended
by Shewhart. To maximize detection of assignable causes between samples, the rational
subgroup approach takes samples in a way that the within-sample variability is only due to
common causes, while the between-sample variability should indicate assignable causes in
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FIGURE 16.7 A typical control chart (x-bar chart).

TABLE 16.2 The Most Commonly Used Shewhart Control
Charts
Symbol Description Sample Size

Variable Charts

X-bar and R The average (mean) and range Must be constant
of measurements in a sample

X-bar and S The average (mean) and May be variable
standard deviation of
measurements in a sample

Attributes Charts
p The percent of defective May be variable

(nonconforming) units in a
sample

np The number of defective Must be constant
(nonconforming) units in a
sample

c The number of defects in a Must be constant
sample

u The number of defects per unit May be variable

the process. Further discussion of the rational subgroup approach can be found in Refs. [19]
and [20].

An out-of-control signal is given when a sample statistic falls beyond the control limits, or
a nonrandom pattern presents. Western Electric rules are used to identify the nonrandom
pattern in the process. According to Western Electric rules [21], a process is considered out
of control if any of the following occur:

1. One or more points outside 3σ limits.
2. Two of three consecutive points outside 2σ limits.
3. Four of five consecutive points beyond the 1σ limits.
4. A run of eight consecutive points on one side of the center line.

More decision rules or sensitizing rules can be found in the textbook by Montgomery.
The measurements of quality characteristics are typically classified as attributes or vari-

ables. Continuous measurements, such as length, thickness, or voltage, are variable data.
Discrete measurements, such as number of defective units, number of nonconformities per
unit, are attributes. The most commonly used Shewhart control charts for both attributes
and variables are summarized in Table 16.2.

Control Charts for Variables

When a quality characteristic is measured as variables, it is necessary to monitor the process
mean and standard deviation. For grouped data, we use X charts to detect the process
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mean shift (between-group variability), and R charts or S charts to monitor the process
variation (within-group variability). The control limits of each chart are constructed based
on the Shewhart model in Equation 16.1. When we use X, R, and S charts, we assume
that the underlying distribution of the quality characteristic is normal and the observations
exhibit no correlation over time. If the quality characteristic is extremely nonnormal or
the observations are autocorrelated, other control charts such as the exponentially weighted
moving average control charts (EWMA) or time series model (ARIMA) may be used instead.

In practice, the parameters of the underlying distribution of a quality characteristic are
not known. We need to estimate the process mean and standard deviation based on the
preliminary data. It can be shown that an unbiased estimate of the standard deviation is
σ̂ = s/c4, where s is the sample standard deviation. A more convenient approach in quality
control application is the range method, where the range of the sample, R, is used to estimate
the standard deviation, and it is obtained as σ̂ = R/d2. The resulting control charts using
different estimators of standard deviation are the R chart and the S chart, respectively.

X and R Charts
When the sample size is not very large (n < 10), X and R charts are widely used to mon-
itor variable quality characteristics due to their simplicity of application. To use the basic
Shewhart model in Equation 16.1 for X and R charts, we need to estimate µx and σx, µR,
and
σR first.

It is obvious that we can use the grand average to estimate µx and µR, that is, µ̂x = x and
µ̂R = R. Using the range method, we have σ̂x = σ̂/

√
n = R/(d2

√
n) and σ̂R = d3σ̂ = d3R/d2.

The control limits for Xand R charts are

LCL = x − A2R

CL = x

ULC = x + A2R

and

LCL = D3R

CL = R

UCL = D4R

respectively, where A2 = 3
d2

√
n
, D3 = 1 − 3d3

d2
, and D4 = 1 + 3d3

d2
. The values of d2, d3, A2, D3,

and D4 can be obtained from most books on control charts for n up to 25 [22,20]. Normally,
the preliminary data used to establish the control limits are 20–25 samples with sample size
3–5. The established control limits are then used to check if the preliminary samples are in
control. The R chart (or S chart) should be checked first to ensure the process variability
is in statistical control, and then the X chart is checked for the process mean shift. Once a
set of reliable control limits is constructed, they can be used for process monitoring.

X and S Charts
When the sample size is relatively large (n > 10), or the sample size is variable, the X and S
charts are preferred to X and R charts. To construct the control limits, we need to estimate
the mean and standard deviation of X and S, that is, µx and σx, µS and σS first. We have
µ̂x = x and µ̂S = S. Using σ̂ = s/c4, we have σ̂x = σ̂/

√
n = s/(c4

√
n) and σ̂s = s

√
1 − c2

4/c4.
Therefore, the control limits for X and S charts are

LCL = x − A3S

CL = x

ULC = x + A3S

and

LCL = B3S

CL = S

UCL = B4S

respectively, where A3 = 3
c4

√
n
, B3 = 1 − 3

c4

√
1 − c2

4, and B4 = 1 + 3
c4

√
1 − c2

4. The values of
c4, A3, B3, and B4 can be obtained from most books on control charts for n up to 25.
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Control Charts for Attributes

When quality characteristics are expressed as attribute data, such as defective or conforming
items, control charts for attributes are established. Attribute charts can handle multiple
quality characteristics jointly because the unit is classified as defective if it fails to meet the
specification on one or more characteristics. The inspection of samples for attribute charts is
usually cheaper due to less precision requirement. Attribute charts are particularly useful in
quality improvement efforts where numerical data are not easily obtained, such as service,
industrial, and health care systems. In the context of quality control, the attribute data
include a proportion of defective items and a number of defects on items. A defective unit
may have one or more defects that are a result of nonconformance to standard on one or
more quality characteristics. Nevertheless, a unit with several defects may not necessarily
be classified as a defective unit. It requires two different types of attribute charts: control
charts for proportion defective (p chart and np chart), and control charts for number of
defects (c chart and u chart).

p Chart and np Chart
The proportion that is defective is defined as the ratio of the number of defective units to the
total number of units in a population. We usually assume that the number of defective units
in a sample is a binomial variable; that is, each unit in the sample is produced independently
and the probability that a unit is defective is constant, p. Using preliminary samples, we can
estimate the defective rate, that is, p =

∑m
i = 1 Di/mn, where Di is the number of defective

units in sample i, n is the sample size, and m is the number of samples taken. The formulas
used to calculate control limits are then given as

UCLp̂ = p + 3

√
p(1 − p)

n

Centerline = p

LCLp̂ = p − 3

√
p(1 − p)

n
.

Sometimes, it may be easier to interpret the number that is defective instead of the
proportion that is defective. That is why the np chart came into use:

UCL = np + 3
√

np(1 − p)

Centerline = np

LCL = np − 3
√

np(1 − p).

The developed trial control limits are then used to check if the preliminary data are in
statistical control, and the assignable causes may be identified and removed if a point is out
of control. As the process improves, we expect a downward trend in the p or np control chart.

c Chart and u Chart
Control charts for monitoring the number of defects per sample are constructed based
on Poisson distribution. With this assumption of reference distribution, the probability of
occurrence of a defect at any area is small and constant, the potential area for defects is
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infinitely large, and defects occurs randomly and independently. If the average occurrence
rate per sample is a constant c, we know that both the mean and variance of the Poisson
distribution are the constant c. Therefore, the parameters in the c chart for the number of
defects are

LCL = c − 3
√

c

CL = c

UCL = c + 3
√

c

where c can be estimated by the average number of defects in a preliminary sample. To
satisfy the assumption of constant rate of occurrence, the sample size is required to be
constant.

For variable sample size, the u chart should be used instead of the c chart. Compared
to the c chart that is used to monitor the number of defects per sample, the u chart is
designed to check the average number of defects per inspection unit. Usually, a sample may
contain one or more inspection units. For example, in a textile finishing plant, dyed cloth
is inspected for defects per 50 m2, which is one inspection unit. A roll of cloth of 500 m2 is
one sample with 10 inspection units. Different rolls of cloth may have various areas, hence
variable sample sizes. As a result, it is not appropriate to use the c chart, because the
occurrence rate of defects in each sample is not a constant. The alternative is to monitor
the average number of defects per inspection unit in a sample, ui = ci/ni. In this way, the
parameters in the u chart are given as

LCL = u − 3

√
u

n

CL = u

UCL = u + 3

√
u

n

where u =
∑m

i = 1 ui/m, is an estimation of the average number of defects in an inspection
unit. For variable sample size, the upper and lower control limits vary for different n.

To effectively detect small process shifts (on the order of 1.5σ or less), the cumulative sum
(CUSUM) control chart and the exponentially weighted moving average (EWMA) control
chart may be used instead of Shewhart control charts. In addition, there are many situations
where we need to simultaneously monitor two or more correlated quality characteristics. The
control charts for multivariate quality characteristics will also be discussed in the following.

16.4.6 Benefits of Control Charts

In this section, we summarize some of the important benefits that can come from using
control charts.

• Control charts are simple and effective tools to achieve statistical control. They
lend themselves to being maintained at the job station by the operator. They give
the people closest to the operation reliable information on when action should be
taken—and on when action should not be taken.

• When a process is in statistical control, its performance to specification will be
predictable. Thus, both producer and customer can rely on consistent quality
levels, and both can rely on stable costs of achieving that quality level.
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• After a process is in statistical control, its performance can be further improved
to reduce variation. The expected effects of proposed improvements in the system
can be anticipated, and the actual effects of even relatively subtle changes can
be identified through the control chart data. Such process improvements will:
• Increase the percentage of output that meets customer expectations (improve

quality),
• Decrease the output requiring scrap or rework (improve cost per good unit

produced), and
• Increase the total yield of acceptable output through the process (improve

effective capacity).
• Control charts provide a common language for communications about the per-

formance of a process—between the two or three shifts that operate a process;
between line production (operator, supervisor) and support activities (mainte-
nance, material control, process engineering, quality control); between different
stations in the process; between supplier and user; between the manufacturing/
assembly plant and the design engineering activity.

• Control charts, by distinguishing special from common causes of variation, give
a good indication of whether any problems are likely to be correctable locally or
will require management action. This minimizes the confusion, frustration, and
excessive cost of misdirected problem-solving efforts.

16.5 Process Capability Studies

As discussed earlier, statistical control of a process is arrived at by eliminating special causes
of excessive variation one by one. Process capability is determined by the total variation
that comes from common causes. Therefore, a process must first be brought into statistical
control and then its capability to meet specifications can be assessed.

The process capability to meet specifications is usually measured by process capability
indices that link process parameters to product design specifications. Using a single num-
ber, process capability indices measure the degree to which the stable process can meet
the specifications [23,24]. If we denote the lower specification limit as LSL and the upper
specification limit as USL, the process capability index Cp is defined as:

Cp =
USL − LSL

6σ

which measures the potential process capability. To measure the actual process capability,
we use Cpk that is defined as:

Cpk = min
(

USL − µ

3σ
,
µ − LSL

3σ

)

The measure of Cpk takes the process centering into account by choosing the one side Cp

for the specification limit closest to the process mean. The estimations of Cp and Cpk are
obtained by replacing µ and σ using the estimates µ̂ and σ̂. To consider the variability
in terms of both standard deviation and mean, another process capability index Cpm is
defined as

Ĉpm =
USL − LSL

6τ̂
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where τ̂ is an estimator of the expected square deviation from the target, T , and is given by

τ2 = E
[
(x − T )2

]
= σ2 + (µ − T )2

Therefore, if we know the estimate of Cp, we can estimate Cpm as:

Ĉpm =
Ĉp√

1 +
(

µ̂ − T

σ̂

)2

In addition to process capability indices, capability can also be described in terms of the
distance of the process mean from the specification limits in standard deviation units, Z,
that is

ZU =
USL − µ̂

σ̂
, and ZL =

µ̂ − LSL
σ̂

Z values can be used with a table of standard normal distribution to estimate the proportion
of process fallout for a normally distributed and statistically controlled process. The Z value
can also be converted to the capability index, Cpk:

Cpk =
Zmin

3
=

1
3

min (ZU , ZL)

A process with Zmin = 3, which could be described as having µ̂± 3σ̂ capability, would
have Cpk = 1.00. If Zmin = 4, the process would have µ̂± 4σ̂ capability and Cpk = 1.33.

Example 16.1

For a process with µ̂= 0.738, σ̂ = 0.0725, USL = 0.9, and LSL = 0.5,

• Since the process has two-sided specification limits,

Zmin = min
(

USL − µ̂

σ̂
,
µ̂ − LSL

σ̂

)

= min
(

0.9 − 0.738
0.0725

,
0.738 − 0.5

0.0725

)
= min(2.23, 3.28) = 2.23

and the proportion of process fallout would be:

p = 1 − Φ(2.23) + Φ(−3.28) = 0.0129 + 0.0005 = 0.0134

The process capability index would be:

Cpk =
Zmin

3
= 0.74

• If the process could be adjusted toward the center of the specification, the pro-
portion of process fallout might be reduced, even with no change in σ:

Zmin = min
(

USL − µ̂

σ̂
,
µ̂ − LSL

σ̂

)
= min

(
0.9 − 0.7
0.0725

,
0.7 − 0.5
0.0725

)
= 2.76

and the proportion of process fallout would be:

p = 2Φ(−2.76) = 0.0058

The process capability index would be:

Cpk =
Zmin

3
= 0.92
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• To improve the actual process performance in the long run, the variation from
common causes must be reduced. If the capability criterion is µ̂± 4σ̂ (Zmin ≥ 4),
the process standard deviation for a centered process would be:

σnew =
USL − µ̂

Zmin
=

0.9 − 0.7
4

= 0.05

Therefore, actions should be taken to reduce the process standard deviation from
0.0725 to 0.05, about 31%. �

At this point, the process has been brought into statistical control and its capability has
been described in terms of process capability index or Zmin. The next step is to evaluate
the process capability in terms of meeting customer requirements. The fundamental goal
is never-ending improvement in process performance. In the near term, however, priori-
ties must be set as to which processes should receive attention first. This is essentially an
economic decision. The circumstances vary from case to case, depending on the nature of
the particular process in question. While each such decision could be resolved individu-
ally, it is often helpful to use broader guidelines to set priorities and promote consistency of
improvement efforts. For instance, certain procedures require Cpk > 1.33, and further specify
Cpk = 1.50 for new processes. These requirements are intended to assure a minimum perfor-
mance level that is consistent among characteristics, products, and manufacturing sources.

Whether in response to a capability criterion that has not been met, or to the continuing
need for improvement of cost and quality performance even beyond minimum capability
requirement, the action required is the same: improve the process performance by reducing
the variation that comes from common causes. This means taking management action to
improve the system.

16.6 Advanced Control Charts

The major disadvantage of the Shewhart control chart is that it uses the information in the
last plotted point and ignores information given by the sequence of points. This makes it
insensitive to small shifts. One effective way is to use

• cumulative sum (CUSUM) control charts
• exponentially weighted moving average (EWMA) control charts

16.6.1 Cumulative Sum Control Charts

CUSUM charts incorporate all the information in the sequence of sample values by plotting
the CUSUM of deviations of the sample values from a target value, defined as

Ci =
i∑

j=1

(xj − T )

A significant trend developed in Ci is an indication of the process mean shift. Therefore,
CUSUM control charts would be more effective than Shewhart charts to detect small process
shifts. Two statistics are used to accumulate deviations from the target T :

C+
i = max[0, xi − (T + K) + C+

i−1]

C−
i = max[0, (T − K) − xi + C−

i−1]
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where C+
0 = C−

0 = 0, and K is the slack value, and it is often chosen about halfway between
the target value and the process mean after shift. If either C+ or C− exceeds the decision
interval H (a common choice is H = 5σ), the process is considered to be out of control.

16.6.2 Exponentially Weighted Moving Average Control Charts

As discussed earlier, we use Western Electric rules to increase the sensitivity of Shewhart
control charts to detect nonrandom patterns or small shifts in a process. A different approach
to highlight small shifts is to use a time average over past and present data values as an
indicator of recent performance. Roberts [25] introduced the EWMA as such an indicator,
that is, past data values are remembered with geometrically decreasing weight. For example,
we denote the present and past values of a quality characteristic x by xt, xt−1, xt−2, . . .;
then the EWMA yt with discount factor q is

yt = a(xt + qxt−1 + q2xt−2 + · · ·)

where a is a constant that makes the weights add up to 1 and it equals to 1− q. In the
practice of process monitoring, the constant 1 − q is given the distinguishing symbol λ.
Using λ, the EWMA can be expressed as yt = λxt + (1 −λ)yt−1, which is a more convenient
formula for updating the value of EWMA at each new observation. It is observed from the
formula that a larger value of λ results in weights that die out more quickly and place more
emphasis on recent observations. Therefore, a smaller value of λ is recommended to detect
small process shifts, usually λ = 0.05, 0.10, or 0.20.

An EWMA control chart with appropriate limits is used to monitor the value of EWMA.
If the process is in statistical control with a process mean of µ and a standard deviation of
σ, the mean of the EWMA would be µ, and the standard deviation of the EWMA would

be σ
(

λ
2−λ

)1/2
. Thus, given a value of λ, three-sigma or other appropriate limits can be

constructed to monitor the value of EWMA.

16.6.3 Other Advanced Control Charts

The successful use of Shewhart control charts and the CUSUM and EWMA control charts
have led to the development of many new techniques over the last 20 years. A brief summary
of these techniques and references to more complete descriptions are provided in this section.

The competitive global market expects smaller defect rates and higher quality level that
requires 100% inspection of output products. The recent advancement of sensing techniques
and computer capacity makes 100% inspection more feasible. Due to the reduced inter-
vals between sampling of the 100% inspection, the complete observations will be correlated
over time. However, one of the assumptions for Shewhart control charts is the indepen-
dence between observations over time. When the observations are autocorrelated, Shewhart
control charts will give misleading results in the form of many false alarms. ARIMA are
used to remove autocorrelation from data, and then control charts are applied to the
residuals. Further discussion on SPC with autocorrelated process data can be found in
Refs. [16,20].

It is often necessary to simultaneously monitor or control two or more related quality
characteristics. Using individual control charts to monitor the independent variables sep-
arately can be very misleading. Multivariate SPC control charts were developed based on
multivariate normal distribution by Hotelling [26]. More discussion on multivariate SPC
can be found in Refs. [20,26].
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The use of control charts requires the selection of sample size, sampling frequency or inter-
val between samples, and the control limits for the charts. The selection of these parameters
has economic consequences in that the cost of sampling, the cost of false alarms, and the
cost of removing assignable causes will affect the choice of the parameters. Therefore, the
economic design of control charts has received attention in research and practice. Related
discussion can be found in Refs. [8,27]. Other research issues and ideas in SPC can be found
in a review paper by Woodall and Montgomery [28].

16.7 Limitations of Acceptance Sampling

As one of the earliest methods of quality control, acceptance sampling is closely related to
inspection of output of a process, or testing of a product. Acceptance sampling is defined
as the inspection and classification of samples from a lot randomly and decision about
disposition of the lot. At the beginning of the concept of quality conformance back in
the 1930s, the acceptance sample took the whole effort of quality improvement. The most
widely used plans are given by the Military Standard tables (MIL STD 105A), which were
developed during World War II. The last revision (MIL STD 105E) was issued in 1989,
but cancelled in 1991. The standard was adopted by the American Society for Quality as
ANSI/ASQ A1.4.

Due to its less proactive nature in terms of quality improvement, acceptance sampling
is less emphasized in current quality control systems. Usually, methods of lot sentencing
include no inspection, 100% inspection, and acceptance sampling. Some of the problems
with acceptance sampling were articulated by Dr. W. Edwards Deming [2], who pointed
out that this procedure, while minimizing the inspection cost, does not minimize the total
cost to the producer. To minimize the total cost to the producer, Deming indicated that
inspection should be performed either 100% or not at all, which is called Deming’s “All or
None Rule.” In addition, acceptance sampling has several disadvantages compared to 100%
inspection [20]:

• There are risks of accepting “bad” lots and rejecting “good” lots.
• Less information is usually generated about the product or process.
• Acceptance sampling requires planning and documentation of the acceptance

sampling procedure.

16.8 Conclusions

The quality of a system is defined and evaluated by the customer [29]. A system has many
qualities and we can develop a utility or customer satisfaction measure based on all of
these qualities. The design process substitutes the voice of the customer with engineering or
technological characteristics. Quality function deployment (QFD) plays an important role
in the development of those characteristics. Quality engineering principles can be used to
develop ideal values or targets for these characteristics. The methodology of robust design
is an integral part of the quality process [30–32]. Quality should be an integral part of all
the elements of the enterprise, which means that it is distributed throughout the enterprise
and also all of these elements must be integrated together as shown in Figure 16.8.

Statistical quality control is a primary technique for monitoring the manufacturing process
or any other process with key quality characteristics of interests. Before we use statistical
quality control to monitor the manufacturing process, the optimal values of the mean and
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FIGURE 16.8 Integrated and distributed quality management.

standard deviation of the quality characteristic are determined by minimizing the variability
of the quality characteristic through experimental design and process adjustment techniques.
Consequently, the major goal of SQC (SPC) is to monitor the manufacturing process, keep
the values of mean and standard deviation stable, and finally reduce variability. When
the process is in control, all the assignable causes are not present and consequently the
probability to produce a nonconforming unit is very small. When the process changes to
out of control, the probability of nonconformance may increase, and the process quality
deteriorates significantly. As one of the primary SPC techniques, the control charts we
discussed in this chapter can effectively detect the variation due to the assignable causes
and reduce process variability if the identified assignable causes can be eliminated from the
process.

The philosophy of Deming, Juran, and other quality gurus implies that the responsibility
for quality spans the entire organization. It is critical that the management in any enterprise
recognize that quality improvement must be a total, company-wide activity, and that every
organizational unit must actively participate. Statistical quality control techniques are the
common language of communication about quality problems that enables all organizational
units to solve problems rapidly and efficiently.
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Appendix

Constants and Formulas for Constructing Control Charts

X and R Charts X and S Charts

Chart for Chart for
Averages Averages

X Chart for Ranges (R) X Chart for Standard Deviations (S)

Devisors for Divisors for
Factors for Estimate of Factors for Factors for Estimator of Factors for

Subgroup Control Standard Control Limits Control Standard Control Limits
Size Limits Deviation Limits Deviation
n A2 d2 D3 D4 A3 c4 B3 B4

2 1.880 1.128 – 3.267 2.659 0.7979 – 3.267
3 1.023 1.693 – 2.574 1.954 0.8862 – 2.568
4 0.729 2.059 – 2.282 1.628 0.9213 – 2.266
5 0.577 2.326 – 2.114 1.427 0.9400 – 2.089
6 0.483 2.534 – 2.004 1.287 0.9515 0.030 1.970
7 0.419 2.704 0.076 1.924 1.182 0.9594 0.118 1.882
8 0.373 2.847 0.136 1.864 1.099 0.9650 0.185 1.815
9 0.337 2.970 0.184 1.816 1.032 0.9693 0.239 1.761

10 0.308 3.078 0.223 1.777 0.975 0.9727 0.284 1.716

LCL = x − A2R

CL = x

ULC = x + A2R

and

LCL = D3R

CL = R

UCL = D4R

LCL = x − A3S

CL = x

ULC = x + A3S

and

LCL = B3S

CL = S

UCL = B4S

σ̂ = R/d2 σ̂ = s/c4

Guide for Selection of Charts for Attributes:

Nonconforming
Units Nonconformities

Number of Nonconformities np c
(Simple, but needs constant
sample size)

Proportion p u
(More complex, but adjusts
to understandable proportion,
and can cope with varying
sample sizes)

• p chart for proportion of units nonconforming, from samples not necessarily of
constant size: (If n varies, use n or individual ni.)

UCLp̂ = p + 3

√
p(1 − p)

n

Centerline = p

LCLp̂ = p − 3

√
p(1 − p)

n

• np chart for number of units nonconforming, from samples of constant size:

UCL = np + 3
√

np(1 − p)

Centerline = np

LCL = np − 3
√

np(1 − p)
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• c chart for number of nonconformities, from samples of constant size:

LCL = c − 3
√

c

CL = c

UCL = c + 3
√

c

• u chart for number of nonconformities per unit, from samples not necessarily of
constant size: (If n varies, use n or individual ni.)

LCL = u − 3

√
u

n

CL = u

UCL = u + 3

√
u

n
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17.1 Introduction

Reliability theory involves the mathematical modeling of systems, typically comprised of
components, with respect to their ability to perform their intended function over time. Reli-
ability theory can be used as a predictive tool, as in the case of a new product introduction;
it can also be used as a descriptive tool, as in the case of finding a weakness in an existing
system design.

Reliability theory is based on probability theory. The reliability of a component or sys-
tem at one particular point in time is a real number between 0 and 1 that represents the
probability that the component or system is functioning at that time. Reliability theory
also involves statistical methods. Estimating component and system reliability is often per-
formed by analyzing a data set of lifetimes.

Recent tragedies, such as the space shuttle accidents, nuclear power plant accidents, and
aircraft catastrophes, highlight the importance of reliability in design. This chapter describes
probabilistic models for reliability in design and statistical techniques that can be applied
to a data set of lifetimes. Although the majority of the illustrations given here come from
engineering problems, the techniques described here may also be applied to problems in
actuarial science and biostatistics.

Reliability engineers concern themselves primarily with lifetimes of inanimate objects,
such as switches, microprocessors, or gears. They usually regard a complex system as a
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collection of components when performing an analysis. These components are arranged in
a structure that allows the system state to be determined as a function of the component
states. Interest in reliability and quality control has been revived by a more competitive
international market and increased consumer expectations. A product or service that has a
reputation for high reliability will have consumer goodwill and, if appropriately priced, will
gain in market share.

Literature on reliability tends to use failure, actuarial literature tends to use death, and
point process literature tends to use epoch, to describe the event at the termination of a
lifetime. Likewise, reliability literature tends to use a system, component, or item, actuarial
literature uses an individual, and biostatistical literature tends to use an organism as the
object of a study. To avoid switching terms, failure of an item will be used as much as
possible throughout this chapter, as the emphasis is on reliability. The concept of failure
time (or lifetime or survival time) is quite generic, and the models and statistical methods
presented here apply to any nonnegative random variable (e.g., the response time at a
computer terminal).

The remainder of this chapter is organized as follows. Sections 17.2 through 17.4 contain
probability models for lifetimes, and the subsequent remaining sections contain methods
related to data collection and inference.

Mathematical models for describing the arrangement of components in a system are
introduced in Section 17.2. Two of the simplest arrangements of components are series and
parallel systems. The notion of the reliability of a component and system at a particular
time is also introduced in this section. As shown in Section 17.3, the concept of reliability
generalizes to a survivor function when time dependence is introduced. In particular, four
different representations for the distribution of the failure time of an item are considered:
the survivor, density, hazard, and cumulative hazard functions.

Several popular parametric models for the lifetime distribution of an item are investigated
in Section 17.4. The exponential distribution is examined first due to its importance as
the only continuous distribution with the memoryless property, which implies that a used
item that is functioning has the same conditional failure distribution as a new item. Just
as the normal distribution plays a central role in classical statistics due to the central limit
theorem, the exponential distribution is central to the study of the distribution of lifetimes,
as it is the only continuous distribution with a constant hazard function. The more flexible
Weibull distribution is also outlined in this section.

The emphasis changes from developing probabilistic models for lifetimes to analyzing
lifetime data sets in Section 17.5. One problem associated with these data sets is that of
censored data. Data are censored when only a bound on the lifetime is known. This would
be the case, for example, when conducting an experiment with light bulbs, and half of the
light bulbs are still operating at the end of the experiment. This section surveys methods for
fitting parametric distributions to data sets. Maximum likelihood parameter estimates are
emphasized because they have certain desirable statistical properties. Section 17.6 reviews a
nonparametric method for estimating the survivor function of an item from a censored data
set: the Kaplan–Meier product-limit estimate. Once a parametric model has been chosen to
represent the failure time for a particular item, the adequacy of the model should be assessed.
Section 17.7 considers the Kolmogorov–Smirnov goodness-of-fit test for assessing how well a
fitted lifetime distribution models the lifetime of the item. The test uses the largest vertical
distance between the fitted and empirical survivor functions as the test statistic.

We have avoided references throughout the chapter to improve readability. There are
thousands of journal articles and over 100 textbooks on reliability theory and applications.
As this is not a review of the current state-of-the-art in reliability theory, we cite only a
few key comprehensive texts for further reading. A classic, early reference is Barlow and
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Proschan (1981). Meeker and Escobar (1998) is a more recent comprehensive textbook
on reliability. The analysis of survival data is also considered by Kalbfleisch and Prentice
(2002) and Lawless (2003). This chapter assumes that the reader has a familiarity with
calculus-based probability and statistical inference techniques.

17.2 Reliability in System Design

This section introduces mathematical techniques for expressing the arrangement of compo-
nents in a system and for determining the reliability of the associated system. We assume
that an item consists of n components, arranged into a system. We first consider a system’s
structural properties associated with the arrangement of the components into a system, and
then consider the system’s probabilistic properties associated with determining the system
reliability. Structure functions are used to map the states of the individual components to
the state of the system. Reliability functions are used to determine the system reliability at
a particular point in time, given the component reliabilities at that time.

17.2.1 Structure Functions

A structure function is used to describe the way that the n components are related to form
a system. The structure function defines the system state as a function of the component
states. In addition, it is assumed that both the components and the system can either
be functioning or failed. Although this binary assumption may be unrealistic for certain
types of components or systems, it makes the mathematics involved more tractable. The
functioning and failed states for both components and systems will be denoted by 1 and 0,
respectively, as in the following definition.

DEFINITION 17.1 The state of component i, denoted by xi is

xi =
{

0 if component i has failed
1 if component i is functioning

for i= 1, 2, . . ., n.

These n values can be written as a system state vector, x = (x1, x2, . . ., xn). As there are
n components, there are 2n different values that the system state vector can assume, and(

n
j

)

of these vectors correspond to exactly j functioning components, j = 0, 1, . . ., n. The
structure function, φ(x), maps the system state vector x to 0 or 1, yielding the state of the
system.

DEFINITION 17.2 The structure function φ is

φ(x) =
{

0 if the system has failed when the state vector is x
1 if the system is functioning when the state vector is x

The most common system structures are the series and parallel systems, which are defined
in the examples that follow. The series system is the worst possible way to arrange compo-
nents in a system; the parallel system is the best possible way to arrange components in a
system.
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1 2 n3

FIGURE 17.1 A series system.

Example 17.1

A series system functions when all its components function. Thus φ(x) assumes the value 1
when x1 = x2 = · · ·= xn = 1, and 0 otherwise. Therefore,

φ(x) =
{

0 if there exists an i such that xi = 0
1 if xi = 1 for all i = 1, 2, . . ., n

= min{xi, x2, . . ., xn}

=
n∏

i=1

xi

These three different ways of expressing the value of the structure function are equivalent,
although the third is preferred because of its compactness. Systems that function only when
all their components function should be modeled as series systems.

Block diagrams are useful for visualizing a system of components. The block diagram
corresponding to a series system of n components is shown in Figure 17.1. A block diagram
is a graphic device for expressing the arrangement of the components to form a system.
If a path can be traced through functioning components from left to right on a block
diagram, then the system functions. The boxes represent the system components, and either
component numbers or reliabilities are placed inside the boxes. �

Example 17.2

A parallel system functions when one or more of the components function. Thus φ(x)
assumes the value 0 when x1 = x2 = · · ·= xn = 0, and 1 otherwise.

φ(x) =
{

0 if xi = 0 for all i = 1, 2, . . ., n
1 if there exists an i such that xi = 1

= max{x1, x2, . . ., xn}

= 1 −
n∏

i=1

(1 − xi)

As in the case of the series system, the three ways of defining φ(x) are equivalent. The
block diagram of a parallel arrangement of n components is shown in Figure 17.2. A parallel
arrangement of components is appropriate when all components must fail for the system to
fail. A two-component parallel system, for instance, is the brake system on an automobile
that contains two reservoirs for brake fluid. Arranging components in parallel is also known
as redundancy. �

Series and parallel systems are special cases of k-out-of-n systems, which function if k or
more of the n components function. A series system is an n-out-of-n system, and a parallel
system is a 1-out-of-n system. A suspension bridge that needs only k of its n cables to
support the bridge or an automobile engine that needs only k of its n cylinders to run are
examples of k-out-of-n systems.
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FIGURE 17.2 A parallel system.
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3
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FIGURE 17.3 A 2-out-of-3 system.

Example 17.3

The structure function of a k-out-of-n system is

φ(x) =

{
0 if

∑n
i=1 xi < k

1 if
∑n

i=1 xi ≥ k

The block diagram for a k-out-of-n system is difficult to draw in general, but for specific
values of k and n it can be drawn by repeating components in the block diagram. The
block diagram for a 2-out-of-3 system, for example, is shown in Figure 17.3. The block
diagram indicates that if all three, or exactly two out of three components (in particular 1
and 2, 1 and 3, or 2 and 3) function, then the system functions. The structure function for
a 2-out-of-3 system is

φ(x) = 1 − (1 − x1x2)(1 − x1x3)(1 − x2x3)

= x1x2 + x1x3 + x2x3 − x2
1x2x3 − x1x

2
2x3 − x1x2x

2
3 + (x1x2x3)2 �

Most real-world systems have a more complex arrangement of components than a
k-out-of-n arrangement. The next example illustrates how to combine series and parallel
arrangements to determine the appropriate structure function for a more complex system.

Example 17.4

An airplane has four propellers, two on each wing. The airplane will fly (function) if at
least one propeller on each wing functions. In this case, the four propellers are denoted by
components 1, 2, 3, and 4, with 1 and 2 being on the left wing and 3 and 4 on the right wing.
For the moment, if the plane is considered to consist of two wings (not considering individual
propellers), then the wings are arranged in series, as failure of the propulsion on either wing
results in system failure. Each wing can be modeled as a two-component parallel subsystem
of propellers, as only one propeller on each wing is required to function. The appropriate
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1

2

3

4

FIGURE 17.4 A four-propeller system.

block diagram for the system is shown in Figure 17.4. The structure function is the product
of the structure functions of the two parallel subsystems:

φ(x) = [1 − (1 − x1)(1 − x2)][1 − (1 − x3)(1 − x4)] �

To avoid studying structure functions that are unreasonable, a subset of all possible
systems of n components, namely coherent systems, has been defined. A system is coher-
ent if φ(x) is nondecreasing in x [e.g., φ(x1, . . ., xi−1, 0, xi+1, . . ., xn) ≤φ(x1, . . ., xi−1, 1,
xi+1, . . ., xn) for all i] and there are no irrelevant components. The condition that φ(x)
be nondecreasing in x implies that the system will not degrade if a component upgrades. A
component is irrelevant if its state has no impact on the structure function. Many theorems
related to coherent systems have been proven; one of the more useful is that redundancy
at the component level is more effective than redundancy at the system level. This is an
important consideration in reliability design, where a reliability engineer decides the com-
ponents to choose (reliability allocation) at appropriate positions in the system (reliability
optimization).

17.2.2 Reliability Functions

The discussion of structure functions so far has been completely deterministic in nature. We
now introduce probability into the mix by first defining reliability. The paragraphs following
the definition expand on the italicized words in the definition.

DEFINITION 17.3 The reliability of an item is the probability that it will adequately
perform its specified purpose for a specified period of time under specified environmental
conditions.

The definition implies that the object of interest is an item. The definition of the item
depends on the purpose of the study. In some situations, we will consider an item to be an
interacting arrangement of components; in other situations, the component level of detail
in the model is not of interest.

Reliability is defined as a probability. Thus, the axioms of probability apply to reliabil-
ity calculations. In particular, this means that all reliabilities must be between 0 and 1
inclusive, and that the results derived from the probability axioms must hold. For exam-
ple, if two independent components have 1000-hour reliabilities of p1 and p2, and system
failure occurs when either component fails (i.e., a two-component series system), then the
1000-hour system reliability is p1p2.

Adequate performance for an item must be stated unambiguously. A standard is often
used to determine what is considered adequate performance. A mechanical part may require
tolerances that delineate adequate performance from inadequate performance. The perfor-
mance of an item is related to the mathematical model used to represent the condition of
the item. The simplest model for an item is a binary model, which was introduced earlier,
in which the item is in either the functioning or failed state. This model is easily applied to
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a light bulb; it is more difficult to apply to items that gradually degrade over time, such as
a machine tool. To apply a binary model to an item that degrades gradually, a threshold
value must be determined to separate the functioning and failed states.

The definition of reliability also implies that the purpose or intended use of the item must
be specified. Machine tool manufacturers, for example, often produce two grades of an item:
one for professional use and another for consumer use.

The definition of reliability also indicates that time is involved in reliability, which implies
five consequences. First, the units for time need to be specified (e.g., minutes, hours, years)
by the modeler to perform any analysis. Second, many lifetime models use the random
variable T (rather than X, which is common in probability theory) to represent the failure
time of the item. Third, time need not be taken literally. The number of miles may represent
time for an automobile tire; the number of cycles may represent time for a light switch.
Fourth, a time duration associated with a reliability must be specified. The reliability of
a component, for example, should not be stated as simply 0.98, as no time is specified.
It is equally ambiguous for a component to have a 1000-hour life without indicating a
reliability for that time. Instead, it should be stated that the 1000-hour reliability is 0.98.
This requirement of stating a time along with a reliability applies to systems as well as
components. Finally, determining what should be used to measure the lifetime of an item
may not be obvious. Reliability analysts must consider whether continuous operation or
on/off cycling is more effective for items such as motors or computers.

The last aspect of the definition of reliability is that environmental conditions must be
specified. Conditions such as temperature, humidity, and turning speed all affect the lifetime
of a machine tool. Likewise, the driving conditions for an automobile will influence its relia-
bility. Included in environmental conditions is the preventive maintenance to be performed
on the item.

We now return to the mathematical models for determining the reliability of a system.
Two additional assumptions need to be made for the models developed here. First, the n
components comprising a system must be nonrepairable. Once a component changes from
the functioning to the failed state, it cannot return to the functioning state. This assumption
was not necessary when structure functions were introduced, as a structure function simply
maps the component states to the system state. The structure function can be applied to
a system with nonrepairable or repairable components. The second assumption is that the
components are independent. Thus, failure of one component does not influence the proba-
bility of failure of other components. This assumption is not appropriate if the components
operate in a common environment where there may be common-cause failures. Although
the independence assumption makes the mathematics for modeling a system simpler, the
assumption should not be automatically applied.

Previously, xi was defined to be the state of component i. Now Xi is a random variable
with the same meaning.

DEFINITION 17.4 The random variable denoting the state of component i, denoted
by X i, is

Xi =
{

0 if component i has failed
1 if component i is functioning

for i= 1, 2, . . ., n.

These n values can be written as a random system state vector X . The probability that
component i is functioning at a certain time is given by pi = P (Xi = 1), which is often called
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the reliability of the ith component, for i= 1, 2, . . ., n. The P function denotes probability.
These n values can be written as a reliability vector p = (p1, p2, . . ., pn).

The system reliability, denoted by r, is defined by

r = P [φ(X) = 1]

where r is a quantity that can be calculated from the vector p, so r = r(p). The function r(p)
is called the reliability function. In some of the examples in this section, the components have
identical reliabilities (that is, p1 = p2 = · · ·= pn = p), which is indicated by the notation r(p).

Several techniques are used to calculate system reliability. We will illustrate two of the
simplest techniques: definition and expectation. The first technique for finding the reliabil-
ity of a coherent system of n independent components is to use the definition of system
reliability directly, as illustrated in the example.

Example 17.5

The system reliability of a series system of n components is easily found using the definition
of r(p) and the independence assumption.

r(p) = P [φ(X) = 1]

= P

[
n∏

i=1

Xi = 1

]

=
n∏

i=1

P [Xi = 1]

=
n∏

i=1

pi

The product in this formula indicates that system reliability is always less than the reliability
of the least reliable component. This “chain is only as strong as its weakest link” result
indicates that improving the weakest component causes the largest increase in the reliability
of a series system. �

In the special case when all components are identical, the reliability function reduces
to r(p) = pn, where p1 = p2 = · · ·= pn = p. The plot in Figure 17.5 of component reliability
versus system reliability for several values of n shows that highly reliable components are
necessary to achieve reasonable system reliability, even for small values of n.

The second technique, expectation, is based on the fact that P [φ(X) = 1] is equal to
E[φ(X)], because φ(X) is a Bernoulli random variable. Consequently, the expected value
of φ(X) is the system reliability r(p), as illustrated in the next example.

Example 17.6

Since the components are assumed to be independent, the system reliability for a parallel
system of n components using the expectation technique is

r(p) = E[φ(X)]

= E

[
1 −

n∏
i=1

(1 − Xi)

]
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FIGURE 17.5 Reliability of a series system of n components.
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FIGURE 17.6 Reliability of a parallel system of n components.

= 1 − E

[
n∏

i=1

(1 − Xi)

]

= 1 −
n∏

i=1

E[1 − Xi]

= 1 −
n∏

i=1

(1 − pi)

In the special case of identical components, this expression reduces to r(p) = 1 − (1 − p)n.
Figure 17.6 shows component reliability versus system reliability for a parallel system of n
identical components. The law of diminishing returns is apparent from the graph when a
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fixed component reliability is considered. The marginal gain in reliability decreases dramat-
ically as more components are added to the system. �

There are two systems that appear to be similar to parallel systems on the surface, but
they are not true parallel systems such as the one considered in the previous example.
The first such system is a standby system. In a standby system, not all the components
function simultaneously, and components are switched to standby components upon failure.
Examples of standby systems include a spare tire for an automobile and having three power
sources (utility company, backup generator, and batteries) for a hospital. In contrast, all
components are functioning simultaneously in a true parallel system.

The second such system is a shared-parallel system. In a shared-parallel system, all com-
ponents are online, but the component reliabilities change when one component fails. The
lug nuts that attach a wheel to an automobile are an example of a five-component shared-
parallel system. When one lug nut fails (i.e., loosens or falls off), the load on the remaining
functioning lug nuts increases. Thus, the static reliability calculations presented in this
section are not appropriate for a wheel attachment system. In contrast, the failure of a
component in a true parallel system does not affect the reliabilities of any of the other
components in the system.

17.3 Lifetime Distributions

Reliability has only been considered at one particular instant of time. Reliability is general-
ized to be a function of time in this section, and various lifetime distribution representations
that are helpful in describing the evolution of the risks to which an item is subjected over
time are introduced. In particular, four lifetime distribution representations are presented:
the survivor function, the probability density function, the hazard function, and the cumula-
tive hazard function. These four distribution representations apply to both continuous (e.g.,
a fuse) and discrete (e.g., software executed daily) lifetimes, although the focus here is on
continuous lifetimes. These four representations are not the only ways to define the distri-
bution of the continuous, nonnegative random variable T , referred to generically here as
a “lifetime.” Other methods include the moment generating function E[esT ], the charac-
teristic function E[eisT ], the Mellin transform E[T s], and the mean residual life function
E[T − t|T ≥ t]. The four representations used here have been chosen because of their intu-
itive appeal, their usefulness in problem solving, and their popularity in the literature.

17.3.1 Survivor Function

The first lifetime distribution representation is the survivor function, S(t). The survivor
function is a generalization of reliability. Whereas reliability is defined as the probability
that an item is functioning at one particular time, the survivor function is the probability
that an item is functioning at any time t:

S(t) = P [T ≥ t] t ≥ 0

It is assumed that S(t) = 1 for all t < 0. A survivor function is also known as the reliability
function [since S(t) is the reliability at time t] and the complementary cumulative distribu-
tion function [since S(t) = 1 −F (t) for continuous random variables, where F (t) = P [T ≤ t]
is the cumulative distribution function]. All survivor functions must satisfy three conditions:

S(0) = 1 lim
t→∞

S(t) = 0 S(t) is nonincreasing
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There are two interpretations of the survivor function. First, S(t) is the probability that
an individual item is functioning at time t. This is important, as will be seen later, in
determining the lifetime distribution of a system from the distribution of the lifetimes of
its individual components. Second, if there is a large population of items with identically
distributed lifetimes, S(t) is the expected fraction of the population that is functioning at
time t.

The survivor function is useful for comparing the survival patterns of several populations
of items. If S1(t) ≥S2(t), for all t values, for example, it can be concluded that the items in
population 1 are superior to those in population 2 with regard to reliability.

17.3.2 Probability Density Function

The second lifetime distribution representation, the probability density function, is defined
by f(t) = −S′(t), where the derivative exists. It has the probabilistic interpretation

f(t)∆t = P [t ≤ T ≤ t + ∆t]

for small values of ∆t. Although the probability density function is not as effective as
the survivor function in comparing the survival patterns of two populations, a graph of
f(t) indicates the likelihood of failure for a new item over the course of its lifetime. The
probability of failure between times a and b is calculated by an integral:

P [a ≤ T ≤ b] =

b∫
a

f(t)dt

All probability density functions for lifetimes must satisfy two conditions:
∞∫
0

f(t)dt = 1 f(t) ≥ 0 for all t ≥ 0

It is assumed that f(t) = 0 for all t < 0.

17.3.3 Hazard Function

The hazard function, h(t), is perhaps the most popular of the five representations for lifetime
modeling due to its intuitive interpretation as the amount of risk associated with an item
at time t. The hazard function goes by several aliases: in reliability it is also known as the
hazard rate or failure rate; in actuarial science it is known as the force of mortality or force
of decrement; in point process and extreme value theory it is known as the rate or intensity
function; in vital statistics it is known as the age-specific death rate; and in economics its
reciprocal is known as Mill’s ratio.

The hazard function can be derived using conditional probability. First, consider the
probability of failure between t and t + ∆t:

P [t ≤ T ≤ t + ∆t] =

t+∆t∫
t

f(τ)dτ = S(t) − S(t + ∆t)

Conditioning on the event that the item is working at time t yields

P [t ≤ T ≤ t + ∆t|T ≥ t] =
P [t ≤ T ≤ t + ∆t]

P [T ≥ t]
=

S(t) − S(t + ∆t)
S(t)
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If this conditional probability is averaged over the interval [t, t + ∆t] by dividing by ∆t, an
average rate of failure is obtained:

S(t) − S(t + ∆t)
S(t)∆t

As ∆t → 0, this average failure rate becomes the instantaneous failure rate, which is the
hazard function

h(t) = lim
∆t→0

S(t) − S(t + ∆t)
S(t)∆t

= − S′(t)
S(t)

=
f(t)
S(t)

t ≥ 0

Thus, the hazard function is the ratio of the probability density function to the survivor func-
tion. Using the previous derivation, a probabilistic interpretation of the hazard function is

h(t)∆t = P [t ≤ T ≤ t + ∆t|T > t]

for small values of ∆t, which is a conditional version of the interpretation for the probability
density function. All hazard functions must satisfy two conditions:

∞∫
0

h(t)dt = ∞ h(t) ≥ 0 for all t ≥ 0

The units on a hazard function are typically given in failures per unit time, for example,
h(t) = 0.03 failures per hour. Since the magnitude of hazard functions can often be quite
small, they are often expressed in scientific notation, for example, h(t) = 3.8 failures per
106 hours, or the time units are chosen to keep hazard functions from getting too small, for
example, h(t) = 8.4 failures per year.

The shape of the hazard function indicates how an item ages. The intuitive interpretation
as the amount of risk an item is subjected to at time t indicates that when the hazard
function is large the item is under greater risk, and when the hazard function is small the
item is under less risk. The three hazard functions plotted in Figure 17.7 correspond to
an increasing hazard function (labeled IFR for increasing failure rate), a decreasing hazard
function (labeled DFR for decreasing failure rate), and a bathtub-shaped hazard function
(labeled BT for bathtub-shaped failure rate).

The increasing hazard function is probably the most likely situation of the three. In this
case, items are more likely to fail as time passes. In other words, items wear out or degrade
with time. This is almost certainly the case with mechanical items that undergo wear or
fatigue. The second situation, the decreasing hazard function, is less common. In this case,
the item is less likely to fail as time passes. Items with this type of hazard function improve
with time. Some metals, for example, work-harden through use and thus have increased
strength as time passes. Another situation for which a decreasing hazard function might be
appropriate for modeling is in working the bugs out of computer programs. Bugs are more
likely to appear initially, but the likelihood of them appearing decreases as time passes.

The third situation, a bathtub-shaped hazard function, occurs when the hazard function
decreases initially and then increases as items age. Items improve initially and then degrade
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FIGURE 17.7 Hazard functions.

as time passes. One instance where the bathtub-shaped hazard function arises is in the life-
times of manufactured items. Often manufacturing, design, or component defects cause early
failures. The period in which these failures occur is sometimes called the burn-in period. If
failure is particularly catastrophic, this part of the lifetime will often be consumed by the
manufacturer in a controlled environment. The time value during which early failures have
been eliminated may be valuable to a producer who is determining an appropriate warranty
period. Once items pass through this early part of their lifetime, they have a fairly constant
hazard function, and failures are equally likely to occur at any point in time. Finally, as
items continue to age, the hazard function increases without limit, resulting in wear-out
failures. Bathtub-shaped hazard functions are also used for modeling human lifetimes.

Care must be taken to differentiate between the hazard function for a population and
the hazard function for an individual item under consideration. Consider the lifetimes of a
certain model of a laptop computer as an illustration. Consider the following question: do
two laptops operating in identical environments necessarily have the same hazard function?
The answer is no. The laptops have their own individual hazard functions as they might
have been manufactured at different facilities that may have included differing conditions
(e.g., temperature, raw materials, parts suppliers). So, although a hazard function could be
drawn for all laptop computers, it would be an aggregate hazard function representing the
population, and individual laptops may be at increased or decreased risk.

17.3.4 Cumulative Hazard Function

The fourth lifetime distribution representation, the cumulative hazard function H(t), can
be defined by

H(t) =

t∫
0

h(τ)dτ t ≥ 0

The cumulative hazard function is also known as the integrated hazard function. All cumu-
lative hazard functions must satisfy three conditions:

H(0) = 0 lim
t→∞

H(t) = ∞ H(t) is nondecreasing
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The cumulative hazard function is valuable for variate generation in Monte Carlo simu-
lation, implementing certain procedures in statistical inference, and defining certain distri-
bution classes.

The four distribution representations presented here are equivalent in the sense that each
completely specifies a lifetime distribution. Any one lifetime distribution representation
implies the other four. Algebra and calculus can be used to find one lifetime distribution
representation given that another is known. For example, if the survivor function is known,
the cumulative hazard function can be determined by

H(t) =

t∫
0

h(τ)dτ =

t∫
0

f(τ)
S(τ)

dτ = − log S(t)

where log is the natural logarithm (log base e).

17.3.5 Expected Values and Fractiles

Once a lifetime distribution representation for a particular item (which may be a component
or an entire system) is known, it may be of interest to compute a moment or a fractile of
the distribution. Moments and fractiles contain less information than a lifetime distribution
representation, but they are often useful ways to summarize the distribution of a random
lifetime. Examples of these performance measures include the mean time to failure, E[T ],
the median, t0.50, and the 99th fractile of a distribution, t0.99.

A formula for the expectation of some function of the random variable T , say u(T ), is

E[u(T )] =
∫ ∞

0
u(t)f(t)dt

The most common measure associated with a distribution is its mean, or first moment,

µ = E[T ] =
∫ ∞

0
tf(t)dt =

∫ ∞

0
S(t)dt

where the last equality is proved using integration by parts and is based on the assumption
that limt→∞ tS(t) = 0. The mean is a measure of the central tendency or average value that
a lifetime distribution assumes and is known as the center of gravity in physics. It is often
abbreviated by MTTF (mean time to failure) for nonrepairable items. For repairable items
that can be completely renewed by repair, it is often abbreviated by MTBF (mean time
between failures). Another value associated with a distribution is its variance, or second
moment about the mean,

σ2 = V [T ] = E[(T − µ)2] = E[T 2] − (E[T ])2

which is a measure of the dispersion of a lifetime distribution about its mean. The positive
square root of the variance is known as the standard deviation, which has the same units
as the random variable T .

Fractiles of a distribution are the times to which a specified proportion of the items
survives. The definition of the pth fractile of a distribution, tp, (often called the pth quantile
or 100pth percentile) satisfies

F (tp) = P [T ≤ tp] = p

or, equivalently,

tp = F−1(p)
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Example 17.7

The exponential distribution has survivor function

S(t) = e−λt t ≥ 0

where λ is a positive parameter known as the failure rate. Find the mean, variance, and the
pth fractile of the distribution. The mean can be found by integrating the survivor function
from 0 to infinity:

µ = E[T ] =

∞∫
0

S(t)dt =

∞∫
0

e−λtdt =
1
λ

Since the probability density function is f(t) = −S′(t) = λe−λt for t > 0, the second moment
about the origin is

E[T 2] =

∞∫
0

t2f(t)dt =

∞∫
0

t2λe−λtdt =
2
λ2

using integration by parts twice. Therefore, the variance is

σ2 = V [T ] = E[T 2] − (E[T ])2 =
2
λ2 − 1

λ2 =
1
λ2

Finally, the pth fractile of the distribution, tp, is found by solving

1 − e−λtp = p

for tp, yielding tp = − 1
λ log(1− p). �

17.3.6 System Lifetime Distributions

To this point, the discussion concerning the four lifetime representations S(t), f(t), h(t),
and H(t) has assumed that the variable of interest is the lifetime of an item. For systems of
components, both the individual components and the system have random lifetimes whose
lifetime distributions can be defined by any of the four lifetime distributions. We now inte-
grate reliability functions from Section 17.2 and the lifetime distribution representations
from this section, which allows a modeler to find the distribution of the system lifetime,
given the distributions of the component lifetimes. The component lifetime representations
are denoted by Si(t), fi(t), hi(t), and Hi(t), for i= 1, 2, . . ., n, and the system lifetime rep-
resentations are denoted by S(t), f(t), h(t), and H(t).

The survivor function is a time-dependent generalization of reliability. Whereas reliability
always needs an associated time value (e.g., the 4000-hour reliability is 0.96), the survivor
function is the reliability at any time t.

To find the reliability of a system at any time t, the component survivor functions should
be used as arguments in the reliability function, that is,

S(t) = r(S1(t), S2(t), . . ., Sn(t))

Once S(t) is known, it is straightforward to determine any of the other four lifetime repre-
sentations, moments, or fractiles, as illustrated in the following examples.
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Example 17.8

Two independent components with survivor functions

S1(t) = e−t and S2(t) = e−2t

for t ≥ 0, are arranged in series. Find the survivor and hazard functions for the system
lifetime. Since the reliability function for a two-component series system is r(p) = p1p2, the
system survivor function is

S(t) = S1(t) S2(t)

= e−te−2t

= e−3t t ≥ 0

which can be recognized as the survivor function for an exponential distribution with λ = 3.
The hazard function for the system is

h(t) = −S′(t)
S(t)

= 3 t ≥ 0

Thus, if two independent components with exponential times to failure are arranged in
series, the time to system failure is also exponentially distributed with a failure rate that
is the sum of the failure rates of the individual components. This result can be generalized
to series systems with more than two components. If the lifetime of component i in a series
system of n independent components has an exponential distribution with failure rate λi,
then the system lifetime is exponentially distributed with failure rate

∑n
i=1 λi. �

The next example considers a parallel system of components having exponential lifetimes.

Example 17.9

Two independent components have hazard functions

h1(t) = 1 and h2(t) = 2

for t ≥ 0. If the components are arranged in parallel, find the hazard function of the time
to system failure and the mean time to system failure.

The survivor functions of the components are

S1(t) = e−H1(t) = e−
∫ t
0 h1(τ)dτ = e−t

for t ≥ 0. Likewise, S2(t) = e−2t for t ≥ 0. Since the reliability function for a two-component
parallel system is r(p) = 1 − (1 − p1)(1 − p2), the system survivor function is

S(t) = 1 − (1 − S1(t))(1 − S2(t))

= 1 − (1 − e−t)(1 − e−2t)

= e−t + e−2t − e−3t t ≥ 0

The hazard function is

h(t) = −S′(t)
S(t)

=
e−t + 2e−2t − 3e−3t

e−t + e−2t − e−3t
t ≥ 0
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To find the mean time to system failure, the system survivor function is integrated from 0
to infinity:

µ =

∞∫
0

S(t)dt =

∞∫
0

(e−t + e−2t − e−3t)dt = 1 +
1
2

− 1
3

=
7
6

The mean time to failure of the stronger component is 1 and the mean time to failure
of the weaker component is 1/2. The addition of the weaker component in parallel with
the stronger only increases the mean time to system failure by 1/6. This is yet another
illustration of the law of diminishing returns for parallel systems. �

17.4 Parametric Models

The survival patterns of a machine tool, a fuse, and an aircraft are vastly different. One
would certainly not want to use the same failure time distribution with identical parameters
to model these diverse lifetimes. This section introduces two distributions that are commonly
used to model lifetimes. To adequately survey all the distributions currently in existence
would require an entire textbook, so detailed discussion here is limited to the exponential
and Weibull distributions.

17.4.1 Parameters

We begin by describing parameters, which are common to all lifetime distributions. The
three most common types of parameters used in lifetime distributions are location, scale,
and shape. Parameters in a lifetime distribution allow modeling of such diverse applications
as light bulb failure time, patient postsurgery survival time, and the failure time of a muffler
on an automobile by a single lifetime distribution (e.g., the Weibull distribution).

Location (or shift) parameters are used to shift the distribution to the left or right
along the time axis. If c1 and c2 are two values of a location parameter for a lifetime
distribution with survivor function S(t; c), then there exists a real constant α such that
S(t; c1) = S(α + t; c2). A familiar example of a location parameter is the mean of the normal
distribution.

Scale parameters are used to expand or contract the time axis by a factor of α. If λ1 and
λ2 are two values for a scale parameter for a lifetime distribution with survivor function
S(t; λ), then there exists a real constant α such that S(αt; λ1) = S(t; λ2). A familiar example
of a scale parameter is λ in the exponential distribution. The probability density function
always has the same shape, and the units on the time axis are determined by the value of λ.

Shape parameters are appropriately named because they affect the shape of the probabil-
ity density function. Shape parameter values might also determine whether a distribution
belongs to a particular distribution class such as IFR or DFR. A familiar example of a shape
parameter is κ in the Weibull distribution.

In summary, location parameters translate survival distributions along the time axis,
scale parameters expand or contract the time scale for survival distributions, and all other
parameters are shape parameters.

17.4.2 Exponential Distribution

Just as the normal distribution plays an important role in classical statistics because of the
central limit theorem, the exponential distribution plays an important role in reliability and

© 2008 by Taylor & Francis Group, LLC



CH017.tex 30/10/2007 10: 28 Page 17-18

17-18 Operations Research and Management Science Handbook

lifetime modeling because it is the only continuous distribution with a constant hazard func-
tion. The exponential distribution has often been used to model the lifetime of electronic
components and is appropriate when a used component that has not failed is statistically as
good as a new component. This is a rather restrictive assumption. The exponential distri-
bution is presented first because of its simplicity. The Weibull distribution, a more complex
two-parameter distribution that can model a wider variety of situations, is presented sub-
sequently. The exponential distribution has a single positive scale parameter λ, often called
the failure rate, and the four lifetime distribution representations are

S(t) = e−λt f(t) = λe−λt h(t) = λ H(t) = λt for t ≥ 0

There are several probabilistic properties of the exponential distribution that are useful
in understanding how it is unique and when it should be applied. In the properties to be
outlined below, the nonnegative lifetime T typically has the exponential distribution with
parameter λ, which denotes the number of failures per unit time. The symbol ∼ means “is
distributed as.” Proofs of these results are given in most reliability textbooks.

THEOREM 17.1 (Memoryless Property) If T ∼ exponential(λ), then

P [T ≥ t] = P [T ≥ t + s|T ≥ s] t ≥ 0; s ≥ 0

As shown in Figure 17.8 for λ = 1 and s = 0.5, the memoryless property indicates that
the conditional survivor function for the lifetime of an item that has survived to time s is
identical to the survivor function for the lifetime of a brand new item. This used-as-good-
as-new assumption is very strong. The exponential lifetime model should not be applied
to mechanical components that undergo wear (e.g., bearings) or fatigue (e.g., structural
supports) or electrical components that contain an element that burns away (e.g., filaments)
or degrades with time (e.g., batteries). An electrical component for which the exponential
lifetime assumption may be justified is a fuse. A fuse is designed to fail when there is a
power surge that causes the fuse to burn out. Assuming that the fuse does not undergo any
weakening or degradation over time and that power surges that cause failure occur with
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FIGURE 17.8 The memoryless property.
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equal likelihood over time, the exponential lifetime assumption is appropriate, and a used
fuse that has not failed is as good as a new one.

The exponential distribution should be applied judiciously as the memoryless property
restricts its applicability. It is usually misapplied for the sake of simplicity as the statistical
techniques for the exponential distribution are particularly tractable, or small sample sizes
do not support more than a one-parameter distribution.

THEOREM 17.2 The exponential distribution is the only continuous distribution with
the memoryless property.

This result indicates that the exponential distribution is the only continuous lifetime
distribution for which the conditional lifetime distribution of a used item is identical to the
original lifetime distribution. The only discrete distribution with the memoryless property
is the geometric distribution.

THEOREM 17.3 If T ∼ exponential(λ), then

E[T s] =
Γ(s + 1)

λs
s > −1

where the gamma function is defined by

Γ(α) =

∞∫
0

xα−1e−xdx

When s is a nonnegative integer, this expression reduces to E[T s] = s!/λs. By setting
s = 1 and 2, the mean and variance can be obtained:

E[T ] =
1
λ

V [T ] =
1
λ2

THEOREM 17.4 (Self-Reproducing) If T1, T2, . . ., Tn are independent, Ti ∼ expo-
nential(λi), for i= 1, 2, . . ., n, and T = min{T1, T2, . . ., Tn}, then

T ∼ exponential

(
n∑

i=1

λi

)

This result indicates that the minimum of n exponential random lifetimes also has the
exponential distribution, as alluded to in the previous section. This is important in two
applications. First, if n independent exponential components, each with exponential times to
failure, are arranged in series, the distribution of the system failure time is also exponential
with a failure rate equal to the sum of the component failure rates. When the n components
have the same failure rate λ, the system lifetime is exponential with failure rate nλ. Second,
when there are several independent, exponentially distributed causes of failure competing
for the lifetime of an item (e.g., failing by open or short circuit for an electronic item or
death by various risks for a human being), the lifetime can be modeled as the minimum of
the individual lifetimes associated with each cause of failure.
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THEOREM 17.5 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables, then

2λ

n∑
i=1

Ti ∼ χ2(2n)

where χ2(2n) denotes the chi-square distribution with 2n degrees of freedom.

This property is useful for determining a confidence interval for a λ based on a data set
of n independent exponential lifetimes. For instance, with probability 1−α,

χ2
2n,1−α/2 < 2λ

n∑
i=1

Ti < χ2
2n,α/2

where the left- and right-hand sides of this inequality are the α/2 and 1−α/2 fractiles of
the chi-square distribution with 2n degrees of freedom, that is, the second subscript denotes
right-hand tail areas. Rearranging this expression yields a 100(1−α)% confidence interval
for λ:

χ2
2n,1−α/2

2
∑n

i=1
Ti

< λ <
χ2

2n,α/2

2
∑n

i=1
Ti

THEOREM 17.6 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables, T(1), T(2), . . ., T(n) are the corresponding order statistics
(the observations sorted in ascending order), Gk = T(k) −T(k−1) for k = 1, 2, . . ., n, and if
T(0) = 0, then

• P [Gk ≥ t] = e−(n−k+1)λt; t ≥ 0; k = 1, 2, . . ., n.
• G1, G2, . . ., Gn are independent.

This property is most easily interpreted in terms of a life test of n items with
exponential(λ) lifetimes. Assume that the items placed on the life test are not replaced
with new items when they fail. The ith item fails at time t(i), and Gi = t(i) − t(i−1) is the
time between the (i− 1)st and ith failure, for i= 1, 2, . . ., n, as indicated in Figure 17.9 for
n = 4. The result states that these gaps (Gi’s) between the failure times are independent
and exponentially distributed. The proof of this theorem relies on the memoryless property
and the self-reproducing property of the exponential distribution, which implies that when
the ith failure occurs the time until the next failure is the minimum of n − i independent
exponential random variables.

THEOREM 17.7 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables and T(r) is the rth order statistic, then

E[T(r)] =
r∑

k=1

1
(n − k + 1)λ

t
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FIGURE 17.9 Order statistics and gap statistics.
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and

V [T(r)] =
r∑

k=1

1
[(n − k + 1)λ]2

for r = 1, 2, . . ., n.

The expected value and variance of the rth-ordered failure are simple functions of n, λ,
and r. The proof of this result is straightforward, as the gaps between order statistics are
independent exponential random variables from the previous theorem, and the rth ordered
failure on a life test of n items is the sum of the first r gaps. This result is useful in
determining the expected time to complete a life test that is discontinued after r of the n
items on test fail.

THEOREM 17.8 If T1, T2, . . . are independent and identically distributed exponential(λ)
random variables denoting the interevent times for a point process, then the number of events
in the interval [0, t] has the Poisson distribution with parameter λt.

This property is related to the memoryless property and can be applied to a compo-
nent that is subjected to shocks occurring randomly over time. It states that if the time
between shocks is exponential(λ) then the number of shocks occurring by time t has the
Poisson distribution with parameter λt. This result also applies to the failure time of a cold
standby system of n identical exponential components in which nonoperating units do not
fail and sensing and switching are perfect. The probability of fewer than n failures by time
t (the system reliability) is

n−1∑
k=0

(λt)k

k!
e−λt

The exponential distribution, for which the item under study does not age in a probabilis-
tic sense, is the simplest possible lifetime model. Another popular distribution that arises
in many reliability applications is the Weibull distribution, which is presented next.

17.4.3 Weibull Distribution

The exponential distribution is limited in applicability because of the memoryless prop-
erty. The assumption that a lifetime has a constant failure rate is often too restrictive or
inappropriate. Mechanical items typically degrade over time and hence are more likely to
follow a distribution with a strictly increasing hazard function. The Weibull distribution is a
generalization of the exponential distribution that is appropriate for modeling lifetimes hav-
ing constant, strictly increasing, and strictly decreasing hazard functions. The four lifetime
distribution representations for the Weibull distribution are

S(t) = e−(λt)κ

f(t) = κλκtκ−1e−(λt)κ

h(t) = κλκtκ−1 H(t) = (λt)κ

for all t ≥ 0, where λ > 0 and κ > 0 are the scale and shape parameters of the distribution.
The hazard function approaches zero from infinity for κ < 1, is constant for κ = 1, the expo-
nential case, and increases from zero when κ > 1. Hence, the Weibull distribution can attain
hazard function shapes in both the IFR and DFR classes and includes the exponential distri-
bution as a special case. One other special case occurs when κ = 2, commonly known as the
Rayleigh distribution, which has a linear hazard function with slope 2λ2. When 3< κ < 4,
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the shape of the probability density function resembles that of a normal probability density
function.

Using the expression

E[T r] =
r

κλr
Γ
( r

κ

)

for r = 1, 2, . . ., the mean and variance for the Weibull distribution are

µ =
1
λκ

Γ
(

1
κ

)

and

σ2 =
1
λ2

{
2
κ

Γ
(

2
κ

)
−

[
1
κ

Γ
(

1
κ

)]2
}

Example 17.10

The lifetime of a machine used continuously under known operating conditions has the
Weibull distribution with λ = 0.00027 and κ = 1.55, where time is measured in hours. (Esti-
mating the parameters for the Weibull distribution from a data set will be addressed subse-
quently, but the parameters are assumed to be known for this example.) What is the mean
time to failure and the probability the machine will operate for 5000 hours?

The mean time to failure is

µ = E[T ] =
1

(0.00027)(1.55)
Γ
(

1
1.55

)
= 3331 hours

The probability that the machine will operate for 5000 hours is

S(5000) = e−[(0.00027)(5000)]1.55
= 0.203 �

The Weibull distribution also has the self-reproducing property, although the conditions
are slightly more restrictive than for the exponential distribution. If T1, T2, . . ., Tn are inde-
pendent component lifetimes having the Weibull distribution with identical shape param-
eters, then the minimum of these values has the Weibull distribution. More specifically, if
Ti ∼ Weibull(λi, κ) for i= 1, 2, . . ., n, then

min{T1, T2, . . ., Tn} ∼ Weibull

⎛
⎝

(
n∑

i=1

λκ
i

)1/κ

, κ

⎞
⎠

Although the exponential and Weibull distributions are popular lifetime models, they are
limited in their modeling capability. For example, if it were determined that an item had a
bathtub-shaped hazard function, neither of these two models would be appropriate. Dozens
of other models have been developed over the years, such as the gamma, lognormal, inverse
Gaussian, exponential power, and log logistic distributions. These distributions provide
further modeling flexibility beyond the exponential and Weibull distributions.

17.5 Parameter Estimation in Survival Analysis

This section investigates fitting the two distributions presented in Section 17.4, the expo-
nential and Weibull distributions, to a data set of failure times. Other distributions, such as
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the gamma distribution or the exponential power distribution, have analogous methods of
parameter estimation. Two sample data sets are introduced and are used throughout this
section.

The analysis in this section assumes that a random sample of n items from a popula-
tion has been placed on a test and subjected to typical field operating conditions. The
data values are assumed to be independent and identically distributed random lifetimes
from a particular population distribution. As with all statistical inference, care must be
taken to ensure that a random sample of lifetimes is collected. Consequently, random num-
bers should be used to determine which n items to place on test. Laboratory conditions
should adequately mimic field conditions. Only representative items should be placed on
test because items manufactured using a previous design may have a different failure pattern
than those with the current design.

A data set for which all failure times are known is called a complete data set. Figure 17.10
illustrates a complete data set of n = 5 items placed on test, where the X’s denote failure
times. (The term “items placed on test” is used instead of “sample size” or “number of obser-
vations” because of potential confusion when right censoring is introduced.) The likelihood
function for a complete data set of n items on test is given by

L(θ) =
n∏

i=1

f(ti)

where t1, t2, . . ., tn are the failure times and θ is a vector of unknown parameters. (Although
lowercase letters are used to denote the failure times here to be consistent with the notation
for censoring times, the failure times are nonnegative random variables.)

Censoring occurs frequently in lifetime data because it is often impossible or impractical
to observe the lifetimes of all the items on test. A censored observation occurs when only
a bound is known on the time of failure. If a data set contains one or more censored
observations, it is called a censored data set. The most frequent type of censoring is known
as right censoring. In a right-censored data set, one or more items have only a lower bound
known on the lifetime. The number of items placed on test is still denoted by n and the
number of observed failures is denoted by r.

One special case of right censoring is considered here. Type II or order statistic censoring
corresponds to terminating a study upon one of the ordered failures. Figure 17.11 shows the
case of n = 5 items are placed on a test that is terminated when r = 3 failures are observed.
The third and fourth items on test had their failure times right censored.

Writing the likelihood function for a censored data set requires some additional notation.
As before, let t1, t2, . . ., tn be lifetimes sampled randomly from a population. The corre-
sponding right-censoring times are denoted by c1, c2, . . ., cn. The set U contains the indexes

0 t

1

X

2

X

3 X

4

X

5

X

FIGURE 17.10 A complete data set with n = 5.
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FIGURE 17.11 A right-censored data set with n = 5 and r = 3.

of the items that are observed to fail during the test (the uncensored observations):

U = {i|ti ≤ ci}

The set C contains the indexes of the items whose failure time exceeds the corresponding
censoring time (they are right censored):

C = {i|ti > ci}

Let xi = min {ti, ci}. The likelihood function is:

L(θ) =
∏
i∈U

f(ti)
∏
i∈C

S(ci) =
∏
i∈U

f(xi)
∏
i∈C

S(xi)

The reason that the survivor function is the appropriate term in the likelihood function for
a right-censored observation is that S(ci) is the probability that item i survives to censoring
time ci. The log likelihood function is

log L(θ) =
∑
i∈U

log f(xi) +
∑
i∈C

log S(xi)

As the density function is the product of the hazard function and the survivor function, the
log likelihood function can be simplified to

log L(θ) =
∑
i∈U

log h(xi) +
∑
i∈U

log S(xi) +
∑
i∈C

log S(xi)

or

log L(θ) =
∑
i∈U

log h(xi) +
n∑

i=1

log S(xi)

Finally, as H(t) = − log S(t), the log likelihood can be written in terms of the hazard and
cumulative hazard functions only as

log L(θ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

The choice of which of these three expressions for the log likelihood may be used for a
particular distribution depends on the particular forms of S(t), f(t), h(t), and H(t).
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17.5.1 Data Sets

Two lifetime data sets are presented here that are used to illustrate inferential techniques for
survivor (reliability) data. The two types of lifetime data sets presented here are a complete
data set, where all failure times are observed, and a Type II right-censored data set (order
statistic right censoring).

Example 17.11

A complete data set of n = 23 ball bearing failure times to test the endurance of deep-groove
ball bearings has been extensively studied (e.g., Meeker and Escobar, 1998, page 4). The
ordered set of failure times measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96
54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40 �

Example 17.12

A Type II right-censored data set of n = 15 automotive a/c switches is given by Kapur and
Lamberson (1977, pages 253–254). The test was terminated when the fifth failure occurred.
The r = 5 ordered observed failure times measured in number of cycles are

1410 1872 3138 4218 6971

Although the choice of “time” as cycles in this case is discrete, the data will be analyzed as
continuous data. �

17.5.2 Exponential Distribution

The exponential distribution is popular due to its tractability for parameter estimation and
inference. Using the failure rate λ to parameterize the distribution, recall that the survivor,
density, hazard, and cumulative hazard functions are

S(t) = e−λt f(t) = λe−λt h(t) = λ H(t) = λt for all t ≥ 0

We begin with the analysis of a complete data set consisting of failure times t1, t2, . . ., tn.
Since all of the observations belong to the index set U , the log likelihood function derived
earlier becomes

log L(λ) =
n∑

i=1

log h(xi) −
n∑

i=1

H(xi)

=
n∑

i=1

log λ −
n∑

i=1

λti

= n log λ − λ

n∑
i=1

ti

The maximum likelihood estimator for λ is found by maximizing the log likelihood function.
To determine the maximum likelihood estimator for λ, the single element “score vector”

U(λ) =
∂ log L(λ)

∂λ
=

n

λ
−

n∑
i=1

ti
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often called the score statistic, is equated to zero, yielding

λ̂ =
n∑n

i=1
ti

Example 17.13

Consider the complete data set of n = 23 ball bearing failure times. For this particular data
set, the total time on test is

∑n
i=1 ti = 1661.16, yielding a maximum likelihood estimator

λ̂ =
n∑n

i=1
ti

=
23

1661.16
= 0.0138

failure per 106 revolutions.
As the data set is complete, an exact 95% confidence interval for the failure rate of the

distribution can be determined. Since χ2
46,0.975 = 29.16 and χ2

46,0.025 = 66.62, the confidence
interval derived in Section 17.4:

χ2
2n,1−α/2

2
∑n

i=1
Ti

< λ <
χ2

2n,α/2

2
∑n

i=1
Ti

becomes
(0.0138)(29.16)

46
< λ <

(0.0138)(66.62)
46

or
0.00878 < λ < 0.0201

Note that, due to the use of the chi-square distribution for this confidence interval, the
interval is not symmetric about the maximum likelihood estimator. For this and subsequent
examples, care has been taken to perform intermediate calculations involving numeric quan-
tities such as critical values or total time on test values to as much precision as possible;
then final values are reported using only significant digits.

Figure 17.12 shows the empirical survivor function, which takes a downward step of
1/n = 1/23 at each data point, along with the survivor function for the fitted exponential
distribution. It is apparent from this figure that the exponential distribution is a very poor
fit. This particular data set was chosen for this example to illustrate one of the shortcomings
of using the exponential distribution to model any data set without assessing the adequacy of
the fit. Extreme caution must be exercised when using the exponential distribution since, as
indicated in Figure 17.12, the exponential distribution might be a poor fit. The appropriate
distribution is probably in the IFR class, as the ball bearings are wearing out. As shown
subsequently, the Weibull distribution is a much better approximation to this particular
data set. As the exponential distribution can be fitted to any data set that has at least one
observed failure, the adequacy of the model must always be assessed. The point and interval
estimators associated with the exponential distribution are meaningful only if the data set
is a random sample from an exponential population. �

The importance of model adequacy assessments, such as those indicated in the previous
example, applies to all fitted distributions, not just the exponential distribution. Further-
more, if a modeler knows the failure physics (e.g., fatigue crack growth) underlying a process,
then an appropriate model consistent with the failure physics should be chosen.

We now turn to the analysis of right-censored data sets drawn from exponential popu-
lations. The previous discussion concerning complete data sets is a special case of Type II
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FIGURE 17.12 Empirical and exponential fitted survivor functions for the ball bearing data.

censoring when r = n. As before, assume that the failure times are t1, t2, . . ., tn, the test is
terminated upon the rth ordered failure, the censoring times are c1 = c2 = · · ·= cn = t(r) for
all items, and xi = min {ti, ci} for i= 1, 2, . . ., n.

The log likelihood function is

log L(λ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

=
∑
i∈U

log λ −
n∑

i=1

λxi

= r log λ − λ

n∑
i=1

xi

Since there are r observed failures, the expression

n∑
i=1

xi

is often called the total time on test as it represents the total accumulated time that the
n items accrue while on test. To determine the maximum likelihood estimator, the log
likelihood function is differentiated with respect to λ,

U(λ) =
∂ log L(λ)

∂λ
=

r

λ
−

n∑
i=1

xi

and is equated to zero, yielding the maximum likelihood estimator

λ̂ =
r∑n

i=1
xi
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Exact confidence intervals and hypothesis tests concerning λ can also be derived in the
Type II censoring case by using the result

2λ

n∑
i=1

xi =
2rλ

λ̂
∼ χ2(2r)

where χ2(2r) is the chi-square distribution with 2r degrees of freedom. This result can be
proved in an analogous fashion to the case of a complete data set. Using this fact, it can be
stated with probability 1−α that

χ2
2r,1−α/2 <

2rλ

λ̂
< χ2

2r,α/2

Rearranging terms yields an exact 100(1 −α)% confidence interval for the failure rate λ:

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

Example 17.14

Consider the Type II right-censored data set of automotive switches, where n = 15 and there
are r = 5 observed failures, which are

t(1) = 1410, t(2) = 1872, t(3) = 3138, t(4) = 4218, t(5) = 6971

For this particular data set, the total time on test is
∑n

i=1 xi = 87,319 cycles, yielding a
maximum likelihood estimator

λ̂ =
r∑n

i=1 xi
=

5
87,319

= 0.00005726

failure per cycle. Equivalently, the maximum likelihood estimator for the mean of the dis-
tribution is

µ̂ =

∑n

i=1
xi

r
=

87,319
5

= 17,464

cycles to failure. As the data set is Type II right censored, an exact 95% confidence interval
for the failure rate of the distribution can be determined. Using the chi-square critical values,
χ2

10,0.975 = 3.247 and χ2
10,0.025 = 20.49, the formula for the confidence interval

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

becomes
(0.00005726)(3.247)

10
< λ <

(0.00005726)(20.49)
10

or

0.00001859 < λ < 0.0001173

Taking reciprocals, this is equivalent to a 95% confidence interval for the mean number of
cycles to failure of

8525 < µ < 53,785
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FIGURE 17.13 Empirical and exponential fitted survivor functions for the automotive a/c switch data.

Not surprisingly, with only five observed failures, this is a rather wide confidence interval
for µ, and hence there is not as much precision as in the ball bearing example, where there
were 23 observed failures. Assessing the adequacy of the fit is more difficult in the case of
censoring, as it is impossible to determine what the lifetime distribution looks like after the
last observed failure time, which is 6971 cycles in this case. Figure 17.13 shows the empirical
survivor function and the associated fitted exponential survivor function. In this case, the
exponential distribution appears to adequately model the lifetimes through 6971 cycles. �

Situations often arise when it is useful to compare the failure rates of two exponential
populations based on data collected from each of the two populations. Examples include
comparing the survival of one brand of integrated circuit versus another and comparing the
survival of a single item at two levels of an environmental variable. Let the failure rate in
the first population be λ1 and the failure rate in the second population be λ2.

As in the previous subsections, x denotes the minimum of the lifetime t and the censoring
time c. The two data sets are denoted by

x11, x12, . . ., x1n1

the n1 values from the first population, and

x21, x22, . . ., x2n2

the n2 values from the second population. Thus xji is observation i (failure or right-censoring
time) from population j. Assume further that r1 > 0 failures are observed in the first popu-
lation and that r2 > 0 failures are observed in the second population. For tractability, it is
assumed that the tests performed on both populations use Type II censoring. This assump-
tion allows exact confidence intervals for λ1/λ2 to be derived. Approximate methods exist
when other types of censoring are used. In addition, these methods generalize to the case
of comparing more than two populations.
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Since 2λ1
∑n1

i=1 x1i has the chi-square distribution with 2r1 degrees of freedom and
2λ2

∑n2
i=1 x2i has the chi-square distribution with 2r2 degrees of freedom, the statistic

2λ1

∑n1

i=1
x1i/(2r1)

2λ2

∑n2

i=1
x2i/(2r2)

=
r2λ1

∑n1

i=1
x1i

r1λ2

∑n2

i=1
x2i

=
λ1λ̂2

λ2λ̂1

has the F distribution with 2r1 and 2r2 degrees of freedom. This is true because the ratio of
two independent chi-square random variables divided by their respective degrees of freedom
results in an F random variable. So with probability 1−α

F2r1,2r2,1−α/2 <
λ1λ̂2

λ2λ̂1
< F2r1,2r2,α/2

or
λ̂1

λ̂2
F2r1,2r2,1−α/2 <

λ1

λ2
<

λ̂1

λ̂2
F2r1,2r2,α/2

Two points are important to keep in mind with respect to this confidence interval. First,
it is typically of interest to see whether this confidence interval contains 1, which indicates
that there is no statistical evidence to conclude that the failure rates of the two populations
are different. Second, if the null hypothesis

H0 : λ1 = λ2

is to be tested directly, then there is cancellation in λ1λ̂2/λ2λ̂1 under H0, so that the test
statistic λ̂2/λ̂1 has the F distribution with 2r1 and 2r2 degrees of freedom.

17.5.3 Weibull Distribution

As mentioned earlier, the Weibull distribution is typically more appropriate for modeling
the lifetimes of items with increasing and decreasing failure rates, such as mechanical items.
We present the most general case of random censoring, rather than looking at each censoring
mechanism individually.

As before, let t1, t2, . . ., tn be the failure times, c1, c2, . . ., cn be the censoring times, and
xi = min {ti, ci} for i= 1, 2, . . ., n. Recall that the Weibull distribution has hazard and cumu-
lative hazard functions

h(t) = κλ(λt)κ−1 and H(t) = (λt)κ

for t ≥ 0. When there are r observed failures, the log likelihood function is

log L(λ, κ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

=
∑
i∈U

(log κ + κ log λ + (κ − 1) log xi) −
n∑

i=1

(λxi)κ

= r log κ + κr log λ + (κ − 1)
∑
i∈U

log xi − λκ
n∑

i=1

xκ
i

and the 2 × 1 score vector has elements

U1(λ, κ) =
∂ log L(λ, κ)

∂λ
=

κr

λ
− κλκ−1

n∑
i=1

xκ
i
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and

U2(λ, κ) =
∂ log L(λ, κ)

∂κ
=

r

κ
+ r log λ +

∑
i∈U

log xi −
n∑

i=1

(λxi)κ log(λxi)

When these equations are equated to zero, the simultaneous equations

κr

λ
− κλκ−1

n∑
i=1

xκ
i = 0

and

r

κ
+ r log λ +

∑
i∈U

log xi −
n∑

i=1

(λxi)κ log(λxi) = 0

have no closed-form solution for λ̂ and κ̂. One piece of good fortune, however, to avoid
solving a 2 × 2 set of nonlinear equations, is that this first equation can be solved for λ in
terms of κ as follows:

λ =

⎛
⎝ r∑n

i=1
xκ

i

⎞
⎠

1/κ

Using this expression for λ in terms of κ in the second element of the score vector yields
a single, albeit more complicated, expression with κ as the only unknown. Applying some
algebra, this equation reduces to

g(κ) =
r

κ
+

∑
i∈U

log xi −
r
∑n

i=1
xκ

i log xi∑n

i=1
xκ

i

= 0

which must be solved iteratively using the Newton–Raphson technique or a fixed point
method.

Example 17.15

It was seen in a previous example that the exponential distribution poorly approximated
the ball bearing data set. The Weibull distribution is fit to the ball bearing failure times
yielding maximum likelihood estimators λ̂ = 0.0122 and κ̂ = 2.10. Figure 17.14 shows the
empirical survival function along with the exponential and Weibull fits to the data. It is
clear that the Weibull distribution is far superior to the exponential for modeling the ball
bearing failure times. This is due to the fact that the Weibull distribution is capable of
modeling wear out for κ > 1.

In the case of the exponential distribution, we found a confidence interval for the param-
eter λ. In the case of the Weibull distribution, we desire a confidence region for the param-
eters λ and κ. Using the fact that the likelihood ratio statistic, 2[log L(λ̂, κ̂) − log L(λ, κ)],
is asymptotically χ2(2), a 95% confidence region for the parameters is all λ and κ satisfying

2[−113.691 − log L(λ, k)] < 5.99

where log L(λ̂, κ̂) = −113.691 and χ2
2,0.05 = 5.99. The two degrees of freedom for the χ2

distribution come from the fact that the Weibull distribution has two unknown parameters
λ and κ. The 95% confidence region is shown in Figure 17.15, and, not surprisingly, the line
κ = 1 is not interior to the region. This is further proof that the exponential distribution is
not an appropriate model for this particular data set. The entire confidence region is in the
κ > 1 region of the graph; this is statistically significant evidence provided by the data that
the ball bearings are indeed wearing out. �
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FIGURE 17.14 Empirical, exponential fitted, and Weibull fitted survivor functions for the ball
bearing data.
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FIGURE 17.15 Confidence region for λ and κ for the ball bearing data.

17.6 Nonparametric Methods

In the previous sections, the focus was on developing parametric models for lifetimes and
fitting them to a data set. The emphasis switches here to letting the data speak for itself,
rather than approximating the lifetime distribution by one of the parametric models. There
are several reasons to take this approach. First, it is not always possible to find a parametric
model that adequately describes the lifetime distribution. This is particularly true of data
arising from populations with nonmonotonic hazard functions. The most popular parametric
models, such as the Weibull distribution, have monotonic hazard functions. A nonparametric
analysis might provide more accurate estimates. Second, data sets are often so small that
fitting a parametric model results in parameter estimators with confidence intervals that are
so wide that the models are of little practical use. To cover all nonparametric methods used
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in reliability is not possible due to space constraints. We focus on just one such method here:
the Kaplan–Meier product-limit survivor function estimate and the associated Greenwood’s
formula for assessing the precision of the estimate.

Let y1 < y2 < · · ·< yk be the k distinct failure times, and let dj denote the number of
observed failures at yj , j = 1, 2, . . ., k. Let nj = n(yj) denote the number of items on test just
before time yj , j = 1, 2, . . ., k, and it is customary to include any values that are censored at
yj in this count. Also, let R(yj) be the set of all indexes of items that are at risk just before
time yj , j = 1, 2, . . ., k.

The search for a nonparametric survivor function estimator begins by assuming that the
data were drawn from a discrete distribution with mass values at y1, y2, . . ., yk. For a discrete
distribution, h(yj) is a conditional probability with interpretation h(yj) = P [T = yj |T ≥ yj ].
For a discrete distribution, the survivor function can be written in terms of the hazard
function at the mass values:

S(t) =
∏

j∈R(t)′

[1 − h(yj)] t ≥ 0

where R(t)′ is the complement of the risk set at time t. Thus a reasonable estimator for
S(t) is

∏
j∈R(t)′ [1 − ĥ(yj)], which reduces the problem of estimating the survivor function

to that of estimating the hazard function at each mass value. An appropriate element for
the likelihood function at mass value yj is

h(yj)dj [1 − h(yj)]nj−dj

for j = 1, 2, . . ., k. This expression is correct because dj is the number of failures at yj , h(yj)
is the conditional probability of failure at yj , nj − dj is the number of items on test not
failing at yj , and 1−h(yj) is the probability of failing after time yj conditioned on survival
to time yj . Thus the likelihood function for h(y1), h(y2), . . ., h(yk) is

L(h(y1), h(y2), . . ., h(yk)) =
k∏

j=1

h(yj)dj [1 − h(yj)]nj−dj

and the log likelihood function is

log L(h(y1), h(y2), . . ., h(yk)) =
k∑

j=1

{dj log h(yj) + (nj − dj) log [1 − h(yj)]}

The ith element of the score vector is

∂ log L(h(y1), h(y2), . . ., h(yk))
∂h(yi)

=
dj

h(yi)
− ni − di

1 − h(yi)

for i= 1, 2, . . ., k. Equating this vector to zero and solving for h(yi) yields the maximum
likelihood estimate:

ĥ(yi) =
di

ni

This estimate for ĥ(yi) is sensible, since di of the ni items on test at time yi fail, so the ratio
of di to ni is an appropriate estimate of the conditional probability of failure at time yi.
This derivation may strike a familiar chord since, at each time yi, estimating h(yi) with di

divided by ni is equivalent to estimating the probability of success, that is, failing at time yi,
for each of the ni items on test. Thus, this derivation is equivalent to finding the maximum
likelihood estimators for the probability of success for k binomial random variables.
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Using this particular estimate for the hazard function at yi, the survivor function estimate
becomes

Ŝ(t) =
∏

j∈R(t)′

[1 − ĥ(yj)]

=
∏

j∈R(t)′

[
1 − dj

nj

]

commonly known as the Kaplan–Meier or product-limit estimate. One problem that arises
with the product-limit estimate is that it is not defined past the last observed failure time.
The usual way to handle this problem is to cut the estimator off at the last observed failure
time yk. The following example illustrates the product-limit estimate.

Example 17.16

An experiment is conducted to determine the effect of the drug 6-mercaptopurine (6-MP)
on leukemia remission times (Lawless, 2003, page 5). A sample of n = 21 leukemia patients
is treated with 6-MP, and the remission times are recorded. There are r = 9 individuals
for whom the remission time is observed, and the remission times for the remaining 12
individuals are randomly censored on the right. There are k = 7 distinct observed failure
times. Letting an asterisk denote a censored observation, the remission times (in weeks) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16
17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗

Find an estimate for S(14).
Table 17.1 gives the values of yj , dj , nj , and 1 − dj/nj for j = 1, 2, . . ., 7. In particular,

the product-limit survivor function estimate at t = 14 weeks is

Ŝ(14) =
∏

j∈R(14)′

[
1 − dj

nj

]

=
[
1 − 3

21

][
1 − 1

17

][
1 − 1

15

][
1 − 1

12

]

=
176
255

∼= 0.69

TABLE 17.1 Product-Limit Calculations for the 6-MP Data

j yj dj nj 1 −
dj

nj

1 6 3 21 1 −
3
21

2 7 1 17 1 −
1
17

3 10 1 15 1 −
1
15

4 13 1 12 1 −
1
12

5 16 1 11 1 −
1
11

6 22 1 7 1 −
1
7

7 23 1 6 1 −
1
6
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FIGURE 17.16 Product-limit survivor function estimate for the 6-MP data.

The product-limit survivor function estimate for all t values is plotted in Figure 17.16.
Downward steps occur only at observed failure times. The effect of censored observations
in the survivor function estimate is a larger downward step at the next subsequent failure
time. If there are ties between the observations and a censoring time, as there is at time 6,
our convention of including the censored values in the risk set means that there will be a
larger downward step following this tied value. Note that the estimate is truncated at time
23, the last observed failure time. �

To find an estimate for the variance of the product-limit estimate is significantly more
difficult than for the uncensored case. The Fisher and observed information matrices require
a derivative of the score vector:

−∂2 log L(h(y1), h(y2), . . ., h(yk))
∂h(yi)∂h(yj)

=
di

h(yi)2
+

ni − di

(1 − h(yi))2

when i= j and 0 otherwise, for i= 1, 2, . . ., k, j = 1, 2, . . ., k. Both the Fisher and observed
information matrices are diagonal. Replacing h(yi) by its maximum likelihood estimate, the
diagonal elements of the observed information matrix are

[
−∂2 log L(h(y1), h(y2), . . ., h(yk))

∂h(yi)2

]
h(yi)=di/ni

=
n3

i

di(ni − di)

for i= 1, 2, . . ., k. Using this fact and some additional approximations, an estimate for the
variance of the survivor function is

V̂ [Ŝ(t)] = [Ŝ(t)]2
∑

j∈R(t)′

dj

nj(nj − dj)
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commonly known as “Greenwood’s formula.” The formula can be used to find asymptotically
valid confidence intervals for S(t) by using the normal critical values as in the uncensored
case:

Ŝ(t) − zα/2

√
V̂ [Ŝ(t)] < S(t) < Ŝ(t) + zα/2

√
V̂ [Ŝ(t)]

where zα/2 is the 1 −α/2 fractile of the standard normal distribution.

Example 17.17

For the 6-MP treatment group in the previous example, give a 95% confidence interval for
the probability of survival to time 14.

The point estimator for the probability of survival to time 14 from the previous example is
Ŝ(14) ∼= 0.69. Greenwood’s formula is used to estimate the variance of the survivor function
estimator at time 14:

V̂ [Ŝ(14)] = [Ŝ(14)]2
∑

j∈R(14)′

dj

nj(nj − dj)

= (0.69)2
[

3
21(21 − 3)

+
1

17(17 − 1)
+

1
15(15 − 1)

+
1

12(12 − 1)

]

∼= 0.011

Thus an estimate for the standard deviation of the survivor function estimate at t = 14 is√
0.011 = 0.11. A 95% confidence interval for S(14) is

Ŝ(14) − z0.025

√
V̂ [Ŝ(14)] < S(14) < Ŝ(14) + z0.025

√
V̂ [Ŝ(14)]

0.69 − 1.96
√

0.011 < S(14) < 0.69 + 1.96
√

0.011

0.48 < S(14) < 0.90

Figure 17.17 shows the 95% confidence bands for the survivor function for all t values.
These have also been cut off at the last observed failure time, t = 23. The bounds are
particularly wide as there are only r = 9 observed failure times. �

17.7 Assessing Model Adequacy

As there has been an emphasis on continuous lifetime distributions thus far in the chapter,
the discussion here is limited to model adequacy tests for continuous distributions. The
popular chi-square goodness-of-fit test can be applied to both continuous and discrete dis-
tributions, but suffers from the limitations of arbitrary interval widths and application only
to large data sets. This section focuses on the Kolmogorov–Smirnov (KS) goodness-of-fit
test for assessing model adequacy.

A notational difficulty arises in presenting the KS test. The survivor function S(t) has
been emphasized to this point in the chapter, but the cumulative distribution function,
where F (t) = P [T ≤ t] = 1−S(t) for continuous distributions, has traditionally been used to
define the KS test statistic. To keep with this tradition, F (t) is used in the definitions in
this section.

The KS goodness-of-fit test is typically used to compare an empirical cumulative distri-
bution function with a fitted or hypothesized parametric cumulative distribution function
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FIGURE 17.17 Confidence bands for the product-limit survivor function estimate for the 6-MP data.

for a continuous model. The KS test statistic is the maximum vertical difference between
the empirical cumulative distribution function F̂ (t) and a hypothesized or fitted cumulative
distribution function F0(t). The null and alternative hypotheses for the test are

H0 : F (t) = F0(t)

H1 : F (t) �= F0(t)

where F (t) is the true underlying population cumulative distribution function. In other
words, the null hypothesis is that data set of random lifetimes has been drawn from a
population with cumulative distribution function F0(t). For a complete data set, the defining
formula for the test statistic is

Dn = sup
t

|F̂ (t) − F0(t)|

where sup is an abbreviation for supremum. This test statistic has intuitive appeal since
larger values of Dn indicate a greater difference between F̂ (t) and F0(t) and hence a poorer
fit. In addition, Dn is independent of the parametric form of F0(t) when the cumulative
distribution function is hypothesized. From a practical standpoint, computing the KS test
statistic requires only a single loop through the n data values. This simplification occurs
because F̂ (t) is a nondecreasing step function and F0(t) is a nondecreasing continuous
function, so the maximum difference must occur at a data value.

The usual computational formulas for computing Dn require a single pass through the
data values. Let

D+
n = max

i=1,2,...,n

(
i

n
− F0(t(i))

)

D−
n = max

i=1,2,...,n

(
F0(t(i)) − i − 1

n

)

so that Dn = max{D+
n , D−

n }. These computational formulas are typically easier to translate
into computer code for implementation than the defining formula.

We consider only hypothesized (as opposed to fitted) cumulative distribution functions
F0(t) here because the distribution of Dn is free of the hypothesized distribution specified.
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FIGURE 17.18 KS statistic for the ball bearing data set (exponential fit).

To illustrate the geometric aspects of the KS test statistic Dn, however, the fitted expo-
nential distribution is compared to the empirical cumulative distribution function for the
ball bearing data set. Figure 17.18 shows the empirical step cumulative distribution function
F (t) associated with the failure times of the n = 23 ball bearing failure times, along with the
exponential fit F0(t). The maximum difference between these two cumulative distribution
functions occurs just to the left of t(4) = 41.52 and is D23 = 0.301 as indicated on the figure.

The test statistic for the KS test is nonparametric in the sense that it has the same
distribution regardless of the distribution of the parent population under H0 when all
the parameters in the hypothesized distribution are known. The reason for this is that
F0(t(1)), F0(t(2)), . . ., F0(t(n)) have the same joint distribution as U(0,1)-order statistics
under H0 regardless of the functional form of F0. These are often called omnibus tests
as they are not tied to one particular distribution (e.g., the Weibull) and apply equally well
to any hypothesized distribution F0(t). This also means that fractiles of the distribution of
Dn depend on n only.

The rows in Table 17.2 denote the sample sizes and the columns denote several levels of
significance. The values in the table are estimates of the 1 −α fractiles of the distribution
of Dn under H0 in the all-parameters-known case (hypothesized, rather than fitted distri-
bution) and have been determined by Monte Carlo simulation with one million replications.
Not surprisingly, the fractiles are a decreasing function of n, as increased sample sizes will
have lower sampling variability. Test statistics that exceed the appropriate critical value
lead to rejecting H0.

Example 17.18

Run the KS test (at α = 0.10) to assess whether the ball bearing data set was drawn from
a Weibull population with λ = 0.01 and κ = 2.

Note that the Weibull distribution in this example is a hypothesized, rather than fitted
distribution, so the all-parameters-known case for determining critical values is appropriate.
The goodness-of-fit test

H0 : F (t) = 1 − e−(0.01t)2

H1 : F (t) �= 1 − e−(0.01t)2
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TABLE 17.2 Selected Approximate KS Percentiles for Small Sample Sizes
n α = 0.20 α = 0.10 α = 0.05 α = 0.01

1 0.900 0.950 0.975 0.995
2 0.683 0.776 0.842 0.930
3 0.565 0.636 0.708 0.829
4 0.493 0.565 0.624 0.733
5 0.447 0.509 0.563 0.668
6 0.410 0.468 0.519 0.617
7 0.381 0.436 0.483 0.576
8 0.358 0.409 0.454 0.542
9 0.339 0.388 0.430 0.513

10 0.323 0.369 0.409 0.489
11 0.308 0.352 0.391 0.468
12 0.296 0.338 0.376 0.449
13 0.285 0.325 0.361 0.433
14 0.275 0.314 0.349 0.418
15 0.266 0.304 0.338 0.404
16 0.258 0.295 0.327 0.392
17 0.250 0.286 0.318 0.381
18 0.243 0.278 0.309 0.370
19 0.237 0.271 0.302 0.361
20 0.232 0.265 0.294 0.352
21 0.226 0.259 0.287 0.345
22 0.221 0.253 0.281 0.337
23 0.217 0.248 0.275 0.330
24 0.212 0.242 0.269 0.323
25 0.208 0.237 0.264 0.317
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FIGURE 17.19 KS statistic for the ball bearing data set (Weibull fit).

does not involve any parameters estimated from data. The test statistic is D23 = 0.274. The
empirical cumulative distribution function, the Weibull(0.01, 2) cumulative distribution
function and the maximum difference between the two [which occurs at t(15) = 68.88] are
shown in Figure 17.19. At α = 0.10, the critical value is 0.248, so H0 is rejected. The test
statistic is very close to the critical value for α = 0.05, so the attained p-value for the test
is approximately p = 0.05. �

The KS test can be extended in several directions. First, it can be adapted for the case the
parameters are estimated from the data. Unfortunately, a separate table of critical values
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must be given for each fitted distribution. Second, the KS test can be adapted for right-
censored data sets. Many researchers have devised approximate methods for determining
the critical values for the KS test with random right censoring and parameters estimated
from data. Finally, there are several variants of the KS test, such as the Anderson–Darling
and Cramer–von Mises test, which improve on the power of the test.

17.8 Summary

The purpose of this chapter has been to introduce the mathematics associated with the
design and assessment of systems with respect to their reliability. In specific, this
chapter has:

• outlined basic techniques for describing the arrangement of components in a
system by defining the structure function φ(x) that maps the states of the com-
ponents to the state of the system;

• defined reliability as the probability that a nonrepairable item (component or
system) is functioning at a specified time;

• introduced two techniques, definition and expectation, for determining the system
reliability from component reliabilities;

• defined four functions, the survivor function S(t), the probability density function
f(t), the hazard function h(t), and the cumulative hazard function H(t), which
describe the distribution of a nonnegative random variable T , which denotes the
lifetime of a component or system;

• reviewed formulas for calculating the mean, variance, and a fractile (percentile)
of T ;

• illustrated how to determine the system survivor function as a function of the
component survivor functions;

• introduced two parametric lifetime distributions, the exponential and Weibull
distributions, and outlined some of their properties;

• surveyed characteristics (e.g., right-censoring) of lifetime data sets;
• outlined point and interval estimation techniques for the exponential and distri-

butions;
• derived a technique for comparing the failure rates of items with lifetimes drawn

from two populations;
• derived and illustrated the nonparametric Kaplan–Meier product-limit estimate

for the survivor function;
• introduced the Kolmogorov–Smirnov goodness-of-fit test for assessing model

adequacy.

All of these topics are covered in more detail in the references. In addition, there are many
topics that have not been covered at all, such as repairable systems, incorporating covariates
into a survival model, competing risks, reliability growth, mixture models, failure modes and
effects analysis, accelerated testing, fault trees, Markov models, and life testing. These topics
and others are considered in the reliability literature, highlighted by the textbooks cited
below. Software for reliability analysis has been written by several vendors and incorporated
into existing statistical packages, such as SAS, S-Plus, and R.
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18.1 Production Planning Problem

The total problem of planning production consists of the following decisions: demand fore-
casting, the total floor space needed, the number and type of equipment, their aggregation
into groups, the floor space needed for each group, the spatial relationship of each group
relative to one another, the way the material and work pieces move within groups, the equip-
ment and methods to move work between groups, the material to be ordered, the material
to be produced in-house, the assembly layout and process, the quantities and timing of stock
purchases, and the manner of storage of purchases and the items that are to be part of the
information support system. There are no methods that determine the answers to these
questions simultaneously. There are numerous models that consider each of these decisions
as a subproblem to be optimized. When all the solutions are pieced together sometimes the
whole will be suboptimal.

The production planning problem can also be looked at as a system of systems: fore-
casting, material handling, personnel, purchasing, quality assurance, production, assembly,
marketing, design, finance, and other appropriate systems. At an advanced level one hopes
that these systems integrate: that is, the design is such that it is easy to produce by using
snap-in fasteners; materials easy to form; financial planning provides appropriate working

18-1
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FIGURE 18.1 Planning and forecast horizons in production planning.

capital; purchases arrive on time and have appropriate quality. In this context, the interfaces
of the systems become the appropriate design issue.

Forecasts form the basis of production planning. Strategic plans (e.g., where to locate
factories, etc.) are based on long-term forecasts whereas aggregate production plans (allo-
cating labor and capital resources for the next quarter’s operations, say) are usually made
a few months in advance, and production scheduling at the shop floor level may occur a few
hours or days in advance of actual production. This also allows better information and a
more detailed history to tailor production to demand or desired inventory levels. Figure 18.1
shows this graphically.

From the above comments, clearly forecasting is as much an art as a science. Given its
importance, forecasting is introduced in Section 18.2. In production planning, demand fore-
casts are used for aggregate planning and more detailed materials requirement plans. These
plans provide details on the components required and the relationships between the process-
ing steps involved in production. This information is then used to design the facility (i.e.,
positioning of various machines and processing equipment within the facility) and sched-
ule production. We assume that aggregate plans and more detailed material requirements
plans are available and do not discuss these stages of production planning; the interested
reader may consult Nahmias (1993) for details. Instead, we focus on the facility layout and
scheduling issues in Sections 18.3 and 18.4, respectively.

18.2 Demand Forecasting

Forecasting is a key activity that influences many aspects of business planning and operation.
In simple terms, a forecast is a prediction or estimate of the future. Forecasting is common
at multiple levels, from macroeconomic forecasts (e.g., forecasts of oil prices) to microlevel
estimates (of component requirements, say). We focus on forecasting in support of the
production planning function. The forecast horizon refers to how far into the future we
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would like to make a prediction. Some common features of forecasts are as follows (Nahmias,
1993):

• Forecasts are usually wrong—Forecasts are estimates of a random variable
(demand, price, etc.) and actual outcomes may be significantly different.

• Aggregate forecasts are better—Demand forecasts for an entire product family are
more accurate (on a percentage basis) than those for each member of the product
family.

• Forecasting error increases with the forecast horizon—Demand forecasts for the
coming week are likely to be much more accurate than forecasts of next year’s
demand.

• Environmental evidence—The environment is very important. For example, if you
are forecasting demand for spare parts for a military aircraft, then it is important
to account for the type of operations in progress. For regular training, past history
may be valid, but if the aircraft are being used in war, then peacetime history is
likely to be invalid.

18.2.1 Commonly Used Techniques for Forecasting Demand

Models for controlling and replenishing of inventories in production have the aim of deter-
mining order quantities to minimize the sum of total overage costs (costs of excess inventory
remaining at the end of the planning period) and underage costs (shortage costs, or costs
of having less than the desired amount of stock at the end of the planning period). In
production planning literature, the total overage (underage) cost is usually assumed to be
proportional to the overage (shortage) amount or quantity, to make the analysis easier.
Some companies find that a piecewise linear (PL) function provides a much closer rep-
resentation of the true overage and underage costs. In these companies, there is a buffer
with limited space in which excess inventory at the end of the planning period can be
stored and retrieved later at a low cost (i.e., with minimum requirements of human-hours
needed) per unit. Once this buffer is filled up, any remaining excess quantity has to be
held at a location farther away that requires greater number of man hours for storing
or retrieval/unit. A similar situation exists for underage cost as a function of the short-
age amount. This clearly implies that the overage and underage costs are PL functions of
the excess, shortage quantities. Determining optimum order quantities to minimize such
unusual overage and underage cost functions is much harder with inventory control models
using forecasting techniques in current literature. After reviewing the forecasting meth-
ods commonly used in production applications at present (Section 18.2.2), we will dis-
cuss a new nonparametric forecasting method (Section 18.2.3), which has the advantage
of being able to accommodate such unusual overage and underage cost functions easily
(Murty, 2006).

Almost all production management problems in practice are characterized by the uncer-
tainty of demand during a future planning period; that is, this demand is a random variable.
Usually, we do not have knowledge about its exact probability distribution, and the mod-
els for these problems have the objective of minimizing the sum of expected overage and
underage costs. Successful production management systems depend heavily on good demand
forecasts to provide data for inventory replenishment decisions. The output of forecasting
is usually presented in the literature as the forecasted demand quantity; in reality it is an
estimate of the expected demand during the planning period. Because of this, the purpose of
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forecasting is often misunderstood to be that of generating this single number, even though
sometimes the standard deviation of demand is also estimated.

All commonly used methods for demand forecasting are parametric methods; they usually
assume that demand is normally distributed, and they update its distribution by updating
the parameters of the distribution, the mean µ, and the standard deviation σ. The most
commonly used methods for updating the values of the parameters are the method of moving
averages, and the exponential smoothing method.

The method of moving averages uses the average of n most recent observations on demand
as the forecast for the expected demand for the next period. n is a parameter known as the
order of the moving average method being used; typically it is between 3 to 6 or larger.

The other method, perhaps the most popular method in practice, is the exponential
smoothing method introduced and popularized by Brown (1959). It takes D̂t+1, the forecast
of expected demand during next period t + 1, to be αxt + (1 −α)D̂t, where xt is the observed
demand during current period t, D̂t is the forecasted expected demand for current period
t, and 0< α ≤ 1 is a smoothing constant, which is the relative weight placed on the current
observed demand. Typically, values of α between 0.1 and 0.4 are used, and normally the
value of α is increased whenever the absolute value of the deviation between the forecast
and observed demand exceeds a tolerance times the standard deviation. Smaller values of α
(like 0.1) yield predicted values of expected demand that have a relatively smooth pattern,
whereas higher values of α (like 0.4) lead to predicted values exhibiting significantly greater
variation, but doing a better job of tracking the demand series. Thus using larger α makes
forecasts more responsive to changes in the demand process, but will result in forecast errors
with higher variance.

One disadvantage of both the method of moving averages and the exponential smoothing
method is that when there is a definite trend in the demand process (either growing or
falling), the forecasts obtained by them lag behind the trend. Variations of the exponential
smoothing method to track trend linear in time in the demand process have been proposed
(see Holt, 1957), but these have not proved very popular.

There are many more sophisticated methods for forecasting the expected values of random
variables, for example, the Box–Jenkins ARIMA models (Box and Jenkins, 1970), but these
methods are not popular for production applications, in which forecasts for many items are
required.

18.2.2 Parametric Methods for Forecasting Demand
Distributions

Using Normal Distribution with Updating of Expected Value
and Standard Deviation in Each Period

As discussed in the previous section, all forecasting methods in the literature only provide an
estimate of the expected demand during the planning period. The optimum order quantity
to be computed depends of course on the entire probability distribution of demand, not
just its expected value. So, almost everyone assumes that the distribution of demand is the
normal distribution because of its convenience. One of the advantages that the normality
assumption confers is that the distribution is fully characterized by only two parameters,
the mean and the standard deviation, both of which can be very conveniently updated by
the exponential smoothing or the moving average methods.

Let t be the current period, xr the observed demand in period r for r ≤ t, D̂t the forecast
(i.e., estimate) of expected demand in current period t (by either the exponential smoothing
or the moving average methods, whichever is being used), and D̂t+1, σ̂t+1 the forecasts for

© 2008 by Taylor & Francis Group, LLC



CH018.tex 30/10/2007 11: 42 Page 18-5

Production Systems 18-5

expected demand, standard deviation of demand for the planning period which is the next
period t + 1. Then these forecasts are:

Method Forecast

Method of moving averages of order n D̂t+1 = 1
n

∑t
r=t−n+1xr

Exponential smoothing method with D̂t+1 = αxt + (1 −α)D̂t

smoothing constant α

Method of moving averages of order n σ̂t+1 = +
√

(
∑t

r=t−n+1 (xr − D̂t+1)2)/n

To get σ̂t+1 by the exponential smoothing method, it is convenient to use the mean
absolute deviation (MAD), and use the formula: standard deviation σ ≈ (1.25)MAD when
the distribution is the normal distribution. Let MADt denote the estimate of MAD for
current period t. Then the forecasts obtained by the exponential smoothing method with
smoothing parameter α for the next period t + 1 are:

MADt+1 = α|xt − D̂t| + (1 − α)MADt

σ̂t+1 = (1.25)MADt+1

Usually α = 0.1 is used to ensure stability of the estimates. And the normal distribution
with mean D̂t+1 and standard deviation σ̂t+1 is taken as the forecast for the distribution of
demand during the next period t + 1 for making any planning decisions under this procedure.

Using Normal Distribution with Updating of Expected Value
and Standard Deviation Only when There Is Evidence of Change

In some applications, the distribution of demand is assumed to be the normal distribution,
but estimates of its expected value and standard deviation are left unchanged until there
is evidence that their values have changed. Foote (1995) discusses several statistical con-
trol tests on demand data being generated over time to decide when to re-estimate these
parameters. Under this scheme, the method of moving averages is commonly used to esti-
mate the expected value and the standard deviation from recent data whenever the control
tests indicate that a change may have occurred.

Using Distributions Other Than Normal

In a few special applications in which the expected demand is low (i.e., the item is a slow-
moving item), other distributions like the Poisson distribution are sometimes used, but by
far the most popular distribution for making inventory management decisions is the normal
distribution because of its convenience, and because using it has become a common practice
historically.

For the normal distribution the mean is the mode (i.e., the value associated with the
highest probability), and the distribution is symmetric around this value. If histograms of
observed demand data of an item do not share these properties, it may indicate that the
normal distribution is a poor approximation for the actual distribution of demand, in this
case order quantities determined using the normality assumption may be far from being
optimal.

These days, the industrial environment is very competitive with new products replacing
the old periodically due to rapid advancements in technology. In this dynamic environment,
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the life cycles of components and end products are becoming shorter. Beginning with the
introduction of the product, its life cycle starts with a growth period due to gradual market
penetration of the product. This is followed by a stable period of steady demand. It is
then followed by a final decline period of steadily declining demand, at the end of which
the item disappears from the market. Also, the middle stable period seems to be getting
shorter for many major components. Because of this constant rapid change, it is necessary
to periodically update demand distributions based on recent data.

The distributions of demand for some components are far from being symmetric around
the mean, and the skewness and shapes of their distributions also seem to be changing over
time. Using a probability distribution like the normal defined by a mathematical formula,
involving only a few parameters, it is not possible to capture changes taking place in the
shapes of distributions of demand for such components. This is the disadvantage of existing
forecasting methods based on an assumed probability distribution. Our conclusions can be
erroneous if the true probability distribution of demand is very different from the assumed
distribution.

Nonparametric methods use statistical learning, and base their conclusions on knowledge
derived directly from data without any unwarranted assumptions. In the next section, we
discuss a nonparametric method for forecasting the entire demand distribution (Murty,
2006) that uses the classical empirical probability distribution derived from the relative
frequency histogram of time series data on demand. It has the advantage of being capable
of updating all changes occurring in the probability distribution of demand, including those
in the shape of this distribution.

Then, in the following section, we illustrate how optimal order quantities that optimize
piecewise linear and other unusual cost functions discussed in the previous section can be
easily computed using these empirical distributions.

18.2.3 A Nonparametric Method for Updating and Forecasting the
Entire Demand Distribution

In production systems, the important random variables are daily or weekly (or whatever
planning period is being used) demands of various items (raw materials, components, sub-
assemblies, finished goods, spare parts, etc.) that companies either buy from suppliers, or
sell to their customers. Observed values of these random variables in each period are gen-
erated automatically as a time series in the production process, and are usually available
in the production databases of companies. In this section, we discuss a simple nonparamet-
ric method for updating changes in the probability distributions of these random variables
using these data directly.

Empirical Distributions and Probability Density Functions

The concept of the probability distribution of a random variable evolved from the ancient
practice of drawing histograms for the observed values of the random variable. The observed
range of variation of the random variable is usually divided into a convenient number of
value intervals (in practice about 10 to 25) of equal length, and the relative frequency of
each interval is defined to be the proportion of observed values of the random variable that
lie in that interval. The chart obtained by marking the value intervals on the horizontal axis,
and erecting a rectangle on each interval with its height along the vertical axis equal to the
relative frequency, is known as the relative frequency histogram of the random variable, or
its discretized probability distribution. The relative frequency in each value interval Ii is the
estimate of the probability pi that the random variable lies in that interval; see Figure 18.2
for an example.
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FIGURE 18.2 Relative frequency histogram for daily demand for a major component at a PC assembling
plant in California.

Let I1, . . ., In be the value intervals with u1, . . ., un as their midpoints, and p = (p1, . . ., pn),
the probability vector in the discretized probability distribution of the random variable. Let

µ =
n∑

i=1

uipi, σ =

√√√√ n∑
i=1

pi(ui − µ)2

Then, µ, σ are estimates of the expected value µ and standard deviation σ of the random
variable, respectively.

We will use the phrase empirical distribution to denote such a discretized probability
distribution of a random variable, obtained either through drawing the histogram, or by
updating a previously known discretized probability distribution based on recent data.

When mathematicians began studying random variables from the sixteenth century
onwards, they found it convenient to represent the probability distribution of the ran-
dom variable by the probability density function, which is the mathematical formula for the
curve defined by the upper boundary of the relative frequency histogram in the limit as the
length of the value interval is made to approach 0, and the number of observed values of
the random variable goes to infinity. So the probability density function provides a math-
ematical formula for the height along the vertical axis of this curve as a function of the
variable represented on the horizontal axis. Because it is a mathematically stated function,
the probability density function lends itself much more nicely into mathematical derivations
than the somewhat crude relative frequency histogram.

It is rare to see empirical distributions used in decision making models these days. Almost
everyone uses mathematically defined density functions characterized by a small number of
parameters (typically two or less) to represent probability distributions. In these decision
making models, the only freedom we have in incorporating changes is to change the values
of those parameters. This may be inadequate to capture all the dynamic changes occurring
in the shapes of probability distributions from time to time.
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Extending the Exponential Smoothing Method to Update
the Empirical Probability Distribution of a Random Variable

We will now see that representing the probability distributions of random variables by their
empirical distributions gives us unlimited freedom in making any type of change including
changes in shape (Murty, 2002).

Let I1, . . ., In be the value intervals, and p1, . . ., pn the probabilities associated with them
in the present empirical distribution of a random variable. In updating this distribution, we
have the freedom to change the values of all the pi; this makes it possible to capture any
change in the shape of the distribution.

Changes, if any, will reflect in recent observations on the random variable. The following
table gives the present empirical distribution, histogram based on most recent observations
on the random variable (e.g., the most recent k observations where k could be about 30),
and xi to denote the probabilities in the updated empirical distribution to be determined.

Probability vector in the
Value Present empirical Recent Updated empirical
interval distribution histogram distribution
I1 p1 f1 x1
...

...
...

...
In pn fn xn

f = (f1, . . ., fn) represents the estimate of the probability vector in the recent histogram,
but it is based on too few observations. p = (p1, . . ., pn) is the probability vector in the
empirical distribution at the previous updating. x= (x1, . . ., xn), the updated probability
vector, should be obtained by incorporating the changing trend reflected in f into p. In the
theory of statistics the most commonly used method for this incorporation is the weighted
least squares method, which provides the following model (Murty, 2002) to compute x from
p and f .

Minimize (1 − β)
n∑

i=1

(pi − xi)2 + β

n∑
i=1

(fi − xi)2

Subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . ., n

(18.1)

where β is a weight between 0 and 1, similar to the smoothing constant α in the exponential
smoothing method for updating the expected value (like α there, here β is the relative weight
placed on the probability vector from the histogram composed from recent observations).
x is taken as the optimum solution of this convex quadratic program. β = 0.1 to 0.4 works
well; the reason for choosing the weight for the second term in the objective function to
be small is because the vector f is based on only a small number of observations. As the
quadratic model minimizes the weighted sum of squared forecast errors over all value inter-
vals, when used periodically, it has the effect of tracking gradual changes in the probability
distribution of the random variable.

The above quadratic program has a unique optimum solution given by the following
explicit formula.

x = (1 − β)p + βf (18.2)
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So we take the updated empirical distribution to be the one with the probability vector
given by Equation 18.2.

The formula for updating the probability vector in Equation 18.2 is exactly analogous
to the formula for forecasting the expected value of a random variable using the latest
observation, in exponential smoothing. Hence, the above formula can be thought of as the
extension of the exponential smoothing method to update the probability vector in the
empirical distribution of the random variable.

When there is a significant increase or decrease in the mean value of the random variable,
new value intervals may have to be opened up at the left or right end. In this case, the
probabilities associated with value intervals at the other end may become very close to 0,
and these intervals may have to be dropped from further consideration at that time.

This procedure can be used to update the discretized demand distribution either at every
ordering point, or periodically at every rth ordering point for some convenient r, using the
most recent observations on demand.

18.2.4 An Application of the Forecasting Method for Computing
Optimal Order Quantities

Given the empirical distribution of demand for the next period based on the forecasting
method given in Section 18.2.3, the well-known newsvendor model (Murty, 2002) can be
used to determine the optimal order quantity for that period that minimizes the sum of
expected overage and underage costs very efficiently numerically. We will illustrate with
a numerical example. Let the empirical distribution of demand (in units) for the next
period be

Ii = interval Probability ui = mid-point
for demand pi of interval i

100–120 0.03 110
120–140 0.10 130
140–160 0.15 150
160–180 0.20 170
180–200 0.11 190
200–220 0.07 210
220–240 0.20 230
240–260 0.06 250
260–280 0.02 270
280–300 0.04 290
300–320 0.02 310

The expected value of this distribution µ=
∑

i uipi = 192.6 units, and its standard deviation

σ =
√∑

i (ui −µ)2pi = 47.4 units.
Let us denote the ordering quantity for that period, to be determined, by Q, and let d

denote the random variable that is the demand during that period. Then

y = overage quantity in this period = amount remaining after the demand is com-
pletely fulfilled = (Q− d)+ = maximum{0, Q− d}

z = underage quantity during this period = unfulfilled demand during this period =
(Q− d)− = maximum{0, d −Q}.
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Suppose the overage cost f(y), is the following piecewise linear function of y:

Overage amount = y Overage cost f(y) in $ Slope
0 ≤ y ≤ 30 3y 3

30 ≤ y 90 + 10(y − 30) 10

Suppose the underage cost g(z) in $, is the fixed cost depending on the amount given below:

Underage amount = y Underage cost g(z) in $

0 ≤ z ≤ 10 50
10 < z 150

To compute E(Q) = the expected sum of overage and underage costs when the order quantity
is Q, we assume that the demand value d is equally likely to be anywhere in the interval
Ii with probability pi. This implies, for example, that the probability that the demand d
is in the interval 120–125 is = (probability that d lies in the interval 120–140)/4 = (0.10)/
4 = 0.025.

Let Q= 185. When the demand d lies in the interval 120–140, the overage amount varies
from 65 to 45 and the overage cost varies from $440 to $240 linearly. So the contribution to
the expected overage cost from this interval is 0.10(440 + 240)/2.

Demand lies in the interval 140–160 with probability 0.15. In this interval, the overage cost
is not linear, but it can be partitioned into two intervals 140–155 (with probability 0.1125),
and 155–160 (with probability 0.0375) in each of which the overage cost is linear. In the
interval 140≤ d ≤ 155 the overage cost varies linearly from $240 to 90; and in 155≤ d ≤ 160
the overage cost varies linearly from $90 to 75. So, the contribution to the expected overage
cost from this interval is $(0.115(240 + 90)/2) + (0.0375(90 + 75)/2).

Proceeding this way, we see that E(Q) for Q= 185 is: $(0.03(640 + 440)/2) + (0.10(440 +
240)/2) + [(0.115(240 + 90)/2) + (0.0375(90 + 75)/2)] + (0.20(75 + 15)/2) + [0.0275(15 + 0)/
2) + 0.055(50) + 0.0275 (150)] + (0.07 + 0.20 + 0.06 + 0.02 + 0.04 + 0.02)150 = $140.87.

145 150 155 160 165 170 175 180 185 190 195
120

130

140

150

160

170

180

Q

E
(Q

)

Q E(Q)

190 162.27
185 143.82
180 139.15
175 130.11
170 124.20
165 120.40
160 121.95
155 122.60
150 124.40
145 139.70

195 178.00

FIGURE 18.3 Plot of E(Q) for various values of Q.
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In the same way, we computed the values of E(Q) for different values of Q spaced
5 units apart, given by the side of Figure 18.3. The graph of Figure 18.3 is a plot of these
values of E(Q). Here, we computed E(Q) at values of Q, which are multiples of 5 units, and
it can be seen that Q= 165 is the optimum order quantity correct to the nearest multiple
of 5. If the optimum is required to greater precision, the above calculation can be carried
out for values of Q at integer (or closer) values between 150 and 170 and the best value of
Q there chosen as the optimum order quantity.

The optimum value of Q can then be translated into the actual order quantity for the
next period by subtracting the expected on-hand inventory at the end of the present period
from it.

For each i, assuming that demand d is equally likely to be anywhere in the interval Ii

with probability pi makes the value of E(Q) computed accurate for each Q. However, in
many applications, people make the simpler assumption that pi is the probability of demand
being equal to ui, the midpoint of the interval Ii. The values of E(Q) obtained with this
assumption will be approximate, particularly when the overage and underage costs are not
linear (i.e., when they are piecewise linear etc.); but this assumption makes the computation
of E(Q) much simpler; that’s why people use this simpler assumption.

18.2.5 How to Incorporate Seasonality in Demand into the Model

The discussion so far has dealt with the case when the values of demand in the various
periods form a stationary time series. In some applications this series may be seasonal; that
is, it has a pattern that repeats every N periods for some known value of N . The number
of periods N , before the pattern begins to repeat, is known as the length of the season. To
use seasonal models, the length of the season must be known.

For example, in the computer industry, the majority of the sales are arranged by sales
agents who operate on quarterly sales goals. That’s why the demand for components in the
computer industry and demand for their own products tend to be seasonal with the quarter
of the year as the season. The sales agents usually work much harder in the last month of
the quarter to meet their quarterly goals; so demand for products in the computer industry
tends to be higher in the third month of each quarter than in the beginning two months.
As most of the companies are building to order nowadays, weekly production levels and
demands for components inherit the same kind of seasonality.

At one company in this industry each quarter is divided into three homogeneous intervals.
Weeks 1–4 of the quarter are slack periods; each of these weeks accounts a fraction of about
0.045 of the total demand in the quarter. Weeks 5–8 are medium periods; each of these
weeks accounts for a fraction of about 0.074 of the total demand in the quarter. Weeks 9–13
are peak periods; each of these weeks accounts for a fraction of about 0.105 of the total
demand in the quarter. This fraction of demand in each week of the season is called the
seasonal factor of that week.

In the same way, in the paper industry, demand for products exhibits seasonality with
each month of the year as the season. Demand for their products in the 2nd fortnight in
each month tends to be much higher than in the 1st fortnight.

There are several ways of handling seasonality. One way is for each i= 1 to N(= length of
the season), consider demand data for the ith period in each season as a time series by itself,
and make the decisions for this period in each season using this series based on methods
discussed in earlier sections.

Another method that is more popular is based on the assumption that there exists a set
of indices ci, i= 1 to N called seasonal factors or seasonal indices (see Meybodi and Foote,
1995), where ci represents the demand in the ith period of the season as a fraction of the
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demand during the whole season (as an example, see the seasonal factors given for the com-
puter company described above). Once these seasonal factors are estimated, we divide each
observation of demand in the original demand time series by the appropriate seasonal fac-
tor to obtain the de-seasonalized demand series. The time series of de-seasonalized demand
amounts still contains all components of information of the original series except for sea-
sonality. Forecasting is carried out using the methods discussed in the earlier sections, on
the de-seasonalized demand series. Then estimates of the expected demand, standard devi-
ation, and the optimal order quantities obtained for each period must be re-seasonalized by
multiplying by the appropriate seasonal factor before being used.

18.3 Models for Production Layout Design

The basic engineering tasks involved in producing a product are

1. Developing a process plan,
2. Deciding whether to make or buy each component,
3. Deciding on the production doctrine: group technology, process oriented, or a mix,
4. Designing the layout, and
5. Creating the aisles and choosing the material handling system.

In this section, we will focus on tasks 3–5, assuming tasks 1 and 2 have been done. We will
then have available the following data: a matrix that shows the flows between processes.

18.3.1 An Example Problem

Our first problem is how to judge between layouts. A common metric is to minimize∑
di ∗ fi. This metric uses the distance from the centers of the process area multiplied

by the flow. The idea is that if this is minimized then the processes with the largest inter-
actions will be closest together. This has an unrealistic side in that flow usually is door to
door. We will look at two approaches. The first approach is the spanning tree concept and
then an approximation for the above metric.

As a practical matter, we always want to look at an ideal layout. We would like for
the material to be delivered and moved continuously through processes and be packaged
in motion and moved right into the truck or railway car that carries the product to the
store. Some examples already exist as logs of wood go to a facility that moves them directly
through a few processes that cut them into 2× 4’s or 4× 4’s and capture the sawdust and
create particle board, all of which with few stationary periods and go right into the trucks
that move them to lumber yards. In this case, the product is simple; there are only a small
number of processes that are easy to control by computers armed with expert system and
neural net rules that control the settings of the processes. Consider Example 1, where the
basic data on the first level is given in Table 18.1.

The matrix illustrates a factory with seven process areas and lists the number of containers
that will flow between them. Let us first assume that each department is of the same unit
size, say 100 sq. feet. We can draw a network to represent the flows between process areas as
in Figure 18.4. We can act as if the flows of material are from center to center of departments
by a conveyor. We can estimate a layout as in Figure 18.5. Note that we now look at the
size of the flows and put P2 and P3 adjacent and the center for P4 is slightly further away.
A similar reasoning locates the other departments. Note also the room left for expansion.
This is not a mathematical principle but is based on experience. Just as traffic on a freeway
always expands, production needs to expand if the business succeeds.
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TABLE 18.1 Flow Values for Example 1
P1 P2 P3 P4 P5 P6 P7

P1 0 20 30 15
P2 0 20
P3 0 28
P4 0 16
P5 5 0 28
P6 4 0 48
P7 0

P2

P1 P3 P5 P6 P7

P4

FIGURE 18.4 A process network for Example 1.

P1 P2 P6 P7

P3 P4 P5
Expansion

area

FIGURE 18.5 Possible layout for Example 1.

The layout in Figure 18.5 has subjective virtues as department one is “door-to-door”
close to the departments that it flows material to. An overhead conveyor down the middle
has a straight line layout that is very convenient and is of minimum length. This is not
necessarily an optimal layout but it provides a great starting point. If the departments are
of different sizes, the layout problem is much more complex and natural adjacencies are
sometimes infeasible.

Another heuristic approach to the layout adjacency problem is the use of the cut tree. If
you look at Figure 18.4 and assume the arcs are conveyors, then you try to find the set of
conveyors that, if inactive, will cut flow from 1 to 7. If the conveyors from 5 to 6 and 4 to 6
are inactive then flow from 1 to 7 cannot occur. This flow has value 44 and is the minimum
of such cuts. A common sense interpretation is that P6 and P7 should be on one end and
P1–P5 grouped on the other end. The flow between ends is the minimum it can be, which
is 44. A cut can be made in the set P1–P5 and new smaller groups can be seen. Other cut
trees can be computed and can provide a basis for several trials. The cut tree approach is
discussed further in Section 18.3.5.

18.3.2 Optimal Plant Layouts with Practical Considerations

One of the difficulties in defining “optimal” plant layouts is choosing the metric that defines
“optimal.” Most of the metrics try to minimize the product of distance and flow. The
problem is what is flowing. The weight and shape of what is moved varies tremendously.
What is moved can be a box of parts, a chassis 7′ by 4′, a container of waste, or a bundle
of electrical wire. At some point in time one needs to just find how many moves are made.
Thirty boxes can cause a move or one waste container can cause a move. The movement
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TABLE 18.2 Flow Values for Example 2
i/j 1 2 3 4 5

1 5 20
2 5 20
3 20 30
4 100
5 100

5 4

2 4

3 4

1 4

FIGURE 18.6 Conceptual layout without aisles.

5
(10′×10′)

2
(10′×10′)

3
(10′×10′)

1
(10′×10′)

Aisle
(40′× 6′)

4
(40′× 10′)

FIGURE 18.7 Layout with aisle included.

can be along aisles or on overhead conveyors. If the move is along aisles then it comes out
of doors. If it is moved by overhead conveyors, then the move is from a point inside the
area that produces it and the area that needs it. If the move is on overhead conveyors,
then the distance is Euclidean. If the move is along aisles, then distance is measured by the
Manhattan metric, which is the sum of N-S and E-W moves. The problem is clearly NP
complete, so that optimizing means optimizing in an ideal situation and then engineering
the solution into a practical satisficing layout. An approach by Tretheway and Foote (1994)
illustrates this approach.

Consider Example 2, where there are five departments with areas 100, 100, 100, 100, and
400. Let the flow values be as given in Table 18.2.

Let us assume a single aisle structure. Figures 18.6 and 18.7 illustrate an actual optimal
layout for this aisle structure and set of areas. Each block is 100 sq. ft. Based on the flow and
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the aisle down the middle of the plant, this is optimal regardless of the material handling
system. Notice that the aisle takes some area. This means that the overall structure must
contain perhaps 1024 sq. feet if the aisle is 40′ by 6′, or that each department donates some
area to the aisle.

18.3.3 The Tretheway Algorithm

Tretheway and Foote (1994) suggest a way to actually compute the two-dimensional coordi-
nates of the location of departments in a layout. Their approach works for buildings that are
rectangular, and variants of rectangular such as U, T, or L shaped structures. They adapt
a concept by Drezner (1987) to develop a technique to actually draw the layout with aisles.
The basic idea is to get a good adjacency layout on a line, then get a second layout on
another line, use the cross product to obtain a two-dimensional relative position, then draw
in aisles, account for loss of space to aisles, and create the drawing. “Rotations” of the aisles
structure create alternative structures that can be evaluated in terms of practical criteria.
An example is that a rotation which puts a test facility with a risk of explosions occurring
during test in a corner would be the layout chosen if the aisle structure can support the
material handling design.

NLP problem: Drezner’s nonlinear program for n departments is given by

min
∑
ij

fijdij i = 1, . . ., n; j = 1, . . ., m (18.3)

where fij ’s are flows (given data) and dij (decision variables) are distances between depart-
ments i and j. Utilizing a squared Euclidean distance metric, the nonlinear program is
transformed to

min

∑
ij

fij

[
(xi − xj)2 + (yi − yj)2

]
∑

i,j
(xi − xj)2 + (yi − yj)2

(18.4)

The objective in one dimension becomes

min

∑
i,j

fijx
2
ij∑

i,j
x2

ij

(18.5)

Equation 18.5 can be optimized. The minimizing solution is the eigen vector associated with
the second least eigen value of a matrix derived from the flow matrix.

To get a solution to the layout problem in a plane, we use the second and third least
eigen values to create two eigen vectors [x] and [y], each with n values. The Cartesian
product of these vectors creates a scatter diagram (a set of points in R

2) that suggests
an optimal spatial relationship in two dimensions for the n departments that optimizes the
squared distance ∗ flow relationship between the departments. Notice this relationship is not
optimized based on practical flow measures. However, it may give us a set of alternatives
that can be compared based on a practical measure. Further, this set of points can be
expressed as a layout based on two practical considerations: the areas of the departments
and the aisle structure selected. The Tretheway algorithm will illustrate how to do this. The
algorithm can actually be done easily by hand, especially if we remember that the space
requirements usually have some elasticity. The selection of an aisle structure first allows the
departments to be painted in a simple way.

Example 3: Consider the input data for 12 departments shown in Table 18.3. For this
input, consider an aisle structure with three vertical aisles. The scatter diagram with the
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TABLE 18.3 Input Data for Example 3
1 2 3 4 5 6 7 8 9 10 11 12

1 0 5 2 4 1 0 0 6 2 1 1 1
2 5 0 3 0 2 2 2 0 4 5 0 0
3 2 3 0 0 0 0 0 5 5 2 2 2
4 4 0 0 0 5 2 2 10 0 0 5 5
5 1 2 0 5 0 10 0 0 0 5 1 1
6 0 2 0 2 10 0 5 1 1 5 4 0
7 0 2 0 2 0 5 0 10 5 2 3 3
8 6 0 5 10 0 1 10 0 0 0 5 0
9 2 4 5 0 0 1 5 0 0 0 10 10

10 1 5 2 0 5 5 2 0 0 0 5 0
11 1 0 2 5 1 4 3 5 10 5 0 2
12 1 0 2 5 1 0 3 0 10 0 2 0

2

1

3

8
9

12

47
11

6
5

10

FIGURE 18.8 Example 3 scatter diagram for vertical aisles.

98

11 12

7

4

6

3

1

2

10
5

FIGURE 18.9 Example 3 final solution with vertical aisles.

overlaid relative position of the aisles is shown in Figure 18.8. Figure 18.9 shows the area
proportioned final layout, with the heavy lines representing the aisles. For the same data
input of Table 18.3, Figures 18.10 and 18.11 demonstrate the technique for one main aisle
and two sub-aisles with the subaisles located between the aisle and the top wall. Note the
different proximities for the two different aisle structure layouts.
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FIGURE 18.10 Example 3 scatter diagram with one main aisle and two sub-aisles.
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FIGURE 18.11 Example 3 final solution with one main aisle and two sub-aisles.

18.3.4 A Spanning Tree Network Model for Layout Design

Consider the flow network in Figure 18.12. The base example is from Ravindran et al.
(1987).

The flows are f12 = 3, f13 = 7, f14 = 4, f26 = 9, f36 = 6, f35 = 3, f46 = 3, f23 = 2, and f34 = 1.
These represent costs, not the flow of containers, if the associated departments are neighbors.
Let us generate a spanning tree. This is a tree with no cycles such that all nodes can be
reached by a path. According to Ravindran et al. (1987), we arbitrarily select node 1 to
generate a tree such that the cost of each path segment is minimal. Thus, from 1 we go
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FIGURE 18.12 A material flow network.
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FIGURE 18.13 The minimum cost spanning tree.

5 6

43

2 1

FIGURE 18.14 A layout for equal area departments.

to 2 as 3 = min (3, 7, 4). We now add node 3 as its cost of 2 is less than any other cost
from nodes 1 and 2. Now we look at arcs connecting from nodes 1, 2 and 3. Arc (3,4) is
the best.

So we have [(1,2),(2,3),(3,4)]. Now (3,5) and (4,5) are tied, so we arbitrarily pick (3,5).
(5,6) is left so we have [(1,2),(2,3),(3,4),(3,5),(5,6)]. This is the minimal spanning tree illus-
trated in Figure 18.13. We have five arcs which is one less than the number of nodes and
hence the smallest number of paths. If all departments have the same area an optimal layout
would be as given in Figure 18.14.

What if the departments do not have equal areas? Then an appropriate aisle structure
could help. If you are lucky with areas and 1 has the biggest area and 2, 3, and 4 are not
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FIGURE 18.15 A layout adjusted for areas.
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FIGURE 18.16 A network model of container flows.

too large and 5 and 6 are intermediate then we could have a layout as given in Figure 18.15.
The aisle structure in Figure 18.15 could be two parallel aisles. This would work if the areas
are roughly proportional to 1:300, 2,3,4:100, 5:200, and 6:100. Plant layout will always be
NP complete relative to optimality in general with any metric, but in special cases apparent
optimality can be achieved.

Optimizing (flow× distance) metrics must be constrained by unique circumstances. If
department 3 in Figure 18.15 has some dangerous equipment that might explode, it has
to go to a corner. This reduces the number of outer walls that can be blown out to two.
It gets the area away from the center where all directions are in jeopardy. Buildings do
not have to be in a rectangular shape. If space permits and modules are feasible, then the
shape of the building can follow the spanning tree or the cut tree. U shapes can be solved
by adding dummy departments to the Tretheway set and setting their artificial flows such
that they will be in the middle at the end. We can also not have aisles and let the material
handling system overhead be a minimum spanning tree with nodes at the appropriate points
in departments or cells. See also Ravindran et al. (1989) for the use of shortest route network
model to minimize overhead conveyor distances along with material movement control.

18.3.5 A Cut Tree Network Model for Layout Design

If you consider the numbers on arcs representing the flow of containers, then the cut tree
provides a great basis for a layout that simply overlays a cut tree derived from the network
flow model on a plant shape. Kim et al. (1995) give an algorithm for generating the cut tree
and show an example layout for a nine area department cut tree. A cut tree divides the
network model into a final spanning tree (n − 1 arcs) that assumes flows go along the arcs and
that flows to other nodes pass through predecessor nodes. The following is a simple example.

Consider the example network with three departments D1, D2, and D3 given in Fig-
ure 18.16. We treat the arcs as conveyors. If we cut the arcs (2,1) and (2,3) we interrupt
6 units of flow to D1 and D3. If D1 is isolated, then a flow of 12 is cut. If D3 is isolated
then a flow of 10 is cut. The minimum cut is 6. If we cut arc (2,3), the 2 units from D2 to
D3 must move to D1 and flow from D1 to D3 increases to 10 as seen in Figure 18.17. If we
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FIGURE 18.17 The derived cut tree.
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FIGURE 18.18 Layout of L shaped area using the cut tree solution.

move material by conveyors, then we have the minimum flow on the conveyors and a layout
of 2-1-3 pasted into a building shape.

In Figure 18.18 the building shape is deliberately L-shaped, as occurs often when areas
inside a plant are re-engineered. The areas are different in size, but the material handling
costs will be minimized. See Kim et al. (1995) and also Benson and Foote (1997) for other
ways to use cut trees and door to door metrics to rate layouts.

18.3.6 Facility Shapes

The shapes of facilities can be designed with a few basic principles. For example, the shape
with the minimum perimeter for a given area is a circle. This means that this simple shape
should be explored for nursing wards (minimum walking per day and maximum visual
surveillance of patients). This would also work for sleeping areas and jails of abused children.
A circular shape for production cells gives the best visual and response for the operator.
If walls are needed, they will have a minimum length. Of course wall construction costs
also depend on other factors such as materials (brick is more costly for circular walls) and
insulation (minimum perimeter means less insulation, and so on). Shopping mall designers
want longer walks to expose more goods, so shapes and paths will meet this requirement.
Long materials require long straight shapes. Towers work if work can trickle down by gravity.

18.4 Scheduling of Production and Service Systems

18.4.1 Definition of the Scheduling Decision

The basic function of scheduling is the decision to start a job on a given process and predict
when it will finish. This decision is determined by the objective desired, the data known,
and the constraints. The basic data required to make a mathematical decision are the
process plan, the time of operation projected for each process, the quality criteria, the bill
of materials (which may determine start dates if materials are not immediately available),
the due date, if any, and the objectives that must be met, if any. A process plan is a list
of the operations needed to complete the job and any sequence constraints. It is sometimes
thought that there is always a strict precedence requirement, but that is not true. Many
times one can paint or cut to shape in either order. A quality requirement may impose a
precedence, but this is to be determined. The basic plan can be listed as cut, punch, trim,
and smooth (emery wheel or other). This list is accompanied by instructions as to how
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to execute each process (usually in the form of a drawing or pictures) and standards of
quality to be achieved; as well, there will be an estimate of the time to set up, perform
the process, do quality checks, record required information for the information and tracking
systems, and move. A decision is required when there are two or more jobs at a process and
the decision has to be made as to which job to start next. Some jobs require only a single
machine. The process could be welding, creating a photo from film, X-ray, creating an IC
board, or performing surgery. The study of single machines is very important because this
theory forms the basis of many heuristics for more complex manufacturing systems.

18.4.2 Single Machines

We are assuming here a job that only requires one process, and that the time to process is
given as a deterministic number or a random value from a given distribution. The standard
objectives are (1) to Min F the average flow time, (2) Min Max lateness Lmax, (3) Min nt,
the number of tardy jobs, and combinations of earliness and lateness. The flow time F is
the time to completion from the time the job is ready. If the job is ready at time equal to
0, flow time and completion time are the same. The function (finish time-due date) is the
basic calculation. If the value is positive the job is late, if it is negative the job is early.
The number of tardy jobs is the number of late jobs. Finish time is simply computed in
the deterministic case as the time of start + processing time. There are surprisingly few
objectives that have an optimal policy. This fact implies that for most systems we must
rely on good heuristics. The following is a list of objectives and the policy that optimizes
the objective. The list is not exclusive, as there are many types of problems with unusual
assumptions.

Deterministic Processing Time

The objective is followed by the policy that achieves that objective:

1. Min F : Schedule job with shortest processing time first (SPT). Break ties ran-
domly or based on a second objective criterion. The basic idea is this: if the
shortest job is worked first, that is the fastest a job can come out. Every job’s
completion time is the smallest possible (Figure 18.19).

2. Min Max lateness (Lmax): Schedule the job with the earliest due first (EDD).
Break ties randomly or based on a second objective criterion (Figure 18.20).

3. Min nt: Execute Moore’s algorithm. This algorithm is explained to illustrate a
basic sequencing algorithm. Some notation is required (Figure 18.21).

SPT

B C
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FIGURE 18.19 Optimality of SPT for min F (single machine Gantt charts comparing optimal with
nonoptimal).
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FIGURE 18.20 Optimality of EDD to Min Max lateness (single machine problem).
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FIGURE 18.21 Use of Moore’s algorithm.

Notation
Classification of problems: n/m/A/B, where n is the number of jobs, m the number of
machines, A the flow pattern (blank when m = 1, otherwise F for flow-shop, P for permu-
tation job shop (jobs in same order on all machines), G the general job shop (where jobs
can have different priorities at different process plan order), B the performance measure
(objective), C the completion time of a job and equal to the ready time plus sum of waiting
and processing times of jobs ahead of it, and D the due date of the job

L (lateness of job) = C −D

T (tardiness of job) = Max(L,0)
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E (earliness of job) = Max(–L,0)

Pi (processing time of job i) nt = number of tardy jobs

Moore’s algorithm solves the n/1/ /nt problem. The idea of the algorithm is simple. Schedule
by EDD to min max tardiness. Then find the first tardy job and look at it and all the jobs
in front of it. The problem job is the one with the largest processing time. It keeps other
jobs from finishing; remove it. It could be a job that is not tardy. Now repeat the process.
When no tardy jobs are found in the set of jobs that remain, schedule them in EDD order
and place the rejected jobs at the end in any order.

Figure 18.21 illustrates Moore’s algorithm and basic common sense ideas. For other single-
machine problems that can be solved optimally, see French (1982) or any current text on
scheduling (a fruitful path is to web-search Pinedo or Baker).

18.4.3 Flow Shops

More than one-third of production systems are flow shops. This means that all jobs have a
processing plan that goes through the processes in the same order (some may take 0 time
at a process). Only the two-process case has an optimal solution for min Fmax. A special
case of the three-machine flow shop has an optimal solution for the same criteria. All other
problems for m(number of processes) >2 do not have optimal solutions that are computable
in a time proportional to some quadratic function of a parameter of the problem, such as n
for any criteria. This will be addressed in more detail later.

Two-Process Flow Shops

It has been proved for flow shops that only schedules that schedule jobs through each process
(machine) in the same sequence need be considered. This does not mean that deviations
from this form will not sometimes get a criterion value that is optimal. When m = 2, an
optimal solution is possible using Johnson’s algorithm. The idea of the algorithm is to
schedule jobs that have low processing times on the first machine and thus get them out of
the way. Then schedule jobs later that have low processing times on the last machine, so
that when they get on they are finished quickly and can make way for jobs coming up. In
this way, the maximum flow time of all jobs is minimized (the time all jobs are finished).

Job Time on machine A Time on machine B
1 8 12
2 3 7
3 10 2
4 5 5
5 11 4

The algorithm is easy. Look at all the processing times and find the smallest. If it is on the
first machine, schedule it as soon as possible, and if it is on the second machine, schedule it as
late as possible. Then remove this job’s data and repeat. The solution here has five positions.
The following shows the sequence construction step by step. Schedule is represented by S.

S = [, , , ,3]
S = [2, , , ,3]
S = [2, , ,5,3]
S = [2,4, ,5,3] or [2, ,4,5,3]
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FIGURE 18.22 Gantt chart of an optimal schedule. For the example in two Cmax problem schedule,
using Johnson’s algorithm.

Job 1 now goes in either sequence in the only position left: S = [2,4,1,5,3] or S = [2,1,4,5,3]
(see Figure 18.22).

Heuristics for General Flow Shops for Some Selected Criteria

n/m/F/Fmax

The Campbell–Dudek heuristic makes sense and gives good solutions. There are better
heuristics if one is not solving by hand. The idea is common sense. Assume we have six
machines. If we find a job that gets through the six machines quickly, schedule it first so it
gets out of the way. If there is a job that gets through the first five quickly, schedule it as soon
as you can. This follows up to a job that gets off the first machine quickly. Alternatively, if
a job gets off the last machine quickly, schedule it last, or if it gets off the last two quickly,
or the last three, and so on. This leads to solving five constructed two-machine flow shop
problems (surrogates), finding the optimal sequences, and then picking the one with the
best maximum flow. A sixth sequence can be tested by sequencing in order of the least total
(on all machines) processing time. Here is a five-job, four-machine problem to illustrate the
surrogate problems. There will be m – 1 or three of them.

Job m1 m2 m3 m4 Total
1 5 7 4 11 27
2 2 3 6 7 18
3 6 10 1 3 20
4 7 4 2 4 17
5 1 1 I 2 5

S = [5,4,2,3,1] when looking at total processing time.

Three Surrogate Problems
Surrogate one: times on first and last machines only (solution by Johnson’s algorithm:
[5,2,3,4,1])

Job m1′ m2′′

1 5 11
2 2 7
3 6 3
4 7 4
5 1 2
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Surrogate two: times on first two and last two machines (solution by Johnson’s algorithm:
[5,2,1,4,3])

Job m1′ m2′′

1 12 15
2 5 13
3 16 4
4 11 6
5 2 3

Surrogate three: times on first three machines and last three machines (solution by Johnson’s
algorithm: [5,4,3,2,1])

Job m1′ m2′′

1 16 22
2 11 16
3 17 14
4 13 10
5 3 4

These four sequences are then Gantt-charted, and the one with the lowest F max is used. If
we want to min average flow time, then these would also be good solutions to try. If we want
to min max lateness, then try EDD, and also try these sequences. We could also put job 1
last and schedule by EDD as a commonsense approach. Later we will talk about computer
heuristics for these types of problems.

The Concept of Fit in Flow Shops
Consider a case where job (i) precedes job (j), with a six-machine flow shop. Let their
processing times be (i): [5 4 2 6 8 10] and (j): [3 2 5 8 9 15]. In the Gantt chart (see
Figure 18.23) you will see that job (j) is always ready to work when job (i) is finished on a
machine. No idle time is created (see Figure 18.23). If computer-processing time is available,
then a matrix of job fit can be created to be used in heuristics.

Fit is computed with the following notation: tij is the processing time of job (i) on
machine (j). Then let job (j) precede job (k):

Fit =
s=m∑
s=2

max[tjs − tk,s−1, 0]

Heuristics will try to make job (j) ahead of job (k) if fit is the largest positive found, that
is, [. . . k, j, . . .]. By removing the max operator, one can get a measure of the overall fit or
one can count the number of positive terms and use this to pick a pair that should be in
sequence. If there are six machines, pick out all the pairs that have a count of 5, then 4,
then 3, and so on, and try to make a common sense Gantt chart. Consider the following
data: J1: [4 5 4 7], J2: [5 6 9 5], J3: [6 5 6 10], J4: [3 8 7 6], J5: [4 4 6 11]. The largest
number of fits is 3.

4 → 3 3 → 2 2 → 1 1 → 5 have three positive terms in the fit formula. Hence, an optimal
sequence is S = [4 3 2 1 5] (Figure 18.24).
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FIGURE 18.23 Job J fits behind job i.
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FIGURE 18.24 An optimal sequence since we have perfect fit.

18.4.4 Job Shops

Job shops are notoriously tough (see later discussion on NP-complete problems). In job
shops, a job may have processing plans that have a variety of sequences. For large job shops
some simulation studies have shown that job shops are dominated by their bottlenecks. A
bottleneck is the machine that has the largest total work to do when all jobs are completed.

In practice, it has been effective to schedule the jobs on each machine by using the
sequence determined by solving a one-machine problem with the bottleneck as the machine.
For large job shops, jobs are constantly entering. Thus, the structure constantly changes.
This means that at the beginning of the period, each machine is treated as a single machine,
and single machine theory is used for scheduling. At the beginning of the next period, a new
set of priorities is determined. The determination of period length is a matter still under
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FIGURE 18.25 A heuristic approach to scheduling a job shop. Compare with other guesses and pick
lowest Cmax.

research. A period length of a multiple of total average job-processing time is a good start.
A multiple such as 10 is a good middle ground to try. Perform some experiments and try
going up if you have a lot of setup time and down if setup time is minimal.

Some other approaches are to take the top two bottlenecks and schedule the jobs as a
two-machine flow shop, using only their times on the two bottlenecks. If you are using min
average flow time, use flow shop heuristics designed for that purpose. If you are using min
max flow time, use Johnson’s algorithm. If a job does not go through the two bottlenecks,
schedule it later, if you can. In the real world sometimes jobs can be worked faster than
predicted. Most schedulers try to find such jobs. They then look for small processing time
jobs and insert them. Schedulers also look for jobs that have remaining processes that are
empty and pull them out if average flow time is an issue.

It is never good to operate at 100% capacity. Quality goes down under this kind of
pressure. Studies have shown that around 90% is good. At times, random variation will put
the shop at 100% even then. But a little gap is good for preventive maintenance and for
training. Most maintenance will be off shift if unplanned, but off shift can be expensive.
Figure 18.25 is an example using Johnson’s algorithm on the two bottlenecks and then
scheduling the three machines with that sequence.
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If output from one subsystem goes to another, then there is a timing issue and hence a
due date issue. Basic queuing issues come into play. If service centers are in a flow mode,
then the jobs should be in SPT order. This gets them out of the early systems quickly and
allows the other jobs get going. If work has a large variance, then low variance jobs go first.
Simulation software analysis is a must for large systems. The biggest aid is total system
knowledge. If a truck coming in has an accident and this is known by the warehouse, some
healing action can be taken. Some borrowing from other trucks might happen. Work that
will not be completed due to the accident can be put off. Top-level knowledge of demand
from the primary data is a must. Inferring it from orders is a major mistake. This subsystem
knowledge allows coordination.

Control

What does control mean for a system? If a policy is simulated, there will be a mean and
standard deviation of the queue length. When a queue exceeds the mean plus two standard
deviations something is likely wrong. So, what questions should you ask? Are the processing
times different from predictions? Is a large amount of maintenance going on? Do we have
critical material shortages? Have we instituted just-in-time scheduling when the variance in
system parameters is too high? If your trucks go completely through urban areas, you may
not be able to arrive in a just-in-time window.

It is now possible with computers to predict a range of conditions that are normal. Readers
should refer to the literature for current information, journals, and books.

Solvability Problems

We now know of many areas that have no solution. The normal distribution function does
not have a closed-form integral. It must be computed numerically. Most scheduling prob-
lems are such that to guarantee optimality, total enumeration or implied total enumeration
(branch and bound) must be used. However, it has been shown over and over that heuristics
can get optimal solutions or solutions that are only off by 1 or 2%. When data quality is
considered, this will be satisfactory. In linear programming, any point in the vicinity of
a basic solution will be near optimal and, in fact, due to round off errors in computing,
the basis may even be better than the basis presented by the computation. Problems that
require total enumeration to prove optimality are interesting, but in practice are solved
and the solutions are good. Practically speaking, problems such as n/m/F/nt are what are
called NP complete. They must have implied total enumeration to prove the answer is opti-
mal. However, in practice, one can obtain good solutions. Moreover, for some problems, the
optimal solution is obvious (for example, in flow shops where all jobs have unit processing
times on all machines for the objective of min average flow time).

Bootstrapping

With the advent of modern computers and Monte Carlo simulation packages, it is possible to
obtain statistical predictions of systems. By using heuristics and genetic algorithms to gen-
erate policies to simulate, a good statistical prediction can be made to set control standards
with only three or four replications. Bootstrapping is the technique in which actual data are
used for lead times, processing times, etc. These data can be arranged as a histogram from
which values can be drawn randomly to determine how long a job will be processed, how
long it will take to repair a machine, and so on. This uses the best evidence, the data, and
has no chance of making an error in distribution assumption. Good data collection systems
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are a must. Distribution assumptions do have their virtues, in that we know repair times
can occur that have not previously been observed. Running a Monte Carlo simulation both
ways can throw much light on the matter.

Practical Issues

In both build-to-stock and build-to-order policies, the unexpected may happen. Machines
break down, trucks get caught in traffic delays, materials are found to be defective, and
workers do not show up. The plan and schedule must be repaired. A basic plan to illustrate
repair is to assign workers to the bottleneck one at a time, then find the new bottleneck
and assign the next worker there. Repairing, regaining feasibility, and extending the plan
when new work arrives requires software if the system is large (“large” meaning that hand
computation is simply not doable). An illustration of repair occurs when some jobs I are
not ready in an n/m/G or F/Cmax problem at time 0. One then goes ahead and solves,
assuming all i ready times are 0. If the solution requires a job to start before it is ready,
repair must be done. These needs form the criteria for selecting commercial software from
an available list. The software must be algorithmically correct and computationally efficient
with good structures for search and information retrieval. Professional magazines such as
IE Solutions provide lists of vendors to assess.
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19.1 Introduction

Energy is an all-encompassing commodity that touches the life of everyone. Managing energy
effectively is of paramount importance in every organization and every nation. Energy issues
have led to political disputes and wars. This chapter presents examples of the application of
operations research (OR) to optimizing energy decisions. Kruger (2006) presents a compre-
hensive assessment of energy resources from different perspectives, which include historical
accounts, fossil fuel, energy sustainability, consumption patterns, exponentially increasing
demand for energy, environmental impact, depletion of energy reserves, renewable energy,
nuclear energy, economic aspects, industrialization and energy consumption, and energy
transportation systems. Badiru (1982) presents the application of linear programming (LP)
technique of OR to energy management with a specific case example of deciding between
alternate energy sources. Badiru and Pulat (1995) present an OR model for making invest-
ment decisions for energy futures. Hudson (2005) developed an OR-based spreadsheet model
for energy cogeneration. All these and other previous applications of OR to energy systems
make this chapter very important for both researchers and practitioners.

19-1
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19.2 Definition of Energy

The word energy comes from the Greek word for “work.” Indeed, energy is what makes
everything work. Everything that we do is dependent on the availability of energy. Newton’s
law of conservation of momentum and energy states that energy cannot be created or
destroyed. It can, however, be converted from one form to other. Recent energy-related
events around the world have heightened the need to have full understanding of energy
issues, from basic definitions to consumption and conservation practices. Tragic examples
can be seen in fuel-scavenging practices that turn deadly in many energy impoverish parts
of the world. In May 2006, more than 200 people died when a gasoline pipeline exploded
in Nigeria while poor villagers were illegally tapping into the pipeline to obtain the much-
needed energy source. This illustrates a major lack of understanding of the volatility of
many energy sources.

Before we can develop a mathematical model of energy systems, we must understand the
inherent characteristics of energy. There are two basic types of energy:

• Kinetic energy
• Potential energy

All other forms of energy are derived from the above two fundamental forms. Energy that
is stored (i.e., not being used) is potential energy. Kinetic energy is found in anything that
moves (e.g., waves, electrons, atoms, molecules, and physical objects). Electrical energy is
the movement of electrical charges. Radiant energy is electromagnetic energy traveling in
waves. Radiant energy includes light, X-rays, gamma rays, and radio waves. Solar energy
is an example of radiant energy. Motion energy is the movement of objects and substances
from one place to another. Wind is an example of motion energy. Thermal or heat energy
is the vibration and movement of matter (atoms and molecules inside a substance). Sound
is a form of energy that moves in waves through a material. Sound is produced when a
force causes an object to vibrate. The perception of sound is the sensing (picking up) of the
vibration of an object.

Potential energy represents stored energy as well as energy of position (e.g., energy due to
fuel, food, and gravity). Chemical energy is energy derived from atoms and molecules con-
tained in materials. Petroleum, natural gas, and propane are examples of chemical energy.
Mechanical energy is the energy stored in a material by the application of force. Compressed
springs and stretched rubber bands are examples of stored mechanical energy. Nuclear
energy is stored in the nucleus of an atom. Gravitational energy is the energy of position and
place. Water retained behind the wall of a dam is a demonstration of gravitational potential
energy. Light is a form of energy that travels in waves. The light we see is referred to as
visible light. However, there is also an invisible spectrum. Infrared or ultraviolet rays cannot
be seen, but can be felt as heat. Getting a sunburn is an example of the effect of infrared.
The difference between visible and invisible light is the length of the radiation wave, known
as wavelengths. Radio waves have the longest rays while gamma rays have the shortest
rays.

When we ordinarily talk about conserving energy, we are referring to adjusting the ther-
mostat (for cooling or heating) to save energy. When scientists talk of conserving energy,
they are referring to the law of physics, which states that energy cannot be created or
destroyed. When energy is used (consumed), it does not cease to exist; it simply turns
from one form to another. As examples, solar energy cells change radiant energy into elec-
trical energy. As an automobile engine burns gasoline (a form of chemical energy), it is
transformed from the chemical form to a mechanical form.
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When energy is converted from one form to another, a useful portion of it is always
lost because no conversion process is 100% efficient. It is the objective of energy analysts
to minimize that loss, or convert the loss into another useful form. Therein lies the need
to use OR techniques to mathematically model the interaction of variables in an energy
system to achieve optimized combination of energy resources. The process of combined
heat and power (CHP) to achieve these objectives can benefit from OR modeling of energy
systems.

19.3 Harnessing Natural Energy

There is abundant energy in our world. It is just a matter of meeting technical requirements
to convert it into useful and manageable forms. For example, every second, the sun converts
600 million tons of hydrogen into 596 million tons of helium through nuclear fusion. The
balance of 4 million tons of hydrogen is converted into energy in accordance with Einstein’s
theory of relativity,

E = mc2

This is a lot of energy that equates to 40,000 W per square inch on the visible surface of the
sun. Can this be effectively harnessed for use on Earth? Although the Earth receives only
one-half of a billionth of the sun’s energy, this still offers sufficient potential for harnessing.
Comprehensive technical, quantitative, and qualitative analysis will be required to achieve
the harnessing goal. OR can play an importance role in that endeavor. The future of energy
will involve several integrative decision scenarios involving technical and managerial issues
such as:

• Micropower generation systems
• Negawatt systems
• Energy supply transitions
• Coordination of energy alternatives
• Global energy competition
• Green-power generation systems
• Integrative harnessing of sun, wind, and water energy sources
• Energy generation, transformation, transmission, distribution, storage, and

consumption across global boundaries.

19.4 Mathematical Modeling of Energy Systems

The rapid industrialization of society, coupled with drastic population growth, has fueled
increasingly complex consumption patterns that require optimization techniques to manage.
It is essential to first develop mathematical representations of energy consumption patterns
to apply OR methods of optimization. Some of the mathematical modeling options for
energy profiles are linear growth model, exponential growth model, logistic curve growth
model, regression model, and logarithmic functions. There is often a long history of energy
data to develop appropriate mathematical models. The huge amount of data involved and
the diverse decision options preclude the use of simple enumeration approaches. Thus, LP
and other nonlinear OR techniques offer proven solution techniques. The example in the
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next section illustrates how the LP model is used to determine the optimal combination of
energy sources to meet specific consumption demands.

19.5 Linear Programming Model of Energy
Resource Combination

This example illustrates the use of LP for energy resource allocation (Badiru, 1982). Sup-
pose an industrial establishment uses energy for heating, cooling, and power. The required
amount of energy is presently being obtained from conventional electric power and natural
gas. In recent years, there have been frequent shortages of gas, and there is a pressing need
to reduce the consumption of conventional electric power. The director of the energy man-
agement department is considering a solar energy system as an alternate source of energy.
The objective is to find an optimal mix of three different sources of energy to meet the
plant’s energy requirements. The three energy sources are

• Natural gas
• Commercial electric power grid
• Solar power

It is required that the energy mix yield the lowest possible total annual cost of energy for
the plant. Suppose a forecasting analysis indicates that the minimum kilowatt-hour (kwh)
needed per year for heating, cooling, and power are 1,800,000, 1,200,000, and 900,000 kwh,
respectively. The solar energy system is expected to supply at least 1,075,000 kwh annually.
The annual use of commercial electric grid must be at least 1,900,000 kwh due to a prevailing
contractual agreement for energy supply. The annual consumption of the contracted supply
of gas must be at least 950,000 kwh. The cubic foot unit for natural gas has been converted
to kwh (1 cu. ft. of gas = 0.3024 kwh).

The respective rates of $6/kwh, $3/kwh, and $2/kwh are applicable to the three sources
of energy. The minimum individual annual conservation credits desired are $600,000 from
solar power, $800,000 from commercial electricity, and $375,000 from natural gas. The
conservation credits are associated with the operating and maintenance costs. The energy
cost per kilowatt-hour is $0.30 for commercial electricity, $0.05 for natural gas, and $0.40
for solar power. The initial cost of the solar energy system has been spread over its useful
life of 10 years with appropriate cost adjustments to obtain the rate per kilowatt-hour. The
sample data is summarized in Table 19.1. If we let xij be the kilowatt-hour used from source
i for purpose j, then we would have the data organized as shown in Table 19.2. Note that
the energy sources (solar, commercial electricity grid, and natural gas) are used to power
devices to meet energy needs for cooling, heating, and power.

TABLE 19.1 Energy Resource Combination Data
Minimum

Minimum Conservation Conservation
Supply Credit Credit Rate Unit Cost

Energy Source (1000’s kwh) (1000’s $) ($/kwh) ($/kwh)

Solar power 1075 600 6 0.40
Electricity grid 1900 800 3 0.30
Natural gas 950 375 2 0.05
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TABLE 19.2 Tabulation of Data for LP Model
Type of Use

Energy Source Heating Cooling Power Constraint

Solar power x11 x12 x13 ≥1075K
Electric power x21 x22 x23 ≥1900K
Natural gas x31 x32 x33 ≥950K
Constraint ≥1800 ≥1200 ≥900

TABLE 19.3 LP Solution to the Resource Combination Example (in kwh)
Type of Use

Energy Source Heating Cooling Power

Solar power 0 1075 0
Commercial Electricity 975 0 925
Natural gas 825 125 0

The optimization problem involves the minimization of the total cost function, Z. The
mathematical formulation of the problem is presented below.

Minimize: Z = 0.4
3∑

j=1

x1j + 0.3
3∑

j=1

x2j + 0.05
3∑

j=1

x3j

Subject to: x11 + x21 + x31 ≥ 1800

x12 + x22 + x32 ≥ 1200

x13 + x23 + x33 ≥ 900

6(x11 + x12 + x13) ≥ 600

3(x21 + x22 + x23) ≥ 800

2(x31 + x32 + x33) ≥ 375

x11 + x12 + x13 ≥ 1075

x21 + x22 + x23 ≥ 1900

x31 + x32 + x33 ≥ 950

xij ≥ 0, i, j = 1, 2, 3

Using the LINDO LP software, the solution presented in Table 19.3 was obtained. The
table shows that solar power should not be used for heating or power; commercial electricity
should not be used for cooling, and natural gas should not be used for power. In pragmatic
terms, this LP solution may have to be modified before being implemented on the basis of
the prevailing operating scenarios and the technical aspects of the facilities involved. The
minimized value of the objective function is $1047.50 (in thousands).

19.6 Integer Programming Model for Energy
Investment Options

This section presents an integer programming formulation as another type of OR model-
ing for energy decision making. Planning a portfolio of energy investments is essential in
resource-limited operations. The capital rationing example presented here (Badiru and
Pulat, 1995) involves the determination of the optimal combination of energy investments
so as to maximize present worth of total return on investment. Suppose an energy analyst is
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given N energy investment options, X1, X2, X3, . . ., XN , with the requirement to determine
the level of investment in each option so that present worth of total investment return is
maximized subject to a specified limit on available budget. The options are not mutually
exclusive.

The investment in each option starts at a base level bi (i= 1, 2, . . ., N) and increases by
variable increments kij (j = 1, 2, 3, . . ., Ki), where Ki is the number of increments used for
option i. Consequently, the level of investment in option Xi is defined as

xi = bi +
Ki∑
j=1

kij

where
xi ≥ 0 ∀i

For most cases, the base investment will be 0. In those cases, we will have bi = 0. In the
modeling procedure used for this example, we have:

Xi =
{
1 if the investment in option i is greater than zero
0 otherwise

and

Yij =
{
1 if the increment of alternative i is used
0 otherwise.

The variable xi is the actual level of investment in option i, while Xi is an indicator variable
indicating whether or not option i is one of the options selected for investment. Similarly,
kij is the actual magnitude of the jth increment, while Yij is an indicator variable that
indicates whether or not the jth increment is used for option i. The maximum possible
investment in each option is defined as Mi such that

bi ≤ xi ≤ Mi

There is a specified limit, B, on the total budget available to invest such that∑
i

xi ≤ B

There is a known relationship between the level of investment, xi, in each option and the
expected return, R(xi). This relationship is referred to as the utility function, f(.), for the
option. The utility function may be developed through historical data, regression analysis,
and forecasting models. For a given energy investment option, the utility function is used
to determine the expected return, R(xi), for a specified level of investment in that option.
That is,

R(xi) = f(xi)

=
Ki∑
j=1

rij Yij

where rij is the incremental return obtained when the investment in option i is increased
by kij . If the incremental return decreases as the level of investment increases, the utility
function will be concave. In that case, we will have the following relationship:

rij − ri, j+1 ≥ 0

Thus,
Yij ≥ Yi, j+1
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FIGURE 19.1 Utility curve for investment yield.

or

Yij − Yi, j+1 ≥ 0

so that only the first n increments (j = 1, 2, . . ., n) that produce the highest returns are used
for project i. Figure 19.1 shows an example of a concave investment utility function.

If the incremental returns do not define a concave function, f(xi), then one has to intro-
duce the inequality constraints presented above into the optimization model. Otherwise,
the inequality constraints may be left out of the model, as the first inequality, Yij ≥ Yi,j+1,
is always implicitly satisfied for concave functions. Our objective is to maximize the total
investment return. That is,

Maximize: Z =
∑

i

∑
j

rij Yij

Subject to the following constraints:

xi = bi +
∑

j

kij Yij ∀i

bi ≤ xi ≤ Mi ∀i

Yij ≥ Yi, j+1 ∀i, j∑
i

xi ≤ B

xi ≥ 0 ∀i

Yij = 0 or 1 ∀i, j

Now suppose we are given four options (i.e., N = 4) and a budget limit of $10 million. The
respective investments and returns are shown in Tables 19.4 through 19.7.

All the values are in millions of dollars. For example, in Table 19.7, if an incremental
investment of $0.20 million from stage 2 to stage 3 is made in option 1, the expected
incremental return from the project will be $0.30 million. Thus, a total investment of $1.20
million in option 1 will yield present worth of total return of $1.90 million. The question
addressed by the optimization model is to determine how many investment increments
should be used for each option. That is, when should we stop increasing the investments
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TABLE 19.4 Investment Data for Energy Option 1
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y1j x1 r1j R(x1)

0 — 0 — 0
1 0.80 0.80 1.40 1.40
2 0.20 1.00 0.20 1.60
3 0.20 1.20 0.30 1.90
4 0.20 1.40 0.10 2.00
5 0.20 1.60 0.10 2.10

TABLE 19.5 Investment Data for Energy Option 2
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y2j x2 r2j R(x2)

0 — 0 — 0
1 3.20 3.20 6.00 6.00
2 0.20 3.40 0.30 6.30
3 0.20 3.60 0.30 6.60
4 0.20 3.80 0.20 6.80
5 0.20 4.00 0.10 6.90
6 0.20 4.20 0.05 6.95
7 0.20 4.40 0.05 7.00

TABLE 19.6 Investment Data for Energy Option 3
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y3j x3 r3j R(x3)

0 0 — — 0
1 2.00 2.00 4.90 4.90
2 0.20 2.20 0.30 5.20
3 0.20 2.40 0.40 5.60
4 0.20 2.60 0.30 5.90
5 0.20 2.80 0.20 6.10
6 0.20 3.00 0.10 6.20
7 0.20 3.20 0.10 6.30
8 0.20 3.40 0.10 6.40

TABLE 19.7 Investment Data for Energy Option 4
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y4j x4 r4j R(x4)

0 — 0 — 0
1 1.95 1.95 3.00 3.00
2 0.20 2.15 0.50 3.50
3 0.20 2.35 0.20 3.70
4 0.20 2.55 0.10 3.80
5 0.20 2.75 0.05 3.85
6 0.20 2.95 0.15 4.00
7 0.20 3.15 0.00 4.00

in a given option? Obviously, for a single option we would continue to invest as long as
the incremental returns are larger than the incremental investments. However, for multiple
investment options, investment interactions complicate the decision so that investment in
one project cannot be independent of the other projects. The IP model of the capital
rationing example was solved with LINDO software. The model is

Maximize: Z = 1.4Y11 + .2Y12 + .3Y13 + .1Y14 + .1Y15 + 6Y21 + .3Y22 + .3Y23
+ .2Y24 + .1Y25 + .05Y26 + .05Y27 + 4.9Y31 + .3Y32 + .4Y33 + .3Y34
+ .2Y35 + .1Y36 + .1Y37 + .1Y38 + 3Y41 + .5Y42 + .2Y43 + .1Y44
+ .05Y45 + .15Y46
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Subject to:
.8Y11 + .2Y12 + .2Y13 + .2Y14 + .2Y15 − X1 = 0
3.2Y21 + .2Y22 + .2Y23 + .2Y24 + .2Y25 + .2Y26 + .2Y27 − X2 = 0
2.0Y31 + .2Y32 + .2Y33 + .2Y334 + .2Y35 + .2Y36 + .2Y37 + .2Y38 − X3 = 0
1.95Y41 + .2Y42 + .2Y43 + .2Y44 + .2Y45 + .2Y46 + .2Y47 − X4 = 0
X1 + X2 + X3 + X4 <= 10
Y12 − Y13 >= 0
Y13 − Y14 >= 0
Y14 − Y15 >= 0
Y22 − Y23 >= 0
· · · · · ·
Y26 − Y27 >= 0
Y32 − Y33 >= 0
Y33 − Y34 >= 0
Y35 − Y36 >= 0
Y36 − Y37 >= 0
Y37 − Y38 >= 0
Y43 − Y44 >= 0
Y44 − Y45 >= 0
Y45 − Y46 >= 0
Xi >= 0 for i = 1, 2, . . ., 4
Yij = 0, 1 for all i and j

The solution indicates the following values for Yij .

19.6.1 Energy Option 1

Y11 = 1, Y12 = 1, Y13 = 1, Y14 = 0, Y15 = 0
Thus, the investment in option 1 is X1 = $1.20 million. The corresponding return is $1.90
million.

19.6.2 Option 2

Y21 = 1, Y22 = 1, Y23 = 1, Y24 = 1, Y25 = 0, Y26 = 0, Y27 = 0
Thus, the investment in option 2 is X2 = $3.80 million. The corresponding return is $6.80
million.

19.6.3 Option 3

Y31 = 1, Y32 = 1, Y33 = 1, Y34 = 1, Y35 = 0, Y36 = 0, Y37 = 0
Thus, the investment in option 3 is X3 = $2.60 million. The corresponding return is $5.90
million.

19.6.4 Option 4

Y41 = 1, Y42 = 1, Y43 = 1
Thus, the investment in option 4 is X4 = $2.35 million. The corresponding return is $3.70
million.
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The total investment in all four options is $9,950,000. Thus, the optimal solution indicates
that not all of the $10,000,000 available should be invested. The expected present worth
of return from the total investment is $18,300,000. This translates into 83.92% return on
investment. Figure 19.2 presents histograms of the investments and the returns for the four
options. The individual returns on investment from the options are shown graphically in
Figure 19.3.

The optimal solution indicates an unusually large return on total investment. In a prac-
tical setting, expectations may need to be scaled down to fit the realities of the investment
environment. Not all optimization results will be directly applicable to real-world scenarios.
Possible extensions of the above model of capital rationing include the incorporation of risk
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and time value of money into the solution procedure. Risk analysis would be relevant, partic-
ularly for cases where the levels of returns for the various levels of investment are not known
with certainty. The incorporation of time value of money would be useful if the investment
analysis is to be performed for a given planning horizon. For example, we might need to
make investment decisions to cover the next 5 years rather than just the current time.

19.7 Simulation and Optimization of Distributed
Energy Systems

Hudson (2005) has developed a spreadsheet-based adaptive nonlinear optimization model
that utilizes the OR methods of simulation and nonlinear optimization to determine the
optimal capacities of equipment in combined heat and power (CHP) applications, often
called cogeneration. Evaluation of potential CHP applications requires an assessment of
the operations and economics of a particular system in meeting the electric and thermal
demands of a specific end-use facility. Given the electrical and thermal load behavior of a
facility, the tariff structure for grid-supplied electricity, the price of primary fuel (e.g., natu-
ral gas), the operating strategy and characteristics of the CHP system, and an assumed set
of installed CHP system capacities (e.g., installed capacity of prime mover and absorption
chiller), one can determine the cost of such a system as compared to reliance solely on
traditional, grid-supplied electricity and on-site boilers. Selecting the optimal capacities for
a CHP system will help to produce optimal cost benefits and potentially avoid economic
losses. The following material describes the methodology of the approach and provides an
example of the results obtained.

19.8 Point-of-Use Energy Generation

Distributed energy is the provision of energy services at or near the point of use. It can
take many forms, but a central element is the existence of a prime mover for generating
electricity. Typical prime movers for current distributed energy applications are gas or light
oil-fired turbines, fuel cells, or reciprocating engines fired with natural gas or diesel fuel.
Such prime movers are only able to utilize roughly 30% of the input fuel energy in the
production of electricity. The remaining energy can either be utilized as a thermal resource
stream or must be exhausted to the atmosphere. When the waste heat is used to satisfy
heating needs, the system is typically termed a cogeneration or combined heat and power
system. Through the use of an absorption chiller, waste heat can also be utilized to provide
useful cooling, in which case the system is considered a CHP application.

Generally, CHP systems are not the sole source of electricity and thermal resource for a
facility. In most cases, these systems are merely alternatives to utility grid-supplied electric-
ity, electric chillers, and electric or gas-fired on-site water heating. As a result, CHP systems
are characteristic of the classic “make-or-buy” decision, and economic viability is relative to
grid-based electricity and on-site boiler heating. An assessment of the economic viability of
a particular CHP system requires an assumption regarding the installed equipment capaci-
ties of the system. As costs are a direct function of the installed capacities of these systems,
the challenge is to determine the most economically optimal capacities of the equipment.

An important consideration in assessing the potential for CHP systems is recognition of
the noncoincident behavior of the electric and thermal (i.e., heating and cooling) loads of a
facility. That is, the load patterns for the three load streams are not perfectly correlated with
each other through time. As a result, the peak of electrical demand will most likely not occur
at the same point in time as either the heating or cooling demand peak. Absence of means to
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store electrical or thermal energy on-site, producing electricity with a distributed generator
to track electrical demand (i.e., electric load following) may produce recovered thermal
energy that cannot be used due to lack of thermal demand at that moment. Similarly,
operating a CHP system in a thermal load following mode (i.e., tracking thermal demand),
combined with limits on the sale of electricity into the grid, may also impact the degree to
which the three demand streams can be satisfied by distributed energy.

19.9 Modeling of CHP Systems

To optimize a CHP system, the operational behavior of the system and the loads that it
serves must be taken into account. One of the best ways to do this is by simulating the
interaction of the system with its loads. With a properly detailed simulation, the variabilities
of the load streams, the time-related prices of grid-based electricity, and the performance
limitations of the CHP equipment can be recognized.

In addition to the use of the OR method of simulation, application of optimization meth-
ods is also required. An important distinction is the optimization of a system’s operation as
compared to the optimization of the system’s installed capacity. A number of early works
address the optimization of the operation of a given system. Baughman et al. (1989) devel-
oped a cogeneration simulation model in Microsoft Excel that sought optimal operation of
industrial cogeneration systems over a 15-year planning horizon using the minimization of
net present value of operating costs as the objective function. Consonni et al. (1989) devel-
oped an operations optimization simulator based on 36 separate sample day patterns to
represent annual operations. Using a binary representation of equipment being either on or
off, the model was a mixed integer linear program with an objective function of maximizing
hourly profits from operation.

Regarding the optimization of installed system capacity, Yokoyama et al. (1991) intro-
duced a coupled, “hierarchical” modeling concept, whereby the optimization of a system’s
installed capacity was an outer shell or layer serving to drive a separate inner operations opti-
mization model based on mixed integer linear programming. Similar to Consonni, Yokoyama
et al. used 36 sample day patterns to describe annual load behavior. Utilizing the hierarchi-
cal optimization process described by Yokoyama et al., Asano et al. (1992) considered the
impact of time-of-use rates on optimal sizing and operations of cogeneration systems. Using
14 sample day patterns to represent the load behavior, Asano evaluated three commercial
applications (hotel, hospital, and office building) and calculated optimal capacities ranging
from 50% to 70% of peak electricity demand. Contemporaneously, a set of closed form equa-
tions for calculating the optimal generation capacity of an industrial cogeneration plant with
stochastic input data was developed by Wong-Kcomt (1992). Wong-Kcomt’s approach relied
upon single unit prices for electricity (i.e., no separate demand charges) and assumed inde-
pendent Gaussian distributions to describe aggregate thermal and electrical demand. The
effects of hourly non-coincidence of loads were not addressed. Wong-Kcomt showed, however,
that the solution space of the objective function (cost minimization) was convex in nature.

As an extension of the hierarchical model proposed by Yokoyama et al. in 1991, Gamou
et al. (2002) investigated the impact that variation in end-use energy demands had on
optimization results. Modeling demand (i.e., load) variation as a continuous random vari-
able, probability distributions of electrical and thermal demands were developed. Dividing
the problem into discrete elements, a piecewise LP approach was used to find the minimum
cost objective function. It was observed that the capacity deemed as optimal using average
data was, in fact, suboptimal when load variations were introduced. In characterizing the
variability of electrical and thermal demands, the non-coincident behavior of the electrical
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and thermal loads led to the determination of a lower optimal capacity value when variabil-
ity was recognized, relative to the value obtained when considering only average demands.
A key finding from this work was that use of average demand data (e.g., sample day pat-
terns) may not accurately determine the true optimal system capacity. Orlando (1996) states
a similar conclusion in that “any averaging technique, even multiple load-duration curves,
by definition, cannot fully model the interaction between thermal and electrical loads.”

Within the last 10 years, cogeneration technology has evolved to include systems with
smaller electric generation unit capacities in uses other than large, industrial applications.
Termed “distributed energy” or “distributed generation,” these systems are now being
applied in commercial markets such as hospitals, hotels, schools, and retail stores. In addi-
tion, traditional cogeneration (i.e., the production of electricity and useful heat) has been
expanded to include trigeneration, that is, the use of waste heat from electrical production
to produce both useful heat and cooling. A number of works are focused on this recent
development. Marantan (2002) developed procedures to evaluate a predefined list of candi-
date system capacities for an office building application, selecting the CHP system with the
minimum net annual cost. Campanari et al. (2002) used a simulation model with 21 sample
day patterns and a predefined list of operating scenarios to select the least cost operating
strategy for a CHP system in commercial buildings. They did a somewhat reverse approach
in investigating capacity-related optimization by varying the building size for a CHP system
of fixed capacity. An important conclusion of their manual, trial and error optimization was
that “due to the inherent large variability of heating, cooling, and electric demand typical
of commercial buildings, the optimum size of a cogeneration plant is significantly lower than
peak demand.” A similar conclusion was found by Czachorski et al. (2002) while investigat-
ing the energy cost savings resulting from the use of CHP systems in hospitals, hotels, offices,
retail, and educational facilities in the Chicago area. Through manual capacity enumeration,
they found that, based on maximum annual energy cost savings, “the corresponding size of
the power generator was between 60% and 80% of the maximum electric demand for CHP
systems” in the applications considered. The study by Czachorski et al. also showed that
annual energy cost savings exhibit a concave behavior with respect to generator capacity.
While their work did not reflect life-cycle cost savings by including investment cost as a
function of generator capacity, the inclusion of generation equipment capital cost should
not eliminate the general concave behavior produced by the annual energy economics.

19.10 Economic Optimization Methods

Based on the modeling efforts described in the previous section, consideration is now given
to the question of an appropriate method to apply in seeking an optimum of an economic
objective function. A discussion of relevant optimization techniques cannot be made without
some knowledge of the structure of the model in which the optimization will be conducted.
Therefore, rather than providing a pedagogic recitation of the wide variety of optimization
methods and algorithms that exist, this section will focus on the specific methods that are
applicable to the problem at hand, which will then be further developed in the following
section. There are, however, a number of good texts on optimization methods. Two examples
are Bazaraa et al. (1993) and Gill et al. (1986).

As mentioned above, to determine an appropriate optimization method (i.e., to select the
correct tool for the job), one must have some understanding of the system or model upon
which the optimization will be applied. One approach to this selection is to consider the
attributes of the system or model and proceed through somewhat of a classification process.
A good initial step in the classification is to determine if the system or model is linear or
nonlinear in either its objective function or its constraints. If the objective function and all
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constraints are linear, then linear optimization methods (e.g., linear programming) should
be applied. If either the objective function or any constraint is nonlinear, then the nonlinear
class of methods may be required. A further distinction is whether the independent variables
are constrained. If the feasible region is defined by constraints, constrained optimization
methods generally should be applied. In addition, if one or more of the independent variables
can only take on integer values, specialized integer programming methods may be required.

With respect to the economic modeling of CHP systems, life-cycle cost, or alternatively,
the life-cycle savings relative to some non-CHP alternative, as a function of installed equip-
ment capacity, has been shown to be convex and concave, respectively (Wong-Kcomt, 1992;
Czachorski et al., 2002). Therefore, using either life-cycle cost or savings as the objective
function necessitates a nonlinear optimization approach. Beyond this, consideration must
be given as to whether the current problem has independent variables that are constrained
to certain sets of values (i.e., equality constraints) or somehow bounded (i.e., inequality
constraints). In either case, constrained nonlinear optimization is generally performed by
converting the problem in such a way that it can be solved using unconstrained methods
(e.g., via Lagrangian multipliers or penalty methods) (Bazaraa et al., 1993). In this study,
the independent variables are installed equipment capacities, which are assumed to be con-
tinuous and non-negative. Thus, the only constraints are simple bounds, defined as xi ≥ 0.
Fletcher (1987) suggests a number of ways to handle such constraints, including variable
transformation (e.g., x= y2) and introduction of slack variables. With slack variables, a
problem of the type Maximize F (x) subject to xi ≥ 0 can be rewritten using slack variables
as Maximize F (x) subject to xi −w2

i = 0, where w2
i is a squared slack variable. The solution

can then follow through the development of the Karush–Kuhn–Tucker (KKT) conditions
and the Lagrangian function. It has been shown that for linear constraints and a concave
objective function, as in this study, the global optimum will be at a point satisfying the
KKT conditions (Bazaraa et al., 1993; Winston, 1994).

Another method to extend equality-constraint methods to inequalities is through the use
of a generalized reduced gradient (GRG) approach. The reduced gradient method seeks to
reduce the number of degrees of freedom, and therefore, free variables, that a problem has
by recognizing the constraints that are active (i.e., at their bounds) during each iteration. If
a variable is at an active bound, it is excluded from calculations related to the determination
of the incremental solution step. If no variables are at active constraints, the GRG method
is very similar to the standard quasi-Newton method for unconstrained variables.

There are a number of methods available to perform unconstrained nonlinear optimiza-
tion. A central distinction is whether the method relies on derivatives of the objective func-
tion. If derivatives are not available or are computationally difficult to obtain, nonderivative
methods can be employed. Such methods are also needed when the objective function or
gradient vector is not continuous. Methods that rely solely on function comparison are con-
sidered direct search methods (Gill et al., 1986). A common direct search method is the
polytope or Nelder–Mead method in which prior functional evaluations are ordered such
that the next iteration is a step in the direction away from the worst point in the current set
of points. Another nonderivative method is the Hook and Jeeves method, which performs
exploratory searches along each of the coordinate directions followed by pattern searches
defined by the two most recent input vectors. The main disadvantage of these direct search
methods is that they can be very slow to converge.

The two direct search methods mentioned above are considered sequential methods in
that new trial inputs are the product of the previous result. Another class of the direct
search method is the simultaneous direct search in which the trial points are defined a
priori (Bazaraa et al., 1993). For variables in two dimensions, an example of this method
would be a grid-pattern search, which is employed in this particular study.
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If objective function derivatives are available, other, more efficient, methods can be
brought to bear. One of the most fundamental procedures for optimizing a differentiable
function is the method of steepest descent, also called the gradient method. In this method,
the search direction is always the negative gradient, and the step size is calculated to mini-
mize the objective function (assuming the function is convex). This is repeated until a stop-
ping criterion, such as the gradient norm, is sufficiently small. However, it has been shown
that following the direction of steepest descent does not necessarily produce rapid conver-
gence, particularly near a stationary point, and that other derivative methods perform better
(Bazaraa et al., 1993; Bartholomew-Biggs, 2005). For large problems (i.e., those with more
than 100 decision variables), the conjugate gradient method is useful as it does not require
storage of large matrices (Bazaraa et al., 1993). As this method is typically less efficient
and less robust than other methods, and as the current problem concerns a small number
of independent variables, the conjugate gradient method was not used for this application.

The remaining methods of interest are the Newton method and the related quasi-Newton
method. The Newton method has been shown to be very efficient at unconstrained nonlinear
optimization if the objective function has continuous first and second derivatives. If first
and second derivatives are available, a Taylor-series expansion in the first three terms of
the objective function yields a quadratic model of objective function that can subsequently
be used to define a Newton direction for function minimization. As long as the Hessian
is positive definite and the initial input values are in the neighborhood of the optimum,
Newton’s method converges to the optimum quadratically (Gill et al., 1986).

Due to the discrete form of the model in this study, analytical expressions for first and
second derivatives are not available. In these situations, derivatives can be approximated
using finite difference techniques. The lack of an exact expression for second derivatives
means that curvature information, typically provided by calculating the Hessian matrix, is
not directly available for use in a Newton method. The solution to this problem is to utilize
the well-known quasi-Newton method, in which an approximation to the inverse Hessian is
successively built-up during the iteration process. While typically expecting the first deriva-
tive to be analytically available in a quasi-Newton method, the additional lack of explicit
first derivatives to form the gradient does not appear to be a fatal impediment. Van der
Lee et al. (2001) successfully used this approach in studying the optimization of thermo-
dynamic efficiency in power plant steam cycles. As Gill et al. (1986) state, “when properly
implemented, finite-difference quasi-Newton methods are extremely efficient, and display
the same robustness and rapid convergence as their counterparts with exact gradients.”

With respect to the iterative update of the Hessian matrix, a number of Hessian update
methods have been proposed over the years, including the Davidson–Fletcher–Powell (DFP)
method, the Powell–Symmetic–Broyden (PSB) update, and the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method. The literature indicates that the BFGS method is clearly
accepted as the most effective update method currently available (Gill et al., 1986; Nocedal,
1992; Zhang and Xu, 2001; Bertsekas, 2004; Yongyou et al., 2004). Details of the BFGS algo-
rithm will be provided in the following section.

A final element related to the quasi-Newton method is the use of line search methods
when the full quasi-Newton step produces an objective function response that does not
make satisfactory progress relative to the previous iteration, thus possibly indicating the
passing of a local optimum. In that case, a “backtracking” process along the step direction
is needed. As discussed by Dennis and Schnabel (1983), the backtracking approach should
conform to the Armijo and Goldstein (AG) conditions to ensure satisfactory convergence.
Dennis and Schnabel provide the classic quadratic fit using three previously calculated
function values to solve for the optimum quasi-Newton step multiplier, followed by the
cubic spline fit, should the new quadratic step not meet AG conditions.
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It should be noted that the quadratic/cubic fit method is but one method to determine
an appropriate step value. While less efficient in terms of computational requirements, line
search methods that do not rely on the gradient, or in this case, an approximation to the
gradient, can also be used. Sequential search methods such as the Fibonacci and related
Golden section methods can be utilized to determine an acceptable step multiplier (Bazaraa
et al., 1993).

19.11 Design of a Model for Optimization
of CHP System Capacities

This section provides a detailed explanation of the simulation model as well as the approach
used to determine an optimum set of equipment capacities for a CHP system. Similar to the
approach used by Edirisinghe et al. (2000) and Yokoyama et al. (1991), the model consists
of two nested sections: an outer, controlling optimization algorithm and an inner operation
simulation routine. The overall flow of the optimization model is shown in Figure 19.4.
Starting with an initial “guess” for the installed electrical generator and absorption chiller
capacities, an hour-by-hour operation simulation is performed to develop a value of the
objective function for the given generator and chiller capacities. Within the optimization
algorithm, a stopping criterion is used to control the updating of the optimization routine
and subsequent iterative looping back to the operation simulation with a new set of can-
didate installed capacities. The optimization algorithm seeks to maximize the net present
value (NPV) savings produced by using the CHP system relative to a non-CHP scenario
(where electricity is obtained solely from the grid and heating loads are met by an on-site
boiler). The maximization of NPV savings (i.e., maximization of overall profitability) is an
appropriate method for evaluating mutually exclusive alternatives (Sullivan et al., 2006).

In recognition of the problems identified earlier regarding the use of average or aggre-
gated demand data (Gamou et al., 2002; Hudson and Badiru, 2004), this approach utilizes
demand data expressed on an hourly basis, spanning a 1-year period. Use of hourly data
has the advantage of explicitly capturing the seasonal and diurnal variations, as well as
non-coincident behaviors, of electrical and thermal loads for a given application. In many
cases, actual hourly demand data for an entire year may not be available for a specific site.

Define initial capacities vector 

Perform hourly operations 
simulation (see Fig. 19.5) 

Stopping criterion achieved? 

Perform BFGS update and 
calculate revised input vector 

Display optimal solution 

Yes

No

FIGURE 19.4 Overview flow chart for optimization model.
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TABLE 19.8 Input Variables Used in Operation Simulation Model
Variable Typical Units

Facility loads
Hourly electrical demand (non-cooling related) kW
Hourly heating demand Btu/h
Hourly cooling demand Btu/h

Electric utility prices
Demand charge $/kW-month
Energy charge $/kWh
Standby charge $/kW-month

On-site fuel price (LHV basis) $/MMBtu
Equipment parameters

Boiler efficiency (LHV) Percent
Conventional chiller COP Without units
Absorption chiller (AC) COP Without units
Absorption chiller (AC) capacity RT
AC minimum output level Percent
AC system parasitic electrical load kW/RT
Distributed generation (DG) capacity, net kW
DG electric efficiency (LHV) at full output Percent
DG minimum output level Percent
DG power/heat ratio Without units
Operating and maintenance (O&M) cost $/kWh
Number of DG units Units
DG capital cost $/kW installed
AC capital cost $/RT installed

General economic parameters
Planning horizon Years
Discount rate Percent/year
Effective income tax rate Percent

In these situations, building energy simulation programs, such as Building Energy Analyzer
or BCHP Screening Tool, are available that can develop projected hourly loads for electricity,
heating, and cooling on the basis of building application, size, location, and building design
attributes (e.g., dimensions, insulation amounts, glazing treatments) (InterEnergy/GTI,
2005; Oak Ridge National Laboratory, 2005).

The data needed to simulate the operation of a CHP system are shown in Table 19.8. The
input for the hourly facility electrical demand should include all facility electrical demand
except for cooling-related demand. As cooling may be provided by an absorption chiller
under CHP operation, electrical demand related to cooling is calculated explicitly within
the simulation model. For the hourly heating and cooling demands, the input values are
expressed on an end-use, as-consumed thermal basis.

The prices for utility-supplied electricity typically have a price component related to the
amount of energy consumed (i.e., an energy charge) as well as a component proportional
to the monthly peak rate of energy consumed (i.e., a demand charge). Some utilities will
price their electricity at different rates to those who self-generate a portion of their electrical
needs. In addition, some electric utilities charge a monthly standby fee for the availability
of power that may be called upon should the distributed generation not be available. Utility
tariff structures can also have unit prices that vary both seasonally and diurnally. Similar
to electricity rates, the unit price for on-site fuel may be different for those who operate a
CHP system.

The fuel assumed for on-site distributed generation and on-site water/steam heating in
this study is natural gas, expressed on a $/million Btu (MMBtu) lower heating value (LHV)
basis. The heating value of natural gas refers to the thermal energy content in the fuel,
which can be expressed on a higher heating value (HHV) or lower heating value basis. The
difference in the two heating values relates to the water formed as a product of combustion.
The higher heating or gross value includes the latent heat of vaporization of the water vapor.
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The lower heating or net value excludes the heat that would be released if the water vapor
in the combustion products were condensed to a liquid. As DG/CHP systems try to limit
exhaust vapor condensation due to corrosion effects, the usable heat from natural gas is
typically the LHV. In the United States, natural gas is typically priced on a HHV basis, so
care should be used in entering the proper value. For natural gas, the conversion between
HHV and LHV is

heat contentHHV = heat contentLHV × 1.11 (Petchers, 2003)

The definitions for the equipment and economic parameters listed in Table 19.8 are as
follows:

Boiler efficiency—The thermal efficiency of the assumed on-site source of thermal
hot water/steam (e.g., boiler) for the baseline (non-CHP) scenario, expressed on
an LHV basis.

Conventional chiller COP—The coefficient of performance (COP) for a conven-
tional electricity-driven chiller. It is determined by dividing the useful cooling
output by the electrical energy required to produce the cooling, adjusted to con-
sistent units.

Absorption chiller COP—The coefficient of performance for the CHP system
absorption chiller. It is determined by dividing the useful cooling output by the
thermal energy required to produce the cooling, adjusted to consistent units.
Parasitic electrical support loads (e.g., pump and fan loads) are addressed sepa-
rately.

Absorption chiller capacity—The installed capacity of the absorption chiller in
refrigeration tons (RT). This is an independent variable in the model.

AC minimum output level—The minimum percent operating level, relative to full
output, for the absorption chiller. This is also known as the minimum turndown
value.

AC system parasitic electrical load—The electrical load required to support the
absorption chiller. The chiller load should include the chiller solution pump, the
AC cooling water pump, and any cooling tower or induced draft fan loads related
to the AC.

Distributed generation (DG) capacity—The installed capacity of the distributed
electrical generator (i.e., prime mover), expressed in net kilowatts. This is an
independent variable in the model.

DG electric efficiency (LHV) at full output—The electricity production effici-
ency of the DG prime mover at full output. This efficiency can be determined by
dividing the electricity produced at full output by the fuel used on a LHV basis,
adjusted to consistent units.

DG minimum output level—The minimum percent operating level, relative to full
output, for the DG unit. Also known as the minimum economic turndown value.

DG power/heat ratio—The ratio of net electrical power produced to useful thermal
energy available from waste heat, adjusted to consistent units.

O&M cost—The operating and maintenance cost of the total cooling, heating, and
power system, expressed on a $/kWh of electricity generated basis.

Number of DG units—The number of prime mover units comprising the system.
Currently, the model is limited to no more than two units, each identical in size
and performance. The optimum capacity determined by the model is the total
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capacity of the CHP system, and for a two-unit system, that capacity is split
equally between the units.

DG capital cost—The fully installed capital cost of the distributed generation sys-
tem, expressed on a $/net kW basis.

AC capital cost—The fully installed capital cost of the absorption chiller system,
expressed on a $/RT basis.

Planning horizon—The assumed economic operating life of the CHP system. The
default value is 16 years to be consistent with U.S. tax depreciation schedules for
a 15-year property. Currently, 16 years is the maximum allowed planning horizon
in the model.

Discount rate—The rate used to discount cash flows with respect to the time-value
of money.

Effective income tax rate—The income tax rate used in income tax-related calcu-
lations such as depreciation and expense deductions. The effective rate reflects
any relevant state income tax and its deductibility from federal taxes.

The general flow of calculations within the operation simulation is shown in Figure 19.5.
Once the electrical and thermal loads and general equipment/economic parameters are
defined for each iteration of the optimization routine, a trial set of distributed generator
and absorption chiller capacities are provided to the operations simulator. Two separate
simulations must be performed. First, the hour-by-hour costs for satisfying the thermal
and electric loads solely by a traditional utility grid/on-site boiler arrangement must be

Define input parameters 

Simulate non-CHP scenario 

Simulate CHP scenario 

For each hour, determine 
operational status of CHP 

system

Sum hourly costs to form 
annual operation costs for CHP 

and non-CHP scenarios 

Combine capital and operating 
costs to form net present value 

(NPV) savings 

FIGURE 19.5 Operation simulation flow chart.
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calculated. This is referred to as the non-CHP or grid-only scenario. In the non-CHP sce-
nario, grid-supplied electricity is assumed to support all facility loads, including cooling but
excluding heating. Heating is assumed to be provided by an on-site fossil-fired boiler. A
second, separate calculation develops the hour-by-hour costs of meeting at least some part
of the specified loads with a CHP system. The degree of contribution of the CHP system is
determined hourly by the relative cost of using the CHP system (i.e., making) to satisfy the
loads versus the traditional grid-purchase/on-site boiler operation (i.e., buying). If the oper-
ation of the CHP system is less expensive in a given hour than the grid/boiler approach, the
CHP system will supply the loads, with the grid/boiler providing any supplemental energy
needed to satisfy that hour’s load. If the operation of the CHP system is more expensive,
loads are satisfied in the traditional grid-purchase manner for that hour. As the price of
grid-based electricity can change depending upon the time-of-day, this test is performed for
each hour of the year. With typical time-of-day rates, the CHP system generally operates
during the workday hours and is offline during the night.

Relative to the non-CHP scenario, developing the annual cost for a CHP-based system
is substantially more complicated. There can be utility surcharges (e.g., standby fees) that
are imposed as a result of operating self-generation equipment. In addition, the unit pricing
for electricity may be different for customers using a CHP system than for those buying
all their supply solely from the utility. The operational considerations related to the CHP
system are of considerable influence as well. As an example, the fuel efficiency of electri-
cal generation equipment is directly proportional to the relative output level. Typically,
the highest efficiency (i.e., most electricity produced for the least fuel consumed) is at or
near full-rated output. Depending upon the type of prime mover, electrical efficiencies at low
part-load can be 65%–75% of full-load efficiency. As a result, there is a general lower limit on
part-load operations. A typical minimum operating value is 50% of rated unit capacity. The
limit becomes influential when the electrical demand is less than 50% of the rated unit capac-
ity, requiring that electricity be purchased from the grid. Thus, there is an economic trade-off
related to the size of the CHP generation capacity. A CHP system sized to meet peak elec-
trical or thermal loads will incur higher utility standby charges and will have less ability to
operate during periods of low demand. Conversely, a smaller sized system may be able to
operate a larger fraction of time, but may result in a higher fraction of unmet load for the
facility (resulting in higher utility purchases, typically at peak pricing). The economics are
further influenced by the direct relationship of CHP electrical generation capacity and useful
thermal energy available. Smaller electrical capacity means less useful thermal byproduct,
which might then require more supplemental gas-boiler or electric chiller operation.

At the CHP/non-CHP scenario level, two sets of annual operating costs are then deter-
mined by summing the relevant hourly costs of meeting thermal and electric demands from
either the grid and on-site boiler solely (i.e., the non-CHP scenario) or from CHP opera-
tions. A differential annual operating cost (or net annual savings, if the CHP scenario is
less costly than the non-CHP scenario) is determined based on the annual cost difference
between the non-CHP scenario and the CHP-available scenario. A net present value is then
determined by calculating the present worth of the net annual savings over the number of
years defined by the planning horizon at the defined discount rate and adding the installed
capital costs of the CHP system, adjusted for income tax effects (e.g., depreciation).

As stated earlier, the planning horizon for this model can be up to 16 years. Unit prices
for electricity and gas, as well as O&M unit costs, are not likely to remain constant over
such a long period. Similarly, it is possible that electrical or thermal loads may change over
such a period. As a result, the ability to reflect escalating unit prices and possible load
changes is needed. As annual operations are calculated on an hourly basis, performing an
explicit calculation for every hour within a 16-year duration would require 140,160 hourly
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calculations. It was felt that explicitly performing 140,160 hourly calculations would be
intractable in the Excel platform. A solution to this dilemma was to express the variables
that are subject to escalation as levelized values. A common method used in public utility
economic analysis, a levelized value is determined by calculating the present value of the
escalating annual stream and then applying an annual capital recovery factor to produce
the levelized annual equivalent value (Park and Sharp-Bette, 1990). The levelized values are
then used in the operation simulation calculations. Thus, in the material that follows, unless
explicitly stated, values for electricity and gas unit prices, thermal and electric loads, unit
O&M costs, and the resulting annual costs should be considered annual levelized values,
spanning the duration of the planning horizon.

19.12 Capacity Optimization

As mentioned, the optimization goal is to maximize NPV cost savings by determining the
optimum installed capacities for the electricity generation system and the absorption chiller.
Given that only objective function values are directly available in this computational model
(i.e., no analytical expressions for first or second derivatives), it is felt that, based on a
review of current literature, the use of a quasi-Newton method with BFGS updates of the
inverse Hessian is the most appropriate approach.

The quasi-Newton method is a variant of the Newton method and can be found in any
good nonlinear optimization textbook (Gill et al., 1986; Fletcher, 1987; Bazaraa et al.,
1993; Bertsekas, 2004; Bartholomew-Biggs, 2005). The Newton method relies on a three-
term Taylor approximation of an assumed quadratic behavior of the objective function. As
such, the quadratic model of the objective function, F , can be expressed as

F (xk + p) ≈ Fk + gT
k p +

1
2
pT Gkp

where g, p, and G are the gradient (Jacobian) in x, step direction, and Hessian in x,
respectively. As we seek to find a stationary point of the function with respect to the step
direction p, the objective function can be rewritten in p as

F (p) = gT
k p +

1
2
pT Gkp

A necessary condition for a stationary point is that the gradient vector vanishes at that
point. Thus,

∇F (p) = gk + Gkp = 0 or p = −G−1
k gk

If G is positive definite, then conditions are sufficient to state that p can be a minimum sta-
tionary point (Gill et al., 1986). In the case of maximization, G should be negative definite.
The Newton method requires, however, that the Hessian of the objective function be known
or determinable. In the current problem, the Hessian cannot be determined analytically.
Thus, we rely on a sequential approximation to the Hessian as defined by the quasi-Newton
method.

The typical quasi-Newton method assumes that the gradient of the objective function is
available. The model used in this study has no analytic representation of either first or second
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derivatives. In this situation, a forward-difference approximation must be used to estimate
the gradient vector. For the ith independent variable, xi, the gradient is estimated by

gi =
1
h

(F (xi + h) − F (xi))

where h is the finite-difference interval. For this study, a finite-difference interval of 10−4

was selected after evaluating choices ranging from 10−2 to 10−6.
The general outline of the quasi-Newton method for maximization (Bartholomew-Biggs,

2005) is as follows:

• Choose some xo as an initial estimate of the maximum of F (x).
• Set the initial inverse Hessian, H0, equal to the negative identity matrix (an

arbitrary symmetric negative definite matrix).
• Repeat for k = 0, 1, 2, . . . .

– Determine gk = ∇F (xk) by forward-difference approximation.
– Set the step length scalar, λ, equal to 1.
– Calculate the full step direction pk = −Hkgk.
– Evaluate whether the full step is appropriate by comparing F (xk + λpk) to

F (xk). If F (xk + λpk) < F (xk) + ρλgT
k pk, solve for the step length λ that

produces a univariate maximum F (λ) for 0 ≤ λ ≤ 1.
– Set xk+1 = xk + λpk, yk = gk+1 − gk, dk = xk+1 −xk.
– Evaluate stopping criteria, and if not achieved,
– Update the approximate inverse Hessian such that Hk+1yk = dk.
– Increment k.

The stopping criteria used in this model are consistent with prior work by Edirisinghe et al.
(2000) and Kao et al. (1997), in which the algorithm is terminated when either the change
(i.e., improvement) in the objective function is less than a prescribed threshold amount
or when the gradients of the objective function at a particular input vector are zero. The
setting of the termination threshold value is a matter of engineering judgment. If a value
is chosen that requires very small changes in the objective function before termination, the
algorithm can cycle for a large number of iterations with very little overall improvement in
the objective function. Conversely, a more relaxed threshold value can terminate the opti-
mization algorithm prematurely, producing a suboptimal solution. A balance must therefore
be struck between long execution times and less than total maximization of the objective
function. As the objective function in this study is NPV cost savings over a multiyear
period, one must select a value at which iterative improvements in NPV cost savings are
considered negligible. There are two approaches used in setting this termination threshold.
First, on an absolute basis, if the iterative improvement of the NPV cost savings is less than
$50.00, it is considered reasonable to terminate the algorithm. In some cases, however, this
absolute value can be a very small percentage of the overall savings, thus leading to long
execution times with little relative gain. The second termination approach is based upon
a relative measure on the objective function. If the change in NPV cost savings between
iterations is greater than $50.00, but less than 0.00001 times the objective function value,
then the algorithm terminates under the assumption that a change of less than 0.001% is
insignificant.
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In some situations, the objective function can exhibit multiple local optima of low magni-
tude relative to the average value within a neighborhood around the stationary point (i.e.,
low-level noise of the objective function). When this occurs, a means to help avoid getting
“trapped” in a near optimum response space, particularly when the response surface is
relatively flat, is to require two or three consecutive iterative achievements of the stopping
criterion (Kim, D., personal communication, 2005). For this study, two consecutive achieve-
ments of the stopping criterion detailed in the previous paragraph were required to end the
optimization process. In some cases with multiple local optima, the model may find a local
optimum rather than the global optimum. A useful technique to improve the solution is to
try different starting points for the optimization (Fylstra et al., 1998).

The updating of the matrix H, representing a sequential approximation of the inverse
Hessian, is done using the BFGS method. As mentioned earlier, the BFGS update method
is clearly considered to be the most efficient and robust approach available at this time.
The BFGS formula for Hk+1, as presented by Zhang and Xu (2001) and Bartholomew-
Biggs (2005), is:

Hk+1 = Hk − HkykdT
k + dkyT

k Hk

dT
k yk

+
[
1 +

yT
k Hkyk

dT
k yk

]
dkdT

k

dT
k yk

There are a number of methods that can be employed in the backtracking search for
the Newton step length λ that produces a maximum in the objective function. In this
study, a quadratic and cubic spline fit was evaluated, but the method was not stable under
some input conditions or required a large number of iterations before reaching the stopping
criterion. This appears to be due to the lack of strict concavity of the objective function.
As a result, the Golden sequential line search method was selected for its accuracy and
stability. The Golden search was terminated when the interval of uncertainty (IOU) for
the step length λ became less than 0.025. It should be noted that the step length can
be unique to each variable rather than being a single scalar value. Such an approach was
explored, but the additional computations did not seem to produce sufficiently improved
results (i.e., faster optimization) to merit incorporating the approach in the final model.

To provide visual guidance regarding the surface behavior of the objective function within
the overall solution space, a simultaneous uniform line search method was utilized as well.
Using a 21 × 7 (electric generator capacity × absorption chiller capacity) grid, grid step sizes
were selected to evaluate the complete range of possible CHP equipment capacities (i.e.,
0 ≤ size ≤ max load) for both the distributed generator and the absorption chiller. For each
of the 147 cells, the capacity combination was used as an explicit input to the simulation
model to determine the corresponding NPV cost savings. A contour plot of the NPV cost
savings was produced to graphically display the overall solution space.

As mentioned earlier, there are simple lower bound constraints that require the capacities
of the distributed generator and absorption chiller to be greater than or equal to zero. In an
unconstrained method, it is possible that the direction vector could propose a solution that
would violate the lower bound. This model checks for this condition, and if present, sets the
capacity value to zero. As an added element to improving the efficiency of the algorithm,
if the capacity of the distributed generation is set to zero, the capacity of the absorption
chiller is also set to zero, as DG capacity is the energy source to operate the absorption
chiller. This approach does not violate the quasi-Newton method as the effect of zeroing the
capacity when a negative capacity is suggested is equivalent to reducing the Newton step
size for that iteration. In this situation, the new xk+1 point is set to zero, and gradients
are calculated at the new input vector for use in the quasi-Newton algorithm. Should the
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economic conditions of the problem be such that the maximum objective function (given
the lower bound constraints) is truly at zero capacity for the distributed generator, the next
iteration will yield the same adjusted input vector (owing to a direction vector pointing into
the negative capacity space) and same NPV cost savings, which will appropriately terminate
the optimization on the basis of similar NPV results, as discussed above.

19.13 Implementation of the Computer Model

To provide useful transparency of the calculations, the methods were implemented using
Microsoft Excel. Excel spreadsheets allow others to view the computational formulae, which
enhances understanding and confidence in the modeling approach. In addition, Microsoft
Excel is a ubiquitous platform found on most personal computer (PC) systems. The model
in this study, named the CHP Capacity Optimizer, was developed using Microsoft Office
Excel 2003 on a PC running the Microsoft Windows XP Professional operating system
(version 2002). The model makes use of Excel’s Visual Basic for Applications (VBA) macro
language to control movement to various sheets within the overall spreadsheet file and to
initiate the optimization procedure. The Excel model and User’s Manual are available from
the author or can be downloaded from the Internet (search “CHP capacity optimizer”).

19.13.1 Example Calculation

As an example of the use of the optimization tool, the potential use of CHP at a hospi-
tal in Boston, Massachusetts, will be evaluated. The hospital consists of five stories with
a total floor area of 500,000 square feet. The maximum electrical load is 2275 kW; the
maximum heating load is 17 million Btu/h; and the maximum cooling load is 808 refrigera-
tion tons (RT). Hourly electrical and thermal demands for the facility were obtained using
the building simulator program, Building Energy Analyzer (InterEnergy/GTI, 2005). Grid-
based electricity prices were based on the Boston Edison T-2 time-of-use tariff. The price
of natural gas in the initial year of operation was assumed to be $11.00/million Btu. Esca-
lation assumptions, expressed in percent change from the previous year, for this example
are provided in Table 19.9.

Other data needed to calculate the optimum capacity relate to equipment cost and per-
formance and general modeling behavior (e.g., discount rate, planning horizon). The data
assumed for the hospital in Boston are shown in Table 19.10.

TABLE 19.9 Sample Escalation Assumptions
Year Fuel Price (%) Elec Price (%) O&M Cost (%) Heat Load (%) Cool Load (%) Elec Load (%)

2 −0.5 0.5 0.5 0.0 0.0 0.0
3 0.0 1.0 0.5 0.0 0.0 0.0
4 0.0 1.0 0.5 0.0 0.0 0.0
5 0.0 1.0 0.5 0.0 0.0 0.0
6 0.0 1.0 0.5 0.0 0.0 0.0
7 0.5 0.5 0.5 0.0 0.0 0.0
8 0.5 0.5 1.0 0.0 0.0 0.0
9 0.5 0.5 1.0 0.0 0.0 0.0

10 0.5 0.5 1.0 0.0 0.0 0.0
11 0.5 0.5 1.0 0.0 0.0 0.0
12 1.0 1.0 1.0 0.0 0.0 0.0
13 1.0 1.0 1.0 0.0 0.0 0.0
14 1.0 1.0 2.0 0.0 0.0 0.0
15 1.0 1.0 2.0 0.0 0.0 0.0
16 1.0 1.0 2.0 0.0 0.0 0.0
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TABLE 19.10 General Data for the
Boston Hospital Case
On-site boiler efficiency 82.0%
Conventional chiller COP 3.54
DG electric efficiency (full output) 29.0%
DG unit minimum output 50%
Absorption chiller COP 0.70
Absorption chiller min. output 25%
Abs chiller sys elec req (kW/RT) 0.20
CHP O&M cost ($/kWh) 0.011
DG power/heat ratio 0.65
Number of DG units 1
Type of prime mover Recip
Discount rate 8.0%
Effective income tax rate 38.0%
DG capital cost ($/net kW installed) 1500
AC capital cost ($RT installed) 1000
Planning horizon (years) 16

Demands
Annual 12,406,742 kWh 37,074 MMBtu 1,617,306 RT-hr

TR808rh/utBMM0.71Wk5722mumixaM

TR0rh/utBMM15.0Wk439muminiM

Installed DG capacity: 1130.1 kW (net)
Installed AC capacity: 210.5 RT
Installed capital cost: $1,905,607

Hours of DG operation 6,717 hours/year
DG generated electricity 7,422,145 kWh/year
DG supplied heating 27,839 MMBtu/year
AC supplied cooling 535,793 RT-hr/year

With CHP No CHP
CHP system $1,056,847 $0
Utility elec $661,305 $1,785,547
Non-CHP fuel $125,137 $502,367
Total $1,843,290 $2,287,913

Annual operating savings (after tax): $275,666
$954,175

Optimum DG capacity: 1130.1 kW
Optimum AC capacity: 210.5 RT
NPV savings:

Cooling

NPV savings:

Annual costs (before tax)

$954,175

Electricity Heating

FIGURE 19.6 Optimization results for a Boston hospital.

The numeric results of the optimization are shown in Figure 19.6. At the top of the figure
is a summary of the electric and thermal loads, as estimated by the building simulation
program mentioned above. The optimal capacities for a reciprocating engine prime mover
and an absorption chiller are 1130 kW and 210.5 RT, respectively. As shown, the CHP system
operates for 6717 h each year, producing 60% of the total electricity and over 75% of the
total heating required by the facility. Owing to the relative economics of gas and electricity,
it is preferable that waste heat first go to satisfying heating demands before contributing
to cooling demands. As a result, only one-third of the total cooling demand is provided by
the CHP system. The levelized total annual operating cost savings from the CHP system
is $275,666/year. The resulting NPV cost savings, including capital investment, over the
16-year planning horizon is $954,175.

A summary of the operating frequency by hour of the day is provided in Figure 19.7. It can
be observed from the figure that the frequency of the CHP system operation is influenced
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FIGURE 19.7 Operation frequency by time of day.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

100

200

300

400

500

600

Generation capacity (kW)

A
bs

 c
hi

lle
r 

ca
pa

ci
ty

 (
R

T
)

($500,000)-($450,000) ($450,000)-($400,000) ($400,000)-($350,000) ($350,000)-($300,000) ($300,000)-($250,000) ($250,000)-($200,000)

($200,000)-($150,000) ($150,000)-($100,000) ($100,000)-($50,000) ($50,000)-$0 $0-$50,000 $50,000-$100,000 

$100,000-$150,000 $150,000-$200,000 $200,000-$250,000 $250,000-$300,000 $300,000-$350,000 $350,000-$400,000 

$400,000-$450,000 $450,000-$500,000 $500,000-$550,000 $550,000-$600,000 $600,000-$650,000 $650,000-$700,000 

$700,000-$750,000 $750,000-$800,000 $800,000-$850,000 $850,000-$900,000 $900,000-$950,000 $950,000-$1,000,000 

FIGURE 19.8 Optimization contour plot for a Boston hospital.

heavily by the time-of-use electricity rates, which are higher during the normal workday
hours. Higher grid-based electricity rates increase the likelihood that the CHP system will
be the less expensive alternative, and therefore the one to be selected, during those hours.

A contour plot of the objective function surface for the hospital in Boston is shown
in Figure 19.8. Each iso-savings line represents a $50,000 increment. As shown, the surface
behavior near the optimum is relatively flat. From a practical standpoint, this is a
serendipitous result. Equipment capacities are offered in discrete sizes, and having a flat
objective function surface in the neighborhood of the optimum gives a degree of flexibility
in matching the calculated optimum set of capacities to near-values consistent with man-
ufactured equipment sizes. As an example, vendors currently offer a reciprocating engine
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TABLE 19.11 Summary Results
City Parameter Hospital Hotel Retail Store Supermarket

Boston Peak elec load (kW) 2275 1185 337 260
Peak chiller load (RT) 808 492 147 40
Optimal DG capacity (kW) 1130.1 417.2 118.3 117.7
Optimal AC capacity (RT) 210.5 88.3 35.9 6.9
NPV savings $954,175 $341,877 $57,945 $67,611
DG capacity % of peak load 50 35 35 45
AC capacity % of peak load 26 18 24 17

San Francisco Peak elec load (kW) 1949 1004 433 248
Peak chiller load (RT) 452 334 131 17
Optimal DG capacity (kW) 513.8 257.2 63.9 54.6
Optimal AC capacity (RT) 30.9 36.2 19.1 5.0
NPV savings $431,123 $212,726 $15,954 $42,666
DG capacity % of peak load 26 26 15 22
AC capacity % of peak load 7 11 15 29

prime mover at 1100 kW and an absorption chiller at 210 RT. Manually substituting these
capacities into the model produces a NPV cost savings of $951,861, which is a negligible
difference relative to the value determined for the optimum capacity. Not all cases may
have such a close match, but the flat gradient of the objective function near the optimum
provides a reasonably wide range for matching actual equipment.

19.14 Other Scenarios

Due to the variation in fuel and electricity prices, site weather, and electrical and thermal
loads of a specific facility, each potential CHP application will have a unique optimal solution
that maximizes economic benefit. To illustrate, similar optimization runs were made for
hotel, retail store, and supermarket applications in Boston as well as in San Francisco. It
is instructive to consider the results of these eight cases together, looking in particular at
the percent of peak load that the DG and AC optimum capacities represent. As shown
in Table 19.11, the percent of peak load represented by the optimum capacities varies
tremendously both by application and location. Thus, to maximize the economic benefit of
a CHP system, each application should be individually evaluated by the methods described
in this chapter.
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20.1 Introduction

The main objective of this chapter is to describe and review airline optimization from
an applied point of view. The airline industry was one of the first to apply operations
research methods to commercial optimization problems. The combination of advancements
in computer hardware and software technologies with clever mathematical algorithms and
heuristics has dramatically transformed the ability of operations researchers to solve large-
scale, sophisticated airline optimization problems over the past 60 years. As an illustration,
consider United Airlines’ eight fleet problem in Figure 20.1, which took nearly 9 h to solve
in 1975 on an IBM System 370 running Mathematical Programming System Extended
(MPSX), and only 18 s to solve in 2001 on an IBM Thinkpad running IBM’s Optimization
Subroutine Library (OSL) V3. Better models and algorithms supported by faster hardware
achieved more than four orders of magnitude improvement in solution time for this problem
instance over the course of 26 years.

In the subsequent sections, the state-of-the-art in the application of optimization to the
airline industry is given for solving traditional airline planning problems and is arranged
by functional area. The remainder of Section 20.1 presents an overview of the major his-
torical events in the airline industry environment, gives a description of the high-level busi-
ness processes for airline planning and operations, provides a representative list of major
airline optimization vendors, and illustrates select cases where airlines have adopted and
embraced optimization to realize productivity and efficiency gains and cost reductions. Sec-
tion 20.2 covers schedule planning including the four steps of schedule design, fleet assign-
ment, aircraft routing, and crew scheduling. Section 20.3 describes the four steps of revenue

20-1
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United Airlines
8 fleet problem

Source: IBM Research
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FIGURE 20.1 United Airlines’ eight fleet problem.

management, which consist of forecasting, overbooking, seat inventory control, and pric-
ing. Section 20.4 reviews aircraft load planning. Finally, Section 20.5 provides directions for
future research.

20.1.1 Airline Industry Environment

The Chicago Convention was signed in December 1944 by Franklin Roosevelt and his peers
to establish the basic rules for civil aviation. Over 60 years later, their vision of international
civil aviation as a means for fostering friendship and understanding among nations and
peoples worldwide has been realized. Air travel has not only become a common, affordable
means of transportation for developed countries, but it has also brought enormous benefits
to developing countries with potential for social progress and economic prosperity through
trade and tourism.

According to the Air Transport Action Group (ATAG), aviation transported, in 2004,
nearly 1.9 billion passengers and 38 million tons of freight worth $1.75 billion, which is over
40% of the world trade of goods by value [1]. Giovanni Bisignani, director general and CEO
of the International Air Transport Association (IATA), predicted that 2.2 billion passengers
will travel in 2006 during his speech at the State of the Industry Annual General Meeting
and World Air Transport Summit. International passenger traffic increased by 15.6% in
2004, driven primarily by a strong rebound in Asia from SARS-affected levels in 2003,
and by substantial increases in route capacity in the Middle East. However, international
passenger traffic is forecast to grow at an annual average rate of 5.6% from 2005 to 2009, but
may decline due to high oil prices [2]. Likewise, the 15.8% growth in international freight
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volumes in 2004 is expected to slow with an estimated forecast of a 6.3% annual average
growth rate between 2005 and 2009 [2].

Aviation generated nearly $3 trillion, equivalent to 8% of the world’s gross domestic
product (GDP), in 2004. The air transport industry employs 5 million people directly and
an additional 24 million indirectly or induced through spending by industry employees
globally. The world’s 900 airlines have a total fleet of nearly 22,000 aircraft [3], which serves
an estimated 1670 airports [4] using a route network of several million kilometers managed
by approximately 160 air navigation service providers [5]. Airbus forecasts that over 17,000
new planes will be needed by 2024 [6] and Boeing forecasts that over 27,000 new planes will
be needed by 2025 [7] to meet growing demand for air transport, to replace older fleet, and
to introduce more fuel-efficient planes.

Between 1944, when 9 million passengers traveled on the world’s airlines, and 1949, when
the first jet airliner flew, the modern era of airline optimization was born. George Dantzig
designed the simplex method in 1947 for solving linear programming formulations of U.S. Air
Force deployment and logistical planning problems. Applications to solve large-scale, real-
world problems, such as those found in military operations, enabled optimization to blossom
in the 1950s with the advent of dynamic programming (Bellman), network flows (Ford and
Fulkerson), nonlinear programming (Kuhn and Tucker), integer programming (Gomory),
decomposition (Dantzig and Wolfe), and the first commercial linear programming code
(Orchard-Hays) as described in Nemhauser [8].

The Airline Group of the International Federation of Operational Research Societies
(AGIFORS) was formed in 1961 and evolved from informal discussions between six air-
line operational research practitioners from Trans Canada, Air France, Sabena, BEA, and
Swissair. Today AGIFORS is a professional society comprised of more than 1200 members
representing over 200 airlines, aircraft manufacturers, and aviation associations dedicated to
the advancement and application of operational research within the airline industry. AGI-
FORS conducts four active study groups in the areas of cargo, crew management, strategic
and scheduling planning, and reservations and yield management, and holds an annual
symposium.

In the late 1960s and early 1970s, United Airlines, American Airlines, British Airways, and
Air France, recognizing the competitive advantage that decision technologies could provide,
formed operations research groups. As described by Barnhart, Belobaba, and Odoni, these
groups grew rapidly, developing decision support tools for a variety of airline applications,
and in some cases offering their services to other airlines [9]. Most major airlines worldwide
have launched similar groups.

A dramatic change in the nature of airline operations occurred with the Airline Deregula-
tion Act of 1978 led by the United States. This Act is widely credited for having stimulated
competition in the airline industry. For example, the year 1986, which was marked by eco-
nomic growth and stable oil prices, saw the poor financial results of major airlines. This was
just a symptom of the increased competitive pressures faced by the carriers. Effective 1997,
the European Union’s final stage of deregulation allows an airline from one member state
to fly passengers within another member’s domestic market. Since 1978, other important
forces such as the rising cost of fuel, the entrance of low-cost carriers into the market, the
abundance of promotional and discount fares, and consolidations have significantly shaped
the competitive landscape of the airline industry. Hundreds of airlines have entered into
alliances and partnerships, ranging from marketing agreements and code-shares to fran-
chises and equity transfers, resulting in globalization of the industry. According to IATA,
the three largest airline alliances combined today fly 58% of all passengers traveling each
year, including Star Alliance (425 million passengers/year, 23.6% market share), Skyteam
Alliance (372.9 million passengers/year, 20.7% market share), and oneworld (242.6 million
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passengers/year, 13.5% market share). Alliances between cargo airlines are also taking
place—for example, WOW Alliance and SkyTeam Cargo.

20.1.2 Airline Planning and Operations Business Processes

Business processes for airline planning and operations may be described by four high-level
processes as shown in Figure 20.2. First, resource planning consists of making strategic
decisions with respect to aircraft acquisition, crew manpower planning, and airport resources
such as slots. Resource planning is typically performed over a 1–2-year time horizon prior
to the day of operations. Due to the competitive and proprietary nature of the data, little is
published about strategic planning. Second, market planning and control consists of schedule
design, fleet assignment, and yield management decisions. Market planning and control is
typically performed over a 6 months’ time horizon. Third, operations planning consists
of making operational decisions with respect to aircraft routing and maintenance, crew
resources, and airport operations. Operations planning is typically performed over a 1-month
time horizon. Fourth, operations control consists of making tactical decisions with respect to
aircraft rerouting, crew trip recovery, airport operations, and customer service. Operations
control is typically performed over a 2-week time horizon and includes the day of operations.

20.1.3 Airline Optimization Solutions

Any discussion of airline optimization would not be complete without mentioning some of
the major vendors in this space. While not exhaustive, this list is representative. First, global
distribution systems (GDS) are operated by airlines to store and retrieve information and
conduct transactions related to travel, such as making reservations and generating tickets.
Four GDS dominate the marketplace: Amadeus (founded in 1987 by Air France, Iberia,
Lufthansa, and SAS and now owned by InterActive Corporation, which also owns Expedia),
Galileo International (founded in 1993 by 11 major North American and European airlines
and acquired in 2001 by Cendant Corporation, which also owns Orbitz), Sabre (founded
in 1960, it also owns Travelocity), and Worldspan (founded in 1990 and currently owned
by affiliates of Delta Air Lines, Northwest Airlines, and American Airlines). Sabre also
offers solutions for pricing and revenue management, flight and crew scheduling, operations
control, among others.

Second, revenue management, also referred to as yield management, is the process of
comprehending, predicting, and reacting to consumer behavior to maximize revenue. PROS
Revenue Management is a market leader in revenue optimization. Their product suite
includes forecasting demand, optimizing the allocation of inventory, providing dynamic
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FIGURE 20.2 Airline planning and operations business processes.
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packaging, and offering dynamic pricing. Recently JDA Software Group acquired Manugis-
tics, another leading provider of solutions for demand management, pricing, and revenue
management.

Third, the airline industry has seen a wave of consolidation of schedule planning providers.
Jeppesen, a wholly owned subsidiary of Boeing Commercial Aviation Services, acquired
Carmen Systems and its portfolio of manpower planning, crew pairing, crew rostering, crew
tracking, crew control, fleet control, passenger recovery, and integrated operations control
modules in 2006. Kronos purchased AD OPT Technologies’ suite of customized crew plan-
ning, management, and optimization solutions for the airline industry in 2004. Navitaire, a
wholly owned Accenture business that hosts technology solutions for reservations, direct dis-
tribution, operations recovery, decision-support and passenger revenue accounting, acquired
Caleb Technologies (operations recovery decision-support and resource planning systems)
in 2004 and Forte Solutions (operations and crew management control) in 2005.

Finally, a number of general purpose modeling and optimization tools are available includ-
ing Dash Optimization’s Xpress-MP, the IBM Optimization Solutions and Library, and
ILOG’s CPLEX.

20.1.4 Benefits of Airline Optimization

The practice of airline optimization has yielded significant business benefits. For example,
the fractional aircraft operations system designed and developed by AD OPT Technologies,
Bombardier, and GERAD to simultaneously maximize the use of aircraft, crew, and facili-
ties generated an initial savings of $54 million with projected annual savings of $27 million
as reported by Hicks et al. [10]. UPS claims savings of more than $87 million over 3 years for
a system co-developed with MIT to optimize the design of service networks for delivering
express packages by simultaneously determining aircraft routes, fleet assignments, and pack-
age routings as given in Armacost et al. [11]. The CrewSolver system developed by CALEB
Technologies for recovering crew schedules in real-time when disruptions occur has saved
Continental an estimated $40 million for major disruptions alone, as presented in Yu et al.
[12]. Air New Zealand and Auckland University teamed to develop a suite of systems to
optimize the airline’s crew schedules, which has resulted in an annual savings of $10 million
as explained in Butchers et al. [13]. Subrahmanian et al. [14] provide an account of solving
a large-scale fleet assignment problem with projected savings to Delta Air Lines of $300
million over 3 years. According to Robert Crandell, the former president and chairman of
American Airlines, yield management was the single most important technical development
in transportation management since airline deregulation in 1979 and is estimated to have
generated $1.4 billion in incremental revenue in 3 years, with projected annual savings of
more than $500 million for the airline as quoted in Smith et al. [15]. These are but a few
of many examples demonstrating the tremendous business impact and potential of airline
optimization.

20.2 Schedule Planning

The problem of airline scheduling is among the largest and most complex of any indus-
try. Airline scheduling includes determining the concurrent flows of passengers, cargo, air-
craft, and flight crews through a space-time network, performing aircraft maintenance, and
deploying ground-based resources such as gates. The problem is further complicated by
air traffic control restrictions, noise curfews, company/union regulations, market structure
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(density, volume, and elasticity of demand), fare classes, and safety and security concerns.
The overarching objective in airline schedule planning is to maximize profitability.

Etschmaier and Mathaisel [16], Rushmeier and Kontogiorgis [17], Barnhart and Talluri
[18], Clarke and Smith [19], Klabjan [20], and Barnhart and Cohn [21] supply excellent
overviews of the airline schedule development process. Airline schedule planning is tradi-
tionally broken down into four steps in such a way as to make each step computationally
viable. No single optimization model has been formulated or solved to address the complex
schedule planning task in its entirety, although attempts have been made to solve combi-
nations of two or more of the steps in a single model. The steps in sequential order are:

1. Schedule Design—defining the markets to serve and how frequently, and deter-
mining the origin, destination, and departure times of flights.

2. Fleet Assignment—designating the aircraft size for each flight.
3. Aircraft Routing—selecting the sequence of flights to be flown by each aircraft

during the course of every day and satisfying maintenance requirements.
4. Crew Scheduling—assigning crews to flights.

Next, each of these steps will be described in more detail.

20.2.1 Schedule Design

The scheduling process starts with the schedule design. The schedule design constructs
the markets and how frequently to serve them, and determines the origin, destination,
and departure times of flights. In general, schedules are dictated largely by differences in
seasonal demand and to a smaller extent by month-to-month differences. Profitability and
feasibility are two important criteria that affect how a flight schedule is designed. Schedule
profitability is determined by the degree to which the origin–destination city pairs attract
revenue from passengers and cargo compared to the operational costs of transporting the
people and goods. Schedule feasibility is determined by the ability of the airline to assign
sufficient resources, such as airplanes, crew, and airport facilities, to the flights.

Construction of the schedule typically begins 1 year in advance of its operation and
6 months in advance of its publication. The schedule construction process encompasses
three steps:

1. Establishing the service plan (a list of routes and frequencies where factors
such as demand forecasts, competitive information, and marketing initiatives are
considered).

2. Developing an initial feasible schedule (establish flight departure and arrival times
while satisfying maintenance planning and resource constraints, such as the num-
ber of aircraft).

3. Iteratively reviewing and modifying the schedule based upon evaluations of new
routes, aircraft, or frequencies, and connection variations.

Decision support systems based upon operations research have been slow to develop
for schedule design, primarily because of the inherent complexity and problem size, the
lack of sufficient and timely data from the airline revenue accounting process, the method
for collecting and forecasting market demand, and the difficulty of predicting competing
airlines’ responses to market conditions. Published literature on airline schedule design is
sparse. One of the earliest descriptions of the schedule construction process can be found in
Rushmeier et al. [22]. Erdmann et al. [23] address a special case of the schedule generation
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problem for charter airlines, model the problem as a capacitated network design problem
using a path-based mixed integer programming formulation, and solve it using a branch-and-
cut approach. Armacost et al. [24,25] apply a composite variable formulation approach by
removing aircraft- and package-flow decisions as explicit decisions, and solve a set-covering
instance to the next-day-air network-design problem for United Parcel Service (UPS).

20.2.2 Fleet Assignment

Given a flight schedule and a set of aircraft, the fleet assignment problem determines which
type of aircraft, each having a different capacity, should fly each flight segment to max-
imize profitability, while complying with a large number of operational constraints. The
objective of maximizing profitability can be achieved both by increasing expected revenue,
for example, assigning aircraft with larger seating capacity to flight legs with high passenger
demand, and by decreasing expected costs, for example, fuel, personnel, and maintenance.
Operational constraints include the availability of maintenance at arrival and departure sta-
tions (i.e., airports), gate availability, and aircraft noise, among others. Assigning a smaller
aircraft than needed on a flight results in spilled (i.e., lost) customers due to insufficient
capacity. Assigning a larger aircraft than needed on a flight results in spoiled (i.e., unsold)
seats and possibly higher operational costs.

Literature on the fleet assignment problem spans nearly 20 years. For interested readers,
Sherali et al. [26] provide a comprehensive tutorial on airline fleet assignment concepts,
models, and algorithms. They suggest future research directions including the considera-
tion of path-based demands, network and recapture effects, and exploring the interactions
between initial fleeting and re-fleeting. Additional review articles on fleet assignment include
Gopalan and Talluri [27], Yu and Yang [28], Barnhart et al. [9], Clarke and Smith [19], and
Klabjan [20].

Several of the earliest published accounts are by Abara [29], who describes a mixed integer
programming implementation for American Airlines; Daskin and Panayotopoulos [30], who
present an integer program that assigns aircraft to routes in a single hub and spoke network;
and Subramanian et al. [14], who develop a cold-start solution (i.e., a valid initial assign-
ment does not exist) approach for Delta Airlines that solves the fleet assignment problem
initially as a linear program using an interior point method, fixes certain variables, and then
solves the resulting problem as a mixed integer program. Talluri [31] proposes a warm-start
solution (i.e., a valid initial assignment does exist) that performs swaps based on the number
of overnighting aircraft for instances when it becomes necessary to change the assignment
on a particular flight leg to another specified aircraft type. Jarrah et al. [32] propose a
re-fleeting approach for the incremental modification of planned fleet assignments. Hane
et al. [33] employ an interior point algorithm and dual steepest edge simplex, cost pertur-
bation, model aggregation, and branching on set-partitioning constraints with prioritized
branching order. Rushmeier and Kontogiorgis [17] focus on connect time rules and incor-
porate profit implications of connections to assign USAir’s fleets resulting in an annual
benefit of at least $15 million. Their approach uses a combination of dual simplex and a
fixing heuristic to solve a linear programming relaxation of the problem to obtain an ini-
tial solution, which in turn is fed into a depth-first branch-and-bound process. Berge and
Hopperstad [34] propose a model called Demand Driven Dispatch for dynamically assigning
aircraft to flights to leverage the increased accuracy of the flight’s demand forecast as the
actual flight departure time approaches.

Attempts have been made to integrate the fleet assignment model with other airline pro-
cesses such as schedule design, maintenance routing, and crew scheduling. Because of the
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interdependencies of these processes, the optimal solution for processes considered sepa-
rately may not yield a solution that is optimal for the combined processes.

For example, integrated fleet assignment and schedule design models have the potential
to increase revenues through improved flight connection opportunities. Desaulniers et al.
[35] introduce time windows on flight departures for the fleet assignment problem and solve
the multicommodity network by branch-and-bound and column generation, where the col-
umn generator is a specialized time-constrained shortest path problem. Rexing et al. [36]
discretize time windows and create copies of each flight in the underlying graph to repre-
sent different departure time possibilities and then solve using a column generator that is a
shortest path problem on an acyclic graph. Lohatepanont and Barnhart [37] present an inte-
grated schedule design and fleet assignment solution approach that determines incremental
changes to existing flight schedules to maximize incremental profits. The integrated sched-
ule design and fleet assignment model of Yan and Tseng [38] includes path-based demand
considerations and uses Lagrangian relaxation, where the Lagrangian multipliers are revised
using a subgradient optimization method.

Integrated fleet assignment and maintenance, routing, and crew considerations have the
potential for considerable cost savings and productivity improvements. Clarke et al. [39]
capture maintenance and crew constraints to generalize the approach of Hane et al. [33] and
solve the resulting formulation using a dual steepest-edge simplex method with a customized
branch-and-bound strategy. Barnhart et al. [40] explicitly model maintenance issues using
ground arcs and solve the integrated fleet assignment, maintenance, and routing problem
using a branch-and-price approach where the column generator is a resource-constrained
shortest path problem over the maintenance connection network. Rosenberger et al. [41]
develop a fleet assignment model with hub isolation and short rotation cycles (i.e., a sequence
of legs assigned to each aircraft) so that flight cancellations or delays will have a lower risk
of impacting subsequent stations or hubs. Belanger et al. [42] present both a mixed-integer
linear programming model and a heuristic solution approach for the weekly fleet assignment
problem for Air Canada in the case where homogeneity of aircraft type is desired over legs
sharing the same flight number, which enables easier ground service planning.

Models to integrate fleet assignment with passenger flows and fare classes adopt an
origin–destination-based approach compared to the more traditional flight-leg approach.
Examples of fleet assignment formulations that incorporate passenger considerations include
Farkas [43], Kniker [44], Jacobs et al. [45], and Barnhart et al. [46].

The basic fleet assignment model (FAM) can be described as a multicommodity flow
problem with side constraints defined on a time-space network and solved as an integer
program using branch-and-bound. The time-space network has a circular time line rep-
resenting a 24-hour period, or daily schedule, for each aircraft fleet at each city. Along
a given time line, a node represents an event: either a flight departure or a flight arrival. Each
departure (arrival) from the city splits an edge and adds a node to the time line at the depar-
ture (arrival + ground servicing) time. A decision variable connects the two nodes created
at the arrival and departure cities and represents the assignment of that fleet to that flight.

Mathematically, the fleet assignment model may be stated as follows, which is an adap-
tation of Hane et al. [33] without required through-flights (i.e., one-stops). The objective is
to minimize the cost of assigning aircraft types to flight legs as given in Equation 20.1. To
be feasible, the fleet assignment must be done in such a way that each flight in the schedule
is assigned exactly one aircraft type (i.e., cover constraints as given in Equation 20.2), the
itineraries of all aircraft are circulations through the network of flights that can be repeated
cyclically over multiple scheduling horizons (i.e., balance constraints as given in Equa-
tion 20.3), and the total number of aircraft assigned cannot exceed the number available
in the fleet (i.e., plane count constraints as given in Equation 20.4). Additional inequality
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constraints may be incorporated to address such issues as through-flight assignments, main-
tenance, crew, slot allocation, and other issues.

min
∑
j∈J

∑
i∈I

cijXij (20.1)

subject to:
∑

i

Xij = 1, ∀j ∈ J (20.2)

∑
d

Xidot + Yiot−t −
∑

d

Xiodt − Yiott+ = 0, ∀{iot} ∈ N (20.3)

∑
j∈O(i)

Xij +
∑
o∈C

Yiotnt1 ≤ S(i), ∀i ∈ I (20.4)

Yiott+ ≥ 0, ∀{ iott+} ∈ N (20.5)

Xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (20.6)

The mathematical formulation requires the following notation with parameters:

C = set of stations (cities) serviced by the schedule,
I = set of available fleets,

S(i) = number of aircraft in each fleet for i ∈ I,
J = set of flights in the schedule,

O(i) = set of flight arcs, for i ∈ I, that contains an arbitrary early morning time
(i.e., 4 am, overnight),

N = set of nodes in the network, which are enumerated by the ordered triple {iot}
consisting of fleet i ∈ I, station o ∈ C, and t = takeoff time or landing time at o.

t− = time preceding t,
t+ = time following t,

{iotn} = last node in a time line, or equivalently, the node that precedes 4 am,
{iot1} = successor node to the last node in a time line, and decision variables:
Xiodt = Xij = 1 if fleet i is assigned to the flight leg from o to d departing at time t,

and 0 otherwise;
Yiott+ = number of aircraft of fleet i ∈ I on the ground at station o ∈ C from time t to t+.

20.2.3 Aircraft Routing

The Federal Aviation Administration (FAA) mandates some safety requirements for aircraft.
Those are of four types:

• A-checks are routine visual inspections of major systems, performed every 65
block-hours or less. A-checks take 3–10 h, and are usually performed at night at
the gate.

• B-checks are detailed visual inspections, and are performed every 3 months.
• C-checks are performed every 12–18 months depending on aircraft type and

operational circumstances, and consist of in-depth inspections of many systems.
C-checks require disassembly of parts of the aircraft, and must be performed in
specially equipped spaces.

• D-checks are performed every 4–5 years, perform extensive disassembly and struc-
tural, chemical, and functional analyses of each subsystem, and can take more
than 2 months.
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Of these checks, A and B are performed on the typical planning horizon of fleet planning
and crew scheduling, and must therefore be incorporated into the problem.

Aircraft routing determines the allocation of candidate flight segments to a specific aircraft
tail number within a given fleet-type while satisfying all operational constraints, including
maintenance. Levin [47] is the first author to analyze maintenance scheduling. One simplified
formulation of the maintenance problem, following Barnhart et al. [40], is the following. We
define a string as a sequence of connected flights (i.e., from airport a to airport b, then from
b to c, until a final airport) performed by an individual aircraft. Moreover, a string satisfies
the following requirements: the number of block-hours satisfies maintenance requirements,
and the first and last nodes in the sequence of airports are maintenance stations. A string k
has an associated cost ck. Let S be the set of all augmented strings. For every node v, I(v)
and O(v) denote the set of incoming and outgoing links, respectively. The problem has two
types of decision variables: xs is set to 1 if string s is selected as a route for the associated
fleet, and 0 otherwise. ym is the number of aircraft being serviced at service station m. The
problem then becomes:

min
∑
s∈S

csxs (20.7)

subject to:
∑
i∈S

xs = 1 for all flights i (20.8)

∑
j∈O(v)
j∈s

xs −
∑

j∈I(v)
j∈s

xs + yO(v) − yI(v) = 0 for all stations v (20.9)

where y ≥ 0, x = 0/1.
The problem can be formulated as a multicommodity flow problem (e.g., Cordeau et al.

[48]), as a set partitioning problem (Feo and Bard [49]; Daskin and Papadopoulos [30]),
and employing eulerian tours (Clarke et al. [50], Talluri [31], and Gopalan and Talluri [51]).
Recent work includes that of Gabteni and Gronkvist [52], who provide a hybrid column
generation and constraint programming optimization solution approach, Li and Wang [53],
who present a path-based integrated fleet assignment and aircraft routing heuristic, Mercier
et al. [54], who solve the integrated aircraft routing and crew scheduling model using Benders
decomposition, and Cohn and Barnhart [55], who propose an extended crew pairing model
that integrates crew scheduling and maintenance routing decisions.

20.2.4 Crew Scheduling

The area of crew scheduling involves the optimal allocation of crews to flights and can be
partitioned into three phases: crew pairing, crew assignment based upon crew rostering or
preferential bidding, and recovery from irregular operations. Each of these three phases will
be described in more detail in this section. The literature on crew scheduling is plentiful over
its nearly 40-year history with descriptions in comprehensive survey papers by Etschmaier
and Mathaisel [16], Clarke and Smith [19], Klabjan [20], Barnhart and Cohn [21], Arabeyre
et al. [56], Bornemann [57], Barutt and Hull [58], Desaulniers et al. [59], Barnhart et al.
[60], and Gopalakrishnan and Johnson [61].

Crew Pairing

In crew pairing optimization, the objective is to find a minimum cost set of legal duties
and pairings that covers every flight leg. An airline generally starts with the schedule of
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flight segments and their corresponding fleet assignments and decomposes the problem for
different crew types (pilots, flight attendants) and for different fleet types. The flight legs
are joined together to form duties, which are essentially work shifts. These duties are then
combined into trips/pairings that range from 1 to 5 days in length and which start and end
at a crew’s home base. There are many FAA and union regulations governing the legality
of duties and pairings. Some typical ones may include: a limit on the number of hours of
flying time in a duty, a limit on the total length of a duty (possibly stricter for a nighttime
duty), a limit on the number of duties in a pairing, and upper and lower bounds on the rest
time between two duties. The generation of good crew pairings is complicated by the fact
that a crew’s pay is determined by several guarantees that are based on the structure of
the duties in the pairing. Some common rules governing crew compensation may include: a
crew is paid overtime for more than 5 h of flying in a duty, a crew is guaranteed a minimum
level of pay per duty period, a crew is guaranteed that a certain percentage of the duty time
will count as flying time, and a crew receives a bonus for overnight flying. Some companies
also include additional constraints and objective function penalties to avoid marginally legal
pairings, tight connections, and excessive ground transportation.

The area of crew pairing optimization is complex and challenging for two reasons. First,
it is not practical to generate the complete set of feasible pairings, which can number in the
billions for major carriers, for a problem. Second, the cost of a pairing usually incorporates
linear components for hotel and per-diem charges and several nonlinear components based
upon actual flying time, total elapsed work time, and total time away from the home base.

The crew pairing problem is normally solved in three stages for North American carriers,
as described in Anbil et al. [62]. First, a daily problem is solved where all flights operate
every day. Next, a weekly problem is solved, which reuses as much of the daily problem
as possible, and also handles weekly exceptions. Finally, a dated problem is solved, which
reuses as much of the weekly problem as possible, and also produces a monthly schedule
that handles holidays and weekly transitions.

Several differences exist for European carriers. First, European crews typically receive
fixed salaries, so the objective is simply to minimize the number of crews needed. Second,
European airlines do not tend to run on a daily, repeating schedule or have hub-and-spoke
networks. Third, European carriers must comply with government regulations and work
with somewhat variable union rules, while for North American carriers, crew pairing is
primarily determined by FAA regulations.

The crew pairing problem can be modeled as a set partitioning problem where the rows
represent flights to be covered and the columns represent the candidate crew pairings as
follows:

min
∑
j∈P

cjxj (20.10)

subject to:
∑
j∈P

aijxj = 1, ∀i ∈ F (20.11)

xj ∈ {0, 1} (20.12)

The mathematical formulation requires the following notation with parameters:

P = set of all feasible pairings,
cj = cost of pairing j,

aij = 1 if pairing j includes (covers) flight i, and 0 otherwise,
F = set of all flights that must be covered in the period of time under consideration,
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and decision variable:

xj = 1 if the pairing j is used, and 0 otherwise.

The objective is to minimize the total cost as shown in Equation 20.10. Equation 20.11
ensures that each flight leg is covered once and only once. In practice, side constraints are
often added to reflect the use of crew resources; for example, upper and lower bounds on
the number of available crew at a particular base, and balancing pairings across crew bases
with respect to cost, the number of days of pairings, or the number of duties.

A variety of solution methodologies have been suggested for the crew pairing problem and
the majority are based upon pairing generation and pairing selection strategies. Pairings are
frequently generated using either an enumerative or shortest path approximation approach
on a graph network that can be represented either as a flight segment network or a duty
network. Pairing generation approaches and selected illustrations include:

• Row approach: Start with a feasible (or artificial) initial solution. Choose a sub-
set of columns and exhaustively generate all possible pairings from the flight seg-
ments covered by these columns, and solve the resulting set partitioning problem.
If the solution to this sub-problem provides an improvement, replace the appro-
priate pairings in the current solution. Repeat until no further improvements
are found or until a limit on the execution time is reached. Selected illustrations
include Gershkoff [63], Rubin [64], Anbil et al. [65,66], and Graves et al. [67].

• Column approach: Consider all the rows simultaneously, explicitly generate all
possible legal pairings by selecting a relatively small set of pairings that have
small reduced cost from a relatively large set of legal pairings, and solve the sub-
problem until optimality. Continue until the solution to the sub-problem no longer
provides an improvement. A selected illustration includes Hu and Johnson [68].

• Network approach: The network approach can utilize one of two strategies: the
column approach where the columns are generated using the flight segment or
duty network, or column generation based on shortest paths. Selected illustra-
tions include Minoux [69], Baker et al. [70], Lavoie et al. [71], Barnhart et al. [72],
Desaulniers et al. [73], Stojković et al. [74], and Galia and Hjorring [75].

Strategies for selecting pairings and solving the crew pairing optimization problem include
TPACS [64], TRIP [65,66], SPRINT (Anbil et al. [62]), volume algorithm [76,77], branch-
and-cut [78], branch-and-price [79–82], and branch-and-cut-and-price [62]. Others have pro-
posed strategies using genetic algorithms [58,83–86].

Crew Assignment

In crew assignment, pairings are assembled into monthly work schedules and assigned to
individual crew members. Depending upon the airline’s approach, either crew rostering or
preferential bidding is used for crew assignment. In crew rostering, a common process outside
of North America, the objective is to assign pairings to individual crew members based
upon the individual’s preferences while minimizing overall costs. In preferential bidding,
a common process used within North America, individual crew members bid on a set of
cost-minimized schedules according to their relative preferences. The airline assigns specific
schedules to the crew members based upon their bids and seniority.

The crew rostering and preferential bidding problems can be formulated as set partition-
ing problems. The problem decomposes based upon the aircraft equipment type and the
certification of the crew member (e.g., Captain, First Officer, Flight Attendant). The crew
assignment problem is complex, with FAA, union and company rules, and is compounded by
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additional rules involving several rosters, including language restrictions and married crew
members preferring to fly together. The airline strives to produce equitable crew assignments
in terms of equal flying time and number of days off.

The crew assignment problem can be modeled simply as follows:

min ck
rxk

r (20.13)

subject to:
∑
k∈K
i∈r

xk
r ≥ ni, ∀i (20.14)

∑
r

xk
r = 1, ∀k (20.15)

x∈ {0, 1} (20.16)

The mathematical formulation requires the following notation with parameters:

K = set of crew members,
ck
r = cost of assigning roster r to crew member k,

ni = number of crew members that are required for task i,

and decision variable:

xk
r = 1 if roster r is assigned to crew member k, and 0 otherwise.

The objective is to minimize the total cost as shown in Equation 20.13. Equation 20.14
ensures that each task is covered. Equation 20.15 assigns a roster to every crew member.

Recent work in the area of crew assignment includes Kohl and Karisch [87], Cappanera
and Gallo [88], Caprara et al. [89], Christou et al. [90], Dawid et al. [91], Day and Ryan [92],
Gamache and Soumis [93], Gamache et al. [94,95], Shebalov and Klabjan [96], and Sohoni
et al. [97]. Recent solution approaches to the crew assignment problem focus on branch-
and-price where sub-problems are solved based upon constrained shortest paths, and on
numerous heuristic approaches, for instance, simulated annealing as described in Lučić and
Teodorvić [98] and Campbell et al. [99].

Recovery from Irregular Operations

In the face of disruptions such as bad weather, unscheduled aircraft maintenance, air traffic
congestion, security problems, flight cancellations or delays, passenger delays, and sick or
illegal crews on the day of operations, the three aspects of aircraft, crew, and passengers are
impacted, often causing the airline to incur significant costs. Clarke [100] states that a major
U.S. airline can incur more than $400 million annually in lost revenue, crew overtime pay,
and passenger hospitality costs due to irregular operations. When any of these disruptions
happen, operations personnel must make real-time decisions that return the aircraft and
crew to their original schedule and deliver the passengers to their destinations as soon and
as cost effectively as possible.

Aircraft recovery usually follows groundings and delays where the objective is to minimize
the cost of reassigning aircraft and re-timing flights while taking into account available
resources and other system constraints. Interested readers are referred to detailed reviews
in Clarke and Smith [19], Rosenberger et al. [101], and Kohl et al. [102].

Crew recovery usually follows flight delay, flight cancellation, and aircraft rerouting deci-
sions, but often flight dispatchers and crew schedulers coordinate to explore the best options.
In crew recovery, the objective is to reassign crew to scheduled flights. It is desirable to return
to the original crew schedule as soon as possible. Crew recovery is a hard problem because of
complex crew work rules, complex crew cost computations, changing objectives, and having
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to explore many options. Often, airlines are forced to implement the first solution found
due to time pressures.

Airline investment in technologies to expedite crew recovery and reduce crew costs has
increased in recent years. Anbil et al. [103] develop a trip repair decision support system
with a solution approach that involves iterating between column generation and optimiza-
tion, based on a set partitioning problem formulation where the columns are trip pro-
posals and the rows refer to both flights and non-reserve crews. The solution strategy
is to determine whether the problem can be fixed by swapping flights among only the
impacted crew, and bringing in reserves and other nondisrupted crews as needed. Heuristics
are used to localize the search during column generation. Teodorvić and Stojković [104]
present a greedy heuristic based upon dynamic programming and employ a first-in-first-out
approach for minimizing crew ground time. Wei et al. [105] and Song et al. [106] describe a
heuristic-based framework and algorithms for crew management during irregular operations.
Yu et al. [12] describe the CrewSolver system developed by CALEB Technologies for recover-
ing crew schedules at Continental Airlines in real-time when disruptions occur. Abdelghany
et al. [107] design a decision support tool that automates crew recovery for an airline with
a hub-and-spoke network structure. Nissen and Haase [108] present a duty-period-based
formulation for the airline crew rescheduling problem that is tailored to European carri-
ers and labor rules. Schaefer et al. [109] develop approximate solution methods for crew
scheduling under uncertainty. Once a crew schedule has been determined, Schaefer and
Nemhauser [110] define a framework for perturbing the departure and arrival times that
keeps the schedule legal without increasing the planned crew schedule cost. Yen and Birge
[111] describe a stochastic integer programming model and devise a solution methodology
for integrating disruptions in the evaluation of crew schedules.

In the past decade, there has been a trend toward integrated aircraft, crew, and passenger
recovery from irregular operations. Clarke [100] provides a framework that simultaneously
addresses flight delays and flight cancellations, and solves the mixed-integer linear program-
ming aircraft recovery problem incorporating crew availability using an optimization-based
solution procedure. Lettovský [112] and Lettovský et al. [113] discuss an integrated crew
assignment, aircraft routing, and passenger flow mixed-integer linear programming problem,
and solve it using Bender’s decomposition. Stojković and Soumis [114,115] solve a nonlinear
multicommodity flow model that considers both flight and crew schedule recovery using
branch-and-price. Rosenberger et al. [101] develop a heuristic for rerouting aircraft and
then revise the model to minimize crew and passenger disruptions. Kohl et al. [102] develop
a disruption management system called Descartes (Decision Support for integrated Crew
and AiRcrafT recovery), which is a joint effort between British Airways, Carmen Systems,
and the Technical University of Denmark. Lan et al. [116] propose two new approaches
for minimizing passenger disruptions and achieving more robust airline schedule plans by
(a) intelligently routing aircraft to reduce the propagation of delays using a mixed-integer
programming formulation with stochastically generated inputs and (b) minimizing the
number of passenger misconnections by adjusting flight departure times within a small
time window. Bratu and Barnhart [117] minimize both airline operating costs and esti-
mated passenger delay and disruption costs to simultaneously determine aircraft, crew, and
passenger recovery plans.

20.3 Revenue Management

The Airline Deregulation Act of 1978 is widely credited for having stimulated competition in
the airline industry. For example, the year 1986, which was marked by economic growth and
stable oil prices, saw the poor financial results of major airlines. This was just a symptom
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FIGURE 20.3 Interacting revenue management sub-problems.

of the increased competitive pressure faced by the carriers. In search of greater efficiencies,
airlines began exploring ways to increase the average aircraft load and the revenue per
seat. The discipline that has developed around this issue is usually referred to as “revenue
management” (RM) although other terms are sometime used, such as “perishable asset
revenue management” (PARM), “yield management,” or “demand management.” Given
the complex and evolving nature of airline services, it does not consist of a single problem,
with an unequivocal formulation, but rather of a collection of interacting sub-problems.
The first such problem to be analyzed (before deregulation took place) was overbooking,
which addresses the decision to sell more seats than currently available. The overbooking
level depends on the likelihood that a customer will not show up at the gate, and on other
factors, such as the lost revenue due to an unsold seat and the reimbursement to an eligible
customer who is refused boarding. The former input to the overbooking problem is provided
by forecasting methods applied to the reservation process and to the actual conversion rates
of reservations in “go shows.” The period prior to the 1978 Act saw another innovation:
the promotional fare. “Early birds” would receive a discount over regular customers. From
these early instances, pricing has evolved into a sophisticated discipline, with a deep impact
in other industries as well. This simple yet effective innovation exploited the diversity of
the customer population, namely the willingness of certain customers to trade off dollars
for flexibility. However, the development of time-dependent fares posed a new challenge for
airlines: inventory seat control, which consists of assigning inventory (number of seats) to
a certain fare class. This is perhaps among the most important problems in the practice of
revenue management. The earliest known implementation of inventory seat control is that
of American Airlines in the first half of the 1980s. Since then, great progress has been made
in improving the accuracy of inventory control systems. The relationship between the four
sub-problems is shown in Figure 20.3.

The literature on revenue management is vast and growing rapidly. A complete bibli-
ography is beyond the scope of this survey. Recent comprehensive treatments of revenue
management are given by Phillips [118] and Van Ryzin and Talluri [119]. Yeoman and
McMahon-Beattie [120] offer several real-world examples. The surveys of Weatherford and
Bodily [121], McGill and Van Ryzin [122], and Barnhart et al. [9] contain comprehensive
bibliographies. Several journals regularly publish RM articles, notably Operations Research,
Management Science, Interfaces, the European Journal of Operations Research, and the
recently founded Journal of Pricing and Revenue Management, which is entirely dedicated
to this subject.

The rest of this section is organized as follows. First, the forecasting issue in revenue
management is described. Then overbooking, inventory control, and pricing are reviewed.
The section concludes with speculations on trends of the field.

20.3.1 Forecasting

Demand forecasting is a fundamental step in the RM exercise, as it influences all the others.
Nevertheless, there are fewer published articles in this area than in any other area of RM.
There are several possible reasons behind this relative scarcity. Actual booking data are not
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usually made available to academic researchers, and industry practitioners have no incentive
in revealing internal methods or data. Another disincentive for researchers is that a majority
of the articles published in flagship journals in operations research are of a theoretical, rather
than empirical, nature. Finally, forecasting for RM purposes presents a formidable set of
challenges. Next, the current approaches to this problem are reviewed, and the reader is
pointed to the relevant literature.

Airlines sell a nonstorable product: a seat on an origin–destination itinerary fare. To
maximize the financial metric of interest, it is vital for the airline not only to forecast the final
demand of a given product, but also the process through which the demand accumulated
over time. The former quantity is sometimes called the historical booking forecast and is a
necessary input to overbooking decisions, while the latter, the advanced booking forecast, is
used for pricing and inventory control, and aims at forecasting the number of bookings in a
certain time interval prior to departure. Some of the relevant factors determining advanced
booking behavior are:

1. Origin–destination pair
2. Class
3. Price
4. Time of the year
5. Time to departure
6. Presence of substitute products (e.g., a seat offered by the same company in a

different class, or products offered by competing airlines).

Moreover, group bookings may be modeled explicitly, as their impact on inventory control
policies is significant. Many methods have been proposed to explain observed reservation
patterns; for a survey, see the book of Van Ryzin and Talluri [119] and the experimental
comparison by Weatherford and Kimes [123]. Linear methods currently in place include
autoregressive, moving-average models, Bayes and Hierarchical Bayes, and linear or multi-
plicative regressive models (sometime termed “pick-up” models). Model selection depends
also on the chosen level of aggregation of the forecast. By choosing more aggregate models
(e.g., aggregating similar classes) the modeler trades off greater bias for smaller variance;
there is no “rule of thumb” or consensus on the ideal level of aggregation, although more
sophisticated and application-specific models implemented in industrial applications usually
provide very detailed forecasts.

It is important to remark that the data used in these statistical analyses are usually
censored: the observed reservations are always bounded by the inventory made available on
that day. Unconstraining demand is either based on mathematical methods (e.g., projection
detruncation, or expectation maximization), or recorded reservation denials. For a compar-
ison of popular unconstraining methods, see Weatherford and Pölt [124]. The availability of
direct reservation channels (internet, airline-operated contact centers) has made reservation
denials data both more abundant and reliable; demand correction based on denial rates is
preferable, as it is usually more accurate and requires less computational effort. Figure 20.4
illustrates the relationships among the different components of the forecasting stage.

20.3.2 Overbooking

As mentioned before, research on overbooking predates deregulation. The original objec-
tive of overbooking was to maximize average load, subject to internally or externally
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FIGURE 20.4 Forecasting components and relationships.

mandated maximum denial rates. More recently, airlines have been implementing revenue-
maximizing overbooking policies. Overbooking can be roughly partitioned into three sub-
problems: (1) identification of optimal policies (overbooking limits); (2) identification of
“fair bumping” policies (i.e., to whom should one refuse boarding); and (3) estimation
of no-show rates. Of the three problems, (1) is the better studied and understood. In its
simplest, static, form (see, e.g., Beckmann [125]), it is akin to a newsvendor problem: the
availability of a product in the face of underage and overage costs, and of uncertain demand,
must be chosen. To better understand the similarity with this problem, consider a simple
one-period model, in which random demand is observed in the first period, and departure
occurs in the second period. The available capacity is denoted by C, and the overbooking
limit must be set prior to the observation of demand to maximize expected revenue. Let p
be the unit price per seat and a be the penalty incurred for bumping a passenger. If the
number of reservations is r, a random number Z(r), with cumulative distribution function
Fr(z), of passengers will show up. A popular behavioral model for “show” demand posits
that customers show up with probability q, and that each individual behaves independently
of each other; this “binomial” model is defined by:

Fr(x) =
(

r
x

)
qx(1 − q)r−x (20.17)

The problem faced by the airline is given by:

maxr E(pZ(r) − a(Z(r) − C)+) (20.18)

It can be shown through simple algebra that the solution is given by:

1 − Fr(C) =
p

aq
(20.19)

which closely resembles the solution of a newsvendor problem.
The static policy is robust and effective in practical applications; however, using dynam-

ical models could yield revenue increases that, albeit small, can be of crucial importance to
achieve profitability. Commonly used models are in discrete time, and assume Markov or
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independent and identically distributed (iid) demand, and binomial no-show rates, allowing
a stochastic dynamic programming formulation. Rothstein [126] is an early contribution to
this approach; Alstrup et al. [127] and Alstrup [128] present both theoretical and empirical
results.

The problem of equitable bumping has been studied, among others, by Simon [129,130]
and Vickrey [131]. Interestingly, the solution proposed in these early days—to conduct an
ascending auction to bump passengers with the lowest disutility from boarding denial, has
been implemented some three decades later.

Finally, the problem of estimating no-show rates from historical data has received rela-
tively little attention in the published literature. Lawrence et al. [132] present a data-driven
no-show forecasting rule based on customer/fare attributes.

20.3.3 Seat Inventory Control

One of the new entrants following the 1978 Act was PEOPLExpress. A nonunionized, bare-
bone service airline carrier with very low fares, it grew phenomenally in the first half of the
1980s, and had become a serious threat to the incumbents. One of them, American Airlines,
was competing directly with PEOPLExpress on its principal routes. Partly as a response to
the threat posed by the new entrant, American Airlines introduced a seat inventory control
system. Under this system, the availability of seats belonging to a certain class could be
dynamically controlled. For example, a certain low-price class (e.g., non-refundable tickets)
could be “closed” (i.e., made unavailable) at a certain date because the same seat had a
high probability of being reserved under a higher-price class (e.g., refundable tickets). The
first rule for inventory control dates back to the seminal work of Littlewood [133], which
derives it for a two-class inventory. Some assumptions are necessary to obtain closed-form
rules:

1. Over time classes are booked in a certain order
2. Low-valuation-before-high-valuation arrival pattern
3. Independent arrivals for different booking classes
4. Absence of no-shows
5. Single-leg reservations
6. No group reservations.

The formulation is reviewed here, as it is the basis for widely used revenue management
heuristics in real-world applications. Let the classes be ranked from low valuation to high
valuation p1 ≤ p2 ≤ · · · ≤ pN , and denote their uncertain demands Di, based on assumptions
1 and 2, where i also denotes the period during which the demand is observed. The decision
of interest is the capacity xi that should be allocated to class i. Let Vi(y) denote the
expected revenue from period i to period N when the available capacity at the beginning
of that period is y. At stage i− 1, the revenue is given by:

pi−1xi−1 + V (Ci−1 − xi−1) (20.20)

where xi cannot exceed the available capacity in period i− 1, Ci−1, and Di−1 the observed
demand in that period. The Bellman equation is then

Vi(y) = E(max{pi−1xi−1 + Vi(y − xi−1) : xi−1 ∈ [0, min{Di−1, x}]}), 0 < i < N (20.21)

VN (y) = 0 (20.22)
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It can be shown that the optimal policy takes a simple form as shown in Van Ryzin and
Talluri [119]: the optimal solution {x∗

i , i= 1, . . ., N} is such that x∗
1 ≤x∗

2 ≤ · · · ≤x∗
N ; the

value x∗
i does not depend on Di, that is, the optimal inventory decision in a certain period

can be taken before observing the demand in that period. According to the optimal policy,
more and more capacity is reserved for classes with higher marginal value. This policy is
sometimes termed theft nesting: at a given period, the set of higher-value classes is allocated
at least a predetermined amount of inventory, but those classes can “steal” inventory from
the lower-value class if seats are not sold by the end of the period; the opposite can never
happen. An equivalent formulation of the problem uses as the relevant decision variables
the booking limits for classes i, . . ., N , defined as the sum of inventory allocations reserved
to these classes. In the case of two classes (and two periods) only one decision is taken, and
the solution to the recursive equation (20.1) takes the closed form for the booking limit
for class 2: C −F−1(1 − p1/p2), where F is the cumulative distribution function of demand
for class 2. This formula, also known as Littlewood’s rule, has been used to formulate
heuristics. Their popularity stems from their simplicity; from the fact that they predate
the general formulation for the n-class problem; and finally because their sub-optimality, as
observed from numerical experiments, is in the range 0–2%, which is considered low when
compared to the vastly simplifying assumptions underlying the model. Two such heuristics
are particularly popular in practice: expected marginal seat revenue version a (EMSR-a),
and b (EMSR-b). Both originate from the work of Belobaba [134,135]. Both heuristics reduce
the n-class problem to a 2-class problem. In the case of EMSR-a, pairwise comparisons of
class i with higher-value classes are performed, and the booking limit for each such class
in isolation is computed. The overall booking limit for classes i+ 1, . . ., N is then set equal
to the sum of the individual booking limits. By considering booking limits in isolation,
EMSR-a ignores pooling effects among the demand of various classes, and as a result it
is often more conservative than the optimal policy. EMSR-b alleviates this shortcoming
by aggregating the demand of classes i+ 1, . . ., N into an aggregated class, with demand
equal to the sum of demands and marginal revenue equal to the weighted sum of marginal
revenues: p =

∑N
k=i+1 pkE[Dk]/

∑N
k=i+1E[Dk]. The booking limit in period i is then set by

applying Littlewood’s rule to class i and the aggregated class. EMSR-b is especially popular
among practitioners, and has been extended in various directions. Notably, the case in which
there is interaction between classes has been analyzed. In this setting, closing inventory of
lower-value classes results in higher demand for higher-value classes (buy up); references on
this subject are Belobaba and Weatherford [136] and Weatherford et al. [137].

Before concluding this section, we briefly describe the extension of single-leg capacity
control mechanisms to a network setting. Indeed, the appropriate framework of analysis of
RM is on an itinerary basis. However, the complexity of the problem increases significantly
with size; moreover, network RM also poses organizational and data collection challenges, as
responsibilities for revenue targets are assigned on a geographical basis, and data require-
ments for network RM are more demanding than for single-leg instances. Consequently,
several exact formulations and heuristics are available. The heuristics rely on the concept
of marginal network revenue value: when a seat is sold at a certain price, it generates rev-
enue, but also results in lost revenues, as certain other itinerary fares will have one less seat
available for sale. The network revenue value reflects this tradeoff, and can be effectively
employed to make allocation decisions on a network. The advantage of such an approach
lies in its robustness, and in the fact that it employs leg-based sub-problems, for which
well-tested heuristics and tractable optimization formulations exist. As mentioned above,
several network optimizations have been proposed as well. The topology of the network
is captured through an incidence matrix, and the decision variables are the booking lim-
its associated to an origin–destination class. The models differ in the way they capture

© 2008 by Taylor & Francis Group, LLC



CH020.tex 22/10/2007 14: 21 Page 20-20

20-20 Operations Research and Management Science Handbook

uncertainty, in the intertemporal modeling of the decisions, and finally in the algorithmic
approaches adopted to find a solution, exact or approximated. A comprehensive and current
description of models is provided in Van Ryzin and Talluri [119]. There are no available data
quantifying the financial benefits of network RM. Estimates rely on simulations, as those
provided in the industry-standard platform PODS (Passenger Origin–Destination Simula-
tor) and on the assessment of industry experts. The agreement [9] is that network RM can
yield an improvement of 1% above and beyond single-leg RM.

20.3.4 Pricing

Most airlines condition passenger demand through seat inventory control. An alternative is
to condition demand through pricing. The two practices are conceptually similar: if the only
differentiating attribute among a set of classes is price, then closing lower-value classes is
equivalent to posting a bid price for tickets equal to the cheapest class that is still open. Price
controls, however, are more granular than inventory controls, as price points are not limited
to the finite number of classes; moreover, dynamic price controls can effectively be used to
limit the access to available seats. In its early days, commercial flight did not have the instru-
ments to change prices dynamically, and to effectively advertise these changes. Moreover,
customers were not used to observing changing prices for the same service; finally, a suit-
able framework of analysis was not available. In recent years, however, we are witnessing the
evolution of revenue management systems in the direction of price-based controls. Low-cost
carriers have grown in number and have thrived: Southwest, JetBlue in the U.S., EasyJet,
RyanAir in Europe, TAM, and Go in South America. These carriers often offer a single prod-
uct: an economy, nonrefundable ticket, and this product’s availability is controlled through
price. Despite the simplicity of the setting, dynamic pricing is a complex problem that has
been attacked from many different angles, and is far from being solved. To obtain insightful
results, researchers are forced to make simplifying assumptions that are either unrealistic
or are difficult to test. Perhaps the single biggest challenge in dynamic pricing is under-
standing consumer behavior. Among the questions that have not received a definite answer
are: how sensitive are the customers to a product’s price changes, and to price changes of
substitute products? Do customers take into account expected future prices when making
their purchase decisions, and if they do, what is their learning process? How can we define
the potential market for a certain product, and what is the impact of market size on optimal
pricing? Some of these issues are studied in the marketing literature (for example, Nagle
and Hogan [138]), but empirical validation in the airline industry is still missing. Perhaps
the simplest model that captures the essential features of the airline industry is given by
the following deterministic formulation for a single-product pricing problem with myopic
customers:

max
N∑

i=1

πi(pi, di(pi)) (20.23)

subject to:
N∑

i=1

di(pi) ≤ C (20.24)

pi ≥ 0, i = 1, . . ., N (20.25)

The decision variables are the prices pi of the product in period i, the market response is
modeled by a deterministic demand function di(·), and profit is function of both price and
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demand. The above model assumes customers’ myopic behavior, as demand in a certain
period does not depend on the sequence of observed prices. Extensions of the model are
possible in several directions. Gallego and Van Ryzin [139] considered a continuous-time,
stochastic version of the pricing problem, and proved monotonicity and structural properties
of the solution. The same authors analyze the multiperiod, multiproduct case (Gallego and
Van Ryzin[140]). The case of non-myopic behavior has been analyzed by Stokey [141], Gale
and Holmes [142], Gallego and Sahin [143], and Gallego et al. [144], who consider consumers
with intertemporal valuations.

20.4 Aircraft Load Planning

The general problem of aircraft load planning can be described as transporting equipment
(vehicles, palletized cargo, helicopters, ammunitions, etc.) and personnel from a set of depar-
ture points to a set of destinations with the objective of minimizing the number of loads
used. The arrangement of the equipment and personnel affects the position of the center of
gravity of the aircraft, which in turn has an impact on aircraft drag, which in turn has an
impact on fuel consumption. The problem is further complicated by additional constraints
such as hazardous material incompatibilities. The aircraft load planner must balance the
load to ensure the safe and efficient use of the aircraft by complying with aircraft safety,
weight and balance, and floor load restrictions for takeoff, in-flight, and landing. The speed
and ease of on-loads and off-loads are of utmost importance too.

Aircraft load planning is both an important civilian and military application. The load
planning process was done by manual procedures until 1977 when the first account of
the use of computer-assisted approaches began within the U.S. Air Force, according to
Martin-Vega [145], who provides a comprehensive review of work prior to 1985. Early semi-
automated systems include CARLO (Cargo Loading system used by Scandinavian Airlines)
by Larsen and Mikkelsen [146], AALPS (Automated Air Load Planning System by SRI
International for the U.S. Army) as described in Frankel et al. [147,148] and Anderson and
Ortiz [149], and DMES in Cochard and Yost [150]. Today AALPS is used at more than 300
sites throughout the continental United States Army community and by operations Just
Cause, Desert Shield, Desert Storm, and Restore Democracy. Lockheed Corporation and
the U.S. Air Force have utilized AALPS for designing cargo aircraft and configuring the
C-17, respectively. Additional work in the area of aircraft load planning includes that of
Eilon and Christofides [151], Hane et al. [152], Ng [153], Amiouny et al. [154], Heidelberg
et al. [155], Thomas et al. [156], Gueret et al. [157], and Mongeau and Bes [158].

The aircraft loading problem belongs to the broad class of cutting and packing prob-
lems [159]. Even one-dimensional packing problems, such as the knapsack and bin-packing
problems, are NP-hard. Typically 2-D bin-packing with the length and width of both the
cargo and the aircraft’s cargo hold are used. Height is not as significant because usually
cargo is not stacked. Higher dimensional problems are much more combinatorial and can-
not be solved exactly for large instances. A heuristic approach must be taken to achieve an
acceptable result in a short amount of time, as discussed in Bischoff and Marriott [160] and
Pisinger [161].

The challenge of balancing is generally focused on one dimension: the length of the plane,
that is, positioning the center of gravity along the fore and aft axis of the aircraft. Balancing
the center of gravity side-to-side is generally considered not significant.

Mongeau and Bes [158] take a mathematical programming approach to the aircraft
loading problem for Airbus France, which can be solved optimally in a reasonable time.
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To illustrate, the formulation is given as:

max M(x) (20.26)

subject to: CG(x) ≤ Xstab (20.27)

M(x) ≤ Mmax (20.28)

Ncont∑
i=1

∑
j∈Hk

Mixij ≤ Mk
max, k = 1, 2, . . ., Nhold (20.29)

Ncomp∑
j=1

xij ≤ 1, ∀i = 1, 2, . . ., Ncont (20.30)

Ncomp∑
j=1

xij = 1, ∀i ∈ I (20.31)

xik = 1, for any given container i required (20.32)
to be in a specific compartment k

Xtarget − ε ≤ CG(x) ≤ Xtarget + ε (20.33)

The mathematical formulation requires the following notation with parameters:

Ncont = number of containers on the ground,
Ncomp = number of compartments,
Nhold = number of holds,

Mi = mass of container i,
CG(x) = center of gravity of the aircraft after loading,
Xstab = maximal (longitudinal) position of the center of gravity of the aircraft after

loading to satisfy stability requirements,
Mmax = maximal mass of freight that can be loaded,
Mk

max = maximal mass of freight that can be loaded in hold k and k = 1, 2, . . ., Nhold,
Hk where Hk ⊆ {1, 2, . . ., Ncomp} are the compartments in hold k and
k = 1, 2, . . ., Nhold,

I = a subset of the container list that is required to be loaded,
Xtarget = ideal (longitudinal) position of the center of gravity of the aircraft after loading,

ε = some positive allowable displacement of the center of gravity of the aircraft from
its ideal position,
xij ∈ {0, 1} where xij = 1, if container i is to be placed in container j, and 0
otherwise; and i= 1, 2, . . ., Ncont; j = 1, 2, . . ., Ncomp.

The objective given in Equation 20.26 is to maximize the mass loaded M(x) where

M(x) =
Ncont∑
i=1

Ncomp∑
j=1

Mixij (20.34)

Equation 20.27 ensures that the aircraft stability requirement is satisfied. Equations 20.28
and 20.29 limit the stress/mass capacity overall and for each hold, respectively. Equa-
tions 20.30 state that each container must be loaded at most once. Equations 20.31 enforce
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that a subset I of the container list is loaded. Equations 20.32 ensure, in the event that
a specific container must be placed in a specific compartment, that the requirement is
met. Equation 20.33 keeps the center of gravity within an allowable displacement from the
ideal position. In the formulation, Mongeau and Bes [158] also include volume capacity
constraints, which involve nonconvex, piecewise-linear functions that are transformed into
simple linear constraints. These constraints are quite complex and vary according to both
the aircraft and the container types. The interested reader may refer to the details in the
article.

20.5 Future Research Directions and Conclusions

The application of Operations Research to airline planning processes has resulted in signif-
icant benefits to the industry through cost reductions, revenue improvements, operational
efficiencies, and automated tools. The combination of advancements in computer hardware
and software technologies with clever mathematical algorithms and heuristics has dramat-
ically transformed the ability of operations researchers to solve large-scale, sophisticated
airline optimization problems over the past 60 years. This trend will continue in the future;
airline planning problems are rich with complexities that can lead to breakthroughs in
methods and decision-support tools.

Many promising areas for future research exist in the airline industry. Some examples
include:

1. Incorporating new forecasting techniques, overbooking strategies, and pricing
strategies into revenue management decisions to address the increased market
transparency of fares and fare classes on the Web.

2. Developing accurate consumer response models that take into account the multi-
ple sales channels available to customers (e.g., travel agency, phone, online agen-
cies, online airline Web sites), and their ability to compare fares.

3. Integrating schedule development to incorporate aircraft and crew planning deci-
sions; for example, simultaneous consideration of aircraft routing, fleet assign-
ment, and crew pairing.

4. Dynamically reassigning aircraft capacities to the flight network when improved
passenger demand forecasts become available to maximize total revenue. This
line of research of demand driven re-fleeting/demand driven dispatching has been
recently explored in Sherali et al. [162] and Wang and Regan [163].

5. Exploiting the availability of real-time data to enable real-time decision-making;
for example, in the area of recovery from irregular operations.

6. Developing real-time policies to assign locations and decide ordering quantities for
spare parts. The problem formulation must take into account savings obtained
from sharing the same warehouse for multiple service centers, and the service
time requirements. Similar systems have already been implemented in military
and industrial production environments.

7. Developing loyalty programs and customer contact programs that take into
account the financial value associated to a customer, as well as his/her potential
future evolution. This line of research, traditionally associated to the field of rela-
tionship marketing, has been recently explored in the context of airline campaign
management [164].
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8. Developing decision-support tools for fractional fleet services, which are growing
in popularity, to address the stochastic nature of demand.

9. Developing new algorithms for aircraft fuel operational optimization and fuel
hedging as fuel represents the second largest cost component of an airline’s oper-
ations after labor [165].
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21.1 Introduction

Operations research provides a rich set of tools and techniques that are applied to financial
decision making. The first topic that likely comes to mind for most readers is Markowitz’s
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Nobel Prize–winning treatment of the problem of portfolio diversification using quadratic
programming techniques. This treatment, which first appeared in 1952, underlies almost all
of the subsequent research into the pricing of risk in financial markets. Linear programming,
of course, has been applied in many financial planning problems, from the management
of working capital to formulating a bid for the underwriting of a bond issue. Less well
known is the fundamental role that duality theory plays in the pricing of options and
contingent claims, both in its discrete state and time formulation using linear programming
and in its continuous time counterparts. This duality leads directly to the Monte Carlo
simulation method for pricing and evaluating the risk of options portfolios for investment
banks; this activity probably comprises the single greatest use of computing resources in any
industry.

This chapter does not cover every possible topic in the applications of operations research
(OR) to finance. We have chosen to highlight the main topics in investment theory and to
give an elementary, mostly self-contained, exposition of each. A comprehensive perspective
of the application of OR techniques to financial markets along with an excellent bibliogra-
phy of the recent literature in this area can be found in the survey by Board et al. (2003). In
this chapter, we chose not to cover the more traditional applications of OR to financial man-
agement for firms, such as the management of working capital, capital investment, taxation,
and financial planning. For these, we direct the reader to consult Ashford et al. (1988). We
also excluded financial forecasting models; the reader may refer to Campbell et al. (1997)
and Mills (1999) for treatments of these topics. Finally, Board et al. (2003) provide a survey
of the application of OR techniques for the allocation of investment budgets between a set
of projects. Complete and up-to-date coverage of finance and financial engineering topics
for readers in operations research and management science may be found in the handbooks
of Jarrow et al. (1995) and the forthcoming volume of Birge and Linetsky (2007).

We begin this chapter by introducing some basic concepts in investment theory. In Sec-
tion 21.2, we present the formulas for computing the return and variance of return on a
portfolio. The formulas for a portfolio’s mean and variance presume that these parameters
are known for the individual assets in the portfolio. In Section 21.3, we discuss two methods
for estimating these parameters when they are not known.

Section 21.4 explains how a portfolio’s overall risk can be reduced by including a diverse
set of assets in the portfolio. In Section 21.5, we introduce the risk–reward tradeoff efficient
frontier and the Markowitz problem. Up to this point, we have assumed that the investor is
able to specify a mathematical function describing his attitude toward risk. In Section 21.6,
we consider utility theory that does not require an explicit specification of a risk function.
Instead, utility theory assumes that investors specify a utility, or satisfaction, with any
cash payout. The associated optimal portfolio selection problem will seek to maximize the
investor’s expected utility.

Section 21.7 discusses the Black–Litterman model for asset allocation. Black and Lit-
terman use Bayesian updating to combine historical asset returns with individual investor
views to determine a posterior distribution on asset returns that is used to make asset allo-
cation decisions. Section 21.8 considers the challenges of risk management. We introduce
the notion of coherent risk measures and conditional value-at-risk (CVaR), and show how
a portfolio selection problem with a constraint on CVaR can be formulated as a stochastic
program.

In Sections 21.9 through 21.13, we turn to the problem of options valuation. Options val-
uation combines a mathematical model for the behavior of the underlying uncertain market
factors with simulation or dynamic programming (or combinations thereof) to determine

© 2008 by Taylor & Francis Group, LLC



CH021.tex 30/10/2007 10: 55 Page 21-3

Financial Engineering 21-3

options prices. Section 21.14 considers the problem of asset-liability matching in a multi-
period setting. The solution uses stochastic optimization based upon Monte Carlo simula-
tion. Finally, in Section 21.15 we present some concluding remarks.

21.2 Return

Suppose that an investor invests in asset i at time 0 and sells the asset at time t. The rate
of return (more simply referred to as the return) on asset i over time period t is given by:

ri =
amount received at time t − amount invested in asset i at time 0

amount invested in asset i at time 0
(21.1)

Now suppose that an investor invests in a portfolio of N assets. Letfi denote the fraction
of the portfolio that is comprised of asset i. Assuming that no short selling is allowed, fi ≥ 0.
Clearly,

∑N
i=1 fi = 1.

The portfolio return is given by the weighted sum of the returns on the individual assets
in the portfolio:

rp =
N∑

i=1

firi (21.2)

We have described asset returns as if they are known with certainty. However, there is
typically uncertainty surrounding the amount that will be received at the time that an
asset is sold. We can use a probability distribution to describe this unknown rate of return.
If return is normally distributed, then only two parameters—its expected return and its
standard deviation (or variance)—are needed to describe this distribution. The expected
return is the return around which the probability distribution is centered; it is the expected
value of the probability distribution of possible returns. The standard deviation describes
the dispersion of the distribution of possible returns.

21.2.1 Expected Portfolio Return

Suppose there are N assets with random returns r1, . . ., rN . The corresponding expected
returns are E(r1), . . ., E(rN ). An investor wishes to create a portfolio of these N assets, by
investing a fraction fi of his wealth in asset i.

Using the properties of expectation, we may compute the expected portfolio return using
Equation 21.2:

E(rp) =
N∑

i=1

fiE(ri)

That is, an expected portfolio return is equal to the weighted sum of the expected returns
of its individual asset components.

21.2.2 Portfolio Variance

The volatility of an asset’s return can be measured by its variance. Variance is often adopted
as a measure of an asset’s risk. If σ2

i denotes the variance of asset i’s return, then the variance
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of the portfolio’s return is given by:

σ2
p = E

⎡
⎣

(
N∑

i=1

firi −
N∑

i=1

firi

)2
⎤
⎦

= E

⎡
⎣

(
N∑

i=1

fi(ri − ri)

)⎛
⎝ N∑

j=1

fj(rj − rj)

⎞
⎠

⎤
⎦

= E

⎡
⎣ N∑

i,j=1

fifj(ri − ri)(rj − rj)

⎤
⎦

=
N∑

i,j=1

fifjσij

=
N∑

i=1

f2
i σ2

i +
N∑

i=1

N∑
j=1
j �=i

fifjσij

(21.3)

where ri = E(ri). Note that portfolio variance is a combination of the variance of the returns
of each individual asset in the portfolio plus their covariance.

21.3 Estimating an Asset’s Mean and Variance

Of course, asset i’s rate of return and variance are not known and must be estimated. These
values can be estimated based upon historical data using standard statistical methods.
Alternatively, one can use a scenario-based approach. We describe the two methods below.

21.3.1 Estimating Statistics Using Historical Data

To estimate statistics using historical data, one must collect several periods of historical
returns on the assets. The estimated average return on asset i is computed as the sample
average of returns on asset i, Xi, given by:

Xi =

∑
t
xit

T

where xit is the historical return on asset i in period t and there are T periods of histori-
cal data.

The variance of return on asset i is estimated by s2
i , the historical sample variance of

returns on investment i:

s2
i =

∑
t
(xit − Xi)2

T − 1
For example, Table 21.1 contains the monthly closing stock prices and monthly returns for

Sun Microsystems and Continental Airlines for the months January 2004 through February
2006. The first column of this table indicates the month, the second and third columns
contain the closing stock prices for SUN and Continental Airlines, respectively. The fourth
and fifth columns contain the monthly stock returns for SUN (XSUN,t) and Continental
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TABLE 21.1 Monthly Closing Stock Prices and Returns for Sun Microsystems
and Continental Airlines

Month SUN Stock Price ($) CAL Stock Price ($) SUN Return (%) CAL Return (%)

Jan-04 55.55 15.65 8.12 −5.04
Feb-04 61.66 14.97 11.00 −4.35
Mar-04 62.38 12.58 1.17 −15.97
Apr-04 63.00 10.66 0.99 −15.26
May-04 62.04 10.50 −1.52 −1.50
Jun-04 63.63 11.37 2.56 8.29
Jul-04 68.17 8.75 7.13 −23.04
Aug-04 61.60 9.65 −9.64 10.29
Sep-04 73.98 8.60 20.10 −10.88
Oct-04 74.76 9.24 1.05 7.44
Nov-04 82.45 11.16 10.29 20.78
Dec-04 81.71 13.75 −0.90 23.21
Jan-05 88.04 10.50 7.75 −23.64
Feb-05 98.80 11.14 12.22 6.10
Mar-05 105.00 12.00 6.28 7.72
Apr-05 98.74 12.00 −5.96 0.00
May-05 103.00 13.70 4.31 14.17
Jun-05 114.14 13.32 10.82 −2.77
Jul-05 126.33 15.81 10.68 18.69
Aug-05 75.35 13.28 −40.35 −16.00
Sep-05 78.20 9.70 3.78 −26.96
Oct-05 73.76 13.20 −5.68 36.08
Nov-05 78.10 15.59 5.88 18.11
Dec-05 79.34 21.27 1.59 36.43
Jan-06 95.20 20.50 19.99 −3.62
Feb-06 74.35 23.79 −21.90 16.05

TABLE 21.2 Expected Historical Monthly Returns, Variances, and Standard
Deviations of Returns

Expected Monthly Return Variance of Return Standard Deviation

SUN 2.30% 1.54 12.40%
Continental Airlines 2.86% 3.04 17.43%

Airlines (XCAL,t), respectively; these columns were populated using Equation 21.1. In this
example, T = 26.

Table 21.2 shows the mean and standard deviation of returns for these two stocks, based
upon the 26 months of historical data. The average monthly return for SUN, XSUN , and
the average monthly return for Continental, XCAL, is computed as the arithmetic average
of the monthly returns in the fourth and fifth columns, respectively. An estimate of the
variance of monthly return on SUN’s (Continental’s) stock is computed as the variance of
the returns in the fourth (fifth) column of Table 21.1. If variance is used as a measure of risk,
then Continental is a riskier investment as it has a higher volatility (its variance is higher).

21.3.2 The Scenario Approach to Estimating Statistics

Sometimes, historical market conditions are not considered a good predictor of future market
conditions. In this case, historical data may not be a good source for estimating expected
returns or risk. When historical estimates are determined to be poor predictors of the future,
one can consider a scenario approach.

The scenario approach proceeds as follows:
Define a set of S future economic scenarios and assign likelihood p(s) that scenario s

will occur.
∑

s∈S p(s) = 1, since in the future the economy must be in exactly one of these
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TABLE 21.3 Definition of Future Possible Scenarios for States of the Economy

Scenario (s) Likelihood (p(s)) Return (ri(s)) p(s)∗ ri(s) p(s)∗ (ri(s) − ri)2

Weak economy 0.30 −15.00% −4.50% 1.03
Stable economy 0.45 9.00% 4.05% 0.13
Strong economy 0.25 16.00% 4.00% 0.39

3.55% 1.55

economic conditions. Next, define each asset’s behavior (its return) under each of the defined
economic scenarios. Asset i’s expected return is computed as:

ri =
∑

s

p(s)ri(s) (21.4)

where ri(s) is asset i’s return under scenario s.
Similarly, we compute the variance of return on asset i as:

vi =
∑

s

p(s)(ri(s) − ri)2 (21.5)

For example, suppose we use the scenario approach to predict expected monthly return
on SUN stock. We have determined that the economy may be in one of three states: weak,
stable, or strong, with a likelihood of 0.3, 0.45, and 0.25, respectively. Table 21.3 indicates
the forecasted monthly stock returns under each of these future economic conditions.

The first and second columns in Table 21.3 indicate the economic scenario and likelihood
that the scenario will occur, respectively. The third column contains the expected return
under each of the defined future scenarios. The fourth and fifth columns contain intermediate
computations needed to calculate the expected return and standard deviation of returns on
SUN stock, based upon Equations 21.3 and 21.4. Using these equations we find that the
expected monthly return on SUN stock is 3.55%, variance of monthly return is 1.55, with
corresponding standard deviation of 12.46%.

Comparing the estimates of mean and standard deviation of SUN’s monthly return using
the historical data approach versus the scenario-based approach we find that while the
estimates of volatility of return are close in value, the estimates of monthly return differ
significantly (2.3% versus 3.55%). In Section 21.7, we discuss the negative impact that can
result from portfolio allocation based upon incorrect parameter estimation. Thus, care must
be taken to determine the correct method and assumptions when estimating these values.

21.4 Diversification

We now explore how a portfolio’s risk, as measured by the variance of the portfolio return,
can be reduced when stocks are added to the portfolio. This phenomenon, whereby a port-
folio’s risk is reduced when assets are added to the portfolio, is known as diversification.

Portfolio return is the weighted average of the returns of the assets in the portfolio,
weighted by their appearance in the portfolio. However, portfolio variance (as derived in
Equation 21.3) is given by:

N∑
i=1

f2
i σ2

i +
N∑

i=1

N∑
j=1
j �=i

fifjσij

Namely, portfolio variance is comprised of two components. One component is the vari-
ances of the individual assets in the portfolio and the other component is the covariance
between the returns on the different assets in the portfolio. Covariance of return between
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asset i and j is the expected value of the product of the deviations of each of the assets from
their respective means. If the two assets deviate from their respective means in identical
fashions (i.e., both are above their means or below their means at the same time) then the
covariance is highly positive, and its contribution to portfolio variance is highly positive. If
the return on one asset deviates below its mean at the time that the return on the other
asset deviates above its mean, then the covariance is highly negative, which reduces the
overall portfolio variance.

Let us explore the impact of the covariance term on overall portfolio variance. If all
of the assets are independent, then the covariance terms equal zero and only the variance of
the individual assets in the portfolio contribute to overall portfolio variance. In this case,
the variance formula is:

N∑
i=1

f2
i σ2

i

If the investor invests an equal amount in each of the N independent assets, then the
portfolio variance is:

N∑
i=1

(
1
N

)2

σ2
i =

1
N

N∑
i=1

1
N

σ2
i =

1
N

σ2
i

where σ2
i is the average variance of the assets in the portfolio. As N gets larger, the portfolio

variance goes to zero. Thus, for a portfolio comprised only of independent assets, when the
number of assets in the portfolio is large enough the variance of the portfolio return is zero.

Now consider N assets that are not independent. Without loss of generality, assume the
assets appear in the portfolio with equal weight. Then, variance of portfolio return is:

1
N

σ2
i +

N∑
i=1

N∑
j=1
j �=i

(
1
N

)2

σij

=
1
N

σ2
i +

N − 1
N

N∑
i=1

N∑
j=1
j �=i

σij

N(N − 1)

=
1
N

σ2
i +

N − 1
N

σij

(21.6)

The final equality in Equation 21.6 reveals that as the number of assets in the portfolio
increases, the contribution of the first component (variance) becomes negligible—it is diver-
sified away—and the second term (covariance) approaches average covariance. Thus, while
increasing the number of assets in a portfolio will diversify away the individual risk of the
assets, the risk attributed to the covariance terms cannot be diversified away.

As a numerical example, consider the SUN and Continental Airlines monthly stock returns
from Section 21.3.1. Average monthly return on Sun Microsystems (Continental Airlines)
stock from January 2004 through February 2006 was 2.3% (2.86%). A portfolio comprised of
equal investments in Sun Microsystems and Continental Airlines yields an average monthly
return of 2.58%. The variance of the monthly returns on Sun Microsystems stock over the
26 months considered is 1.54. The variance of the monthly returns on Continental Airlines
stock over that same time period is 3.04. However, for the portfolio consisting of equal
investments in Sun Microsystems and Continental Airlines, the variance of portfolio returns
is 1.09. This represents a significant reduction in risk from the risk associated with either of
the stocks alone. The explanation lies in the value of the covariance between the monthly
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returns on these two stocks; the value of the covariance is −0.12. Because the returns on
the stocks have a negative covariance, diversification reduces the portfolio risk.

21.5 Efficient Frontier

The discussion in Section 21.4 illustrates the potential benefits of combining assets in a
portfolio. For a risk averse investor, diversification provides the opportunity to reduce port-
folio risk while maintaining a minimum level of return. An investor can consider different
combinations of assets, each of which has an associated risk and return.

This naturally leads one to question whether there is an optimal way to combine assets.
We address this question within the context of assuming that: (i) for a fixed return investors
prefer the lowest possible risk, that is, investors are risk averse, (ii) for a given level of
risk, investors always prefer the highest possible return, (this property is referred to as
nonsatiation), and (iii) the first two moments of the distribution of an asset’s return are
sufficient to describe the asset’s character; there is no need to gather information about
higher moments such as skew.

Given these assumptions, the risk-return trade-off of portfolios of assets can be graphically
displayed by constructing a plot with risk (as measured by standard deviation) on the
horizontal axis and return on the vertical axis. We can plot every possible portfolio on this
risk–return space. The set of all portfolios plotted form a feasible region.

By the risk averse assumption, for a given level of return investors prefer portfolios that
lie as far to the left as possible, as these have the lowest risk. Similarly, by the nonsatiation
property for a given level of risk investors prefer portfolios that lie higher on the graph as
these yield a greater return. The upper left perimeter of the feasible region is called the
efficient frontier. It represents the least risk combination for a given level of return. The
efficient frontier is concave.

Figure 21.1 shows a mean-standard deviation plot for 10,000 random portfolios created
from the 30 stocks in the Dow from 1986 through 1991. It represents the feasible region
of portfolios. Figure 21.2 is the efficient frontier for the stocks from the Dow Industrials
from 1985 through 1991. (Both figures were taken from the NEOS Server for Optimization
website.)
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FIGURE 21.1 Return vs. standard deviation for 10,000 random portfolios from the Dow Industrials.
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Mean-standard deviation efficient frontier
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FIGURE 21.2 Efficient frontier for Dow Industrials from 1985–1991.

21.5.1 Risk-Reward Portfolio Optimization

Markowitz (1952) developed a single period portfolio choice problem where the objective is
to minimize portfolio risk (variance) for a specified return on the portfolio. For this model,
it is assumed that all relevant information required by investors to make portfolio decisions
is captured in the mean, standard deviation, and correlation of assets. This method for
portfolio selection is often referred to as mean-variance optimization as it trades off an
investor’s desire for higher mean return against an aversion to greater risk as measured by
portfolio variance.

The Markowitz model for portfolio optimization is given by:

Minimize
∑
i,j

fifjσij

Subject to:
N∑

i=1

firi = R

N∑
i=1

fi = 1

(21.7)

The objective is to minimize variance subject to two constraints: (i) portfolio return must
equal the targeted return R and (ii) total allocation must equal 1. Negative values for fi

correspond to short selling.
One method that can be employed to solve this constrained optimization problem is to

form an auxiliary function L called the Lagrangian by (i) rearranging each constraint so
that the right hand side equals to zero and (ii) introducing a single Lagrange multiplier for
each constraint in the problem as follows:

L =
∑
i,j

fifjσij − λ

(
N∑

i=1

firi − R

)
− µ

(
N∑

i=1

fi − 1

)
(21.8)

We now treat the Lagrangian Equation 21.8 as an unconstrained minimization problem. A
necessary condition for a point to be optimal is that the partial derivative of the Lagrangian
with respect to each of the variables must equal zero. Thus, we take the partial derivative
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of L with respect to each of the i asset weights fi, µ, and λ and set each partial derivative
equal to zero. (Notice that the partial derivative of L with respect to λ yields the portfolio
return constraint, and the partial derivative of L with respect to µ yields the constraint on
the asset weights.) The result is a system of i+ 2 constraints. We use this set of constraints
to solve for the i+ 2 unknowns: fi, µ, and λ.

The Lagrangian method can often only be successfully implemented for small problems.
For larger problems with many variables it may be virtually impossible to solve the set of
equations for the i+ 2 unknowns. Instead, one can find the solution to Problem 21.7 using
methods developed for optimizing quadratic programs. A quadratic program is a mathe-
matical optimization model where the objective function is quadratic and all constraints
are linear equalities or inequalities. The constraints of the optimization problem define the
feasible region within which the optimal solution must lie. Quadratic programs are, in gen-
eral, difficult to solve. Quadratic programming solution methods work in two phases. In the
first phase a feasible solution is found. In the second phase, the method searches along the
edges and surfaces of the feasible region for another solution that improves upon the current
feasible solution. Unless the objective function is convex, the method will often identify a
local optimal solution.

The solution to the Markowitz problem yields a point that lies on the efficient frontier.
By varying the value of R in Problem 21.7, one can map out the entire efficient frontier.

21.6 Utility Analysis

The solution to the Markowitz problem provides one means for making investment decisions
in the mean-variance space. It requires the investor to define a measure of risk and a measure
of value and then utilizes an explicitly defined trade-off between these two measures to
determine the investor’s preferences. Utility theory provides an alternative way to establish
an investor’s preferences without explicitly defining risk functions.

Utility describes an investor’s attitude toward risk by translating the investor’s satisfac-
tion associated with different cash payouts into a utility value. The application of utility
to uncertain financial situations was first introduced by von Neumann and Morgenstern
(1944). Utility functions can be used to explain how investors make choices between differ-
ent portfolios.

Utility theory is often introduced by way of the concept of certainty equivalent. Certainty
equivalent is the amount of wealth that is equally preferred to an uncertain alternative. Risk
averse investors will prefer a lower certain cash payout to a higher risky cash payout. That
is, their certainty equivalent is lower than the expected value of uncertain alternatives. Risk
seeking individuals have a certainty equivalent that is higher than the expected value of
the uncertain alternatives. A utility function assigns different weights to different outcomes
according to the risk profile of the individual investor. The shape of a utility function is
defined by the risk profile of the investor.

Each individual investor may have a different utility function, as each investor may
have a different attitude toward risk. However, all utility functions U satisfy the
following:

• Nonsatiation: Utility functions must be consistent with more being preferred to
less. If x and y are two cash payouts and x > y, then U(x) > U(y). This property is
equivalent to stating that the first derivative of the utility function, with respect
to cash payout, is positive.

• Risk preference: Economic theory presumes that an investor will seek to maxi-
mize the utility of his investment. However, all investors will not make identical
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investment decisions because they will not all share the same attitudes toward
risk. Investors can be classified into three classes, according to their willingness to
accept risk: risk averse, risk neutral, or risk taking. Risk-averse investors invest
in investments where the utility of the return exceeds the risk-free rate. If no
such investment exists, the investor invests in risk-free investments. The util-
ity function of a risk-averse investor is increasing and concave in the cash payout
(U ′′(x) < 0); the value assigned to each additional dollar received decreases due to
the risk-averse nature of the individual. Risk-neutral investors ignore risk when
making investment decisions. They seek investments with a maximum return,
irrespective of the risk involved. The utility function of a risk-neutral individual
is linear increasing in the cash payout; the same value is assigned to each addi-
tional dollar. Risk-taking investors are more likely to invest in investments with
a higher risk involved. The utility function of a risk-taking individual is convex
(U ′′(x) > 0).

• Changes in wealth: Utility functions also define how an investor’s investment
decisions will be affected by changes in his wealth. Specifically, if an investor has
a larger amount of capital will this change his willingness to accept risk? The
Arrow–Pratt absolute risk aversion coefficient, given by

A(x) = −U ′′(x)
U ′(x)

is a measure of an investor’s absolute risk aversion. A′(x) measures changes in an
investor’s absolute risk aversion as a function of changes in his wealth. If A′(x) > 0
(A′(x) < 0), the investor has increasing (decreasing) absolute risk aversion and he
will hold fewer (more) dollars in risky assets as his wealth increases. If A′(x) = 0,
the investor has constant absolute risk aversion and he will hold the same dollar
amount of risky assets as his wealth increases.

A utility function only ranks alternatives according to risk preferences; its numerical value
has no real meaning. Thus, utility functions are unique up to a positive affine transformation.
More specifically, if U(x) is a utility function then V (x) = a + bU(x) (b > 0) will yield the
same rankings (and hence the same investment decisions) as U(x).

21.6.1 Utility Functions

Although each investor can define his own utility function, there are a number of predefined
utility functions that are commonly used in the finance and economics literature. In this sec-
tion, we describe the exponential utility function. We also reconcile between mean-variance
optimization and utility optimization.

The exponential utility function is often adopted for financial analysis. The exponential
utility function is defined as:

U(x) = 1 − e−x/R, for all x (21.9)

where x is the wealth and R > 0 represents the investor’s risk tolerance. Greater values of
R mean that the investor is less risk averse. (In fact, as R → ∞ the investor becomes risk
neutral.) U ′(x) = (1/R)e−x/R and U ′′(x) = −(1/R)2e−x/R. The second derivative of Equa-
tion 21.9 is strictly negative so the exponential utility function is concave; the exponential
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utility function describes the behavior of a risk-averse investor. The absolute risk aver-
sion coefficient is (1/R), which is constant with wealth; the investor invests constant dollar
amounts in risky investments as his wealth increases.

We now demonstrate the relationship between utility and mean-variance for concave (i.e.,
risk-averse) investors, following King (1993). Suppose U(X) is a strictly concave utility
function. The Taylor expansion of U(X) is an approximation of the function at a particular
point, say M , using its derivatives. The second-order Taylor expansion of U(X) about point
M is given by:

U(X) = U(M) + U ′(M)(X − M) +
1
2
U ′′(M)(X − M)2 (21.10)

Now suppose that the point M is equal to expected wealth, that is, E(X) = M . Then the
expected value of the second-order Taylor expansion expression (Equation 21.10) is equal to

E[U(X)] = U(M) +
1
2
U ′′(M)E(X − M)2

= U(M) +
1
2
U ′′(M)σ2

(The middle term drops out as E(X) = M .) The second derivative is negative for a strictly
concave utility function. This implies that maximizing the second-order Taylor expansion
is equivalent to

min E(X − M)2 = σ2

for all X with E(X) = M , which is a mean-variance problem with a given mean return M .
It follows that mean-variance is a second-order approximation to utility maximization.

Of course, due to the two-sided nature of the variance, eventually this approximation will
become negatively-sloped—and hence not really valid as a utility function—as X increases
in value. The range over which the approximation is valid can be pretty wide. The upper
bound of the range is the point where U ′(X) + U ′′(X)(X −M) = 0; which is the maximum
point of the approximating quadratic. For the logarithmic utility U(X) = log(X), the upper
bound of the range where the mean-variance approximation remains quadratic is X = 2M .
In other words, the mean-variance approximation for the logarithm is valid for a range that
includes twice the mean value of the return!

21.6.2 Utility in Practice

In practice, utility is not often used as an objective criterion for investment decision making
because utility curves are difficult to estimate. However, Holmer (1998) reports that Fannie
Mae uses expected utility to optimize its portfolio of assets and liabilities. Fannie Mae faces
a somewhat unique set of risks due to the specific nature of its business. Fannie Mae buys
mortgages on the secondary market, pools them, and then sells them on the open market to
investors as mortgage backed securities. Fannie Mae faces many risks such as: prepayment
risk, risks due to potential gaps between interest due and interest owed, and long-term
asset and liability risks due to interest rate movements. Utility maximization allows Fannie
Mae to explicitly consider degrees of risk aversion against expected return to determine its
risk-adjusted optimal investment portfolio.
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21.7 Black–Litterman Asset Allocation Model

Markowitz mean-variance portfolio optimization requires mean and covariance as input and
outputs optimal portfolio weights. The method has been criticized because:

i. The optimal portfolio weights are highly dependent upon the input values. How-
ever, it is difficult to accurately estimate these input values. Chopra and Ziemba
(1993), Kallberg and Ziemba (1981, 1984), and Michaud (1989) use simulation
to demonstrate the significant cash-equivalent losses due to incorrect estimates
of the mean. Bengtsson (2004) showed that incorrect estimates of variance and
covariance also have a significant negative impact on cash returns.

ii. Markowitz mean-variance optimization requires the investor to specify the uni-
verse of return values. It is unreasonable to expect an investor to know the uni-
verse of returns. On the other hand, mean-variance optimization is sensitive to
the input values so incorrect estimation can significantly skew the results.

iii. Black and Litterman (1992) and He and Litterman (1999) have studied the opti-
mal Markowitz model portfolio weights assuming different methods for estimating
the assets’ means and found that the resulting portfolio weights were unnatural.
Unconstrained mean-variance optimization typically yields an optimal portfolio
that takes many large long and short positions. Constrained mean-variance opti-
mization often results in an extreme portfolio that is highly concentrated in a
small number of assets. Neither of these portfolio profiles is typically considered
acceptable to investors.

iv. Due to the intricate interaction between mean and variance, the optimal weights
determined by Markowitz’s mean-variance estimation are often non-intuitive. A
small change in an estimated mean of a single asset can drastically change the
weights of many assets in the optimal portfolio.

Black and Litterman observed the potential benefit of using mathematical optimiza-
tion for portfolio decision making, yet understood an investment manager’s hesitations in
implementing Markowitz’s mean-variance optimization model. Black and Litterman (1992)
developed a Bayesian method for combining individual investor subjective views on asset
performance with market equilibrium returns to create a mixed estimate of expected returns.
The Bayes approach works by combining a prior belief with additional information to cre-
ate an updated “posterior” distribution of expected asset returns. In the Black–Litterman
framework the equilibrium returns are the prior and investor subjective views are the addi-
tional information. Together, these form a posterior distribution on expected asset returns.
These expected returns can then be used to make asset allocation decisions. If the investor
has no subjective views on asset performance, then the optimal allocation decision is deter-
mined solely according to the market equilibrium returns. Only if the investor expresses
opinions on specific assets will the weights for those assets shift away from the market
equilibrium weights in the direction of the investor’s beliefs.

The Black–Litterman model is based on taking a market equilibrium perspective on
asset returns. Asset “prior” returns are derived from the market capitalization weights
of the optimal holdings of a mean-variance investor, given historical variance. Then, if
the investor has specific views on the performance of any assets, the model combines the
equilibrium returns with these views, taking into consideration the level of confidence that
the investor associates with each of the views. The model then yields a set of updated
expected asset returns as well as updated optimal portfolio weights, updated according to
the views expressed by the investor.
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The key inputs to the Black–Litterman model are market equilibrium returns and the
investor views. We now consider these inputs in more detail.

21.7.1 Market Equilibrium Returns

Black and Litterman use the market equilibrium expected returns, or capital asset pricing
model (CAPM) returns, as a neutral starting point in their model. (See, e.g., Sharpe, 1964.)
The basic assumptions are that (i) security markets are frictionless, (ii) investors have full
information relevant to security prices, and (iii) all investors process the information as if
they were mean-variance investors. The starting point for the development of the CAPM is
to form the efficient frontier for the market portfolios and to draw the capital market line
(CML). The CML begins at the risk-free rate on the vertical axis (which has risk 0) and
is exactly tangent to the efficient frontier. The point where the CML touches the efficient
frontier is the pair (σm, rm), which is defined to be the “market” standard deviation and
“market” expected return. By changing the relative proportions of riskless asset and market
portfolio, an investor can obtain any combination of risk and return that lies on the CML.
Because the CML is tangent to the efficient frontier at the market point, there are no other
combinations of risky and riskless assets that can provide better expected returns for a given
level of risk. Now, consider a particular investor portfolio i with expected return E(ri) and
standard deviation σi. For an investor to choose to hold this portfolio it must have returns
comparable to the returns that lie on the CML. Thus, the following must hold:

E(ri) = rf +
σi

σm
(rm − rf )

where rf is the risk-free rate. This equation is called the CAPM.
The interpretation of the CAPM is that investors’ portfolios have an expected return

that includes a reward for taking on risk. This reward, by the CAPM hypothesis, must
be equal to the return that would be obtained from holding a portfolio on the CML that
has an equivalent risk. Any remaining risk in the portfolio can be diversified away (by,
for example, holding the market portfolio) so the investor does not gain any reward for
the non-systematic, or diversifiable, risk of the portfolio. The CAPM argument applied to
individual securities implies that the holders of individual securities will be compensated
only for that part of the risk that is correlated with the market, or the so-called systematic
risk. For an individual security j the CAPM relationship is

E(rj) = rf + βj(rm − rf )

where βj = (σj/σm)ρmj and ρmj is the correlation between asset j returns and the market
returns.

The Black–Litterman approach uses the CAPM in reverse. It assumes that in equilibrium
the market portfolio is held by mean-variance investors and it uses optimization to back
out the expected returns that such investors would require given their observed holdings
of risky assets. Let N denote the number of assets and let the excess equilibrium market
returns (above the risk-free rate) be defined by:

∏
= λ

∑
w (21.11)

where∏
= N × 1 vector of implied excess returns∑
= N ×N covariance matrix of returns
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w = N × 1 vector of market capitalization weights of the assets
λ = risk aversion coefficient that characterizes the expected risk-reward tradeoff.

λ is the price of risk as it measures how risk and reward can be traded off when making
portfolio choices. It measures the rate at which an investor will forego expected return for
less variance. λ is calculated as λ = (rm − rf )/σ2

m, where σ2
m is the variance of the market

return. The elements of the covariance matrix are computed using historical correlations and
standard deviations. Market capitalization weights are determined by measuring the dollar
value of the global holdings of all equity investors in the large public stock exchanges. The
capitalization weight of a single equity name is the dollar-weighted market-closing value of
its equity share times the outstanding shares issued. Later we will show that Equation 21.11
is used to determine the optimal portfolio weights in the Black–Litterman model.

21.7.2 Investor Views

The second key input to the Black–Litterman model is individual investor views.
Assume that an investor has K views, denoted by a K × 1 vector Q. Uncertainty regarding

these views is denoted by an error term ε, where ε is normally distributed with mean zero
and K ×K covariance matrix Ω. Thus, a view has the form:

Q + ε =

⎡
⎢⎢⎢⎢⎢⎣

Q1
...

QK

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

ε1
...

εK

⎤
⎥⎥⎥⎥⎥⎦

ε = 0 means that the investor is 100% confident about his view; in the more likely case that
the investor is uncertain about his view, ε takes on some positive or negative value.

ω denotes the variance of each error term. We assume that the error terms are indepen-
dent of each other. (This assumption can be relaxed.) Thus, the covariance matrix Ω is a
diagonal matrix where the elements on the diagonal are ω, the variances of each error term.
A higher variance indicates greater investor uncertainty with the associated view. The error
terms ε do not enter directly into the Black–Litterman formula; only their variances enter
via the covariance matrix Ω.

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1 0 . . . 0

0
. . .

...
...

0
0 . . . 0 ωK

⎤
⎥⎥⎥⎥⎥⎥⎦

The Black–Litterman model allows investors to express views such as:

View 1: Asset A will have an excess return of 5.5% with 40% confidence.
View 2: Asset B will outperform asset C by 3% with 15% confidence.
View 3: Asset D will outperform assets E and F by 1% with 20% confidence.

The first view is called an absolute view, while the second and third views are called relative
views. Notice that the investor assigns a level of confidence to each view.

Each view can be seen as a portfolio of long and short positions. If the view is an absolute
view then the portfolio position will be long. If the view is a relative view, then the portfolio
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will take a long position in the asset that is expected to “overperform” and a short position in
the asset that is expected to “underperform.” In general, the impact on the optimal portfolio
weights is determined by comparing the equilibrium difference in the performance of these
assets to the performance expressed by the investor view. If the performance expressed in
the view is better than the equilibrium performance, the model will tilt the portfolio toward
the outperforming asset. More specifically, consider View 2, which states that asset B will
outperform asset C by 3%. If the equilibrium returns indicate that asset B will outperform
asset C by more than 3% then the view represents a weakening view in the performance of
asset B and the model will tilt the portfolio away from asset B.

One of the most challenging questions in applying the Black–Litterman model is how to
populate the covariance matrix Ω and how to translate the user specified expressions of
confidence into uncertainty in the views. We will discuss this further below.

21.7.3 An Example of an Investor View

We now illustrate how one builds the inputs for the Black–Litterman model, given the
three views expressed. Suppose that there are N = 7 assets: Assets A − G. The Q matrix is
given by:

Q =

⎡
⎣5.5

3
1

⎤
⎦

Note that the investor only has views on six of the seven assets. We use the matrix P
to match the views to the individual assets. Each view results in a 1 ×N vector so that P
is a K ×N matrix. In our case, where there are seven assets and three views, P is a 3 × 7
matrix. Each column corresponds to one of the assets; column 1 corresponds to Asset A,
column 2 corresponds to Asset B, and so on. In the case of absolute views, the sum of the
elements in the row equals 1. In our case, View 1 yields the vector:

P1 =
[
1 0 0 0 0 0 0

]

In the case of relative views, the sum of the elements equals zero. Elements corresponding
to relatively outperforming assets have positive values; elements corresponding to relatively
underperforming assets take negative values. We determine the values of the individual ele-
ments by dividing 1 by the number of outperforming and underperforming assets, respec-
tively. For View 2, we have one outperforming asset and one underperforming asset. Thus,
View 2 yields the vector:

P2 =
[
0 1 −1 0 0 0 0

]
View 3 has one outperforming asset (Asset D) and two relatively underperforming assets

(Assets E and F). Thus, Asset D is assigned a value of +1 and Assets E and F are assigned
values of −0.5 each. View 3 yields the vector:

P3 =
[
0 0 0 1 −0.5 −0.5 0

]

Matrix P is given by: ⎡
⎣1 0 0 0 0 0 0

0 1 −1 0 0 0 0
0 0 0 1 −0.5 −0.5 0

⎤
⎦

The variance of the kth view portfolio can be calculated according to the formula pk

∑
p′

k,
where pk is the kth row of the P matrix and

∑
is the covariance matrix of the excess
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equilibrium market returns. (Recall, these form the neutral starting point of the Black–
Litterman model.) The variance of each view portfolio is an important source of information
regarding the confidence that should be placed in the investor’s view k.

21.7.4 Combining Equilibrium Returns with Investor Views

We now state the Black–Litterman equation for combining equilibrium returns with investor
views to determine a vector of expected asset returns that will be used to determine optimal
portfolio weights. The vector of combined asset returns is given by:

E[R] =
[(

τ
∑)−1

+ P ′Ω−1P

]−1 [(
τ

∑)−1 ∏
+P ′Ω−1Q

]
(21.12)

where:
E[R] =N × 1 vector of combined returns

τ = scalar, indicating uncertainty of the CAPM prior∑
= N ×N covariance matrix of equilibrium excess returns

P =K ×N matrix of investor views
Ω = K ×K diagonal covariance matrix of view error terms (uncorrelated view uncertainty)
Π = N × 1 vector of equilibrium excess returns
Q= K × 1 vector of investor views.

Examining this formula, we have yet to describe how the value of τ should be set and
how the matrix Ω should be populated. Recall that if an investor has no views, the Black–
Litterman model suggests that the investor does not deviate from the market equilibrium
portfolio. Only weights on assets for which the investor has views should change from their
market equilibrium weights. The amount of change depends upon τ , the investor’s confidence
in the CAPM prior, and ω, the uncertainty in the views expressed.

The literature does not have a single view regarding how the value of τ should be set.
Black and Litterman (1992) suggest a value close to zero. He and Litterman (1999) set τ
equal to 0.025 and populate the covariance matrix Ω so that

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
p1

∑
p′
1

)
τ 0 . . . 0

0
. . .

...
...

0
0 . . . 0

(
pK

∑
p′

K

)
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We note that the implied assumption is that the variance of the view portfolio is the infor-
mation that determines an investor’s confidence in his view. There may be other information
that contributes to the level of an investor’s confidence but it is not accounted for in this
method for populating Ω.

Formula 21.12 uses Bayes approach to yield posterior estimates of asset returns that reflect
a combination of the market equilibrium returns and the investor views. These updated
returns are now used to compute updated optimal portfolio weights.

In the case that the investor is unconstrained, we use Formula 21.11. Using Formula 21.11
w∗, the optimal portfolio weights, are given by:

w∗ =
(
λ

∑)−1
µ (21.13)
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where µ is the vector of combined returns given by Equation 21.12. Equation 21.13 is the
solution to the unconstrained maximization problem maxw w′µ−λw′ ∑w/2.

In the presence of constraints (e.g., risk, short selling, etc.) Black and Litterman suggest
that the vector of combined returns be input into a mean-variance portfolio optimization
problem.

We note two additional comments on the updated weights w∗:

i. Not all view portfolios necessarily have equal impact on the optimal portfolio
weights derived using the Black–Litterman model. A view with a higher level of
uncertainty is given less weight. Similarly, a view portfolio that has a covariance
with the market equilibrium portfolio is given less weight. This is because such a
view represents less new information and hence should have a smaller impact in
moving the optimal portfolio weights away from the market equilibrium weights.
Finally, following the same reasoning, a view portfolio that has a covariance with
another view portfolio has less weight.

ii. A single view causes all returns to change, because all returns are linked via
the covariance matrix

∑
. However, only the weights for assets for which views

were expressed change from their original market capitalization weights. Thus,
the Black–Litterman model yields a portfolio that is intuitively understandable
to the investor. The optimal portfolio represents a combination of the market
portfolio and a weighted sum of the view portfolios expressed by the investor.

21.7.5 Application of the Black–Litterman Model

The Black–Litterman model was developed at Goldman Sachs in the early 1990s and is
used by the Quantitative Strategies group at Goldman Sachs Asset Management. This
group develops quantitative models to manage portfolios. The group creates views and then
uses the Black–Litterman approach to transform these views into expected asset returns.
These expected returns are used to make optimal asset allocation decisions for all of the
different portfolios managed by the group. Different objectives or requirements (such as
liquidity requirements, risk aversion, etc.) are incorporated via constraints on the portfolio.
The Black–Litterman model has gained widespread use in other financial institutions.

21.8 Risk Management

Risk exists when more than one outcome is possible from the investment. Sources of risk
may include business risk, market risk, liquidity risk, and the like. Variance or standard
deviation of return is often used as a measure of the risk associated with an asset’s return.
If variance is small, there is little chance that the asset return will differ from what is
expected; if variance is large then the asset returns will be highly variable.

Financial institutions manage their risk on a regular basis both to meet regulatory require-
ments as well as for internal performance measurement purposes. However, while variance
is a traditional measure of risk in economics and finance, in practice it is typically not the
risk measure of choice. Variance assumes symmetric deviations above and below expected
return. In practice, one does not observe deviations below expected return as often as
deviations above expected return due to positions in options and options-like instruments
in portfolios. Moreover, variance assigns equal penalty to deviations above and below the
mean return. However, investors typically are not averse to receiving higher than anticipated
returns. Investors are more interested in shortfall risk measures. These are risk measures
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that measure either the distance of return below a target or measure the likelihood that
return will fall below a threshold.

One measure of shortfall risk is downside risk. Downside risk measures the expected
amount by which the return falls short of a target. Specifically, if z is the realized return
and X is the target then downside risk is given by E[max(X − z, 0)]. Semivariance is another
measure of shortfall risk. Semivariance measures the variance of the returns that fall below
a target value. Semivariance is given by E[max(X − z, 0)2].

21.8.1 Value at Risk

Value at risk (VaR) is a risk measure that is used for regulatory reporting. Rather than
measuring risk as deviation from a target return, VaR is a quantile of the loss distribution of
a portfolio. Let L(f, r̃) be the random loss on a portfolio with allocation vector f and random
return vector r̃. Let F be its distribution function so that F (f, u) = Pr {L(f, r̃) ≤u}.VaR
is the α-quantile of the loss distribution and is defined by:

V aRα(f) = min {u : F (f, u) ≥ α} (21.14)

Thus, VaR is the smallest amount u such that with probability α the loss will not exceed u.
The first step in computing VaR is to determine the underlying market factors that

contribute to the risk (uncertainty) in the portfolio. The next step is to simulate these
sources of uncertainty and the resulting portfolio loss. Monte Carlo simulation is used largely
because many of the portfolios under management by the more sophisticated banks include
a preponderance of instruments that have optional features. As we shall see in Section 21.10,
the price changes of these instruments can best be approximated by simulation. VaR can
then be calculated by determining the distribution of the portfolio losses. The key question
is what assumptions to make about the distributions of these uncertain market factors.
Similar to the two methods that we discuss for estimating asset returns and variances, one
can use historical data or a scenario approach to build the distributions.

Using historical data, one assumes that past market behavior is a good indicator of future
market behavior. Take T periods of historical data. For each period, simulate the change
in the portfolio value using the actual historical data. Use these T data points of portfolio
profit/loss to compute the loss distribution and hence VaR. The benefit of this method is
that there is no need for artificial assumptions about the distribution of the uncertainty
of the underlying factors that impact the value of the portfolio. On the other hand, this
method assumes that future behavior will be identical to historical behavior.

An alternative approach is to specify a probability distribution for each of the sources
of market uncertainty and to then randomly generate events from those distributions. The
events translate into behavior of the uncertain factors, which result in a change in the
portfolio value. One would then simulate the portfolio profit/loss assuming that these ran-
domly generated events occur and construct the loss distribution. This distribution is used
to compute VaR.

21.8.2 Coherent Risk Measures

VaR is a popular risk measure. However, VaR does not satisfy one of the basic requirements
of a good risk measure: VaR is not subadditive for all distributions (i.e., it is not always
the case that V aR(A + B) < V aR(A) + V aR(B)), a property one would hope to hold true
if risk is reduced by adding assets to a portfolio. This means that the VaR of a diversified
portfolio may exceed the sum of the VaR of its component assets.
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Artzner, Delbaen, Eber, and Heath (1999) specify a set of axioms satisfied by all coherent
risk measures. These are:

• Subadditivity: ρ(A + B) ≤ ρ(A) + ρ(B)
• Positive homogeneity: ρ(λA) = λρ(A) for λ ≥ 0
• Translation invariance: ρ(A + c) = ρ(A) − c for all c

• Monotonicity: A ≤B then ρ(B) ≤ ρ(A)

Subadditivity implies that the risk of a combined position of assets does not exceed the
combined risk of the individual assets. This allows for risk reduction via diversification, as
we discuss in Section 21.4.

Conditional value-at-risk (CVaR), also known as expected tail loss, is a coherent risk
measure. CVaR measures the expected losses conditioned on the fact that the losses exceed
VaR. Following the definition of VaR in Equation 21.14, if F is continuous then CVaR is
defined as:

CV aR(f, α) = E{L(f, r̃)|L(f, r̃) ≥ V aR(f, α)} (21.15)

An investment strategy that minimizes CVaR will minimize VaR as well.
An investor wishing to maximize portfolio return subject to a constraint on maximum

CVaR would solve the following mathematical program:

max E

(
N∑

i=1

firi

)

subject to: CV aRα(f1, . . ., fN ) ≤ C

N∑
i=1

fi = 1

0 ≤ fi ≤ 1

(21.16)

where fi is the fraction of wealth allocated to asset i, ri is the return on asset i, and C
is the maximum acceptable risk. Formulation 21.16 is a nonlinear formulation due to the
constraint on CVaR, and is a hard problem to solve.

Suppose, instead of assuming that the loss distribution F is continuous, we discretize
the asset returns by considering a finite set of s = 1, . . ., S scenarios of the portfolio perfor-
mance. Let p(s) denote the likelihood that scenario s occurs; 0 ≤ p(s) ≤ 1;

∑
s∈S p(s) = 1.

ϕ(s) denotes the vector of asset returns under scenario s and ρ(f, ϕ(s)) denotes the portfolio
return under scenario s assuming asset allocation vector f . Then, using this discrete set of
asset returns, the expected portfolio return is given by

∑
s∈S

p(s)ρ(f, ϕ(s)) (21.17)

The investor will wish to maximize Equation 21.17. Definition 21.15 applies to continuous
loss distributions. Rockafellar and Uryasev (2002) have proposed an alternative definition
of CVaR for any general loss distribution, where u = V aRα(f):

CVaR(f, α) =
1

1 − α

⎛
⎝ ∑

{s∈S|ρ(f,ϕ(s))≤u}
p(s) − α

⎞
⎠u +

1
1 − α

∑
{s∈S|ρ(f,ϕ(s))>u}

p(s)ρ(f, ϕ(s))

(21.18)
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Using Definition 21.18, we can solve Problem 21.16 using a stochastic programming approach.
First, we define an auxiliary variable z(s) for each scenario s, which denotes the shortfall
in portfolio return from the target u:

z(s) = max(0, u − ρ(f, ϕ(s))) (21.19)

Following Rockafellar and Uryasev (2002), CVaR can be expressed using the shortfall
variables (Equation 21.19) as:

CV aR(f, α) = min

[
u − 1

1 − α

S∑
s=1

p(s)z(s)

]

The linear program is given by:

max
∑
s∈S

p(s)ρ(f, ϕ(s))

subject to:
N∑

i=1

fi = 1

0 ≤ fi ≤ 1

u − 1
1 − α

S∑
s=1

p(s)z(s) ≥ C

z(s) ≥ u − ρ(f, ϕ(s)) s = 1, . . ., S

z(s) ≥ 0 s = 1, . . ., S

(21.20)

where the last two inequalities follow from the definition of the shortfall variables (Equa-
tion 21.19) and the maximization is taken over the variables (f, u, z).

Formulation 21.20 is a linear stochastic programming formulation of the CVaR problem.
To solve this problem requires an estimate of the distribution of the asset returns, which will
be used to build the scenarios. If historical data are used to develop the scenarios then it is
recommended that as time passes and more information is available, the investor reoptimize
(Equation 21.20) using these additional scenarios. We direct the reader to Rockafellar and
Uryasev (2000, 2002) for additional information on this subject.

21.8.3 Risk Management in Practice

VaR and CVaR are popular risk measures.VaR is used in regulatory reporting and to
determine the minimum capital requirements to hedge against market, operational, and
credit risk. Financial institutions may be required to report portfolio risks such as the
30-day 95% VaR or the 5% quantile of 30-day portfolio returns and to hold reserve accounts
in proportion to these calculated amounts.VaR is used in these contexts for historical rea-
sons. But even though as we saw above it is not a coherent risk measure, there is possibly
some justification in continuing to use it.VaR is a frequency measure, so regulators can
easily track whether the bank is reporting VaR accurately;CVaR is an integral over the tail
probabilities and is likely not as easy for regulators to track.

In addition to meeting regulatory requirements, financial institutions may use VaR or
CVaR to measure the performance of its business units that control financial portfolios by
comparing the profit generated by the portfolio actions versus the risk of the portfolio itself.

© 2008 by Taylor & Francis Group, LLC



CH021.tex 30/10/2007 10: 55 Page 21-22

21-22 Operations Research and Management Science Handbook

For purposes of generating risk management statistics, banks will simulate from distribu-
tions that reflect views of the market and the economy. Banks will also incorporate some
probability of extreme events such as the wild swings in correlations and liquidity that occur
in market crashes.

21.9 Options

In this section, we discuss options. An option is a derivative security, which means that its
value is derived from the value of an underlying variable. The underlying variable may or
may not be a traded security. Stocks or bonds are examples of traded securities; interest rates
or the weather conditions are examples of variables upon which the value of an option may
be contingent but that are not traded securities. Derivative securities are sometimes referred
to as contingent claims, as the derivative represents a claim whose payoff is contingent on
the history of the underlying security.

The two least complex types of option contracts for individual stocks are calls and puts.
Call options give the holder the right to buy a specified number of shares (typically, 100
shares) of the stock at the specified price (known as the exercise or strike price) by the
expiration date (known as the exercise date or maturity). A put option gives the holder the
right to sell a specified number of shares of the stock at the strike price by maturity. Amer-
ican options allow the holder to exercise the option at any time until maturity; European
options can only be exercised at maturity. The holder of an option contract may choose
whether or not he wishes to exercise his option contract. However, if the holder chooses to
exercise, the seller is obligated to deliver (for call options) or purchase (for put options) the
underlying securities.

When two investors enter into an options contract, the buyer pays the seller the option
price and takes a long position; the seller takes a short position. The buyer has large
potential upside from the option, but his downside loss is limited by the price that he paid
for the option. The seller’s profit or loss is the reverse of that of the buyer’s. The seller
receives cash upfront (the price of the option) but has a potential future liability in the case
that the buyer exercises the option.

21.9.1 Call Option Payoffs

We first consider European options. We will define European option payoffs at their expi-
ration date.

Let C represent the option cost, ST denote the stock price at maturity, and K denote the
strike price. An investor will only exercise the option if the stock price exceeds the strike
price, that is, ST > K. If ST > K, the investor will exercise his option to buy the stock at
price K and gain (ST −K) for each share of stock that he purchases. If ST < K, then the
investor will not exercise the option to purchase the stock at price K. Thus, the option
payoff for each share of stock is

max(ST − K, 0) (21.21)

The payoff for the option writer (who has a short position in a call option) is the oppo-
site of the payoff for the long position. If, at expiration, the stock price is below the strike
price the holder (owner) will not exercise the option. However, if the stock price is above the
strike price the owner will exercise his option. The writer must sell the stock to the owner
at the strike price. For each share of stock that he sells, the writer must purchase the stock
in the open market at a price per share of ST and then sell it to the owner at a price of
K. Thus, the writer loses (ST −K) for each share that he is obligated to sell to the owner.
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FIGURE 21.3 Profit from European call options.

The writer thus has an unlimited potential loss depending upon the final stock price of the
underlying asset; the writer’s payoff is

−max(ST − K, 0) = min(K − ST , 0)

Thus, an investor with a short position in a European call option has potentially unlim-
ited loss depending upon the final stock price of the underlying stock. This risk must be
compensated by the price of the option C.

The graph on the left in Figure 21.3 shows the profit at maturity for the owner of a call
option. The point of inflection occurs when the ending stock price equals the strike price.
The negative payoff is the price the investor paid for the option. As mentioned, the option
holder’s downside loss is limited by the price paid for the option. The payoff for the call
option writer is shown in the graph on the right in Figure 21.3 and is the reverse of the
payoff to the call option buyer.

When the price of the underlying stock is above the strike price, we say that the option
is “in the money.” If the stock price is below the strike price we say that the option is “out
of the money.” If the stock price is exactly equal to the strike price we say that the call
option is “at the money.”

American options can be exercised at any time prior to maturity. The decision of whether
to exercise hinges upon a comparison of the value of exercising immediately (the intrinsic
value of the option) against the expected future value of the option if the investor continues
to hold it. We will discuss this in further detail in Section 21.12, where we discuss pricing
American options.

21.9.2 Put Option Payoffs

An investor with a long position in a put option profits if the price of the underlying stock
drops below the option’s strike price. Similar to the definitions for a call option, we say that
a put option is “in the money” if the stock price at maturity is lower than the strike price.
The put option is “out of the money” if the stock price exceeds the strike price. The option
is “at the money” if the strike price equals the stock price at maturity.

Let P denote the cost of the put option, K is its strike price, and ST the stock price at
expiration. The holder of a put option will only sell if the stock price at expiration is lower
than the strike price. In this case, the owner can sell the shares to the writer at the strike
price and will gain (K −ST ) per share. Thus, payoff on a put option is max (K −ST , 0);
we note that positive payoff on a put is limited at K. If the stock price is higher than the
strike price at maturity then the holder will not exercise the put option as he can sell his
shares on the open market at a higher price. In this case, the option will expire worthless.
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FIGURE 21.4 Profit from European put options.

A put writer has opposite payoffs. If the stock price exceeds the strike price, the put
holder will never exercise his option; however, if the stock price declines, the writer will lose
money. The price P paid by the owner must compensate the writer for this risk.

Figure 21.4 shows the option payoff for a put holder and writer.

21.10 Valuing Options

The exact value of a stock option is easy to define at maturity. Valuing options prior to
expiration is more difficult and depends upon the distribution of the underlying stock price,
among other factors. Black and Scholes (1973) derived a differential equation that can be
used to price options on non-dividend paying stocks. We discuss the Black–Scholes for-
mula in Section 21.10.1. However, in general, exact formulas are not available for valuing
options. In most cases, we rely on numerical methods and approximations for options valu-
ation. In Sections 21.10.3 and 21.12, we discuss two numerical methods for pricing options:
Monte Carlo simulation and dynamic programming. Dynamic programming is useful for
pricing American options, where the holder has the ability to exercise prior to the expira-
tion date. Monte Carlo simulation is useful for pricing a European option, where the option
holder cannot exercise the option prior to the maturity date. In the following sections, we
describe Monte Carlo simulation and dynamic programming and show how they can be
used to price options. We first will lay out some background and basic assumptions that
are required.

21.10.1 Risk Neutral Valuation in Efficient and Complete Markets

We base our discussion of options pricing on the assumption that markets are efficient and
complete. Efficient markets are arbitrage-free. Arbitrage provides an investor with a riskless
investment opportunity with unlimited return, without having to put up any money. We
assume that if any such opportunities exist there would be infinite demand for such assets.
This would immediately raise the price of the investments and the arbitrage opportunity
would disappear.

Black and Scholes derived a differential equation that describes the value of a trader’s
portfolio who has a short position in the option and who is trading in the underlying asset
and a cash-like instrument. Efficiency of markets is one of the key assumptions required
in their derivation. In addition, they assume that instantaneous and continuous trading
opportunities exist, no dividends, transaction costs, or taxes are paid, and that short selling
is permitted. Finally, they assume that the price of the underlying stock follows a specific
stochastic process called Brownian motion. (See Section 21.10.2 for discussion of Brownian
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motion.) In this Black–Scholes framework it turns out that there is a trading strategy (called
“delta-hedging”) that makes the portfolio’s return completely riskless. In an efficient market,
a riskless portfolio will return the risk-free rate. This arbitrage reasoning combined with
the delta-hedging strategy leads to a partial differential equation that resembles the heat
equation of classical physics. Its solution provides the option’s value at any point in time. In
the case of European-style options (those that have a fixed exercise date) the solution can
be achieved in closed form—this is the famous Black–Scholes formula. The Black–Scholes
formulas for the values of a European call C or put P are:

C = SΦ(d1) − Ke−rT Φ(d2)

P = Ke−rT Φ(−d2) − SΦ(−d1)

where:

d1 = [log(S/K) + T (r + σ2/2)]/σ
√

T

d2 = d1 − σ
√

T

Here, r is the risk-free rate (the rate of return of a riskless security such as a U.S. Trea-
sury security over time T ), log denotes the natural logarithm, and Φ() is the cumulative
distribution function for the standard normal distribution N(0, 1).

Exotic option contracts, especially those with exercise rules that give the owner the
discretion of when to exercise, or options with underlying assets that are more complicated
than equity stocks with no dividends, or options that depend on multiple assets, are very
difficult to solve using the Black–Scholes partial differential equation.

Harrison and Pliska (1981) developed a more general perspective on options pricing that
leads to a useful approach for these more general categories of options. The existence of
the riskless trading strategy in the Black–Scholes framework is mathematically equivalent
to the existence of a dual object called a “risk-neutral measure,” and the options price is
the integral of the option payouts with this risk-neutral measure. When the risk-neutral
measure is unique, the market is called “complete.” This assumption means that there is a
single risk-neutral measure that can be used to price all the options.

This perspective leads to the following methodology for options pricing. Observe the prices
of the traded options. Usually these are of a fairly simple type (European or American
calls and puts), for which closed-form expressions like the Black–Scholes formula can be
used. Then invert the formula to find the parameters of the risk-neutral distribution. This
distribution can then be used to simulate values of any option—under the assumption that
the market is efficient (arbitrage-free) and complete.

21.10.2 Brownian Motion

A key component of valuing stock options is a model of the price process of the underlying
stock. In this section, we describe the Brownian motion model for the stock prices.

The efficient market hypothesis, which states that stock prices reflect all history and that
any new information is immediately reflected in the stock prices, ensures that stock prices
follow a Markov process so the next stock price depends only upon the current stock price
and does not depend upon the historical stock price process. A Markov process is a stochas-
tic process with the property that only the current value of the random variable is relevant
for the purposes of determining the next value of the variable. A Wiener process is a type
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of Markov process. A Wiener process Z(t) has normal and independent increments with
variance proportional to the square root of time, that is, Z(t) −Z(s) has a normal distribu-
tion with mean zero and variance

√
t − s. It turns out that Z(t), t > 0 will be a continuous

function of t. If ∆t represents an increment in time and ∆Z represents the change in Z over
that increment in time then the relationship between ∆Z and ∆t can be expressed by:

∆Z(t) = ε
√

∆t (21.22)

where ε is drawn from a standard normal distribution. A Wiener process is the limit of the
above stochastic process as the time increments get infinitesimally small, that is, as ∆t → 0.
Equation 21.22 is expressed as

dZ(t) = ε
√

dt (21.23)

If x(t) is a random variable and Z is a Wiener process, then a generalized Wiener process
is defined as

dx(t) = a dt + b dZ

where a and b are constants. An Ito process is a further generalization of a generalized
Wiener process. In an Ito process, a and b are not constants rather, they can be functions
of x and t. An Ito process is defined as

dx(t) = a(x, t) dt + b(x, t) dZ

Investors are typically interested in the rate of return on a stock, rather than the absolute
change in stock price. Let S be the stock price and consider the change in stock price dS
over a small period of time dt. The rate of return on a stock, dS/S, is often modeled as being
comprised of a deterministic and stochastic component. The deterministic component, µdt,
represents the contribution of the average growth rate of the stock. The stochastic compo-
nent captures random changes in stock price due to unanticipated news. This component is
often modeled by σdZ, where Z is a Brownian motion. Combining the deterministic growth
rate (also known as drift) with the stochastic contribution to rate of change in stock price
yields the equation:

dS

S
= µdt + σ dZ (21.24)

an Ito process. µ and σ can be estimated using the methods described in Section 21.3.
The risk-neutral measure Q of Harrison and Pliska as applied to the Black–Scholes frame-

work is induced by the risk-neutral process X that satisfies the modified Brownian motion

dX

X
= (r − σ2/2) dt + σ dZ (21.25)

It is important to note that this process is not the same as the original process followed by the
stock—the drift has been adjusted. This adjustment is required to generate the probability
measure that makes the delta-hedging portfolio process into a martingale. According to the
theory discussed in Section 21.10.1, we price options in the Black–Scholes framework by
integrating their cash flows under the risk-neutral measure generated by Equation 21.25. In
the following section, we discuss how efficient markets and risk neutral valuation are used
to compute an option’s value using Monte Carlo simulation.
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21.10.3 Simulating Risk-Neutral Paths for Options Pricing

In this section, we discuss how simulation can be used to price options on a stock by
simulating the stock price under the risk-neutral measure over T periods, each of length
∆t = 1/52. At each time interval, we simulate the current stock price and then step the
process forward so that there are a total of T steps in the simulation. To simulate the
path of the stock price over the T week period, we consider the discrete time version of
Equation 21.25: ∆S/S = (r −σ2/2)∆t + σdZ = (r −σ2/2)∆t + σε

√
∆t. As ε is distributed

like a standard normal random variable, ∆S/S ∼ N((r −σ2/2)∆t, σ
√

∆t).
Each week, use the following steps to determine the simulated stock price:

i. Set i= 0.
ii. Generate a random value v1 from a standard normal distribution. (Standard

spreadsheet tools include this capability.)
iii. Convert v1 to a sample v2 from a N((r −σ2/2)∆t, σ

√
∆t) by setting

v2 = (r −σ2/2)∆t + σ
√

∆tv1.
iv. Set ∆S = v2S. ∆S represents the incremental change in stock price from the prior

period to the current period.
v. S′ = S + ∆S, where S′ is the simulated updated value of the stock price after one

period.
vi. Set S = S′, i= i+ 1.
vii. If i= T then stop. S is the simulated stock price at the end of 6 months. If i < T ,

return to step (i).

Note that randomness only enters in step (ii) when generating a random value v1. All
other steps are mere transformations or calculations and are deterministic. The payoff of a
call option at expiration is given by Equation 21.21. Further, in the absence of arbitrage
opportunities (i.e., assuming efficient markets) and by applying the theory of risk neutral
valuation we know that the value of the option is equal to its expected payoff discounted by
the risk-free rate. Using these facts, we apply the Monte Carlo simulation method to price
the option. The overall methodology is as follows:

i. Define the number of time periods until maturity, T .
ii. Use Monte Carlo simulation to simulate a path of length T describing the evo-

lution of the underlying stock price, as described above. Denote the final stock
price at the end of this simulation by SF.

iii. Determine the option payoff according to Equation 21.21, assuming SF , the final
period T stock price determined in step (ii).

iv. Discount the option payoff from step (iii) assuming the risk-free rate. The result-
ing value is the current value of the option.

v. Repeat steps (ii)–(iv) until the confidence bound on the estimated value of the
option is within an acceptable range.

21.10.4 A Numerical Example

A stock has expected annual return of µ= 15% per year and standard deviation of σ = 20%
per year. The current stock price is S = $42. An investor wishes to determine the value of
a European call option with a strike price of $40 that matures in 6 months. The risk-free
rate is 8%.
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We will use Monte Carlo simulation to simulate the path followed by the stock price and
hence the stock price at expiration which determines the option payoff. We consider weekly
time intervals, that is, ∆t = 1/52. Thus T = 24 assuming, for the sake of simplicity, that
there are 4 weeks in each month.

To simulate the path of the stock price over the 24-week period, we follow the algorithm
described in Section 21.10.3. We first compute the risk-neutral drift (r −σ2/2)∆t, which
with these parameter settings works out to be 0.0012. The random quantity ε is distributed
like a standard normal random variable, so ∆S/S ∼N(.0012, .0277).

The starting price of the stock is $42. Each week, use the following steps to determine
the simulated updated stock price:

i. Generate a random value v1 from a standard normal distribution.
ii. Convert v1 to a sample v2 from a N(.0012, .0277) by setting v2 = .0012 + .0277v1.
iii. Set ∆S = v2S.
iv. Set S = S + ∆S

Steps (i)–(iv) yield the simulated updated stock price after 1 week. Repeat this process
T = 24 times to determine SF , the stock price at the end of 6 months. Then, the option
payoff equals P = max(SF − 40,0). P is the option payoff based upon a single simulation of
the ending stock price after 6 months, that is, based upon a single simulation run. Perform
many simulation runs and after each run compute the arithmetic average and confidence
bounds of the simulated values of P . When enough simulation runs have been performed so
that the confidence bounds are acceptable, the value of the option can be computed based
upon the expected value of P : V = e−.08(.5)E(P ).

21.11 Dynamic Programming

Dynamic programming is a formal method for performing optimization over time. The
algorithm involves breaking a problem into a number of subproblems, solving the smaller
subproblems, and then using those solutions to help solve the larger problem. Similar to
stochastic programming with recourse, dynamic programming involves sequential decision
making where decisions are made, information is revealed, and then new decisions are made.
More formally, the dynamic programming approach solves a problem in stages. Each stage
is comprised of a number of possible states. The optimal solution is given in the form of a
policy that defines the optimal action for each stage. Taking action causes the system to
transition from one stage to a new state in the next stage.

There are two types of dynamic programming settings: deterministic and stochastic. In
a deterministic setting, there is no system uncertainty. Given the current state and the
action taken, the future state is known with certainty. In a stochastic setting, taking action
will select the probability distribution for the next state. For the remainder we restrict our
discussion to a stochastic dynamic programming setting, as finance problems are generally
not deterministic. If the current state is the value of a portfolio, and possible actions are
allocations to different assets, the value of the portfolio in the next stage is not known with
certainty (assuming that some of the assets under consideration contain risk).

A dynamic program typically has the following features:

i. The problem is divided into t = 1, . . ., T stages. xt denotes the state at the begin-
ning of stage t and at(xt) denotes the action taken during stage t given state xt.
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Taking action transitions the system to a new state in the next stage so that
xt+1 = f(xt, at(xt), εt), where εt is a random noise term. The initial state x0 is
known.

ii. The cost (or profit) function in period t is given by gt(xt, at(xt), εt). This cost
function is additive in the sense that the total cost (or profit) over the entire T
stages is given by:

gT (xT , aT (xT ), εT ) +
T−1∑
t=1

gt(xt, at(xt), εt) (21.26)

The objective is to optimize the expected value of Equation 21.26.
iii. Given the current state, the optimal solution for the remaining states is inde-

pendent of any previous decisions or states. The optimal solution can be found
by backward recursion. Namely, the optimal solution is found for the period T
subproblem, then for the periods T − 1 and T subproblem, and so on. The final
period T subproblem must be solvable.

The features of dynamic programming that define the options pricing problem differ
somewhat from the features described here. In Section 21.12.1 we note these differences.

21.12 Pricing American Options Using
Dynamic Programming

Monte Carlo simulation is a powerful tool for options pricing. It performs well even in the
presence of a large number of underlying stochastic factors. However, at each step simulation
progresses forward in time. On the other hand, options that allow for early exercise must
be evaluated backward in time where in each period the option holder must compare the
intrinsic value of the option against the expected future value of the option.

Dealing with early exercise requires one to go backward in time, as at each decision point
the option holder must compare the value of exercising immediately against the value of
holding the option. The value of holding the option is simply the price of the option at that
point.

In this section we will show how one can use dynamic programming to price an American
option. The method involves two steps:

i. Build a T stage tree of possible states. The states correspond to points visited
by the underlying stock price process.

ii. Use dynamic programming and backward recursion to determine the current
value of the option.

21.12.1 Building the T Stage Tree

Cox et al. (1979) derived an exact options pricing formula under a discrete time setting.
Following their analysis, we model stock price as following a multiplicative binomial distri-
bution: if the stock price at the beginning of stage t is S then at the beginning of stage t + 1
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the stock price will be either uS or dS with probability q and (1− q), respectively. Each
stage has length ∆t. We will build a “tree” of possible stock prices in any stage. When there
is only one stage remaining, the tree looks like:

uS

S

dS

with probability q

with probability l � q

Suppose there are two stages. In each stage, the stock price will move “up” by a factor
of u with probability q and “down” by a factor of d with probability (1− q). In this case,
there are three possible final stock prices and the tree is given by:

uS

S duS � S

dS

u2S with probability q2

with probability 2q(l � q)

d2S with probability(l � q)2

The tree continues to grow according to this method. In general, at stage t there are t + 1
possible stock prices (states) that will appear on the tree. These are given by:

ujdt−jS, for j = 0, . . ., t

The values of u, d, and q are determined based upon the assumptions of efficient markets,
risk neutral valuation, and the fact that the variance of the change in stock price is given
by σ2∆t (from Section 21.10.3). These values are:

u = eσ
√

∆t

d = e−σ
√

∆t

q =
a − d

u − d

where a = er∆t.

21.12.2 Pricing the Option Using the Binomial Tree

We now use backward enumeration through the binomial tree to determine the current
stage 0 value of the option. We will illustrate the concept using the trees developed in
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Section 12.12.1. Let K denote the strike price. With one period remaining, the binomial
tree had the form:

uS with probabilityq

S

dS with probability l � q

The corresponding values of the call at the terminal points of the tree are Cu =
max(0,uS−K ) with probability q and Cd = max(0,dS−K ) with probability (1− q). The cur-
rent value of the call is given by the present value (using the risk-free rate) of qCu + (1 − q)Cd.

When there is more than one period remaining, each node in the tree must be evaluated
by comparing the intrinsic value of the option against its continuation value. The intrinsic
value is the value of the option if it is exercised immediately; this value is determined by
comparing the current stock price to the option strike price. The continuation value is the
discounted value of the expected cash payout of the option under the risk neutral measure,
assuming that the optimal exercise policy is followed in the future. Thus, the decision is
given by:

gt = max
{
max(0, xt − K), E[e−r∆tgt+1(xt+1)|xt]

}
(21.27)

The expectation is taken over the risk neutral probability measure. xt, the current state,
is the current stock price. Notice that the action taken in the current state (whether
to exercise) does not affect the future stock price. Further, this value function is not
additive. However, its recursive nature makes a dynamic programming solution method
useful.

21.12.3 A Numerical Example

We illustrate the approach using the identical setting as that used to illustrate the Monte
Carlo simulation approach to options pricing. However, here we will assume that we are
pricing an American option. The investor wishes to determine the value of an American
call option with a strike price of $40 that matures in 1 month. (We consider only 1 month
to limit the size of the tree that we build.) The current stock price is S = $42. The stock
return has a standard deviation of σ = 20% per year. The risk-free rate is 8%.

We first build the binomial tree and then use the tree to determine the current value of
the option. We consider weekly time intervals, that is, ∆t = 1/52. Thus T = 4 assuming, for
the sake of simplicity, that there are 4 weeks in each month.

u = eσ
√

∆t = 1.028

d = e−σ
√

∆t = 0.973

q =
er∆t − d

u − d
= 0.493
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The tree of stock movements over the 4-week period looks like:

u4S

u3S

u2S
u2S

uS uS

S S S

dS dS

d2S d2S

d3S

d4S

We will evaluate each node in the tree by backward evaluation starting at the fourth
time period and moving backward in time. For each node we will use the Equation 21.27
to compare the intrinsic value of the option against its continuation value to determine the
value of that node. The binomial tree for the value of the American call option is:

(6.92,0)

(5.64,5.63)

(4.39,4.39) (4.39,0)

(3.18,3.21) (3.18,3.17)

(2,2.28) (2,2.068) (2,0)

(.85,1.26) (.85,.98)

(0,.485) (0,0)

(0,0)

(0,0)

Every node in the tree contains two numbers in parenthesis. The first number is the
intrinsic value of the option. The second number is the discounted expected continuation
value, assuming that optimal action is followed in future time periods. The option value at

© 2008 by Taylor & Francis Group, LLC



CH021.tex 30/10/2007 10: 55 Page 21-33

Financial Engineering 21-33

time zero (current time) is 2.28. Note that although the option is currently in the money, it
is not optimal to exercise even though it is an American option and early exercise is allowed.
By using the binomial tree to evaluate the option we find that the expected continuation
value of the option is higher than its current exercise value.

21.13 Comparison of Monte Carlo Simulation
and Dynamic Programming

Dynamic programming is a powerful tool that can be used for pricing options with early
exercise features. However, dynamic programming suffers from the so-called curse of dimen-
sionality. As the number of underlying variables increases, the time required to solve the
problem grows significantly. This reduces the practical use of dynamic programming as a
solution methodology. The performance of Monte Carlo simulation is better in the sense
that its convergence is independent of the state dimension. On the other hand, as we have
discussed, simulation has traditionally been viewed as inappropriate for pricing options with
early exercise decisions as these require estimates of future values of the option and simula-
tion only moves forward in time. Recent research has focused on combining simulation and
dynamic programming approaches to pricing American options to gain the benefits of both
techniques. See, for example, Broadie and Glasserman (1997).

21.14 Multi-Period Asset Liability Management

The management of liability portfolios of relatively long-term products, like pensions, vari-
able annuities, and some insurance products requires a perspective that goes beyond a
single investment period. The portfolio optimization models of Sections 21.5 through 21.7
are short-term models. Simply rolling these models over into the next time horizon can lead
to suboptimal results. First, the models may make an excessive number of transactions.
Transactions are not free, and realistic portfolio management models must take trading
costs into consideration. Second, the models depend only on second moments. Large mar-
ket moves, such as during a market crash, are not part of the model assumptions. Finally,
policies and regulations place conditions on the composition of portfolios.

Academic and finance industry researchers have, over the past few decades, been exploring
the viability of using multi-period balance sheet modeling to address the issues of long-term
asset liability management. A multi-period balance sheet model treats the assets and liabili-
ties as generating highly aggregated cash flows over multiple time periods. The aggregations
are across asset classes, so that individual securities in an asset class, say stocks, are accu-
mulated into a single asset class, say S&P 500. Other asset classes are corporate bonds of
various maturity classes, and so forth. The asset class cash flows are aggregated over time
periods, typically 3 or 6 months, so that cash flows occurring within a time interval, say,
(t − 1, t], are treated as if they all occur at the end-point t. The model treats the aggre-
gate positions in each asset category as variables in the model. There is a single decision
to be made for each asset class at the beginning of each time period, which is the change
in the holdings of each asset class. The asset holdings and liabilities generate cash flows,
which then flow into account balances. These account balances are assigned targets, and
the objective function records the deviation from the targets. The objective of the model is
to maximize the sum of the expected net profits and the expected penalties for missing the
targets over the time horizon of the model.
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A simplified application of such a model to a property-casualty insurance problem is as
follows. Let At denote a vector of asset class values at time t and it denote their cash flows
(e.g., interest payment, dividends, etc.) at time t. Let xt denote the portfolio of holdings in
the asset classes. Cash flows are generated by the holdings and by asset sales:

Ct = At∆xt + itxt−1

where ∆xt :=xt −xt−1. The cash flows are subject to market and economic variability over
the time horizons of interest, say t = 1, . . ., T.

Liability flows from the property-casualty portfolio are modeled by aggregating and then
forecasting the aggregated losses minus premium income. Loss events are classified by fre-
quency of occurrence and intensity given loss. These can be simulated over the time horizon
T using actuarial models. The evolution of the liability portfolio composition (say, by new
sales, lapses of coverage, and so forth) can also be modeled. The key correlation to capture
in the liability model is the relationship between the liability flows and the state of the
economy. For example, high employment is indicative of strong economic activity, which
can lead to increases in the number and size of the policies in the insurance portfolio; high
inflation will lead to higher loss payouts given losses; and so forth.

Various performance, accounting, tax, and regulatory measurements are computed from
the net cash flows. For example, one measurement could be shareholder’s equity at the
time horizon ST . Another could be annual net income Nt. Yet another could be
premium-surplus ratio Pt—a quantity used in the property-casualty industry as a proxy
for the rating of the insurance company.

In these aggregated models, we try to model the change in performance measurements
as linear computations from the cash and liability flows and the previous period quantities.
For example, net income is computed as cash flow minus operating expenses. If Ot∆xt is
a proxy for the contribution of portfolio management to expenses, for example, the cost of
trading, then net income can be modeled by the following equation

Nt = Ct − Lt − Ot∆xt

Shareholder’s equity can change due to a number of influences; here we just capture the
change due to the addition of net income:

St = St−1 + Nt

Finally, premium-surplus ratio can be approximated by fixing premium income to a level L
and assuming (this is a major simplification!) that the surplus is equivalent to shareholders
equity:

Pt =
L

St

A typical objective for a multi-period balance sheet model/an asset-liability matching prob-
lem is to create performance targets for each quantity and to penalize the shortfall. Sup-
pose that the targets are N t for annual net income, ST for shareholder’s equity, and P t for
premium-surplus ratio. Then the model to be optimized is:

Maximize E{ST −λ
∑

t

[N t −Nt]+ −µ
∑

[L−StP t]+}

Subject to Nt = At∆xt + iixt−1 − Lt − Ot∆xt (21.28)

St = Nt + St−1
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where the parameters λ and µ are used to balance the various contributions in the objective
function, the premium-surplus ratio target relationship has been multiplied through by the
denominator to make the objective linear in the decision variables, and the objective is
integrated over the probability space represented by the discrete scenarios.

The objective function in formulation 21.28 can be viewed as a variation of the Markowitz
style, where we are modeling “expected return” through the shareholder’s equity at the end
of the horizon, and “risks” through the shortfall penalties relative to the targets for net
income and premium-surplus ratio.

21.14.1 Scenarios

In multi-period asset liability management the probability distribution is modeled by dis-
crete scenarios. These scenarios indicate the values, or states, taken by the random quan-
tities at each period in time. The scenarios can branch so that conditional distributions
given a future state can be modeled. The resulting structure is called a “scenario tree.”
Typically there is no recombining of states in a scenario tree, so the size of the tree grows
exponentially in the number of time periods. For example, in the property-casualty model,
the scenarios are the values and cash flows of the assets and the cash flows of the liabili-
ties. The values of these quantities at each time point t and scenario s is represented by
the triple (As

t , i
s
t , L

s
t ). The pair (s, t) is sometimes called a “node” of the scenario tree. The

scenario tree may branch at this node, in which case the conditional distribution for the
triple (At+1, it+1, Lt+1) given node (s, t) is the values of the triples on the nodes that branch
from this node.

It is important to model the correlation between the asset values and returns and the
liability cash flows in these conditional distributions. Without the correlations, the model
will not be able to find positions in the asset classes that hedge the variability of the
liabilities. In property-casualty insurance, for example, it is common to correlate the returns
of the S&P 500 and bonds with inflation and economic activity. These correlations can be
obtained from historical scenarios, and conditioned on views as discussed in Section 21.7.

The scenario modeling framework allows users to explicitly model the probability and
intensity of extreme market movements and events from the liability side. One can also
incorporate “market crash” scenarios in which the historical correlations are changed for
some length of time that reflects unusual market or economic circumstances—such as a
stock market crash or a recession. Finally, in these models it is usual to incorporate the
loss event scenarios explicitly rather than follow standard financial valuation methodology,
which would tend to analyze the expected value of loss distributions conditional on financial
return variability. Such methodology would ignore the year-to-year impact of loss distribu-
tion variability on net income and shareholder’s equity. However, from the asset liability
management (ALM) perspective, the variability of the liability cash flows is very important
for understanding the impact of the hedging program on the viability of the firm.

21.14.2 Multi-Period Stochastic Programming

The technology employed in solving an asset liability management problem such as this is
multi-period stochastic linear programming. For a recent survey of stochastic programming,
see Shapiro and Ruszczynski (2003).

The computational intensity for these models increases exponentially in the number of
time periods, so the models must be highly aggregated and strategic in their recommenda-
tions. Nevertheless, the models do perform reasonably well in practice, usually generating
300 basis points of excess return over the myopic formulations based on the repetitive
application of one period formulations, primarily through controlling transaction costs and
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because the solution can be made more robust by explicitly modeling market crash scenarios.
A recent collection of this activity is in the volume edited by Ziemba and Mulvey (1998). See
also Ziemba’s monograph (Ziemba, 2003) for an excellent survey of issues in asset liability
management.

21.15 Conclusions

In this chapter, we saw the profound influence of applications of Operations Research to
the area of finance and financial engineering. Portfolio optimization by investors, Monte
Carlo simulation for risk management, options pricing, and asset liability management,
are all techniques that originated in OR and found deep application in finance. Even the
foundations of options pricing are based on deep applications of duality theory. As the name
financial engineering suggests, there is a growing part of the body of financial practice that is
regarded as a subdiscipline of engineering—in which techniques of applied mathematics and
OR are applied to the understanding of the behavior and the management of the financial
portfolios underpinning critical parts of our economy: in capital formation, economic growth,
insurance, and economic-environmental management.
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22.1 Introduction

Perhaps the best way to set the tone for this chapter is to consider a hypothetical encounter
that an industrial engineer or operations manager is likely to experience. It’s not quite the
“guy walks into a bar” setup, but it’s close. Consider the following scenario: A software
salesperson walks into the office of an industrial engineer and says, “I have some software
to sell you that will optimize your supply chain.” Unfortunately, the punch line—which I’ll
leave to the reader’s imagination—is not as funny as many of the “guy walks into a bar”
jokes you’re likely to hear. In fact, there are some decidedly not-funny examples of what
could happen when “optimizing” the supply chain is pursued via software implementations
without careful consideration of the structure and data requirements of the software system.
Hershey Foods’ enterprise resource planning (ERP) system implementation (Stedman, 1999)
and Nike’s advanced planning system (APS) implementation (Koch, 2004) are frequently
cited examples of what could go wrong. Indeed, without some careful thought and the
appropriate perspective, the industrial engineer (IE) in our hypothetical scenario might as
well be asked to invest in a bridge in Brooklyn, to paraphrase another old joke.

Encounters similar to the one described above surely occur in reality countless times
every day as of this writing in the early twenty-first century, and in this author’s opinion
it happens all too often because those magical words “optimize your supply chain” seem
to be used frivolously and in a very hollow sense. The question is, what could it possibly
mean to optimize the supply chain? Immediately, an astute IE or operations manager must

22-1
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ask himself or herself a whole host of questions, such as: What part of my supply chain?
All of it? What does “all of it” mean? Where does my supply chain begin and where
does it end? What is the objective function being optimized? . . .minimize cost? . . .which
costs? . . .maximize profit? . . .whose profit? What are the constraints? Where will the input
data behind the formulation come from? Is it even conceivable to formulate the problem?
Provided I could formulate the problem, could I solve it? . . . to optimality?

Now, in fairness, this chapter is not technically about supply chain optimization, but
supply chain management. Still, we should continue our line of critical questioning. What
does it mean to “manage the supply chain”? Taken at face value, it’s an enormous task. In
the author’s view, the term “manage the supply chain,” like “optimize your supply chain,”
is thrown around much too loosely. A better approach, and the one taken in this chapter, is
to consider the various aspects of the supply chain that must be managed. Our challenge at
hand, therefore, is to figure out how to identify and use the appropriate tools and concepts
to lay a good foundation for the hard work that comprises “managing the supply chain.”

In the first edition of their widely-cited text book on supply chain management (SCM),
Chopra and Meindl (2001) define a supply chain as “all stages involved, directly or indirectly,
in fulfilling a customer request” (p. 3). (In the more recent edition of the text, Chopra and
Meindl 2004, the authors substitute the word “parties” for stages. Since this is inconsistent
with the definition of SCM that is to follow, I have chosen the earlier definition.) This
definition is certainly concise, but perhaps a bit too concise. A more comprehensive definition
of the term “supply chain” is given by Bozarth and Handfield (2006), as follows: “A network
of manufacturers and service providers that work together to convert and move goods from
the raw materials stage through to the end user” (p. 4). In a more recent edition of their text,
Chopra and Meindl (2004) go on to define supply chain management as “the management of
flows between and among supply chain stages to maximize total supply chain profitability”
(p. 6). The nice aspects of this definition are that it is, once again, concise and that it clearly
emphasizes managing the flows among the stages in the chain. The problematic aspect of
the definition, for this writer, is that its objective, while worthy and theoretically the right
one (maximizing the net difference between the revenue generated by the chain and the
total costs of running the chain), would clearly be difficult to measure in reality. Would all
parties in the supply chain willfully share their chain-specific costs with all others in the
chain? This brings us back to the criticisms lodged at the outset of this chapter related to
“optimizing the supply chain”—a noble goal, but perhaps not the most practical one.

The author is familiar with a third-party logistics (3PL) company that derives a portion
of its revenue from actually carrying out the goals of optimizing—or at least improving—
its clients’ supply chains. Figure 22.1 is taken from an overview presentation by this 3PL
regarding its services and represents a cyclic perspective on what it means to manage the
supply chain—through design and redesign, implementation, measurement, and design (re-)
assessment. Figure 22.2 provides an idea of the kinds of tools this 3PL uses in carrying out
its SCM design, evaluation, and redesign activities. What is striking about this company’s
approach to doing this is that it involves neither a single software application nor a simple
series of software applets integrated into a larger “master program,” but a whole host of dis-
crete tools applied to various portions of the overarching problem of “managing the supply
chain.” The software tools listed are a mix of off-the-shelf software and proprietary code,
customized in an attempt to solve more integrated problems. The result is an approach
that views the overall challenge of managing the supply chain as one of understanding how
the various problems that comprise “supply chain management” interact with one another,
even as they are solved discretely and independently, many times for the sheer purpose of
tractability.
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FIGURE 22.1 Supply chain design cycle. Presentation by unnamed 3PL company.
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FIGURE 22.2 Supply chain management tasks and tools. Presentation by unnamed 3PL company.

Coming back to definitions of SCM, the definition from Bozarth and Handfield (2006)
offers an objective different from Chopra and Meindl’s profit-maximizing one—more
customer focused, but perhaps no less problematic in practice. Their definition is as follows:
“The active management of supply chain activities and relationships in order to maximize
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Inventory management
•  Demand forecasting
•  Replenishment and supply scheduling
•  Supply storage and staging
•  Finished goods storage and staging

Transportation management
•  Mode tradeoff assessment
•  Mode choices

Location management
•  Location decisions
•  Supply and fulfillment 
   network planning

Customer service 
goals and outcomes
•  Order management
•  Product delivery

FIGURE 22.3 Drivers of supply chain management strategy. (Adapted from Ballou, 2004.)

customer value and achieve a sustainable competitive advantage” (p. 8). The idea of a sus-
tainable competitive advantage through the management of SCM-related activities is also
emphasized by Ballou (2004), who does a commendable job basing the whole of his text-
book on logistics and SCM on the various management activities that must be understood
and integrated to derive positive customer outcomes and thereby achieve a sustainable
advantage. This will be the approach taken in the remainder of this chapter.

Figure 22.3 shows an adaptation of the conceptual model that serves as the structural
basis for Ballou’s (2004) text. Ballou describes SCM as a triangle, the legs of which are the
inventory, transportation, and location strategies of the chain, with customer service goals
located in the middle of the triangle, representing the focus of these strategies. This approach
is consistent with that of the Chopra and Meindl (2004) text, whose drivers of SCM are
inventory (what is being moved through the chain), transportation (how the inventory is
moved through the chain), and facilities (where inventories are transformed in the chain).
These SCM drivers form the essence of a supply chain strategy, laying out the extent
to which a firm chooses approaches to fulfilling demand that achieve higher service, but
almost necessarily higher cost, or lower cost, but almost necessarily lower service. (Chopra
and Meindl also list information as an SCM driver, but in the author’s view, information
is more appropriately viewed as an enabler that may be used to better manage inventory,
transportation, and facilities. More discussion on enablers of SCM will follow.)

The idea of SCM drivers is useful in thinking about another theme in SCM emphasized by
many authors and first proposed by Fisher (1997) in an important article that advanced the
notion that “one size fits all” is not an effective approach to SCM. Fisher (1997) cogently
lays out a matrix that matches product characteristics—what he describes as a dichotomy
between innovative products like technology-based products and functional products like
toothpaste or other staple goods—and supply chain characteristics—another dichotomy
between efficient (cost-focused) supply chains and responsive (customer service-focused)
supply chains. Chopra and Meindl (2004) take this conceptual model a step further, first
by pointing out that Fisher’s product characteristics and supply chain strategies are really
continuous spectrums, and then by superimposing the Fisher model, as it were, on a fron-
tier that represents the natural tradeoff between responsiveness and efficiency. Clearly, it
stands to reason that a firm, or a supply chain, cannot maximize cost efficiency and cus-
tomer responsiveness simultaneously; some aspects of each of these objectives necessarily
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FIGURE 22.4 Overlay of conceptual models of Fisher (1997) and Chopra and Meindl (2004).

work at cross purposes. Chopra and Meindl’s frontier and Fisher’s product dichotomy
are presented in Figure 22.4. The value of this perspective is that it clearly identifies a
market-driven basis for strategic choices regarding the three SCM drivers: Should our inven-
tory management decisions be focused more on efficiency—minimizing inventory levels—or
on responsiveness—maximizing product availability? Should our transportation choices be
focused more on efficiency—minimizing transportation costs, perhaps through more exten-
sive economies of scale—or on responsiveness—minimizing delivery lead times and max-
imizing reliability? Should our facilities (network design) decisions be focused more on
efficiency—minimizing the number of locations and maximizing their size and scale—or on
responsiveness—seeking high levels of customer service by choosing many, focused locations
closer to customers?

Clearly, the legs of the Ballou (2004) triangle frame the SCM strategy for any firm. What
is it, however, that allows a firm to implement that strategy and execute those driver-related
decisions, effectively? Marien (2000) presents the results of a survey of approximately 200
past attendees of executive education seminars, asking these managers first to provide a
rank-ordering of four enablers of effective SCM, and then to rank the various attributes that
support each enabler. The enablers in Marien’s survey were identified through an exten-
sive search of the academic and trade literature on SCM, and the four resulting enablers
were (1) technology, (2) strategic alliances, (3) organizational infrastructure, and (4) human
resources management. Marien’s motivation for the survey was similar to the criticism laid
out at the outset of this chapter—the contrast between what he was hearing from consultants
and software salespeople, that effective SCM somehow flowed naturally from information
technology implementations, and from practicing managers, who, at best, were skeptical of
such technology-focused approaches and, at worst, still bore the scars of failed, overzealous
IT implementations. Indeed, the result of Marien’s (2000) survey indicate that managers,
circa 1998, viewed organizational infrastructure as, far and away, the most important enabler
of effective SCM, with the others—technology, alliances, and human resources—essentially
in a three-way tie for second place. The most important attributes of organizational infras-
tructure, according to Marien’s survey results, were a coherent business strategy, formal
process flows, commitment to cross-functional process management, and effective process
metrics.

The process management theme in Marien’s (2000) results is striking. It is also consis-
tent with what has arguably become the most widely-accepted structural view of supply
chain management among practitioners, the supply chain operations reference model, or
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FIGURE 22.5 The Supply Chain Operations Reference (SCOR r©) model. (From Supply-Chain
Council, 2006.)

SCOR∗ (Supply-Chain Council, 2006). Figure 22.5 presents the structural framework for
the SCOR model, based on the primary business processes that comprise SCM according
to the model—plan, source, make, deliver, and return. Underlying these primary processes
is an extensive checklist, as it were, of the sub-processes and tasks that, according to the
model, should be in place to enable effective SCM. Bozarth and Warsing (2006) offer an
academic perspective that attempts to tie the underlying detail of the SCOR model back
to company performance and offers a research agenda for understanding this link; in fact,
this theme has already begun to emerge in the literature (Lockamy and McCormack, 2004).

An important theme that must be addressed in this chapter, however—and one that
is clear from Figure 22.5—is that supply chain management is encapsulated in managing
internal business processes and their interfaces with the firms immediately upstream and
downstream from your company. While the common lingo claiming to manage the chain
from the “supplier’s suppliers to the customer’s customers” is catchy, it is not clear how
this is to be done. What is more important, from an external perspective, is managing
the most important dyadic relationships in the chain, the links immediately upstream and
downstream. These dyads form the business relationships that a company can directly
influence, and direct influence is what really matters in dealing with a system as complex and
dynamic as a supply chain. Vollmann et al. (2005, Chapter 17) offer an excellent discussion
of this key idea, and one that, hopefully, will help bring practitioners of SCM down from
the clouds and back to the hard work of making their links in the chain more effective.

In the remainder of this chapter, therefore, I discuss each of the drivers of SCM
separately—managing inventories, managing transportation, and managing locations (i.e.,
the network design problem)—identifying important enablers along the way. Then, I present
the important issues in managing dyads in the chain. Finally, a discussion follows to tie these
themes together, and the chapter ends with a few concluding remarks.

22.2 Managing Inventories in the Supply Chain

Inventory management can be concisely captured in the following policy, of sorts: “Before
you run out, get more.”† Though concise, the statement captures the essence of the basic
problem of inventory management, and immediately begs for an answer to two

∗SCOR r© is a registered trademark of the Supply-Chain Council in the United States and Canada.
†I owe this concise statement, with only slight alterations applied, to my good friend and colleague

Douglas J. Thomas.
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FIGURE 22.6 Framework for choice of inventory management tools. (Based on Bozarth, 2005.)

questions—“How long before you run out (i.e., when)?” and “How much more do you
get?” Thus, managing inventory boils down to answering those two questions, “when?” and
“how much?”

Before I dive into tools and techniques for managing inventories—and consistent with
the theme I laid out in the Introduction—let us first step back and make sure that we are
clear about the characteristics of the items to be managed. These characteristics, it stands
to reason, should have a significant impact on the kinds of tools that are appropriate to
the management task. Again, my overarching theme is to beware of (buying or) applying a
single, elaborate, sophisticated tool to every problem. Sometimes you really might be better
off with the proverbial “hammer” to solve the simple, “nail-like” aspects of your problem.
Sometimes, I will admit, an advanced power-tool might be warranted.

Bozarth (2005) offers an effective framework for placing the inventory management prob-
lem in the context of two important aspects of demand for the products being managed.
This framework has been reproduced in Figure 22.6. The first of the two context-shaping
aspects of demand is whether demand is driven externally by forces outside the firm’s direct
control or whether demand is driven by internal management decisions. The former situa-
tion describes independent demand items, those items whose demand is driven by customer
tastes, preferences, and purchasing patterns; typically, these are finished goods. Inventory
management in these cases is influenced greatly by the extent to which the firm can effec-
tively describe the random variations in these customer purchasing patterns. The latter
situation describes dependent demand items, those items whose demand is driven by the
demand of other items; a good example of such items would be component parts, whose
demand is driven by the production schedules for the finished goods of which they are com-
ponents. Note that the production schedule for finished items is solely under the control of
the manufacturing firm; its management chooses the production plan in response to pro-
jected consumer demand, and therefore, inventory management for dependent demand items
is largely an issue of ensuring that component parts are available in sufficient quantities to
execute the production plan.

The second important aspect of demand that helps determine which inventory manage-
ment tools to apply is the stability of demand over time. Though Bozarth (2005) describes
the dichotomy as “stable” versus “variable,” I have chosen to characterize demand as sta-
tionary or non-stationary—the former being the case in which the expected value of demand
remains constant over time, or at least over the planning horizon, and the latter being the
case in which it does not. In either case, stationary or non-stationary, demand could be
uncertain or known with certainty. Obviously, then, the simplest case would be one in
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which demand is stationary and known with certainty, and the most challenging would be
one in which demand is non-stationary and uncertain.

As indicated by Bozarth (2005), another idea embedded in his framework is that the
stationary demand approaches are pull systems, whereas the non-stationary approaches
are push systems. Although definitions tend to vary (see Hopp and Spearman, 2004, for
an excellent discussion), pull systems are those that generate orders only in response to
actual demand, while push systems drive replenishments from the schedule of projected
future demands, which, consistent with Bozarth’s framework, will vary over time. Finally, I
should point out that the matrix in Figure 22.6 presents what would appear to be reasonable
approaches to managing demand in these four demand contexts, but not necessarily the only
approaches. For example, non-stationary reorder point-order quantity systems are certainly
possible, but probably not applied very often in practice due to the significant computational
analysis that would be required. The effort required to manage the system must clearly be
considered in deciding which system to apply. While the “optimal” solution might indeed be
a non-stationary reorder point-order quantity system, the data required to systematically
update the policy parameters of such a system and the analytical skill required to carry
out—and interpret—the updates may not be warranted in all cases.

As this chapter deals with managing the supply chain, I will focus only on managing those
items that move between firms in the chain—that is, the independent demand items. Man-
agement of dependent demand items is an issue of production planning, more of a “micro-
focus” than is warranted in this chapter. An excellent discussion of production planning
problems and comparisons between MRP and Kanban systems can be found in Vollmann
et al. (2005). Thus, I will spend the next few sections describing the important issues
in managing independent demand inventories in the supply chain. First, however, I will
present an inventory management model that does not appear, per se, in the framework of
Figure 22.6. This model is presented, however, to give the reader an appreciation for the
important tradeoffs in any inventory management system—stationary or non-stationary,
independent or dependent demand.

22.2.1 Newsvendor and Base-Stock Models

An important starting point with all inventory management decision making is an under-
standing of the nature of demand. At one extreme, demand for an item can be a “spike,”
a single point-in-time, as it were, at which there is demand for the item in question, after
which the item is never again demanded by the marketplace. This is the situation of the
classic “newsvendor problem.” Clearly, demand for today’s newspaper is concentrated solely
in the current day; there will be, effectively, no demand for today’s newspaper tomorrow
(it’s “yesterday’s news,” after all) or at any point in future. Thus, if I run a newsstand,
I will stock papers only to satisfy this spike in demand. If I don’t buy enough papers, I will
run out and lose sales—and potentially also lose the “goodwill” of those customers who
wanted to buy, but could not. If I buy too many papers, then I will have to return them or
sell them to a recycler at the end of the day, in either case at pennies on the dollar, if I’m
lucky. The other extreme for demand is for it to occur at a stationary rate per unit time
infinitely into the future. That situation will be presented in the section that follows.

I present the newsvendor model in this chapter for the purpose of helping the reader
understand the basic tension in inventory decision making—namely, balancing the cost of
having too much inventory versus the cost of having too little.∗ It does not take too much

∗For an excellent treatment of the newsvendor problem, the reader is referred to Chapter 9 in Cachon
and Terwiesch (2006).
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imagination to see that this too much–too little knife edge can be affected significantly by
transportation and network design decisions. The important issue before us at this point,
however, is to understand how to evaluate the tradeoff. Note also that in the newsvendor
case, one only needs to answer the question of “how much” as the answer to the “when”
question, in the case of a demand spike, is simply “sufficiently in advance of the first sale
of the selling season.” The newsvendor model, however, is also the basis for a base-stock
inventory policy, which applies to the case of recurring demand with no cost to reorder, in
which case, the answer to “when” is “at every review of the inventory level.”

To illustrate the costs and tradeoffs in the newsvendor model, let us imagine a fictional
retailer—we’ll call them “The Unlimited”—who foresees a market for hot-pink, faux-leather
biker jackets in the Northeast region for the winter 2007–08 season. Let’s also assume that
The Unlimited’s sales of similar products in Northeastern stores in recent winter seasons—
for example, flaming-red, fake-fur, full-length coats in 2005–06 and baby-blue, faux-suede
bomber jackets in 2004–05—were centered around 10,000 units. The Unlimited’s marketing
team, however, plans a stronger ad campaign this season and estimates that there is a 90%
chance that demand will be at least 14,000 units. The Unlimited also faces fierce competition
in the Northeast from (also fictional) catalog retailer Cliff’s Edge, who has recently launched
an aggressive direct-mail and internet ad campaign. Thus, there is concern that sales might
come in three to four thousand units below historical averages for similar products. Jackets
must be ordered from an Asian apparel producer in March for delivery in October; only
one order can be placed and it cannot be altered once it is placed. The landed cost of each
jacket is $100 (the cost to purchase the item, delivered). They sell for $200 each. In March
2008, any remaining jackets will be deeply discounted for sale at $25 each.

Thus, this case gives us all the basics we will need to determine a good order quantity:
a distribution of demand (or at least enough information to infer a distribution), unit sales
price, unit cost, and end-of-season unit salvage value. In general, if an item sells for p, can
be purchased for c, and has end-of-season salvage value of s, then the cost of missing a sale
is p − c, the profit margin that we would have made on that sale, and the cost of having
a unit in excess at the end of the selling season is c− s, the cost we paid to procure the
item less its salvage value. If demand is a random variable D with probability distribution
function (pdf) f , then the optimal order quantity maximizes expected profit, given by

π(Q) =

Q∫
−∞

[(p − c)D − (c − s)(Q − D)]f(D)dD +

∞∫
Q

Q(p − c)f(D)dD (22.1)

(i.e., if the order quantity exceeds demand, we get the unit profit margin on the D units
we sell, but we suffer a loss of c− s on the Q−D units in excess of demand; however, if
demand exceeds the order quantity, then we simply get the unit profit margin on the Q
units we are able to sell).

One approach to finding the best order quantity would be to minimize Equation 22.1
directly. Another approach, and one that is better in drawing out the intuition of the
model, is to find the best order quantity through a marginal analysis. Assume that we have
ordered Q units. What are the benefits and the risks of ordering another unit versus the
risks and benefits of not ordering another unit? If we order another unit, the probability
that we will not sell it is Pr{D ≤Q} = F (Q), where F is obviously the cdf of D. The cost
in this case is c− s, meaning that the expected cost of ordering another unit beyond Q is
(c− s)F (Q). If we do not order another unit, the probability that we could have sold it
is Pr{D > Q} = 1 −F (Q) (provided that D is a continuous random variable). The cost in
this case is p − c, the opportunity cost of the profit margin foregone by our under-ordering,
meaning that the expected cost of not ordering another unit beyond Q is (p − c)[1 −F (Q)].
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Another way of expressing the costs is to consider p − c to be the underage cost, or cu = p − c,
and to consider c− s the overage cost, or co = c− s. A marginal analysis says that we should,
starting from Q= 1, continue ordering more units until that action is no longer profitable.
This occurs where the net difference between the expected cost of ordering another unit—
the cost of overstocking—and the expected cost of not ordering another unit—the cost of
understocking—is zero, or where coF (Q) = cu[1 −F (Q)]. Solving this equation, we obtain
the optimal order quantity,

Q∗ = F−1
(

cu

cu + co

)
(22.2)

where the ratio cu/(cu + co) is called the critical ratio, which we denote by CR, and which
specifies the optimal order quantity at a critical fractile of the demand distribution.

Returning to our fictional retailer example, we have cu = $100 and co = $75; therefore,
CR = 0.571. The issue now is to translate this critical ratio into a critical fractile of the
demand distribution. From the information given above for “The Unlimited,” let’s assume
that the upside and downside information regarding demand implies that the probabil-
ities are well-centered around the mean of 10,000. Moreover, let’s assume that demand
follows a normal distribution. Thus, we can use a normal look-up table (perhaps the one
embedded in the popular Excel spreadsheet software) and use the 90th-percentile estimate
from Marketing to compute the standard deviation of our demand distribution. Specifically,
z0.90 = 1.2816 = (14,000− 10,000)/σ, meaning that σ = 3,121. Thus, another table look-up
(or Excel computation) gives us Q∗ = 10,558, the value that accumulates a total probability
of 0.571 under the normal distribution pdf with mean 10,000 and standard deviation 3,121.

As it turns out, the optimal order quantity in this example is not far from the expected
value of demand. This is perhaps to be expected as the cost of overage is only 25% less
than the cost of underage. One might reasonably wonder what kind of service outcomes
this order quantity would produce. Let us denote α as the in-stock probability, or the prob-
ability of not stocking out of items in the selling season, and β as the fill rate, or the
percentage of overall demand that we are able to fulfill. For the newsvendor model, let
us further denote α(Q) as the in-stock probability given that Q units are ordered, and
let β(Q) denote the fill rate if Q units are ordered. It should be immediately obvious
that α(Q∗) = CR. Computing the fill rate is a little more involved. As fill rate is given by
(Total demand− Unfulfilled demand)÷ (Total demand), it follows that

β(Q) = 1 − S(Q)
µ

(22.3)

where S(Q) is the expected number of units short (i.e., the expected unfulfilled demand)
and µ is the expected demand. Computing S(Q) requires a loss function, which also is
typically available in look-up table form for the standard normal distribution.∗ Thus, for
normally distributed demand

β(Q) = 1 − σL(z)
µ

(22.4)

where L(z) is the standard normal loss function† and z = (Q−µ)/σ is the standardized
value of Q. Returning once again to our example, we can compute β(Q∗) = 0.9016, meaning

∗Cachon and Terwiesch (2006) also provide loss function look-up tables for Erlang and Poisson
distributions.

†That is, L(z) =
∫ ∞

z (x − z)φ(x)dx, where x ∼ N(0, 1) and φ is the standard normal pdf. This can also
be computed directly as L(z) = φ(z) − z[1 − Φ(z)], where Φ is the standard normal cdf.
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TABLE 22.1 Comparative Outcomes of Newsvendor Example for Increasing g= k(p – c)
k α(Q∗) β(Q∗) Q∗ Q∗/µ z∗ Expected Overage

0 0.571 0.901 10,558 1.06 0.179 1543.9
0.2 0.615 0.916 10,913 1.09 0.293 1754.5
0.4 0.651 0.927 11,211 1.12 0.388 1943.2
0.6 0.681 0.935 11,468 1.15 0.470 2114.3
0.8 0.706 0.942 11,691 1.17 0.542 2269.0
1 0.727 0.948 11,884 1.19 0.604 2407.3
2 0.800 0.965 12,627 1.26 0.842 2975.4
4 0.870 0.980 13,515 1.35 1.126 3718.3
6 0.903 0.986 14,054 1.41 1.299 4196.4
8 0.923 0.989 14,449 1.44 1.426 4557.2

10 0.936 0.991 14,750 1.48 1.522 4837.0

Note: Q∗ is rounded to the nearest integer, based on a critical ratio rounded to three decimal places.

that we would expect to fulfill about 90.2% of the demand for biker jackets next winter
season if we order 10,558 of them.

A reasonable question to ask at this point is whether those service levels, a 57% chance of
not stocking out and a 90% fill rate are “good” service levels. One answer to that question is
that they are neither “good” nor “bad”; they are optimal for the overage and underage costs
given. Another way of looking at this is to say that, if the decision maker believes that those
service levels are too low, then the cost of underage must be understated, for if this cost were
larger, then optimal order quantity would increase and the in-stock probability and fill rate
would increase commensurately. Therefore, newsvendor models like our example commonly
employ another cost factor, what we will call g, the cost of losing customer goodwill due
to stocking out. This cost inflates the underage cost, making it cu = p − c + g. The problem
with goodwill cost, however, is that it is not a cost that one could pull from the accounting
books of any company. Although one could clearly argue that it is “real”—customers do
indeed care, in many instances, about the inconvenience of not finding items they came
to purchase—it would indeed be hard to evaluate for the “average” customer. The way
around this is to allow the service outcome to serve as a proxy for the actual goodwill cost.
The decision maker probably has a service target in mind, one that represents the in-stock
probability or fill rate that the firm believes is a good representation of their commitment
to their customers, but does not “break the bank” in expected overstocking costs. Again,
back to our example, Table 22.1 shows the comparative values of Q, α, and β for goodwill
costs g = k(p − c), with k ranging from 0 to 10. Thus, from Table 22.1, as g ranges from 0
to relatively large values, service—measured both by α and β—clearly improves, as does
the expected unsold inventory.

For comparison, Table 22.1 displays a ratio of the optimal order quantity to the expected
demand, Q∗/µ, and also shows the standardized value of the optimal order quantity, z∗ =
(Q∗ −µ)/σ. These values are, of course, specific to our example and would obviously change
as the various cost factors and demand distribution parameters change. It may be more
instructive to consider a “parameter-free” view of the service level, which is possible if
we focus on the in-stock probability. Figure 22.7 shows a graph similar to Figure 12.2 from
Chopra and Meindl (2004), which plots α(Q∗) = CR, the optimal in-stock probability, versus
the ratio of overage and underage costs, co/cu.∗ This graph shows clearly how service levels
increase as cu increases relative to c0, in theory increasing to 100% in-stock probability at
c0 = 0 (obviously an impossible level for a demand distribution that is unbounded in the
positive direction). Moreover, for high costs of overstocking, the optimal in-stock probability
could be well below 50%.

∗Note that CR = cu/(cu + co) can also be expressed as CR = 1/(1 + co/cu).
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FIGURE 22.7 Optimal service level versus ratio of overage and underage costs.

These ideas lead to a natural perspective on safety stock, which is the amount of inventory
held in excess of expected demand to protect against stockouts. In the case of the newsvendor
model, where demand is a spike, the safety stock is simply given by Q−µ. Note also that
at Q= µ, the safety stock is zero and the expected in-stock probability is 50%.

We also pointed out above that the newsvendor model is the basis for the simplest inven-
tory system to manage items with repeating demands, namely a base-stock policy. A base-
stock policy is appropriate when the cost of placing orders is zero (or negligible). In a
periodic review setting, one in which the inventory level is reviewed on a regular cycle,
say every T days, a base-stock policy is one in which, at each review, an order is placed
for B −x units, where B is the base-stock level and x is the inventory position (inventory
on-hand plus outstanding orders). In a continuous review setting, where the inventory level
is reviewed continuously (e.g., via a computerized inventory records system), a base-stock
policy is sometimes called a “sell one-buy one” system as an order will be placed every
time an item is sold (i.e., as soon as the inventory position dips below B). One can see how
a newsvendor model serves as the basis for setting a base-stock level. If one can describe
the distribution of demand over the replenishment lead time, with expected value E[DDLT ]
and variance var[DDLT ], then the base-stock level could be set by choosing a fractile of
this distribution, in essence, by setting the desired in-stock probability. For normally dis-
tributed demand over the lead time, with mean µDLT and standard deviation σDLT , this
gives B = µDLT + zασDLT , where zα is the fractile of the standard normal distribution that
accumulates α probability under the pdf. Moreover, if demand is stationary, this base stock
level is as well.

A Supply-Chain Wide Base-Stock Model

In a supply-chain context, one that considers managing base-stock levels across multiple sites
in the chain, Graves and Willems (2003) present a relatively simple-to-compute approxi-
mation for the lead times that tend to result from the congestion effects in the network
caused by demand uncertainty and occasional stockouts at various points in the network.

© 2008 by Taylor & Francis Group, LLC



CH022.tex 22/10/2007 14: 22 Page 22-13

Supply Chain Management 22-13

ni�1

ni�2

n2

n3

ni

I2

I3

Ii
n1

Consumer
demand

I1
ni�j

Ii�j

Ii�2

Ii�1

FIGURE 22.8 A general production network.

We will focus on what is called the stochastic service formulation, in which the actual time
to replenish supply at any node in the network is stochastic, even if nominal replenish-
ment times are deterministic. (Graves and Willems cite Lee and Billington, 1993, as the
motivation for this approach). This results from each node occasionally stocking out, caus-
ing congestion in the system as other orders build up while supply is unavailable at some
point in the network. The other alternative is a guaranteed-service formulation, in which
each node holds sufficient inventory to guarantee meeting its service time commitment;
this, however, requires an assumption of bounded demand. Graves and Willems trace this
model back to the work of Kimball, from 1955, but published in Kimball (1988). For the
stochastic service formulation, the congestion-based adjustment to lead time employed by
Graves and Willems comes from Ettl et al. (2000), and leads to a fairly straightforward
non-linear optimization problem to minimize the cost of holding inventories throughout
the network, subject to an in-stock probability constraint at the network node farthest
downstream.

In this case, the supply chain network is defined as a graph G = (N,E), comprised of a
set of nodes N = {1, . . ., n} and edges (arcs) E = {(i, j) : i, j ∈N, i �= j}. Figure 22.8 shows
a pure production network, in which all nodes have exactly one successor, but could have
multiple predecessors. (This is done for simplicity of exposition. The optimization method
applies to more general arborescent networks as well. Graves and Willems give examples of
networks for battery packaging and distribution and for bulldozer assembly.) Node 1 (n1)
is the node farthest downstream (i.e., the node that fulfills demand for the finished item),
and downstream inventory Ii is controlled by node ni. The fulfillment time of any node j
in this network, which we denote by Lj , is the nominal amount of time required for node
j to fulfill an order from a successor node. We denote the replenishment time of node j by
τj . Thus, as indicated by Graves and Willems (following the model of Ettl et al., 2000), the
worst-case replenishment time of node j is

τmax
j = Lj + max

i:(i,j)∈E
{τi} (22.5)

but the expected replenishment time can be expressed as

E[τj ] = Lj +
∑

i:(i,j)∈E

πijLi (22.6)
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where πij is the probability that supply node i causes a stockout at j. The values of πij

can be estimated using equation 3.4 in Graves and Willems (2003), derived from Ettl et al.
(2000), which is

πij =
1 − Φ(zi)

Φ(zi)

⎡
⎣1 +

∑
h:(h,j)∈E

1 − Φ(zh)
Φ(zh)

⎤
⎦

−1

(22.7)

where zi is the safety stock factor at node i, as in our discussion above.
Using the equations above—and assuming that demand over the replenishment lead

time at each node j is normally distributed with mean µjE[τj ] and standard deviation
σj

√
E[τj ]—leads to a relatively straightforward non-linear optimization problem to mini-

mize the total investment in safety stock across the network. Specifically, that optimization
problem is to

min C =
N∑

j=1

hjσj

√
E[τj ]

⎛
⎜⎝zj +

∞∫
zj

(x − zj)φ(x)dx

⎞
⎟⎠ (22.8)

subject to z1 = Φ−1(α), where α is the target service level at the final inventory location,
Φ is the standard normal cdf, φ is the standard normal pdf, and hi is the annual inventory
holding cost at node i. The safety stock factors zi (i= 2, . . ., n) are the decision variables and
are also used in computing πij in Equation 22.6 via Equation 22.7. Feigin (1999) provides
a similar approach to setting base-stock levels in a network, but one that uses fill rate
targets—based on a fill rate approximation given by Ettl et al. (1997), an earlier version of
Ettl et al. (2000)—as constraints in a non-linear optimization.

Base-Stock Model with Supply Uncertainty

Based on the work of Bryksina (2005), Warsing, Helmer, and Blackhurst (2006) extend the
model of Graves and Willems (2003) to study the impact of disruptions or uncertainty in
supply on stocking levels and service outcomes in a supply chain. Warsing et al. consider two
possible fulfillment times, a normal fulfillment time Lj , as in Equation 22.6, and worst pos-
sible fulfillment time Kj , the latter of which accounts for supply uncertainty, or disruptions
in supply. Using pj to denote the probability that node j is disrupted in any given period,
Warsing et al. extend the estimate of Equation 22.6 further by using (1 − pj)Lj + pjKj in
place of Lj . They then compare the performance of systems using the original Graves and
Willems base-stock computations, base-stock levels adjusted for supply uncertainty, and a
simulation-based adjustment to safety stock levels that they develop.

Table 22.2 shows the base case parameters from a small, three-node example from Warsing
et al. (2006), and Table 22.3 shows the results, comparing the Graves and Willems (2003)
solution (GW), the modification of this solution that accounts for supply uncertainty (Mod-
GW), and the algorithmic adjustment to the safety stock levels developed by Warsing et al.
(WHB). An interesting insight that results from this work is the moderating effect of safety
stock placement on the probability of disruptions. Specifically, as the ratio of downstream
inventory holding costs become less expensive relative to upstream holding costs, the system
places more safety stock downstream, which buffers the shock that results from a 10-fold
increase in the likelihood of supply disruptions at an upstream node in the network.
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TABLE 22.2 Base Case Parameters for Example from Warsing et al. (2006)
Node Li Ki pi hi µi σi

1 1 2 0.01 10 200 30
2 3 10 0.01 1 200 30
3 3 10 0.01 1 200 30

TABLE 22.3 Results from Warsing et al. (2006) with Target In-Stock Probability of 95%
Base Stock Levels In-Stock Probability Fill Rate

Scenario Model Node 1 Node 2 Node 3 Mean (%) Std Dev (%) Mean (%) Std Dev (%)

Base case GW 296 694 694 91.5 2.1 93.1 2.0
Mod-GW 299 709 709 92.9 1.8 94.3 1.8
WHB 299 1233 709 94.5 2.2 95.8 2.0

h3 = 5 GW 549 655 613 94.9 2.8 95.7 2.6
Mod-GW 556 670 628 95.4 1.9 96.3 1.7
WHB 556 670 628 95.4 1.9 96.3 1.7

p2 = 0.10 GW 296 694 694 71.1 4.9 75.4 4.3
Mod-GW 301 847 709 77.5 5.4 81.3 4.8
WHB 301 1488 800 91.6 2.8 93.8 2.3

h3 = 5 GW 549 655 613 80.2 3.2 83.6 2.7
p2 = 0.10 Mod-GW 554 810 629 84.3 4.4 87.3 3.9

WHB 554 1296 629 94.4 2.4 95.9 1.8

Distribution of
demand over

lead time (DLT )

Inventory

Q R

SS � R � �DLT
0

L

Time

FIGURE 22.9 Continuous-review, perpetual-demand inventory model.

22.2.2 Reorder Point—Order Quantity Models

As discussed above, when there is no cost to place a replenishment order, a base-stock model
that reorders at every periodic review—or whenever inventory is depleted by one or more
units in a continuous review system—is appropriate. With costly ordering, however, this is
likely not to be the cost-minimizing policy. Therefore, in this case, the question of when to
get more is now relevant in addition to the question of how much to get.

In addition to costly ordering, let us now consider a perpetual demand setting, one in
which demand is assumed to continue infinitely far into the future, and clearly one that is
the antithesis of the spike demand that characterized the newsvendor setting. The easiest
case to analyze in this setting would be a continuous-review inventory model. A pictorial
view of a continuous-review, perpetual-demand model with stationary demand is shown
in Figure 22.9. In this setting, an order of size Q is placed whenever the inventory level
reaches, or dips below, reorder point R. The picture also provides a visual representation
of safety stock for this model. From the visual we see that safety stock SS is not only the
amount of inventory held in excess of demand—in this case demand over the replenish-
ment lead time—to protect against stockouts, but it can also be seen to be the amount of
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inventory that is expected to be on hand when a replenishment order arrives. As indicated
by the three dashed lines in the second cycle of the figure, if demand over the replenishment
lead time is uncertain, the demand rate could track to expectations over the replenishment
lead time (middle line), or it could experience a slow down (upper line) or an increase (lower
line), in the latter case leaving the system at risk of a stockout. Setting the reorder point
sufficiently high is the means of preventing such stockouts, and therefore, the reorder point,
as indicated by the figure is given by

R = µDLT + SS (22.9)

The problem in this case, then, is to find good values of two decision variables, the reorder
point R and the order quantity Q, or the “when” and “how much” decisions we discussed
above. If D now denotes the expected value of annual demand, A denotes the fixed cost to
place a replenishment order, and h denotes the annual cost of holding a unit in inventory,
then the total annual costs of ordering and holding in this model are given by

TAC(R, Q) =
AD

Q
+ h

(
Q

2
+ R − µDLT

)
(22.10)

since D/Q obviously gives the number of orders placed annually, Q/2 gives the cycle stock
(or the average inventory—over and above any safety stock—given a stationary demand rate
over time), and R −µDLT gives the safety stock.∗ Some time-honored texts—for example,
Hax and Candea (1984) and Silver et al. (1998)—include explicit stockout costs in the
annual cost equation. Our approach, however, will be to consider a service constraint in
finding the (Q, R) solution that minimizes Equation 22.10.

Thus, an important issue in our formulation will be how we specify the service constraint
on our optimization problem. The most general case is the one in which both demand per
unit time period (typically days or weeks) and replenishment lead time (correspondingly
expressed in days or weeks) are random variables. Let us, therefore, assume that the lead
time L follows a normal distribution with mean µL and standard deviation σL. Further,
let us assume that the distribution of the demand rate per unit time d also is normal,
and let µd and σd denote its mean and standard deviation, respectively.† The normal-
distribution assumption allows a well-defined convolution of demand over the lead time,
which is therefore also normally distributed, with mean µDLT = µdµL and standard devia-
tion‡ σDLT =

√
µLσ2

d + µ2
dσ

2
L. Moreover, given a value of the reorder point R, the expected

number of units short in an order cycle can be expressed as S(R) = σDLT L(z), where L(z),
as above, is the standard normal loss function evaluated at z, which in this case is given
by z = (R −µDLT )/σDLT . If unmet demand in a replenishment cycle is fully backlogged, it
should be apparent that the expected demand met in a replenishment cycle is Q, meaning

∗Note that this model implies that expected inventory is Q/2 + SS. Technically, however, we should be
careful about how demand is handled in the event of a stockout. If demand is backlogged, then expected
inventory at any point in time is actually Q/2 + SS + E[BO], where E[BO] is the expected number of
backorders. Silver et al. (1998, p. 258), however, indicate that since E[BO] is typically assumed to be small
relative to inventory, it is reasonable to use Q/2 + SS for expected inventory. If demand is lost in the event
of a stockout, then expected inventory is exactly Q/2 + SS.

†As indicated by Silver et al. (1998), the assumption of the normal distribution for lead time demand is
common for a number of reasons, particularly that it is “convenient from an analytic standpoint” and “the
impact of using other distributions is usually quite small” (p. 272).

‡The general form of this equation, from the variance of a random-sized sum of random variables, can
be found in Example 4 in Appendix E of Kulkarni (1995, pp. 577–578).
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that the fill rate in this continuous-review, perpetual demand model is given by

β(R, Q) = 1 − S(R)
Q

= 1 − σDLT L(z)
Q

∗ (22.11)

Note, therefore, that the problem to minimize Equation 22.10 subject to a fill rate constraint
based on Equation 22.11 is non-linear in both the objective function and the constraint.
The objective (Equation 22.10), however, is convex in both Q and R,† so the solution is
fairly straightforward.

A less rigorous approach to finding a (Q, R) solution would be to solve for Q and R
separately. Note that z = (R −µDLT )/σDLT gives a fractile of the distribution of demand
over the lead time. Thus, we could set R to achieve a desired in-stock probability, along
the lines of the newsvendor problem solution discussed above (i.e., to accumulate a given
amount of probability under the lead-time demand distribution). In this setting, the in-stock
probability is typically referred to as the cycle service level (CSL), or the expected in-stock
probability in each replenishment cycle. With R fixed to achieve a desired CSL, we then
use the first-order condition on Q in Equation 22.10,

∂TAC(R, Q)
∂Q

= −AD

Q2 +
h

2
= 0 (22.12)

to solve for

Q∗
EOQ =

√
2AD

h
(22.13)

the familiar economic order quantity (EOQ). Note also that if demand uncertainty is
removed from our model altogether, then the safety stock term is dropped from Equa-
tion 22.10 and EOQ via Equation 22.13 provides the optimal order quantity.

Reorder point–order quantity (ROP-OQ) models are also relevant to periodic review
systems, in which the system inventory is reviewed at some regular period, say every T
days, and an order is placed if the inventory position is below a given level. Analysis of the
periodic-review system is more complex and requires a dynamic programming solution (see,
e.g., Clark and Scarf, 1960), with the result being an (s, S) policy, wherein an order of size
S − s is placed if the inventory position is below s at the current review. As pointed out by
Silver et al. (1998), however, a reasonably good, approximate (s, S) policy can be generated
from continuous-review-type parameters. Specifically, one could set s equal to an extension,
of sorts, of the continuous-review reorder point R, set to cover demand over the lead time
plus the review period and achieve a desired cycle service level. The order-up-to level S
would then be given by S = R + Q, with Q given by EOQ (or a some slight adjustment—see
Silver et al., 1998, pp. 331–336, for more details).

Multi-Item Models

Our treatment of ROP-OQ models up to this point has concerned only a single item at a
single location. It would be the rare company, however, that managed only a single item at a
single location. As one complication introduced with multiple items, consider a situation in

∗Again, the backlogging assumption is important. If unmet demand is lost, then the replenishment
quantity Q is never used to meet backlogged demand, and therefore, the total demand experienced in an
average cycle is Q + E[BO] = Q + S(R), yielding β(R, Q) = 1 − σDLT L(z)/[Q + σDLT L(z)].

†See Hax and Candea (1984, p. 206) for a proof of the convexity of a related model.
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which k items can be ordered jointly at a discount in the ordering cost—that is, where the
cost of ordering k items independently is kA, but ordering these items jointly incurs only
an incremental cost, ai ≥ 0, for each item i ordered beyond the single base cost of ordering,
A, such that A +

∑k
i = 1 ai < kA.

A straightforward way to address this situation is to consider ordering all items jointly
on a common replenishment cycle. In essence this changes the decision from “how much”
to order—the individual order quantities, Qi—to “how often” to order, which is given by n,
defined as the number of joint orders placed per year. Then since n = Di/Qi ⇒ Qi = Di/n
for each item i, we can build a joint-ordering TAC model with

TAC(n) =

(
A +

k∑
i=1

ai

)
n +

k∑
i=1

hi

(
Di

2n
+ SSi

)
(22.14)

where hi is the annual cost of holding one unit of item i in inventory, Di/(2n) = Qi/2 is the
cycle stock of item i, and SSi is the safety stock of item i. For fixed values of SSi (or if
demand is certain and SSi = 0, i= 1, . . ., k), the optimal solution to Equation 22.14 is found
by setting

∂TAC(n)
∂n

= A +
k∑

i=1

ai − 1
2n2

k∑
i=1

hiDi = 0 (22.15)

yielding

n∗ =

√√√√√√
∑k

i=1
hiDi

2
(

A +
∑k

i=1
ai

) (22.16)

Introducing safety stock and reorder points into the decision complicates the idea of
joint replenishments. Clearly, it would negate the assumption that all items would appear
in each replenishment since the inventory levels of the various items are unlikely to hit their
respective reorder points at exactly the same point in time. Silver et al. (1998) discuss an
interesting idea first proposed by Balintfy (1964), a “can-order” system. In this type of
inventory control system, two reorder points are specified, a “can-order” point, at which an
order could be placed, particularly if it would allow a joint-ordering discount, and a “must-
order” point, at which an order must be placed to guard against a stockout. Although I
will not discuss the details here, Silver et al. (1998: p. 435) provide a list of references
for computing “must-order” and “can-order” levels in such a system. Thus, one could pro-
pose a review period for the joint-ordering system and set reorder points to cover a certain
cumulative probability of the distribution of demand over the lead time plus the review
period.

Let’s consider an example that compares individual orders versus joint orders for two
items. Floor-Mart—“We set the floor on prices” (and, apparently, on advertising copy)—is
a large, (fictional) discount retailer. Floor-Mart stocks two models of 20-inch, LCD-panel
TVs, Toshiba and LG, that it buys from two different distributors. Annual demand for the
Toshiba 20-inch TV is D1 = 1600 units, and the unit cost to Floor-Mart is $400. Annual
demand for the LG 20-inch TV is D2 = 2800 units, and the unit cost to Floor-Mart is $350.
Assuming 365 sales days per year, this results in an expected daily demand of µd,1 = 4.38
units for the Toshiba TV and µd,2 = 7.67 units for the LG TV. Assume that Floor-Mart also
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has data on demand uncertainty such that σd,1 = 1.50 and σd,2 = 2.50. Annual holding costs
at Floor-Mart are estimated to be 20% on each dollar held in inventory, and Floor-Mart’s
target fill rate on high-margin items like TVs is 99%. Floor-Mart uses the same contract
carrier to ship TVs from each of the distributors. Let’s put a slight twist on the problem
formulation as it was stated above. Assume that Floor-Mart’s only fixed cost of placing a
replenishment order with its TV distributors is the cost the carrier charges to move the goods
to Floor-Mart. The carrier charges $600 for each shipment from the Toshiba distributor, and
the mean and standard deviation of the replenishment lead time are µL,1 = 5 and σL,1 = 1.5
days. The carrier charges $500 for each shipment from the LG distributor, and the mean
and standard deviation of the replenishment lead time are µL,2 = 4 and σL,2 = 1.2 days.
However, the carrier also offers a discounted “stop-off” charge to pick up TVs from each
distributor on a single truck, resulting in a charge of $700.

With the parameters above, we find that µDLT,1 = 21.92, σDLT,1 = 7.38, µDLT,2 =
30.68, and σDLT,2 = 10.60. Solving Equation 22.10 for each TV to find the optimal
independent values of Q and R (via Excel Solver), we obtain (Q1, R1) =
(166, 25) and (Q2, R2) = (207, 36). By contrast, independent EOQ solutions would be
QEOQ,1 = 155 and QEOQ,2 = 200. Using Equation 22.16 for the joint solution, we obtain
n∗ =

√
(0.2)(400 · 1600 + 350 · 2800)/(2 · 700)= 15.21, yielding Q1 = 105 and Q2 = 184. The

joint solution—assuming that it does not exceed the truck capacity—saves approximately
$5100 in ordering and holding costs over either independent solution. The issue on the table,
then, as we discuss above, is to set safety stock levels in this joint solution. As orders would
be placed only every 3.4 weeks with n = 15.21, a review period in line with the order cycle
would probably inflate safety stock too dramatically. Thus, the reader should be able to see
the benefit of a “can-order” system in this case, perhaps with a one-week review period,
a high CSL—that is, relatively large value of z = (R −µDLT )/σDLT —on the “can-order”
reorder point, and a lower CSL on the “must-order” reorder point. In closing the example,
we should point out that we have assumed a constant rate of demand over time, which
may be reasonable for TVs, but clearly ignores the effects of intermittent advertising and
sales promotions. Later in this section, we discuss distribution requirements planning, which
addresses situations where demand is not stationary over time.

Finally, the more general case for joint ordering is to consider what Silver et al. (1998)
call coordinated replenishment, where each item i is ordered on a cycle that is a multi-
ple, mi, of a base order cycle of T days. Thus, each item is ordered every miT days.
Some subset, possibly a single item, of the k items has mi = 1, meaning that those items
appear in every replenishment order. Silver et al. (1998, pp. 425–430) offer an algorithmic
solution to compute mi (i= 1, . . ., k) and T for this case. Jackson et al. (1985) consider
the restrictive assumption that mi ∈ {20, 21, 22, 23, . . .} = {1, 2, 4, 8, . . .}, which they call a
“powers-of-two” policy, and show that this approach results in an easy-to-compute solution
whose cost is no more than 6% above the cost of an optimal policy with unrestricted
values of mi. Another situation that could link item order quantities is an aggregate
quantity constraint or a budget constraint. Hax and Candea (1984) present this prob-
lem and a Lagranian-relaxation approach to solving it; they refer to Holt et al. (1960)
for several methods to solve for the Lagrange multiplier that provides near-optimal order
quantities.

Multi-Echelon Models

In a multi-echelon supply chain setting, Clark and Scarf (1960) show that the supply-chain
optimal solution at each echelon is an “echelon-stock policy” of (s, S) form. Clark and
Scarf are able to solve their stochastic dynamic programming formulation of the problem
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by redefining the manner in which inventory is accounted for at successive upstream ech-
elons in the chain. Clark and Scarf’s definition of echelon stock is “the stock at any given
installation plus stock in transit to or on hand at a lower installation” (p. 479). Thus, the
echelon stock at an upstream site includes stock at that site plus all stock downstream
that has not yet been sold to a customer. Using an echelon-stock approach coordinates the
ordering processes across the chain, or at least across the echelons that can be coordinated.
This last point refers to the complication that a supply-chain-wide, echelon-stock policy
would require all firms in the chain (except the one farthest upstream) to provide access to
their inventory data. Such supply-chain-wide transparency is perhaps unlikely to occur, but
coordination between company-owned production sites and company-owned distribution
sites is eminently reasonable. Silver et al. (1998, 477–480), for example, provide compu-
tational procedures to determine coordinated warehouse (upstream) and retailer (down-
stream) order quantities using an echelon-stock approach. In addition, I refer the reader to
Axsäter (2000) for an excellent overview of echelon-inventory methods and computational
procedures.

The astute reader should note that we have already discussed an approach to setting
safety stocks in a multi-echelon system, namely the non-linear optimization suggested by
Graves and Willems (2003). In the author’s view, this approach is more intuitive and more
directly solved than an echelon inventory approach, but perhaps only slightly less prob-
lematic in terms of obtaining data about upstream and downstream partners in the supply
chain. An approach that uses the GW optimization (see the earlier section in this chapter

pled with simple EOQ computations as starting points for order quantities, and possibly
“tweaked” by simulation to find improved solutions, may be a promising approach to solving
network-wide inventory management problems.

22.2.3 Distribution Requirements Planning

In an environment in which independent-item demands vary over time, distribution require-
ments planning (DRP) provides a method for determining the time-phased inventory levels
that must be present in the distribution system to fulfill projected customer demands on
time. As Vollmann et al. (2005) point out, “DRP’s role is to provide the necessary data for
matching customer demand with the supply of products being produced by manufacturing”
(p. 262). Note that in any make-to-stock product setting, the linchpin between product man-
ufacturing and customer demand is the distribution system, and indeed, it is distribution
system inventory that coordinates customer demand with producer supply. While distri-
bution system inventories could be set using the ROP-OQ control methods as described
above, the critical difference between DRP and ROP-OQ is that DRP plans forward in
time, whereas ROP-OQ systems react to actual demands whenever those demands drive
inventory to a level that warrants an order being placed. This is not to say that the two
approaches are inconsistent. Indeed, it is quite easy to show that, in a stationary-demand
environment with sufficiently small planning “time buckets,” DRP and ROP-OQ produce
equivalent results. Where DRP provides a clear benefit, however, is in situations where
demand is not constant over time, particularly those situations in which surges and drops
in demand can be anticipated reasonably accurately.

The basic logic of DRP is to compute the time-phased replenishment schedule for each
stock-keeping unit (SKU) in distribution that keeps the inventory level of that SKU at or
above a specified safety stock level (which, of course, could be set to zero). Let the DRP
horizon span planning periods t = 1, . . ., T , and assume that safety stock SS, order lot size
Q, and lead time L are given for the SKU in question. In addition, assume that we are given
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a period-by-period forecast of demand for this SKU, Dt, t = 1, . . ., T . Then, we can compute
the planned receipts for each period t, namely the quantity—as an integer multiple of the
lot size—required to keep inventory at or above SS.

To illustrate these concepts, let us consider an example, altered from Bozarth and
Handfield (2006). Assume that MeltoMatic Company manufactures and distributes snow
blowers. Sales of MeltoMatic snow blowers are concentrated in the Midwestern and North-
eastern states of the United States. Thus, the company has distribution centers (DCs)
located in Minneapolis and Buffalo, both of which are supplied by MeltoMatic’s manu-
facturing plant in Cleveland. Table 22.4 shows the DRP records for the Minneapolis and
Buffalo DCs for MeltoMatic’s two SKUs, Model SB-15 and Model SBX-25. The first three
lines in the table sections devoted to each SKU at each DC provide the forecasted demand
(requirements), Dt; the scheduled receipts, SRt, already expected to arrive in future periods;
and the projected ending inventory in each period, It. This last quantity, It, is computed
on a period-by-period basis as follows:

1. For period t, compute net requirements NRt = max{0, Dt + SS − (It−1 + SRt)}.
2. Compute planned receipts PRt = �NRt/Q� ·Q, where �x� gives the smallest inte-

ger greater than or equal to x. (Note that this implies that if NRt = 0, then
PRt = 0 as well.)

3. Compute It = It−1 + SRt + PRt −Dt. Set t ← t + 1.
4. If t ≤T , go to step 1; else, done.

Then, planned receipts are offset by the lead time for that SKU, resulting in a stream
of planned orders, POt, to be placed so that supply arrives in the DC in time to fulfill
the projected demands (i.e., POt = PRt+L for t = 1, . . ., T −L, and any planned receipts in
periods t = 1, . . ., L result in orders that are, by definition, past due).

Note that an important aspect of DRP is that it requires human intervention to turn
planned orders into actual orders, the last line in Table 22.4 for each SKU. To further
illustrate this point, let’s extend our example to consider a situation where the human
being charged with the task of converting planned orders into actual orders might alter the
planned order stream to achieve some other objectives. For example, let us assume that the
carrier that ships snow blowers into MeltoMatic’s warehouses in Minneapolis and Buffalo
provides a discount if the shipment size exceeds a truckload quantity of 160 snow blowers,
relevant to shipments of either SKU or to combined shipments containing a mix of both
SKUs. Table 22.5 shows an altered actual order stream that generates orders across both
SKUs of at least 160 units in all periods t = 1, . . ., T −L where POt > 0 for either SKU. In
addition, Table 22.5 also shows the temporary overstock created by that shift in orders,
with some units arriving in advance of the original plan. The question would be whether
the projected savings in freight transportation exceeds the expense of temporarily carry-
ing excess inventories. Interestingly, we should also note that the shift to larger shipment
quantities, somewhat surprisingly, creates a smoother production schedule at the Cleveland
plant (after an initial bump in Week 46).

Once again, therefore, we revisit the enormity of the problem of “optimizing the sup-
ply chain,” noting the complexity of the above example for just two SKUs at a single
firm. Granted, jointly minimizing inventory cost, transportation cost, and possibly also
“production-change” costs might be a tractable problem at a single firm for a small set
of SKUs, but the challenge of formulating and solving such problems clearly grows as the
number of component portions of the objective function grows, as the number of SKUs
being planned grows, and as the planning time scale shrinks (e.g., from weeks to days).

© 2008 by Taylor & Francis Group, LLC



C
H

022
.tex

22/10/2007
14:

22
P
age

22-22

22-22
O

perations
R

esearch
and

M
anagem

ent
Science

H
andbook

TABLE 22.4 DRP Records for MeltoMatic Snow Blowers Example with Actual Orders Equal to Planned Orders

Week 45 46 47 48 49 50 51 52 1 2 3 4

MINNEAPOLIS DC Forecasted requirements 60 60 70 70 80 80 80 80 90 90 95 95
Scheduled receipts 120

Model SB-15 Projected ending inventory 80 140 80 10 60 100 20 60 100 10 40 65 90
LT (weeks ): 2 Net requirements 0 0 0 70 30 0 70 30 0 90 65 40
Safety stock (units): 10 Planned receipts 0 0 0 120 120 0 120 120 0 120 120 120
Lot size (units): 120 Planned orders 0 0 120 120 0 120 120 0 120 120 120 0 0

Actual orders 0 120 120 0 120 120 0 120 120 120 0 0

Forecasted requirements 40 40 50 60 80 90 100 100 110 110 100 100
Scheduled receipts 40

Model SBX-25 Projected ending inventory 100 100 60 10 30 30 20 80 60 30 80 60 40
LT (weeks): 2 Net requirements 0 0 0 60 60 70 90 30 60 90 30 50
Safety stock (units): 10 Planned receipts 0 0 0 80 80 80 160 80 80 160 80 80
Lot size (units): 80 Planned orders 0 0 80 80 80 160 80 80 160 80 80 0 0

Actual orders 0 80 80 80 160 80 80 160 80 80 0 0

BUFFALO DC Forecasted requirements 70 70 80 80 90 90 100 100 120 120 140 140
Scheduled receipts 100

Model SB-15 Projected ending inventory 30 60 110 30 70 100 10 30 50 50 50 30 10
LT (weeks): 1 Net requirements 0 20 0 60 30 0 100 80 80 80 100 120
Safety stock (units): 10 Planned receipts 0 120 0 120 120 0 120 120 120 120 120 120
Lot size (units): 120 Planned orders 0 120 0 120 120 0 120 120 120 120 120 120 0

Actual orders 120 0 120 120 0 120 120 120 120 120 120 0

Forecasted requirements 50 50 60 70 80 80 100 110 130 130 100 100
Scheduled receipts 60

Model SBX-25 Projected ending inventory 30 40 70 90 20 20 20 80 50 80 30 90 70
LT (weeks): 1 Net requirements 0 25 5 0 75 75 95 45 95 65 85 25
Safety stock (units): 15 Planned receipts 0 80 80 0 80 80 160 80 160 80 160 80
Lot size (units): 80 Planned orders 0 80 80 0 80 80 160 80 160 80 160 80 0

Actual orders 80 80 0 80 80 160 80 160 80 160 80 0

CLEVELAND PLANT Master production schedule SB-15 120 120 240 120 120 240 120 240 240 240
(Gross requirements) SBX-25 80 160 80 160 240 240 160 320 160 240

Total 200 280 320 280 360 480 280 560 400 480
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TABLE 22.5 DRP Records for MeltoMatic Snow Blowers Example with Actual Orders Altered for Transportation Discount

Week 45 46 47 48 49 50 51 52 1 2 3 4

MINNEAPOLIS DC Forecasted requirements 60 60 70 70 80 80 80 80 90 90 95 95
Projected ending inventory 80 140 80 10 60 100 20 60 100 10 40 65 90

Model SB-15 Planned orders 0 0 120 120 0 120 120 0 120 120 120 0 0
Actual orders 0 120 120 0 120 120 0 120 120 120 0 0

Forecasted requirements 40 40 50 60 80 90 100 100 110 110 100 100
Projected ending inventory 100 100 60 10 30 30 20 80 60 30 80 60 40

Model SBX-25 Planned orders 0 0 80 80 80 160 80 80 160 80 80 0 0
Actual orders 0 80 80 160 80 80 160 80 80 80 0 0

Planned orders 0 200 200 80 280 200 80 280 200 200 0 0
Total for DC Actual orders 0 200 200 160 200 200 160 200 200 200 0 0

Temporary overstock 0 0 0 80 0 0 80 0 0 0 0 0

BUFFALO DC Forecasted requirements 70 70 80 80 90 90 100 100 120 120 140 140
Projected ending inventory 30 60 110 30 70 100 10 30 50 50 50 30 10

Model SB-15 Planned orders 0 120 0 120 120 0 120 120 120 120 120 120 0
Actual orders 120 0 120 120 0 120 120 120 120 120 120 0

Forecasted requirements 50 50 60 70 80 80 100 110 130 130 100 100
Projected ending inventory 30 40 70 90 20 20 20 80 50 80 30 90 70

Model SBX-25 Planned orders 0 80 80 0 80 80 160 80 160 80 160 80 0
Actual orders 80 160 80 80 160 80 80 80 80 80 80 0

Planned orders 200 80 120 200 80 280 200 280 200 280 200 0
Total for DC Actual orders 200 160 200 200 160 200 200 200 200 200 200 0

Temporary overstock 0 80 160 160 240 160 160 80 80 0 0 0

CLEVELAND PLANT Master production schedule SB-15 120 120 240 120 120 240 120 240 240 240
(Gross requirements) SBX-25 80 240 160 240 240 160 240 160 160 160

Total 200 360 400 360 360 400 360 400 400 400
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The examples above, however, give us some insights into how inventory decisions could be
affected by transportation considerations, a topic we consider further in the section that
follows.

22.3 Managing Transportation in the Supply Chain

22.3.1 Transportation Basics

Ballou (2004) defines a transport service “as a set of transportation performance character-
istics purchased at a given price” (p. 167). Thus, in general, we can describe and measure a
freight transport mode by the combination of its cost and its service characteristics. More-
over, we can break down the service characteristics of a transport service into speed (average
transit time), reliability (transit time variability), and risk of loss/damage. Freight transit
modes are water, rail, truck, air, and pipeline; interestingly, Chopra and Meindl (2004) also
include an electronic mode, which may play an increasing role in the future, and already has
for some goods like business documents (e.g., e-mail and fax services) and recorded music
(e.g., MP3 file services like Napster and Apple’s iTunes). I will therefore distinguish physical
modes of freight transit from this nascent electronic mode and focus our discussion exclu-
sively on the physical modes. Ballou’s characterization of a freight transport service leads
nicely to a means of comparing physical modes—with respect to their relative cost, speed of
delivery, reliability of delivery, and risk of loss and damage. Ballou (2004) builds a tabular
comparison of the relative performance of the modes in terms of cost, speed, reliability,
and risk of loss/damage, but I would suggest that there is some danger in trying to do this
irrespective of the nature of the cargo or the transportation lane (i.e., origin–destination
pair) on which the goods are traveling. Some comparisons are fairly obvious, however: Air
is clearly the fastest and most expensive of the physical modes, whereas water is the slowest
and perhaps the least expensive, although pipeline could probably rival water in terms of
cost. In terms of “in-country” surface modes of travel, rail is much cheaper than truck, but
also much slower—partially because of its lack of point-to-point flexibility—and also more
likely to result in damage to or, loss of, the cargo due to the significant number of transfers
of goods from train to train as a load makes its way to its destination via rail.

A Harvard Business School (Harvard Business School, 1998) note on freight transporta-
tion begins with a discussion of the deregulation of the rail and truck freight transport
markets in the United States and states that “. . . an unanticipated impact of regulatory
reform was a significant consolidation in the rail and LTL [less-than-truckload] trucking
sectors” (p. 3). This stemmed from the carriers in these markets seeking what the HBS
note calls “economies of flow,” consolidating fixed assets by acquiring weaker carriers to
gain more service volume, against which they could then more extensively allocate the costs
of managing those fixed assets. This provides interesting insights to the cost structures
that define essentially any transport service, line-haul costs—the variable costs of moving
the goods—versus terminal/accessorial costs—the fixed costs of owning or accessing the
physical assets and facilities where shipments can be staged, consolidated, and routed.

Even without the benefit of detailed economic analysis, one can infer that modes like
pipeline, water, and rail have relatively large terminal/accessorial costs; that air and truck
via LTL have less substantial terminal costs; and that truck via truckload (TL), as a point-
to-point service, has essentially no terminal costs. Greater levels of fixed costs for the carrier
create a stronger incentive for the carrier to offer per-shipment volume discounts on its
services. Not only does this have a direct impact on the relative cost of these modes, but
it also has implications for the relative lead times of freight transit modes, as shown in
Figure 22.10, reproduced (approximately) from Piercy (1977). In this case, more substantial
terminal operations—that is, rail yards to build trains or LTL terminals to build full trailer
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FIGURE 22.10 Comparison of shipping distance versus lead time for various modes. (Reproduced from
Piercy, 1977.)

loads—result in more non-linearity in the distance-versus-transit time relationship. Note
from the figure that for TL, this relationship is essentially linear as this mode does not
require terminal operations to mix and consolidate loads.

In building a model of transportation cost as a function of the shipment quantity, the
remainder of this section will focus on truck transit, as that is the mode for which the
most data is available and for which the full-load versus less-than-full-load analysis is most
interesting. The basic ideas of the results, however, apply to other transit modes as well. The
basic tension for the decision maker is between using smaller shipments more frequently,
but at a potentially higher per-unit shipping cost, versus making larger, but less expensive,
shipments less frequently. Clearly, this has implications for transportation and inventory
costs, and potentially for customer service as well. The analysis that follows, therefore,
begins to round out the triangle of SCM strategy—inventory, transportation, locations, and
customer service—that was presented earlier in this chapter.

In the trade press, Speigel (2002) picks up on exactly this tension in the TL versus LTL
decision. As Speigel indicates, and as we draw out in an example later in this section, the
answer to the TL–LTL question depends on a number of factors and explains why many
shippers use transportation management system (TMS) software to attempt to generate
minimum cost shipment decisions. Moreover, Speigel points out that it is getting increas-
ingly difficult to fill truckloads in practice when one considers the many factors driving small
shipment sizes: an increasing number of stock-keeping-units driven by customers’ demands
for greater customization, lean philosophies and the resulting push to more frequent ship-
ments, and customer service considerations that are driving more decentralized distribution
networks serving fewer customers per distribution center (this last theme returns in the
succeeding section of this chapter on “Managing Locations”). As I point out after our
example below, such trends probably lead to a need to consider mixed loads as a possible
means of building larger, more economical shipments. This section closes with a general
cost model that is well-positioned for carrying out such an analysis, even without the help
of a costly TMS.
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TABLE 22.6 Breakdown of United States Physical Distribution Costs, 1988 Versus
2002

1988∗ 2002†

% of Sales $/cwt‡ % of Sales $/cwt

Transportation 3.02 12.09 3.34 26.52
Warehousing 1.90 11.99 2.02 18.06
Customer service/order entry 0.79 7.82 0.43 4.58
Administration 0.35 2.35 0.41 2.79
Inventory carrying cost @ 18%/year 1.76 14.02 1.72 22.25
Other 0.88 5.94 NR NR
Total distribution cost 7.53 45.79 7.65 67.71
∗ From Davis, H. W., Annual Conference Proceedings of the Council of Logistics
Management, 1988. With permission.
† From Davis, H. W. and W. H. Drumm, Annual Conference Proceedings of the Council of
Logistics Management, 2002. With permission.
‡ Weight measure “cwt” stands for “hundred-weight,” or 100 lbs.

22.3.2 Estimating Transportation Costs

Table 22.6 shows a breakdown of total logistics cost as a percent of sales as given in Ballou
(1992) and in Ballou (2004). From the table, one can note the slight growth in transporta-
tion cost as a fraction of sales and the slight decline in inventory cost over time. Thus,
it would appear that effectively managing transportation costs is an important issue in
controlling overall logistics costs, in addition to managing the impact of transportation
decisions on warehousing and inventory carrying costs, the other large cost components in
the table.

Nearly all operations management or logistics textbooks that incorporate quantitative
methods (e.g., Nahmias, 1997; Silver et al., 1998; Chopra and Meindl, 2004; Ballou, 2004)
present methods for computing reorder points and order quantities for various inventory
models and, in some cases, also discuss accounting for transportation costs in manag-
ing inventory replenishment. To the author’s knowledge, however, no textbook currently
presents any models that effectively tie these interrelated issues together by incorporating a
general model of transportation costs in the computation of optimal or near-optimal inven-
tory policy parameters. Moreover, although many academics have previously proposed or
studied joint inventory–transportation optimization models—extending back to the work of
Baumol and Vinod (1970)—the author’s experience is that the use of previously published
approaches has not become commonplace among practitioners.

Given the recent estimate of Swenseth and Godfrey (2002) that transportation costs could
account for as much as 50% of the total annual logistics cost of a product (consistent with
Table 22.6, which shows aggregate data), it seems clear that failing to incorporate these costs
in inventory management decisions could lead to significantly sub-optimal solutions—that is,
those with much higher than minimal total logistics costs. Perhaps the most common model
for transportation costs in inventory management studies is simply to assume a fixed cost to
ship a truckload of goods (see, e.g., Waller et al., 1999, for use of such a model in studying
vendor-managed inventory). This model, however, is insensitive to the effect of the shipment
quantity on the per-shipment cost of transportation and seems unrealistic for situations in
which goods are moved in smaller-sized, less-than-truckload shipments. In contrast, several
authors have considered discrete rate-discount models, using quantity breaks to represent
the shipment weights at which the unit cost changes. Tersine and Barman (1991) provide a
review of some earlier modeling work. A recent example is the work of Çetinkaya and Lee
(2002), who modify a cost model introduced by Lee (1986), which represents transportation
costs as a stepwise function to model economies of scale by explicitly reflecting the lower
per-unit rates for larger shipments.

© 2008 by Taylor & Francis Group, LLC



CH022.tex 22/10/2007 14: 22 Page 22-27

Supply Chain Management 22-27

Shipment
charge

Minimum
charge

Rate 1

Rate 2

Rate 3

Shipment
weight

w1 w20

FIGURE 22.11 LTL rate structure as typically stated.

TABLE 22.7 Example Class 100 LTL
Rates for NYC Dallas Lane
Minimum Weight (lbs) Rate ($/cwt)

1 107.75
500 92.26

1000 71.14
2000 64.14
5000 52.21

10,000 40.11
20,000 27.48
30,000 23.43
40,000 20.52

In contrast to explicit, discrete rate-discount models of freight rates, Swenseth and Godfrey
(1996) review a series of models that specify the freight rate as a continuous, non-linear
function of the shipment weight, building off of the work of Ballou (1991), who estimated
the accuracy of a linear approximation of trucking rates. One advantage of continuous func-
tions is that they do not require the explicit specification of rate breakpoints for varying
shipment sizes nor do they require any embedded analysis to determine if it is economical
to increase—or over-declare—the shipping weight on a given route. A second advantage is
that a continuous function may be parsimonious with respect to specifying its parameters
and can therefore be used in a wide variety of optimization models.

The idea that a shipper might benefit from “over-declaring” a shipment, or simply ship-
ping more in an attempt to reduce the overall shipping cost, stems from the manner in
which LTL rates are published by carriers. Figure 22.11 shows a pictorial view of the typ-
ical LTL rate structure as it is published to potential shippers. This rate structure uses
a series of weight levels at which the per-unit freight rate—that is, the slope of the total
shipment charge in Figure 22.11—decreases. A sample of such published rates is shown in
Table 22.7, which contains rates for the New York City-to-Dallas lane for Class 100 freight,∗

∗Coyle et al. (2006) indicate that the factors that determine the freight class of a product are its density,
its storability and handling, and its value. Class 100 freight, for example, would have a density between 6
and 12 lbs/ft3 for LTL freight.
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as given in Ballou (2004, Table 6.5). Modeling per-unit rates for shipments of an arbitrary
size requires one to account for weight breaks, which are used by carriers to determine the
shipment weight at which the customer receives a lower rate, and which are typically less
than the specific cutoff weight for the next lower rate to avoid creating incentives for a
shipper to over-declare, as discussed above. For example, using the rate data in Table 22.7
for a Class 100 LTL shipment from New York to Dallas, if one were to ship 8000 pounds
(80 cwt) on this lane, the charge without considering a possible weight break would be
80 × 52.21 = $4176.80. If, however, one were to add 2000 pounds of “dummy weight,” the
resulting charge would be only 100× 40.11 = $4011. In Figure 22.11, this is the situation for
a shipment weight just slightly less than w2, for example. Thus, to discourage shippers from
over-declaring or “over-shipping”—and also leaving space for more goods on the carrier’s
trailer and, therefore, providing the carrier with an opportunity to generate more revenue—
the carrier actually bills any shipment at or above 7682 lbs (the weight break, or the weight
at which the $52.21 rate results in a total charge of $4011) as if it were 10,000 lbs. Therefore,
an 8000-lb shipment will actually result in carrier charges of only $4011. The effective rate
for this 8000-lb shipment is $4011÷ 80 = $50.14/cwt. Figure 22.12 shows a pictorial view
of the rates as actually charged, with all shipment weights between a given weight break at
the next rate break point (i.e., w1 or w2) being charged the same amount.

Tyworth and Ruiz-Torres (2000) present a method to generate a continuous function from
rate tables like those in Table 22.7. The functional form is r(W ) = CwW b, where W is the
shipment weight; r(W ) is the rate charged to ship this amount, expressed in dollars per
hundred pounds (i.e., $/cwt); and Cw and b are constants found using non-linear regression
analysis. With knowledge of the weight of the item shipped, this rate function can easily be
expressed as r(Q) = CQb (in $/unit), where Q is the number of units shipped and C is the
“quantity-adjusted” equivalent of Cw. Appending the rate function r(Q) to the annual cost
equation for a continuous-review, ROP-OQ inventory system like the one presented earlier
in this chapter results in a relatively straightforward non-linear optimization problem, as
we will demonstrate below.

Thus, to generate the rate function parameters, we can, for a given origin–destination
pair and a given set of LTL rates, compute effective rates for a series of shipment weights.
The resulting paired data can be mapped to the continuous function r(W ) presented

Minimum
charge

Shipment
charge

Rate 1
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w1 w2

0 Shipment
weight

Rate 2

Rate 3

FIGURE 22.12 LTL rate structure as typically charged.
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above. Although Tyworth and Ruiz-Torres (2000) present this mapping as a non-linear
curve-fitting process, let us consider a computationally simpler linear regression approach.
Since r(W ) = CwW b, then ln r(W ) = ln[CwW b] = lnCw + b lnW , and therefore, the param-
eters of the continuous function that approximates the step-function rates can be found by
performing simple linear regression analyses on logarithms of the effective rate–shipment
weight pairs that result from computations like those described above to find the effec-
tive rate. Sample plots of the results of this process for the New York-Dallas rate data
in Table 22.7 are shown in Figure 22.13, resulting in Cw = 702.67 and b = −0.3189. Thus,
shipping Q units of a Class 100 item that weighs w lbs on this lane would result in a per-
unit rate of r(Qw) = 702.67(Qw)−0.3189 $/cwt. Converting to $/unit by multiplying this by
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FIGURE 22.13 Examples of non-linear and log-linear regression of shipment weight versus effective rate.
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w/100 cwt/unit, one obtains r(Q) = 7.0267w0.6811Q−0.3189 $/unit. Depending on the source
of the rates, it might also be necessary to assume a discount factor that would reflect what
the shipper would actually contract to pay the LTL carrier for its services. For example,
Tyworth and Ruiz-Torres (2000) apply a 50% discount, which they claim to be typical of
contract-based discounts in practice.∗

22.3.3 Transportation-Inclusive Inventory Decision Making

Let us return to the total annual cost equation developed earlier in the chapter, Equa-
tion 22.10. This equation accounts for the cost of placing orders and the costs of hold-
ing cycle stock and safety stock inventories. In the preceding subsections, we indicated
that transportation costs tend to exhibit economies of scale, and we demonstrated, using
LTL freight rates, a method for building a continuous function for transportation costs,
r(Q) = CQb. Note also that, using this model of scale economies in transportation costs,
the annual cost of freight transportation for shipments of size Q to satisfy demand of D
units is Q · CQb · D/Q = DCQb. Although it seems immediately clear that this rate func-
tion could be incorporated into an annual cost equation, the question is, first, whether it
should be incorporated into the TAC expression, and second, whether it implies any other
inventory-related costs.

Marien (1996) provides a helpful overview of what are called freight terms of sale between
a supplier shipping goods and the customer that ultimately will receive them from the carrier
that is hired to move the goods. Two questions are answered by these negotiated freight
terms, namely, “Who owns the goods in transit? ” and “Who pays the freight charges? ” Note
that legally, the carrier that moves the goods is only the consignee and never takes ownership
of the goods. The question of ownership of goods in transit is answered by the “F.O.B.”
terms,† indicating whether the transfer of ownership from supplier (shipper) to customer
(receiver) occurs at the point of origin or the point of destination, hence the terms “F.O.B.
origin” and “F.O.B. destination.” The next issue is which party, shipper or receiver, pays
the freight charges, and here there is a wider array of possibilities. Marien (1996), however,
points out that three arrangements are common: (1) F.O.B. origin, freight collect—in which
goods in-transit are owned by the receiver, who also pays the freight charges; (2) F.O.B.
destination, freight prepaid—in which the shipper retains ownership of goods in transit and
also pays the freight bill; and (3) F.O.B. origin, freight prepaid and charged back, similar
to (1), except that the shipper pays the freight bill up-front and then charges it to the
receiver upon delivery of the goods. These three sets of terms are described pictorially in
Figure 22.14. The distinction of who pays the bill, and the interesting twist implied in (3),
is important in that the party that pays the freight charges is the one who has the right,
therefore, to hire the carrier and choose the transport service and routing.

Note that our TAC expression for inventory management is a decision model for ordering;
thus, it takes the perspective of the buyer, the downstream party that will receive the goods
being ordered. Therefore, the freight transportation terms that involve “freight collect”
or “freight prepaid and charged” back imply that the decision maker should incorporate

∗Using empirical LTL rate data from 2004, Kay and Warsing (2006) estimate that the average discount
from published rates is approximately 46%.

†According to Coyle et al. (2006, pp, 473, 490), “F.O.B.” stands for “free on board,” shortened from
“free on board ship.” This distinguishes it from the water-borne transportation terms “free alongside ship”
(FAS), under which the goods transfer ownership from shipper to receiver when the shipper delivers the
goods to the port (i.e., “alongside ship”), leaving the receiver to pay the cost of lifting the goods onto
the ship.
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FIGURE 22.14 Common freight transportation terms.

a transportation cost term in the TAC expression that is the objective function for the
order-placement decision. If the terms are freight prepaid, then the order-placing decision
maker would not include the transportation cost in its objective function. At this point,
one might object, pointing out that supply chain management must concern itself with a
“supply-chain-wide” objective to minimize costs and maximize profits. My counterargument
is that the Securities and Exchange Commission has not yet required, and likely never will
require, any supply chain to report its revenues and costs; moreover, the Wall Street analysts
who are so important in determining the market valuation of a firm care only about that
firm’s individual profits, not those of its supply chain. Thus, decision models that take the
perspective of the decision-making firm and incorporate only those costs relevant to the firm
are eminently reasonable. (An analysis of complementary, and to some extent competing,
objective functions between a supplier and its customer is presented in Section 22.5.)

The next question we should address is whether the freight terms have any bearing on
inventory holding cost. The answer is—as it often is—“It depends.” Specifically, it depends
on where the ownership of the goods transfers to the receiver. If the receiver is responsible
for the goods in-transit, then it stands to reason that this liability should be reflected in
annual inventory-related costs. From a conservative standpoint, those goods are “on the
books” of the receiver, since, from the shipper’s perspective, the goods were “delivered” as
soon as the carrier took them under consignment. Although typical invoice terms dictate
that money will not change hands between the supplier and customer for between 10 and
30 days, the goods are technically now part of the payable accounts of the customer. Thus,
a conservative perspective would consider them to be “money tied up in inventory,” in this
case, inventory in-transit.

Using an approach suggested by Coyle et al. (2003, pp. 270–274), let us assume that
the lead time L is composed of two parts, a random transit time T and a constant (and
obviously non-negative) order processing time. If the expected transit time is µT , then every
unit shipped spends a fraction µT /Y of a year in transit, where Y is the number of days per
year. If hp is the annual cost of holding inventory in transit, then annual pipeline inventory
cost is given by DhpµT /Y . The resulting total annual cost equation,∗ under F.O.B. origin

∗It is straightforward to show that this cost equation is convex in Q and R. First, note that we are merely
adding a convex term to an equation we already know to be convex. Moreover, one can modify the convexity
proof of the transportation-exclusive equation from Hax and Candea (1984) to formalize the result, although
the details are not included here.
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terms that also require the receiver to pay the freight charges is

TAC(R, Q) = A
D

Q
+ h

(
Q

2
+ R − µDLT

)
+ hpD

µT

Y
+ DCQb (22.17)

Note that the pipeline inventory cost does not depend on the order quantity Q or the
reorder point R. Thus, while it will not affect the optimal values of the decision variables
for a given mode, it may affect the ultimate choice between modes through the effect of
different values of µT on pipeline inventory. Note also that this approach to computing
pipeline inventory costs ignores the time value of money over the transit time; one would
assume, however, that such time value effects are insignificant in almost all cases.

Putting all of these pieces together, let’s consider an example that compares cases with
significant differences in item weight—affecting transportation costs—and item value—
affecting holding costs. Assume that our company currently imports the item in question
from a company based in Oakland, CA, and that our company’s southeast regional distri-
bution center is located in Atlanta, GA. We compare a reorder point–order quantity (Q, R)
solution that excludes freight cost and pipeline inventory carrying costs—that is, from
“F.O.B. destination, freight prepaid” terms—to solutions that incorporate these costs, both
for LTL and TL shipments—using “F.O.B. origin, freight collect” terms—from Oakland to
Atlanta. Assume that our target fill rate at the Atlanta DC is 99%. Our approach to com-
puting the order quantity and reorder point for each of the cases—without transportation
costs, using TL, and using LTL—is as follows:

• For “F.O.B. destination, freight prepaid” terms, compute (Q∗, R∗) using Equa-
tion 22.10 as the objective function, constrained by the desired fill rate.

• For “F.O.B. origin, freight collect” terms using LTL, compute (Q∗
LTL, R∗

LTL)
using Equation 22.17 as the objective function, with the appropriate, empirically
derived values of C and b, and with the solution constrained by the fill rate and
by QLTL ·w ≤ 40,000, where w is the item weight, which therefore assumes a
truck trailer weight capacity of 40,000 lbs.∗

• For “F.O.B. origin, freight collect” terms using TL, solve Equation 22.17 for
(Q∗

TL, R∗
TL) as follows:

1. TACmin ← ∞; TACTL ← 0; number of truckloads = i= 1

2. Minimize Equation 22.17 with respect to RTL with QTL = i(40,000/w), C
equal to the cost of i truckloads, b = −1, and constrained by the fill rate to
obtain TAC(QTL, RTL).

3. TACTL ← TAC(QTL, RTL)

4. If TACTL < TACmin,

TACmin ← TACTL

i ← i + 1; go to step 2.

5. (Q∗
TL, R∗

TL) = (QTL, RTL)

∗Actually, an LTL carrier would probably not take a shipment of 40,000 lbs, and the shipper would clearly
get a better rate from a TL carrier for this full-TL weight. This is, however, the logical upper bound on the
size of an LTL shipment. In addition, in using this value, we assume that a TL quantity will hit the trailer
weight capacity before the trailer space (volume) capacity—i.e., that we “weigh-out” before we “cube-out.”
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FIGURE 22.15 Example of truckload cost per unit versus number of units shipped.

TABLE 22.8 Example Class 100 LTL
Rates for Oakland-Atlanta Lane
Minimum Weight (lbs) Rate ($/cwt)

1 136.26
500 109.87

1000 91.61
2000 79.45
5000 69.91

10,000 54.61
20,000 48.12
30,000 41.85
40,000 39.12

Before continuing with our example, note that the procedure laid out above to solve for
(Q∗

TL, R∗
TL) is not necessarily guaranteed to generate a global optimum due to the non-

smooth nature of the r(Q) function for TL shipments. For example, Figure 22.15 shows a
plot of r(Q) versus Q for a scenario in which the cost per TL is $5180, the TL capacity
is 40,000 lbs, and the item weight is w = 10 lbs. As Q increases, and therefore the number
of truckloads increases, the freight rate per unit falls, but not in a smooth fashion. Thus,
if TACTL,i is the total cost of shipping i truckloads, depending on the problem param-
eters, even if TACTL,i < TACTL,i−1 and TACTL,i+1 > TACTL,i, it does not immediately
follow that TACTL,i+2 > TACTL,i+1, leaving it unclear as to how TACTL,i compares to
TACTL,i+2. Thus, returning to our discussion at the outset of this section, one can see the
possible value of a TMS in performing the analysis that takes these kinds of parametric
complexities of the problem into account. Nonetheless, for our illustrative example, let us
assume that our approach for computing (Q∗

TL, R∗
TL) is sufficient.

Continuing with our example, the distance from Oakland to Atlanta is 2471 miles.∗

Using a TL price of $0.105/ton-mi (adjusted upward from the TL revenue per mile of
$0.0914/ton-mi from Wilson, 2003), the TL cost is $259/ton. For the LTL rates, we will
assume that we are shipping Class 100 goods with a published rate table as shown in
Table 22.8, resulting in b = −0.2314 and C = 2.435w0.7686, after applying an assumed 50%

∗The distances used in this example were obtained from MapQuest, www.mapquest.com.
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discount from these published rates.∗ Further, we assume a cost of $80 to place a
replenishment order, an on-site holding cost rate at the Atlanta DC of 15%, and an in-transit
holding cost rate of 12%. Finally, we assume that the LTL shipment lead time is 5 days
with a standard deviation of 1.5 days, that the TL lead time is 4 days with standard devi-
ation of 0.8 days, that mean daily demand is 30 units with a standard deviation of 8 units,
and that there are 365 selling days per year, such that D = 10,950. Table 22.9 displays the
results, with item weights of w ∈ {10, 100} (pounds) and item costs of v ∈ {$20, $500}. We
report TAC only for the transportation-inclusive cases as this is the only relevant point of
comparison. From the table, one can see that for this case, if our company pays transporta-
tion costs, TL is preferred in three of the four weight-cost combinations, with LTL being
preferred only in the low-weight, high-item-cost case. This is reasonable, given the ability
of LTL to allow small shipments sizes that keep inventory holding costs in check.

Let us now assume that we have the option to switch to an importer located in New
York City (NYC), dramatically decreasing the transit distance for replenishment shipments
to the Atlanta DC to 884 mi. Assume further that this importer charges a premium over
the current importer located in Oakland so that the item cost will be 10% higher than in
the Oakland-to-Atlanta case above. Given the distance from NYC to Atlanta, using the
same approach as above, the TL cost is $92.82/ton. For an LTL shipment, the published
rates are given in Table 22.10, resulting in b = −0.3704 and C = 3.993w0.6296. Let us assume
that the LTL lead time from NYC to Atlanta is 2 days, with a standard deviation of 0.6
days, and that the TL lead time is 1 day, with a standard deviation of 0.2 days. Therefore,
although our annual materials cost will increase by 10% if we switch to the NYC importer,
our transportation costs, where applicable, and inventory holding costs—safety stock and,
where applicable, pipeline inventory—will decline. The comparative results are shown in
Table 22.11. As the annual increase in materials cost is $21,900 in the low-item-cost case
and $547,500 in the high-item-cost case, these values serve as the hurdles for shifting to the
NYC source. For the high-item-cost cases, this increase in annual materials costs swamps
the transportation and holding cost savings, even though the transportation costs are cut
dramatically for the cases in which w = 100 lbs. The analysis shows, however, that the switch
is viable in the case in which our company pays for freight transportation with a high-weight,
low-cost item. In this case, TL is the preferred freight transit option, and the switch to the
NYC source saves over $88,000 in annual transportation costs and over $91,000 overall.

22.3.4 A More General Transportation Cost Function

In most commercial transportation management and planning systems, LTL rates are deter-
mined using tariff tables, as in the examples above. The major limitations of this approach
are that access to the tariff tables must be purchased and that it is necessary to know what
discount to apply to the tariff rates in determining transportation costs. Kay and Warsing
(2006), however, present a more general model of LTL rates, one that is not specific to a
transportation lane or to the class of the items being shipped, with the item’s density serving
as a proxy for its class rating. This generality allows the rate model to be used in the early
stages of logistics network design, when location decisions are being made and when the most
appropriate shipment size for each lane in the network is being determined. Thus, the model
developed by Kay and Warsing is important for the sort of analysis presented in Section 22.4.

In their model, Kay and Warsing (2006) use average, industry-wide LTL and TL rates
empirically to develop an LTL rate model that is scaled to economic conditions, using the

∗In general, C = [δCww(b+1)]/100, in $/unit, where δ is the discount factor.
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TABLE 22.9 Comparative Results from Inventory-Transportation Analysis

Ordering Holding Pipeline Transp’n
Oakland–Atlanta Freight Terms Mode Q R Cost($) Cost($) Cost($) Cost($) TAC ($)

w = 10, v = $20 Origin–collect TL 4000 120 219 6000 288 14,180 20,687
Origin–collect LTL 3750.99 150 234 5626 360 23,306 29,526
Destination–prepaid — 794.35 179.88 1103 1281 — — —

w = 10, v = $500 Origin–collect TL 4000 120 219 150,000 7200 14,180 171,599
Origin–collect LTL 361.52 201.19 2423 17,396 9000 40,047 68,866
Destination–prepaid — 176.38 217.94 4966 11,710 — — —

w = 100, v = $20 Origin–collect TL 800 127.86 1095 1224 288 141,803 144,409
Origin–collect LTL 400 198.65 2190 746 360 229,616 232,912
Destination–prepaid — 794.35 179.88 1103 1281 — — —

w = 100, v = $500 Origin–collect TL 400 140.70 2190 16,552 7200 141,803 167,745
Origin–collect LTL 400 198.65 2190 18,648 9000 229,616 259,454
Destination–prepaid — 176.38 217.94 4966 11,710 — — —
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TABLE 22.10 Example Class 100 LTL
Rates for NYC-Atlanta Lane
Minimum Weight (lbs) Rate ($/cwt)

1 81.96
500 74.94

1000 61.14
2000 49.65
5000 39.73

10,000 33.44
20,000 18.36
30,000 14.90
40,000 13.36

producer price index for LTL services provided by the U.S. Bureau of Labor Statistics. The
LTL rate model requires inputs of W , the shipment weight (in tons); s, the density (in
lbs/ft3) of the item being shipped; and d, the distance of the move (in mi). From a non-
linear regression analysis on CzarLite tariff rates∗ for 100 random O-D pairs (5-digit zip
codes), with weights ranging from 150 to 10,000 lbs (corresponding to the midpoints between
successive rate breaks in the LTL tariff), densities from approximately 0.5 to 50 lbs/ft3

(serving as proxies for class ratings 500 to 50), and distances from 37 to 3354 mi, the
resulting generalized LTL rate function is

rLTL(W, s, d) = PPILTL

⎡
⎢⎢⎣

s2

8
+ 14(

W (1/7)d(15/29) − 7
2

)
(s2 + 2s + 14)

⎤
⎥⎥⎦ (22.18)

where, as suggested above, PPILTL is the producer price index for LTL transportation,
reported by the U.S. Bureau of Labor Statistics as the index for “General freight trucking,
long-distance, LTL.”† Kay and Warsing (2006) report a weighted average residual error
of approximately 11.9% for this functional estimate of LTL rates as compared to actual
CzarLite tariff rates. Moreover, as industry-wide revenues are used to scale the functional
estimate, the model reflects the average discount provided by LTL carriers to their cus-
tomers, estimated by Kay and Warsing to be approximately 46%.

Thus, for a given lane, with d therefore fixed, the model given by Equation 22.18 provides
estimates of LTL rates for various shipment weights and item densities. Kay and Warsing
(2006) demonstrate the use of the model to compare LTL and TL shipment decisions under
different item value conditions. Moreover, the functional estimate could easily be used to
evaluate the comparative annual cost of sending truckloads of mixed goods with different
weights and densities versus individual LTL shipments of these goods. On the other hand, for
a given item, with a given density, Equation 22.18 provides a means of analyzing the effect of
varying the origin point to serve a given destination, possibly considering different shipment
weights as well. These two analytical perspectives are, as we suggest above, important in
the early stages of supply chain network design, the subject of the section that follows.

∗CzarLite is an LTL rating application developed by SMC3 Company, and it is commonly used as the
basis for carrier rates. The rates used in the study by Kay and Warsing (2006) were obtained in November–
December 2005 from http://www.smc3.com/applications/webczarlite/entry.asp.

†See the Bureau of Labor Statistics website at http://www.bls.gov/ppi/home.htm, Series
ID=PCU484122484122.
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TABLE 22.11 Comparative Results from Extended Inventory-Transportation Analysis

Ordering Holding Pipeline Transp’n Change from
NYC–Atlanta Freight Terms Mode Q R Cost($) Cost($) Cost($) Cost($) TAC($) OAK-ATL($)

w = 10, v = $22 Origin–collect TL 4000 30 219 6600 79 5082 11,980 −8707
Origin–collect LTL 2512.92 60 349 4146 158 10,253 14,906 −14,619
Destination–prepaid — 745.02 62.15 1176 1236 — — — 28

w = 10, v = $550 Origin–collect TL 4000 30 219 165,000 1980 5082 172,281 682
Origin–collect LTL 298.71 75.09 2933 13,567 3960 22,565 43,025 −25,841
Destination–prepaid — 157.04 82.59 5578 8341 — — — −2757

w = 100, v = $22 Origin–collect TL 800 30.00 1095 1320 79 50,819 53,313 −91,096
Origin–collect LTL 400 71.31 2190 697 158 86,313 89,358 −143,554
Destination–prepaid — 745.02 62.15 1176 1236 — — — 28

w = 100, v = $550 Origin–collect TL 400 30.00 2190 16,500 1980 50,819 71,489 −96,256
Origin–collect LTL 400 71.31 2190 17,433 3960 86,313 109,895 −149,559
Destination–prepaid — 157.04 82.59 5578 8341 — — — −2757
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22.4 Managing Locations in the Supply Chain

At this point, we have discussed the inventory and transportation legs of Ballou’s triangle,
and along the way, had some brief discussion of customer service as given by α, the cycle
service level, and β, the fill rate. Therefore, we now turn our attention to “location strategy,”
or designing and operating the supply chain network. Key questions to answer in this effort
are as follows: How do we find a good (or perhaps the best) network? What are the key
objectives for the network? What network alternatives should we consider? Once again,
we need to consider the perspective of the decision maker charged with making the design
decisions. Typically, the perspective will be that of a single firm. The objectives may be
diverse. We clearly wish to minimize the cost of operating the network, and as product
prices typically will not change as a function of our network design, this objective should be
sufficient from a financial perspective. Customer service may also need to be incorporated
in the decision, but this may pose a challenge in any explicit modeling efforts. Assuming an
objective to minimize the costs of operating the network for a single firm, the key decision
variables will be the number and locations of various types of facilities—spanning as far as
supplier sites, manufacturing sites, and distribution sites—and the quantities shipped from
upstream sites to downstream sites and ultimately out to customers.

To get a sense of the cost structure of these kinds of models, let us consider a single-echelon
location-allocation problem. This problem is used to determine which sites to include in a
network from a set of n production or distribution sites that serve a set of m customers.
The fixed cost of including site i in the network and operating it across the planning period
(say, a year) is given by fi, and each unit of flow from site i to customer j results in variable
cost cij . Site i has capacity Ki, and the total planning period (e.g., annual) demand at
customer j is given by Dj . Therefore, our objective is to

min
n∑

i=1

fiyi +
n∑

i=1

m∑
j=1

cijxij (22.19)

subject to
n∑

i=1

xij = Dj , j = 1, . . ., m (22.20)

m∑
j=1

xij ≤ Kiyi, i = 1, . . ., n (22.21)

yi ∈ {0, 1}, i = 1, . . ., n (22.22)

xij ≥ 0, i = 1, . . ., n; j = 1, . . ., m (22.23)

where decision variables yi (i= 1, . . ., n) determine whether site i is included in the network
(yi = 1) or not (yi = 0) and xij (i= 1, . . ., n; j = 1, . . ., m) determine the number of units
shipped from site i to customer j. As parameters fi and cij are constants, this problem
is a mixed-integer program (MIP). Depending on the values of n and m, solving it may
be challenging, even by twenty-first-century computing standards, given the combinatorial
nature of the problem.

Moreover, the problem represented by Equations 22.19 to 22.23 above is only a small
slice of the overall network design formulation. If we do indeed wish to consider sup-
plier location, production facility locations, and distribution facility locations, then we
need location variables (y) and costs (f) at each of three echelons and flow variables (x) and
costs (c) to represent the levels and costs of supplier-to-factory, factory-to-distribution, and
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distribution-to-customer flows. In addition, we need to add conservation of flow constraints
that ensure that all units shipped into the factory and distribution echelons are also shipped
back out—unless we consider the possibility of carrying inventories at the various echelons,
another complication that would also possibly entail adding time periods to the model to
reflect varying inventory levels over time. Further, we should keep in mind the data require-
ments and restrictions for formulating this problem. One must have a reasonably good
estimate of the fixed cost of opening and operating each site, the capacity of each site (or at
least a reasonable upper bound on this value), and the variable cost of producing or shipping
goods from this site to other network locations or to customers. In this latter case, one must
assume that these variable costs are linear in the quantities produced or shipped. Earlier in
this chapter, however, we indicated that shipping costs typically exhibit economies of scale;
production costs may do so as well. Moreover, the discrete-location problem formulated
above assumes that a set of candidate locations has been precisely determined in advance
of formulating the problem.

In this author’s mind, the typical IE or operations management treatment of the facility
location problem rushes to a description of the mathematical techniques without first con-
sidering all of the various inputs to the decision. As Ballou (2004, pp. 569–570) rightfully
reminds his readers, “. . . It should be remembered that the optimum solution to the real-
world location problem is no better than the model’s description of the problem realities.”

In addition, decisions regarding facility locations have significant qualitative aspects to
them as well. As with customer service, these factors may be challenging to incorporate
into a quantitative decision model. Indeed, in the author’s opinion, the typical academic
treatment of the facility location problem is one that could benefit from a serious consider-
ation of what practitioners faced with facility location decisions actually do. This author’s
reading of the trade press indicates that those practitioners, rightly or wrongly, devote only
a small portion—if any—of their decision-making process to solving traditional facility loca-
tion models. Consider this list of the “ten most powerful factors in location decisions” from
a 1999 survey of readers of Transportation and Distribution magazine (Schwartz, 1999a),
in order of their appearance in the article: reasonable cost for property, roadway access for
trucks, nearness to customers, cost of labor, low taxes, tax exemptions, tax credits, low
union profile, ample room for expansion, community disposition to industry. In fact, only
two, or perhaps three, of these ten—property and labor costs, and perhaps low taxes—could
be directly incorporated into one of the classic facility location models. The others could be
grouped into what another T&D article (Schwartz, 1999b) referred to as service-oriented
issues (roadway access, nearness to customers) and local factors (tax exemptions, tax cred-
its, union profile, expansion opportunity, and community disposition). That T&D article
goes on to state, mostly from consulting sources, that service-oriented issues now “domi-
nate,” although this is not, in this author’s mind, a “slam-dunk” conclusion. For example,
2004–2005 saw significant public debate in North Carolina as to the public benefit—or pub-
lic detriment—of using state and local tax incentives to lure businesses to locate operations
in a given community (Reuters, 2004; Cox, 2005; Craver, 2005). Given the coverage devoted
to the effects of tax incentives on these location decisions, it would be hard to conclude as
the T&D article did, that “local issues” are “least consequential” (p. 44). A more thoughtful
perspective can be found in another trade publication discussion (Atkinson, 2002, p. S65),
which states, “While everyone can identify the critical elements, not all of them agree on
the order of priority.”

From a broader perspective, Chopra and Meindl (2004) suggest that supply chain net-
work design encompasses four phases: Phase I—SC Strategy, Phase II—Regional Facility
Configuration, Phase III—Desirable Sites, Phase IV—Location Choices. They also suggest
a number of factors that enter into these decisions. In our discussion, we will indeed start
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from supply chain strategy. The primary strategic choice in the treatment of supply chain
network design that follows will be how centralized or decentralized the network design
should be. Given the complexity of the network design process, it is reasonable to frame
it as an iterative one, perhaps evaluating several network options that range from highly
centralized to highly decentralized. Ultimately, a choice on this centralized-decentralized
spectrum will lead to a sense of how many facilities there should be at each echelon of
the network. Once the decision maker has an idea of the number of facilities and a rough
regional configuration, he or she can answer the question of where good candidate locations
would be using a continuous-location model, along the lines of that studied by Cooper (1963,
1964). This “ballpark” set of locations can then be subjected to qualitative analysis that
considers service-oriented issues and local factors. Therefore, let us first turn our attention
to understanding the differences between centralized and decentralized networks.

22.4.1 Centralized Versus Decentralized Supply Chains

Let us focus on the design of a distribution network and address the following questions:
How centralized should the network be? What are the advantages of a more centralized or
a more decentralized network? This issue can clearly be addressed in the context of the legs
and center of Ballou’s strategic triangle—inventory, locations, and transportation on the legs
and customer service in the center. Consider the two DC networks laid out in Figure 22.16.
Network 1 is more centralized, with only four distribution points, laid out essentially on the
compass—west, central, northeast, and southeast. Network 2 is more decentralized, with
a hub-spoke-type structure that has twenty additional DCs located near major population
centers and ostensibly fed by the regional DCs that encompassed all of Network 1. Starting
with transportation, we can break the tradeoffs down if we first consider transportation
outbound from DCs to customers versus transportation inbound to the DCs, or essentially
within the network. In the context of the facility location problem (Equations 22.19 to
22.23) laid out above, these would be costs cij for shipments from DC i to customer j and
costs c0i for shipments from the factory (location 0) to DC i.

As shipments to customers—often called the “last mile” of distribution—typically involve
smaller quantities, perhaps only a single unit, it is often difficult to garner significant scale-
driven discounts for these shipments. However, it is clear from our discussion above that
distance, in addition to weight, is a significant factor in the cost of freight transportation.
More weight allows greater economies in unit costs, but more distance increases the variable
costs of the carrier and thereby increases the cost of the transportation service to the

DC Network 2DC Network 1

� Plant

� Level 1 distribution center

� Level 2 distribution center

FIGURE 22.16 Comparative distribution networks.
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shipper. Note that the centralized network will clearly involve longer “last-mile” shipments
to customers than the decentralized network. Although it is possible that larger loads may
be moved on vehicles outbound to a set of customers from a centralized site, it is quite
possible that neither network affords much chance for significant bulk shipping activity
outbound, particularly if the outbound shipments must be made to customers that are
dispersed widely. Thus, one could argue persuasively that outbound distribution costs are
larger in centralized networks.

On the inbound side of the DCs, however, the situation flips. With only a few DCs in the
centralized network, the shipments from the supply points (e.g., plants, suppliers) into the
final distribution points are more likely to garner significant economies of scale in trans-
portation, and therefore, “within-network” freight costs should be lower in a centralized
distribution network. In addition, Figure 22.16 clearly shows that there are fewer miles to
travel in moving goods to the final distribution points in a centralized network, another
source of lower within-network freight transportation costs in a centralized network. How-
ever, as shipments inbound will tend to be packed in bulk, more dense, and perhaps less
time-sensitive, inbound transportation costs for a given network are likely to be much lower
than outbound costs. Thus, it stands to reason that transportation costs will net out to
be lower in a decentralized network, wherein relatively expensive “last-mile” transportation
covers shorter distances. Moreover, it should be immediately clear that customers would
prefer the decentralized network for its ability to reduce order fulfillment lead times.

From the standpoint of locations, there are obviously fewer locations in a centralized DC
network, and therefore, this network will result in lower fixed and operating costs driven by
facilities (e.g., amortization of loans, payment of leases, operating equipment, labor). In the
context of our facility location problem since fewer DC locations (yi) would be involved in
the centralized problem (or more of them would be forced to be yi = 0), the sum

∑n
i=1 fiyi

in the objective function would necessarily be smaller in a more centralized solution.
Thus, we have addressed two legs of the SC strategy triangle, transportation, and loca-

tions. We are left with inventory. The effects of centralizing, or not, on this leg are richer,
and therefore, I will devote the section that follows to this topic.

22.4.2 Aggregating Inventories and Risk Pooling

Vollmann et al. (2005, p. 275) point out that “. . . if the uncertainty from several field
locations could be aggregated, it should require less safety stock than having stock at each
field location.” Indeed, in one’s mind’s eye, it is relatively easy to see that the ups and
downs of uncertain demand over time in several independent field locations are likely to
cancel each other out, to some extent, when those demands are added together and served
from an aggregated pool of inventory. This risk pooling result is the same as the one that
forms the basis of financial portfolio theory, in which the risk—that is, the variance in
the returns—of a portfolio of investments is less than the risk of any single investment
in the portfolio. Thus, an investor can cushion the ups and downs, as it were, or reduce
the variability in his investments by allocating his funds across a portfolio as opposed to
concentrating all of his funds in a single investment.

Looking at this risk pooling effect from the standpoint of inventory management, since
safety stock is given by SS = zσDLT , one would reasonably infer that the risk pooling effects
of aggregating inventories must center on the standard deviation of demand over the replen-
ishment lead time, σDLT . Indeed, this is the case. If we have, for example, descriptions of
lead-time demand for N distribution regions, with a mean lead-time demand in region i of
µDLT,i and standard deviation of lead-time demand in region i of σDLT,i, then aggregating
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demand across all regions results in a pooled lead-time demand with mean

µDLT,pooled =
N∑

i=1

µDLT,i (22.24)

and standard deviation

σDLT,pooled =

√√√√ N∑
i=1

σ2
DLT,i + 2

N−1∑
i=1

N∑
j=i+1

ρijσDLT,iσDLT,j (22.25)

where ρij is the correlation coefficient of the demand between regions i and j. If demand
across all regions is independent, then ρij = 0 for all i, j = 1, . . ., N (i �= j), and Equa-
tion 22.25 reduces to

σDLT,pooled =

√√√√ N∑
i=1

σ2
DLT,i (22.26)

By the triangle inequality,
√∑N

i=1 σ2
DLT,i ≤

∑N
i=1 σDLT,i, and therefore,

SSpooled = zσDLT,pooled ≤ z

N∑
i=1

σDLT,i = SSunpooled (22.27)

a result that holds for any values of ρij , since perfect positive correlation (ρij = 1 for all
i, j = 1, . . ., N) makes Equation 22.27 an equality (SSpooled = SSunpooled) and negative cor-
relation actually increases the pooling-driven reduction in safety stock beyond the indepen-
dent case.

Let’s consider an example. Assume we are interested in designing a distribution network
to serve 40 customers. An important decision is the number of distribution sites we need to
serve those 40 customers. Our choices range from just a single distribution center (DC) up
to, theoretically, 40 DCs, one dedicated to serving each customer. In our simplified system,
let’s assume that there is no fixed cost to place an order to replenish inventory at any
distribution site and that demand over the replenishment lead time for any distribution site
and any customer served is normally distributed with mean µ= 50 and standard deviation
σ = 15. Therefore, at any DC in the network, since there is no ordering cost, we can set
the stocking level by using a base-stock policy, with a stocking level at DC i equal to
Bi = µi + zασi, where µi is the mean demand over the replenishment lead time for the set
of customers served by DC i, σi is the standard deviation of this demand, and zα is the
safety stock factor that yields a CSL of α. If DC i serves ni (1 ≤ni ≤ 40) customers, then
using Equations 22.24 and 22.25 above,

µi = niµ (22.28)

and

σi =

√√√√ ni∑
j=1

σ2 + 2
ni−1∑
j=1

ni∑
k=j+1

ρjkσ2 (22.29)

where ρjk is the correlation coefficient of the demand between customers j and k. If ρjk = ρ
for all j, k = 1, . . ., 40 (j �= k), then it is easy to show that Equation 22.29 reduces to

σi =
√

[ni(1 − ρ) + ρn2
i ] σ2 (22.30)
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FIGURE 22.17 Example of risk-pooling-driven reduction in inventory.

TABLE 22.12 Risk Pooling-Based Reduction in Safety
Stock with n = 40 Customers

SS at ρ =0Number of Number of DCs
Customers per DC in Network Units % of E[D] = nµ

1 40 768.9 38.45
2 20 543.7 27.19
4 10 384.5 19.22
5 8 343.9 17.19
8 5 271.9 13.59

10 4 243.2 12.16
20 2 171.9 8.60
40 1 121.6 6.08

Note that when ρ = 0 (i.e., the aggregated customer demands are independent), σi = σ
√

ni,
meaning that safety stock increases with the square root of the number of sites aggregated—
that is, sub-linearly. In contrast, when ρ = 1 (i.e., the aggregated customer demands are
perfectly correlated), σi = niσ, meaning that—as we pointed out in the more general dis-
cussion above—the standard deviation of the aggregated demands is simply the sum of
the standard deviations of the disaggregated demands. Figure 22.17 shows the total system
inventory required in the distribution system to achieve α = 0.90 as ni ranges from 1 to
40 at various levels of demand correlation (where ρ is expressed as r in the legend of the
graph). Table 22.12 shows the reduction in system safety stock as a percentage of overall
lead-time demand as the number of DCs in the network declines, assuming independent
demands across customers.

The example above highlights the notion of postponement in the supply chain. In our
network configuration, risk pooling through aggregation is a means of time (or place)
postponement, where the forward movement of the goods to (or near) the final points of
consumption is postponed until more is known about demand at those points of consump-
tion. The opposite approach, in a decentralized network, is to speculate and move the goods
to points closer to customers in advance of demand. As Chopra and Meindl (2004) point
out, an approach that attempts to attain the best of both worlds—safety stock reduction

© 2008 by Taylor & Francis Group, LLC



CH022.tex 22/10/2007 14: 22 Page 22-44

22-44 Operations Research and Management Science Handbook

through aggregation while still retaining the customer service benefits of a decentralized
network—would be to virtually aggregate inventory in the network. The idea is to allow all
DCs in the network to have visibility to and access to inventory at all other DCs in the net-
work, such that when a particular DC’s inventory approaches zero before a replenishment
can arrive from the supplier, that DC can request a transshipment of inventory in excess
at another DC. Chopra and Meindl (2004) point out that Wal-Mart has used this strategy
effectively. With such an approach, demand at all locations is virtually pooled, with the
reductions in safety stock and improvements in customer service coming at the expense of
the transshipments that rebalance supply when necessary.

Rounding out this discussion, it is worthwhile to point out that another type of postpone-
ment is form postponement, whereby the final physical conversion of a product is delayed
until more is known about demand. The two now-classic examples of form postponement
in the operations management literature come from Hewlett-Packard (HP), the comput-
ing equipment manufacturer, and Benetton, a major apparel company. As described by
Feitzinger and Lee (1997), the HP Deskjet printer was redesigned such that the power sup-
ply was converted to a drop-in item that could be added to a generic printer in distribution
centers. The previous approach was to manufacture printers with country-specific power
supplies—due to the different electrical power systems in various countries—in the manu-
facturing process. This change in product and packaging design allowed HP to aggregate all
demand around the globe into demand for a single, generic printer and hold only the dif-
ferentiating items, the power supply, and various cables, at in-country distribution centers.
In the case of Benetton, it changed the order of manufacturing operations to re-sequence
the dyeing and sewing processes for sweaters. The previous approach, time-honored in the
apparel manufacturing industry, was first to dye bolts of “greige” (un-colored) fabric and
then cut that dyed fabric into its final form to be sewn into apparel items. Benetton swapped
this sequence to first cut and sew “greige” sweaters that would be dyed after more infor-
mation could be collected about demand for color-specific items. By doing so, demand for
all colors can be aggregated into demand for a single item until a point in time when the
inherent uncertainty in demand might be reduced, closer to the point of consumption.

One final point regarding risk pooling effects on inventory is that these effects change
significantly with changes in the coefficient of variation, cv = σ/µ, of demand. This gets to
the notion of classifying inventory items as slow movers versus fast movers. Fast movers have
expected demands that are relatively large and predictable, thereby resulting in lower cv
values. On the other hand, slow movers have expected demands that are relatively small and
unpredictable, resulting in higher values of cv. Thus, the relative benefit of centralizing slow
movers, in terms of safety stock reduction, will tend to be quite a bit larger than the benefit
of centralizing fast movers. This effect is demonstrated in Figure 22.18, which uses our 40-
customer example, still with mean lead-time demand of µ= 50 for each customer, but now
with standard deviations varying from σ = 2.5 (cv = 0.05) to σ = 17.5 (cv = 0.35—beyond
which the normal distribution will exhibit more than a 1 in 1000 chance of a negative value,
inappropriate for modeling customer demands). A simple rule of thumb that results from
this data would be to centralize the slow movers to maximize the benefits of risk pooling-
driven reductions in inventory and to stock the fast movers closer to points of consumption
to maximize the benefits of rapid customer service for these high-demand items.

22.4.3 Continuous-Location Models

Note that the discrete-location MIP model for facility location does not, in the form we
stated it above, include any inventory effects of the decision variables. Moreover, it is clear
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FIGURE 22.18 Effect of variability on risk-pooling impact on inventory levels.

from our discussion above that the effect of the centralizing decision on inventory levels
in the network is non-linear. An MIP formulation could handle such non-linear effects via
a piecewise linear approximation, but this would only add more integer variables to the
formulation.∗ A better approach, however, might be to consider a facility location model
that allows a non-linear objective function, as the most general formulation of the prob-
lem is likely to have a number of sources of non-linearity in costs: non-linear production
costs driven by economies of scale in production, non-linear transportation costs driven
by economies of scale in transportation, and non-linear inventory holding costs driven by
the risk-pooling effects of centralizing inventory in the network. Moreover, in the opinion
of the author, this approach is probably more consistent with the manner in which facil-
ity location decisions are made in practice. The resulting approach would be iterative and
would not feed a specific set of candidate locations into the modeling effort a priori, but
rather would use some preliminary modeling efforts to generate a rough geographic idea
of what might be good candidate locations, perhaps guided by the customer service impli-
cations of fewer distribution locations farther from customers, on average, or vice versa.
The resulting candidate locations from the cost-service tradeoffs could be subjected to a
more qualitative analysis based on the types of “local factors” discussed earlier in this
section.

The basis for this formulation of the facility location problem is commonly referred to as
the “gravity model,” typically formulated to minimize the costs of moving goods through
the facility, in general, taking receipts from sources and ultimately satisfying demand at
customers. In this formulation, the decision variables are x and y, the coordinates of the
facility location on a Cartesian plane. The input parameters are Di, the total volume—in

∗Most introductory operations research textbooks include such formulations; see, for example, Winston
(1994).
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TABLE 22.13 Input Data for Gravity Location Example
Fi Di

i ($/ton-mi) (Tons) xi yi

Source Locations 1 Buffalo 0.90 500 700 1200
2 Memphis 0.95 300 250 600
3 St. Louis 0.85 700 225 825

Customer Locations 4 Atlanta 1.50 225 600 500
5 Boston 1.50 150 1050 1200
6 Jacksonville 1.50 250 800 300
7 Philadelphia 1.50 175 925 975
8 New York 1.50 300 1000 1080

tons, for example—moved into (out of) the facility from source (to customer) i∈ {1, . . ., m}
and Fi, the cost—in $/ton-mi, for example—to move goods to (from) the facility from
source (to customer) i∈ {1, . . ., m}. Then, the problem is to

min
m∑

i=1

FiDidi (22.31)

where di =
√

(xi −x)2 + (yi − y)2, the Euclidean distance between the location (x, y) of the
facility and the locations (xi, yi) (i= 1, . . ., m) of the sources and customers that interact
with the facility being located. The “gravity” aspect of the problem stems from the fact
that the combined cost and distance of the moves into and out of the facility drive the
solution, with a high-volume or high-cost source or customer exerting significant “gravity”
in pulling the ultimate location toward it to reduce the cost of moving goods between the
facility and that source or customer.

Consider a small example, based on an example from Chopra and Meindl (2004), with
three sources and five customers. The input data for this example is shown in Table 22.13.
The optimal solution, found easily using the Solver tool embedded in Excel, is to locate the
facility that interacts with these sources and customers at (x, y) = (681.3, 882.0). A graphical
view of the problem data and the solution (labeled as “initial solution”) are shown in
Figure 22.19.

To illustrate the “gravity” aspects of this model, consider an update to the original
problem data. In this situation, assume that it is cheaper to move goods from the source
in Buffalo (F1 = 0.75) and more expensive to move them from the sources in Memphis
(F2 = 1.00) and St. Louis (F3 = 1.40), and assume that it is also cheaper to move goods to
the customers in Boston, New York, and Philadelphia (F5 = F7 = F8 = 1.30), but that the
costs of moving goods to Atlanta and Jacksonville stay the same. The combined effects of
these changes in transportation costs is to exert some “gravity” on the optimal solution
and shift it west and south, to attempt to reduce the mileage of the moves that are now
more expensive. Indeed, the updated optimal solution is (x, y) = (487.2, 796.8), shown as
“updated solution” in Figure 22.19.

Of course, the example above is a simplified version of the larger-scale problem. A typical
problem would involve a larger number of customers, and possibly also a larger number of
sources. In addition, the cost of moving goods to/from the facility location in our example
is a constant term, irrespective of the distance the goods are moved. In general, this cost
could be some non-linear function of the distance between the source/customer and the
facility, as discussed earlier in the chapter (e.g., the general function for LTL rates derived
by Kay and Warsing, 2006). In addition, a more general formulation would allocate sources
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FIGURE 22.19 Gravity location data and solution.

and customers to n candidate locations. The general formulation would be to

min
n∑

i=1

mS∑
j=1

δS
ijFijDjdij +

n∑
i=1

mC∑
k=1

δC
ikFikDkdik (22.32)

subject to
mS∑
j=1

δS
ij = 1 i = 1, . . ., n (22.33)

mC∑
k=1

δC
ik = 1 i = 1, . . ., n (22.34)

δS
ij ∈ {0, 1} i = 1, . . ., n; j = 1, . . ., mS (22.35)

δC
ik ∈ {0, 1} i = 1, . . ., n; k = 1, . . ., mC (22.36)

In addition to the generalized location decision variables (xi, yi) for each candidate facility
location i= 1, . . ., n, this formulation also introduces allocation decisions δS

ij and δC
ik, binary

variables that allocate each source and each customer, respectively, to a candidate facility.
Constraints (22.33) and (22.34) ensure that each source and each customer is allocated to
exactly one candidate facility.

Given the nature of this problem—a constrained, non-linear optimization—it would
appear that this is no easier to solve, and perhaps significantly more challenging to solve,
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than the MIP facility location problem we introduced at the outset of this section. Indeed,
solving Equations 22.32 to 22.36 to optimality would be challenging. Note, however, that
for a given allocation of sources and customers to candidate facilities—that is, if we fix the
values of δS

ij and δC
ik—the problem decomposes into n continuous-location problems of the

form of Equation 22.31. In fact, this approach has been suggested by Cooper (1964), in what
he described as an “alternate location-allocation” (ALA) algorithm. Starting from some ini-
tial allocation of sources and customers to sites, one solves the n separate location problems
exactly. Then, if some source or customer in this solution could be allocated to another
candidate location at a net reduction in total cost, that source or customer is reallocated
and the overall solution is updated. The process continues until no further cost-reducing
reallocations are found. This algorithm results in a local minimum to the problem, but
not necessarily a global minimum. Cooper shows, however, that the algorithm is fast and
generates reasonably good solutions. More recent work (Houck et al., 1996) has shown that
the ALA procedure is actually quite efficient in reaching an optimal solution in networks
with fewer than 25 candidate facilities.

In addition, the ALA approach appears to be promising in allowing for a more generalized
functional form of the cost to move goods and fulfill demands in the network. Bucci and Kay
(2006) present a formulation similar to Equations 22.32 to 22.36 above for a large-scale dis-
tribution problem—limited to customer allocations only—applied to the continental United
States. They use U.S. Census Bureau data to generate 877 representative “retail locations”
from 3-digit ZIP codes, with the relative demand values based on the populations of those
ZIP codes. They consider locating six fulfillment centers to serve these 877 customers. The
fulfillment centers exhibit economies of scale in production such that the cost of producing
a unit of output decreases by an exponential rate with increasing size of the facility. Facility
size is determined by the amount of demand allocated to the facility, with the relative costs
given by c2/c1 = (S2/S1)b, where ci is the production cost for facility i, Si is the size of facil-
ity i, and b is a constant value provided as an input parameter. Bucci and Kay (2006) cite
Rummelt (2001), who in turn cites past studies to estimate that b ≈ −0.35 for U.S. manufac-
turers. In addition, Bucci and Kay consider the ratio of production and transportation costs
as an input parameter to their problem formulation. Thus, their formulation minimizes the
sum of the production and transportation costs that result from the allocation of candidate
facilities to customers. Figure 22.20 shows a series of solutions that result from their analy-
sis, using b = −0.4 and production costs at 16% of transportation costs. The initial solution
at the top of the figure is a static solution that does not incorporate production economies;
the middle solution is intermediate in the ALA process; and the bottom solution is the final
ALA solution. This solution process provides a graphical sense of the manner in which Bucci
and Kay’s modified ALA procedure balances production and transportation costs, with the
final solution aggregating the demands of the densely populated eastern United States to
be served by a single large-scale facility and consolidating what initially were three western
facilities into two, ultimately resulting in a five-facility solution.

22.5 Managing Dyads in the Supply Chain

Much of the discussion in previous sections in this chapter, particularly in the immediately
preceding section, considers issues related to the design of the supply chain. Our emphasis
up to this point has been to carefully consider and understand the interaction of inventory,
transportation, and location decisions on SC design. In our inventory discussion, we got
some sense of how operating policies can affect the performance of the SC. The perspective
of the entire chapter thus far has really been from the standpoint of a single decision maker.
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FIGURE 22.20 Series of ALA solutions (from Bucci and Kay, 2006).

An important issue in managing the supply chain, however, is how firms in the supply
chain interact with one another. From a supply and demand perspective, the firms in any
supply chain interact through orders placed upstream to replenish supply and shipments
sent downstream to fulfill the demand represented by those orders. Vollmann et al. (2005),
however, cogently point out that understanding how to manage the supply chain really
requires a focus on firm-to-firm interactions in dyads. While it is indeed the complex network
of these dyads that truly comprises the supply chain, one cannot possibly hope to understand
all of the complexity of those many interactions without first stepping back to try and
understand the factors that drive each dyad relationship individually.

In the past decade, a number of practitioners and supply chain management researchers
have lent a significant attention to the level of variability in the stream of orders placed over
time. Empirical evidence (Blinder, 1982, 1986; Lee et al., 1997b; Chen et al., 2000; Callioni
and Billington, 2001) shows that replenishment orders demonstrate increasing variability
at successive upstream echelons of a supply chain. Lee et al. (1997b) report that Procter &
Gamble noted this phenomenon, called the bullwhip effect, in its supply chain for Pampers
diapers. Underlying demand for diapers over a relatively short period of time, say a few
months, tends to be quite stable, as one would predict—babies clearly go through them at
a pretty steady rate, as any parent knows first-hand! However, P&G noticed that, although
underlying consumer demand for Pampers was stable, the orders from retailers to their
wholesalers were more volatile than consumer demand, while orders from wholesalers to
P&G were more volatile still, and orders from P&G to its suppliers were more volatile still.
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Indeed, the bullwhip effect is formally defined by this phenomenon, an increasing level of
variability in orders at successive upstream echelons of the supply chain.

Although the effect has been the subject of much discussion in the supply chain man-
agement literature since, roughly, the mid-1990s, the effect has been studied quite a bit
longer than this. As we indicated above, economists began to study the effect and its ori-
gins in earnest in the mid-1980s (Blinder, 1982, 1986; Caplin, 1985; Khan, 1987). Moreover,
the famous systems dynamics studies of Forrester (1961) ultimately have had a tremen-
dous impact on supply chain management education, with scores of students each academic
year playing the famous “Beer Game” that resulted from follow-on work to Forrester’s by
Sterman (1989). In playing the Beer Game, students run a four-echelon supply chain for
“beer” (typically, only coins that represent cases of beer—to the great relief of many uni-
versity administrators, and to the great dismay of many students), ultimately trying to
fulfill consumer demand at the retailer by placing orders with upstream partners, eventu-
ally culminating in the brewing of “beer” by a factory at the farthest upstream echelon
in the chain. Indeed, the author’s experience in playing the game with business students
at all levels—undergraduates, MBAs, and seasoned managers—has never failed to result in
bullwhip effects in the chains playing the game, sometimes in a quite pronounced fashion.

A natural question, and one that researchers continue to debate, is what causes this
effect. If the underlying demand is relatively stable, and orders are meant ultimately to
replenish this underlying demand, why should orders not also be relatively stable? The
astute reader may quickly identify an issue from our discussion of the inventory above,
namely that the economics of the ordering process might dictate that orders be batched
in order to, reduce the administrative costs of placing orders or the scale-driven costs of
transporting order fulfillment quantities from the supplier to the customer. Indeed, Lee
et al. (1997a,b) identify order batching as one of four specific causes of the bullwhip effect,
and the economic studies of the 1980s (Blinder, 1982, 1986; Caplin, 1985) clearly note this
cause. The other causes as described by Lee et al. are demand forecast updating, price fluc-
tuations, and supply rationing and shortage gaming. The last two effects are fairly straight-
forward to understand, namely that a customer might respond to volume discounts or
short-term “special” prices by ordering out-of-sync with demand, or that a customer might
respond to allocations of scarce supply by placing artificially-inflated orders to attempt
to secure more supply than other customers. For the purposes of understanding reason-
ably simple dyad relationships, we will focus only on order batching and demand forecast
updating, leaving the complexities of pricing and shortage gaming outside the scope of our
discussion.

Indeed, the method used to generate the demand forecast at each echelon in the supply
chain can have a significant impact on the stream of orders placed upstream. Vollmann
et al. (2005) provide a simple example to demonstrate the existence of the bullwhip effect;
this example is repeated and extended in Table 22.14 and Figure 22.21. We extend what is
a 10-period example from Vollmann et al. to 20 periods that cover two repeating cycles of a
demand stream with slight seasonality. In addition, we institute a few policy rules: (1) that
orders must be non-negative, (2) that shortages at the manufacturer result in lost consumer
demand, (3) that shortages at the supplier are met by the manufacturer with a supplemental
source of perfectly reliable, immediately available supply. The example of Vollman et al.
employs a relatively simple, and essentially ad hoc, forecast updating and ordering policy
at each level in the chain: in any period t, order 2Dt − It, where Dt is actual demand in
period t and It is the ending inventory in period t, computed after fulfilling as much of Dt as
possible from the beginning inventory. Thus, the current demand is used as the forecast of
future demand, and as the replenishment lead time is one period (i.e., an order placed at the
end of the current period arrives at the beginning of the next period—one could obviously
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TABLE 22.14 Bullwhip Example from Vollmann et al. (2005) Altered for Minimum Order Size
of 0 and Horizon of 20 Periods

Manufacturer Supplier
Consumer

Period Sales Beg Inv End Inv Lost Dmd Order Beg Inv End Inv Lost Dmd Order

1 50 100 50 0 50 100 50 0 50
2 55 100 45 0 65 100 35 0 95
3 61 110 49 0 73 130 57 0 89
4 67 122 55 0 79 146 67 0 91
5 74 134 60 0 88 158 70 0 106
6 67 148 81 0 53 176 123 0 0
7 60 134 74 0 46 123 77 0 15
8 54 120 66 0 42 92 50 0 34
9 49 108 59 0 39 84 45 0 33

10 44 98 54 0 34 78 44 0 24
11 50 88 38 0 62 68 6 0 118
12 55 100 45 0 65 124 59 0 71
13 61 110 49 0 73 130 57 0 89
14 67 122 55 0 79 146 67 0 91
15 74 134 60 0 88 158 70 0 106
16 67 148 81 0 53 176 123 0 0
17 60 134 74 0 46 123 77 0 15
18 54 120 66 0 42 92 50 0 34
19 49 108 59 0 39 84 45 0 33
20 44 98 54 0 34 78 44 0 24
Min 44 38 34 6 0
Max 74 81 88 123 118
Avg 58.1 58.7 57.5 60.8 55.9
Fill rate 100.0% 100.0%
Range 30 54 118
Std Dev 9.16 17.81 39.04

Ratio 1.94 Ratio 4.26

Supplier ordersManufacturer ordersSales
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FIGURE 22.21 Bullwhip example from Vollmann et al. (2005) with horizon of 20 periods.

debate whether this a lead time of zero), the policy amounts to carrying a period’s worth
of safety stock.

We measure the severity of the bullwhip effect by taking the ratio of the standard devi-
ation of the orders placed at each echelon to the standard deviation of consumer sales. As
one can see, the example in Table 22.14 and Figure 22.21 demonstrates a clear bullwhip
effect, with manufacturer orders exhibiting about twice the volatility of consumer sales and
supplier orders exhibiting more than four times the volatility. One conclusion that we could
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TABLE 22.15 Bullwhip Example with Two-Period Lead Time
Manufacturer Supplier

Consumer
Period Sales Beg Inv End Inv Lost Dmd Order Beg Inv End Inv Lost Dmd Order

1 50 100 50 0 50 100 100 – 0
2 55 50 0 5 110 100 50 0 170
3 61 50 0 11 122 50 0 60 244
4 67 110 43 0 91 170 48 0 134
5 74 165 91 0 57 292 201 0 0
6 67 182 115 0 19 335 278 0 0
7 60 172 112 0 8 278 259 0 0
8 54 131 77 0 31 259 251 0 0
9 49 85 36 0 62 251 220 0 0

10 44 67 23 0 65 220 158 0 0
11 50 85 35 0 65 158 93 0 37
12 55 100 45 0 65 93 28 0 102
13 61 110 49 0 73 65 0 0 146
14 67 114 47 0 87 102 29 0 145
15 74 120 46 0 102 175 88 0 116
16 67 133 66 0 68 233 131 0 5
17 60 168 108 0 12 247 179 0 0
18 54 176 122 0 0 184 172 0 0
19 49 134 85 0 13 172 172 0 0
20 44 85 41 0 47 172 159 0 0
Min 44 0 0 0 0
Max 74 122 122 278 244
Avg 58.1 59.55 57.4 130.8 55.0
Fill rate 98.6% 94.8%
Range 30 122 244
Std Dev 9.16 35.23 77.32

Ratio 3.85 Ratio 8.44

draw from this example is that an ad hoc ordering policy can cause a bullwhip effect. Fair
enough—but an important aspect of this conclusion is that many supply chains are, in
practice, driven by similarly ad hoc ordering policies, an observation noted by the author
in conversations with practicing managers and also supported by Chen et al. (2000).

Thus, even without the type of complexities in the demand stream such as the serial
correlation in demand studied by Khan (1987), Lee et al. (1997a), and Chen et al. (2000), our
simple example shows the bullwhip effect in action. Chen et al. (2000), however, demonstrate
a key point—that the magnitude of the bullwhip effect can be shown to be a function, indeed
in their case a super-linear function, of the replenishment lead time. Thus, let us alter the
Vollmann et al. (2005) example to consider a situation in which the replenishment lead
time is two periods—that is, where an order placed at the end of period t arrives at the
beginning of period t + 2. Using the same ad hoc ordering policy as above, the results are
shown in Table 22.15 and Figure 22.22. Clearly, the bullwhip effect gets dramatically worse
in this case, essentially doubling the variability in orders at both echelons with respect to
consumer demand.

Now let’s try some simple things to mitigate the bullwhip effect in this example. First,
we will use a base-stock ordering policy at both the manufacturer and the supplier. As the
original example did not specify an ordering cost, we will assume that this cost is zero or
negligible. Thus, for stationary demand, a stationary base-stock policy would be warranted;
however, in our example, demand is not stationary. Let us therefore use an “updated base-
stock” policy, where the base-stock level will be updated periodically, in this case every five
periods. We will assume that the manufacturer bases its base stock policy on a forecast of
demand, with a forecasted mean and standard deviation of per-period demand of µM

1 = 65
and σM

1 = 10 in the periods 1–5 and µM
2 = 55 and σM

2 = 10 in the periods 6–10. These
parameters are also used in the second demand cycle, with the higher mean being used as
the demand rises in periods 11–15 and the lower mean as demand falls in periods 16–20.
We will assume that the supplier uses a forecast of the manufacturer’s orders to compute
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FIGURE 22.22 Bullwhip example with two-period lead time.

TABLE 22.16 Bullwhip Example with Updated Base-Stock Orders
Manufacturer Supplier

Consumer
Period Sales Beg Inv End Inv Lost Dmd B Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 33 100 100 – 96 0
2 55 50 0 5 83 83 100 67 0 96 29
3 61 33 0 28 83 83 67 0 16 96 96
4 67 83 16 0 83 67 29 0 54 96 96
5 74 99 25 0 83 58 96 29 0 96 67
6 67 92 25 0 73 48 125 67 0 102 35
7 60 83 23 0 73 50 134 86 0 102 16
8 54 71 17 0 73 56 121 71 0 102 31
9 49 67 18 0 73 55 87 31 0 102 71

10 44 74 30 0 73 43 62 7 0 102 95
11 50 85 35 0 83 48 78 35 0 60 25
12 55 78 23 0 83 60 130 82 0 60 0
13 61 71 10 0 83 73 107 47 0 60 13
14 67 70 3 0 83 80 47 0 26 60 60
15 74 76 2 0 83 81 13 0 67 60 60
16 67 82 15 0 73 58 60 0 21 94 94
17 60 96 36 0 73 37 60 2 0 94 92
18 54 94 40 0 73 33 96 59 0 94 35
19 49 77 28 0 73 45 151 118 0 94 0
20 44 61 17 0 73 56 153 108 0 94 0
Min 44 0 33 0 0
Max 74 50 83 118 96
Avg 58.1 20.65 57.35 45.45 45.8
Fill rate 97.2% 84.0%
Range 30 50 96
Std Dev 9.16 16.11 36.22

Ratio 1.76 Ratio 3.95

its base-stock level in the first five periods, with µS
1 = 60 and σS

1 = 20. In the next three five-
period blocks, the supplier uses actual orders from the manufacturer to compute the mean
and standard deviation of demand, so that (µS

i , σS
i ) = {(64.8, 20.8), (50.4, 5.3), (68.4, 14.2)},

i= 2, 3, 4. At both echelons, therefore, the base-stock policy is computed as Bi = µi + zσi

√
2

(i= 2, 3, 4), with z = 1.282, yielding a target cycle service level of 90%, and σDLT,i = σi

√
2.

reducing the bullwhip effect, but at the expense of lower fill rates at both the manufacturer

© 2008 by Taylor & Francis Group, LLC

As one can see from Table 22.16 and Figure 22.23, the base-stock policies work quite well in



CH022.tex 22/10/2007 14: 22 Page 22-54

22-54 Operations Research and Management Science Handbook

Supplier ordersManufacturer ordersSales

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

FIGURE 22.23 Bullwhip example with updated base-stock orders.

and the supplier. (Note that a higher CSL target does not have much impact on this
outcome.)

One key prescription of the literature on the bullwhip effect is to centralize demand infor-
mation so that demand forecasts are not inferred from the orders of the echelon immediately
downstream—the essence of the “demand forecast updating” (Lee et al., 1997b) cause of
the bullwhip effect—but instead come directly from consumer sales data. Therefore, let
us update our example to account for this. We will assume the same base-stock policy at
the manufacturer as above, based on its forecasts of rising and falling consumer demand.
At the supplier, however, we will assume that the initial base stock level is computed
directly from the manufacturer’s forecast so that µS

1 = 65 and σS
1 = 10. In the succeeding

five-period blocks, the supplier updates its base-stock levels using actual consumer sales
data, such that (µS

i , σS
i ) = {(61.4, 9.5), (54.8, 9.0), (61.4, 9.5)}, i= 2, 3, 4. As proved in the

literature (Chen et al., 2000), this will mitigate the bullwhip effect at the supplier, as our
results in Table 22.17 and Figure 22.24 demonstrate, but only slightly, and it certainly does
not eliminate the effect. Also, the supplier fill rate in this latter case improves from the
previous base-stock case, but only slightly.

Finally, let us consider the effect of batch ordering at the manufacturer. Let us assume
that the manufacturer has occasion to order in consistent lots, with Q= 150. We further
assume that the manufacturer follows a (Q, R) policy with R set to the base-stock levels
from the prior two examples. In contrast, we assume that the supplier has no need to batch
orders and follows a base-stock policy, with µS

1 = 100 and σS
1 = 30, set in anticipation of the

large orders from the manufacturer. The results are shown in Table 22.18 and Figure 22.25,
in which the supplier’s base-stock levels in the remaining five-period blocks are updated
using the manufacturer orders, resulting in (µS

i , σS
i ) = (60.0, 82.2), i= 2, 3, 4, as each block

contains exactly two orders from the manufacturer. (Note that the assumption of a nor-
mal distribution for lead-time demand probably breaks down with such a large standard
deviation, due to the high probability of negative values, but we retain this assumption
nonetheless.) From the table and figure, one can see that the variability in the order stream
increases dramatically at the manufacturer. Interestingly, however, the significant increase
in variability is not further amplified at the supplier when it uses a base-stock policy.

© 2008 by Taylor & Francis Group, LLC
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TABLE 22.17 Bullwhip Example with Updated Base-Stock Orders Using Consumer Demand
Manufacturer Supplier

Consumer
Period Sales Beg Inv End Inv Lost Dmd B Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 33 100 100 – 83 0
2 55 50 0 5 83 83 100 67 0 83 16
3 61 33 0 28 83 83 67 0 16 83 83
4 67 83 16 0 83 67 16 0 67 83 83
5 74 99 25 0 83 58 83 16 0 83 67
6 67 92 25 0 73 48 99 41 0 79 38
7 60 83 23 0 73 50 108 60 0 79 19
8 54 71 17 0 73 56 98 48 0 79 31
9 49 67 18 0 73 55 67 11 0 79 68

10 44 74 30 0 73 43 42 0 13 79 79
11 50 85 35 0 83 48 68 25 0 71 46
12 55 78 23 0 83 60 104 56 0 71 15
13 61 71 10 0 83 73 102 42 0 71 29
14 67 70 3 0 83 80 57 0 16 71 71
15 74 76 2 0 83 81 29 0 51 71 71
16 67 82 15 0 73 58 71 0 10 79 79
17 60 96 36 0 73 37 71 13 0 79 66
18 54 94 40 0 73 33 92 55 0 79 24
19 49 77 28 0 73 45 121 88 0 79 0
20 44 61 17 0 73 56 112 67 0 79 12
Min 44 0 33 0 0
Max 74 50 83 100 83
Avg 58.1 20.65 57.35 34.45 44.85
Fill rate 97.2% 84.9%
Range 30 50 83
Std Dev 9.16 16.11 29.47

Ratio 1.76 Ratio 3.22
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FIGURE 22.24 Bullwhip example with updated base-stock orders using consumer demand.

These examples are not intended to prove any general results, per se, but merely to
demonstrate the effect of ordering policies on supply chain performance and to emphasize
the challenge of identifying policy prescriptions to mitigate these effects. Note that Lee
et al. (1997a,b) lay out a more extensive set of prescriptions that may be used in practice
to attempt to address the full set of causes for the bullwhip effect—order batching, forecast
updating, price fluctuations, and shortage gaming. From our examples, interestingly, the
fill rate performance is actually best with the ad hoc policy from the original example
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TABLE 22.18 Bullwhip Example with (Q, R) Orders at Manufacturer and Base-Stock Orders
at Supplier

Manufacturer Supplier
Consumer

Period Sales Beg Inv End Inv Lost Dmd R Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 150 100 100 – 154 54
2 55 50 0 5 83 150 100 0 50 154 154
3 61 150 89 0 83 0 54 0 96 154 154
4 67 239 172 0 83 0 154 154 0 154 0
5 74 172 98 0 83 0 308 308 0 154 0
6 67 98 31 0 73 150 308 308 0 209 0
7 60 31 0 29 73 150 308 158 0 209 51
8 54 150 96 0 73 0 158 8 0 209 201
9 49 246 197 0 73 0 59 59 0 209 150

10 44 197 153 0 73 0 260 260 0 209 0
11 50 153 103 0 83 0 410 410 0 209 0
12 55 103 48 0 83 150 410 410 0 209 0
13 61 48 0 13 83 150 410 260 0 209 0
14 67 150 83 0 83 0 260 110 0 209 99
15 74 233 159 0 83 0 110 110 0 209 99
16 67 159 92 0 73 0 209 209 0 209 0
17 60 92 32 0 73 150 308 308 0 209 0
18 54 32 0 22 73 150 308 158 0 209 51
19 49 150 101 0 73 0 158 8 0 209 201
20 44 251 207 0 73 0 59 59 0 209 150
Min 44 0 0 0 0
Max 74 207 150 410 201
Avg 58.1 85.55 60.0 169.85 68.2
Fill rate 94.1% 87.8%
Range 30 150 201
Std Dev 9.16 75.39 75.37

Ratio 8.23 Ratio 8.23
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FIGURE 22.25 Bullwhip example with (Q, R) orders at manufacturer and base-stock orders at supplier.

in Vollmann et al. (2005). This is important, in that lost demand at the supplier in our
example is a proxy for additional cost at the manufacturer to supplement supply. (A more
complex assumption would be to allow backorders at the supplier, thus deflating the service
performance at the manufacturer further and likely exacerbating the bullwhip effect at the
supplier.) Our example might really speak to a need for a richer model of the interaction
between customer and supplier, especially in a case where there is an underlying pattern to
demand, and particularly in the case where the customer has access to more information
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about consumer demand than the supplier could infer on its own simply from the customer’s
stream of orders. Indeed, in practice, this has led to burgeoning efforts such as collaborative
planning, forecasting, and replenishment (CPFR).∗

Lest one conclude that sharing forecast information always improves the outcome for all
parties in the supply chain, let us briefly consider some other research in progress that iden-
tifies cases when forecast sharing is helpful, and when it might actually make things worse.
Thomas et al. (2005) offer a richer model of a specific dyad relationship than the simple
ordering relationships we consider above. Their model considers a contract manufacturer
(CM) that builds a product for an original equipment manufacturer (OEM). The product is
composed of two sets of components, a long lead time set and a shorter lead time set, such
that orders for the long lead time components must be committed by the CM to its supplier
some time before orders are placed for the short lead time components. In the intervening
period between these lead times, the OEM may be able to provide an updated forecast of
the single-period consumer demand to the CM. In the base model, the only cost to the OEM
is the opportunity cost of lost sales if the CM does not order sufficient quantities of both
component sets to assemble complete products and fulfill consumer demand for the prod-
uct. The CM, however, bears both a lost-sales cost, based on its share of the product profit
margin, and the overage loss related to having components left over in excess of demand.
Since the CM bears the costs of both underage and overage, it may tend to be risk averse in
its ordering, particularly when its profit margin is relatively small, meaning that the OEM
could benefit by offering contract terms to share a portion of the overage cost with the CM.

With D denoting demand, ξ the demand-related information update, and γ1 and γ2
the fraction of overage loss the OEM bears on the long lead time and short lead time
components, respectively, the OEM’s cost function in Thomas et al. (2005) is

TCOEM
fs (γ1, γ2) = Eξ[ED|ξ[mo(D − Q∗

2)
+ + γ1l1(Q∗

1 − min{D, Q∗
2})+ + γ2l2(Q∗

2 − D)+]]
(22.37)

where mo is the OEM’s share of the product margin, l1 and l2 are the overage losses
(unit cost minus salvage value) on the long lead time and short lead time components,
respectively, and Q∗

1 and Q∗
2 are the CM’s optimal ordering decisions (for long and short

lead time components, respectively), given the forecast sharing and risk sharing decisions
of the OEM. The CM’s optimal ordering decisions come from solving

TCCM
fs (Q1) = Eξ[ED|ξ[mc(D−Q∗

2)
++(1−γ1)l1(Q1−min{D, Q∗

2})++(1−γ2)l2(Q∗
2 −D)+]]

(22.38)

where mc is the CM’s share of the product margin and

Q∗
2 = min{F−1

D|ξ(α2), Q1} (22.39)

with FD|ξ being the cdf of D given ξ and with α2 given by

α2 =
mc + (1 − γ1)l1

mc + (1 − γ1)l + (1 − γ1)l1
(22.40)

If the demand forecast update is not shared, Equations 22.37 and 22.38 are simplified, with
the expectation taken over the random variable D alone. Using a model that employs nested

∗See the Web site of the Voluntary Interindustry Commerce Standards (VICS) organization at
http://www.vics.org/committees/cpfr/ for more details on this set of practices.
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TABLE 22.19 OEM-CM Cost Reductions from Forecast and Risk Sharing, Thomas et al. (2005)
Complete

No Risk Limited Risk Risk Sharing
Sharing (%) Sharing (%) (%)

Reduction No forecast Mean – 4.60 6.87
in TCOEM sharing Max – 55.23 68.90

Forecast Mean 8.69 12.83 15.80
sharing Max 43.75 50.17 72.97

Reduction in No forecast Mean – 6.63 10.90
TCCM sharing Max – 58.97 78.30

Forecast Mean 3.16 9.19 14.28
sharing Max 17.49 49.05 79.87

uniform distributions for demand and demand-related information, Thomas et al. are able
to express solutions for Q∗

1 and Q∗
2 in closed-form. They also demonstrate that this nested-

uniform demand model is a very good approximation to the case where the demand forecast
and the related updating information form a bivariate normal pair.

Thomas et al. consider different contracts for sharing overage risk, with the extremes being
no risk sharing (γ1 = γ2 ≡ 0), limited risk sharing (only on the long lead time components—
i.e., γ2 ≡ 0), and complete risk sharing (on both long and short lead time components).
The interaction of forecast sharing and risk sharing creates some interesting results in this
relatively complex situation involving components with a complementary relationship—
noting that the CM’s order for short lead time components is bounded above by its order for
long-lead time components, per Equation 22.39 above. Table 22.19 shows the comparative
reductions in OEM and CM costs, on average, of sharing forecast information and sharing
overage risk from the base case of “no forecast sharing—no risk sharing” across 18,225
computational experiments with mo and mc ranging from 0.1 to 1.5 and l1 and l2 ranging
from 10% to 90% of unit cost. Interestingly, 12.5% of the computational experiments under
limited risk sharing exhibit increased cost for the OEM—by an average of about 4% and as
much as 12%—when the forecast update is shared with the CM. This effect is completely
mitigated, however, when the OEM shares the overage risk on both sets of components.

22.6 Discussion and Conclusions

Let us now step back and tie together the themes and ideas presented in this chapter.
An important theme, and one that appeared throughout the chapter, is that supply chain
management strategy is framed by three important decision areas—inventory, transporta-
tion, and locations—and their joint impact on customer service. Moreover, we can now turn
that statement around and state that it is the interaction of the inventory, transportation,
and location decisions—and their joint impact on customer service—that frame the design
of the supply chain itself. Indeed, it is the author’s view that SC design initiatives that
are undertaken without a clear understanding and appreciation of those interactions will
generate poor results, at best, and may be doomed to spectacular failure, at worst.

Another theme, albeit one that appeared late in the chapter and to which a much smaller
number of pages has been devoted, is the effect of SCM policies on the operation of the
supply chain. Policies in SCM take many forms, and many IE and operations management
researchers have devoted significant time and effort to the study of inventory management
policies. Indeed, a relatively wide-ranging chapter on SCM such as this one could not do
justice to the study of inventory management, about which many books have been written.
However, my hope in this chapter was to take at least a small step beyond inventory policies
and also consider coordinating mechanisms like the sharing of overage risk that help to
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better align the incentives of the parties in a supply chain. This theme focuses on the
dyad relationships in the supply chain, the point at which any two parties in the chain
interact, and, in the author’s mind, the only point at which one can hope to study supply
chain management—as opposed to making the bold and rather far-fetched claim that one
could, for example, “optimize the management of the supply chain,” whatever that might
mean. Similar to the manner in which the decisions and interactions of the “triangle-leg
decisions” (inventory, transportation, and location) frame SC design, it should be clear that
an understanding and appreciation of the interaction of dyad partners frames the design of
SCM policies.

So, we return to the “guy walks into a bar” scenario—or at least the “software salesperson
walks into the IE’s office” scenario—that opened the chapter. Could one “optimize the
supply chain” with software? Certainly not with a single piece of software solving a single
problem. After all of the discussion presented in this chapter, my sincere hope is that
the reader has an appreciation for the significant scope, complexity, and subtlety of the
types of problems underlying the relatively large domain that is supply chain management.
Could one, however, optimize portions of the supply chain? . . . individually optimize the
various decision problems that together frame SCM? . . . find policies that minimize or jointly
improve the independent objective functions of dyad partners? Certainly, all of those things
can be done. Will they, together, represent a “supply chain optimal” solution? That seems
like a loaded question, and one that I’ll avoid answering.

Perhaps the discussion at the outset of the chapter was a bit too critical, however. Soften-
ing that criticism somewhat, I will close by noting the relatively recent advent of advanced
planning systems (APS) software, which seems to indicate that the marketplace for SCM
software recognizes that “optimizing” the supply chain in one fell swoop would be a Her-
culean, if not impossible, task. Indeed, referring back to Figure 22.2 in the Introduction to
this chapter, one is reminded that at least one company that does business by attempting to
create and implement supply chain (re)design initiatives does so in modular fashion, employ-
ing tools that solve a variety of discrete problems in the process of building an overall SC
design solution. An excellent reference on this subject is the book chapter by Fleischmann
and Meyr (2003), which includes a mapping of their conceptual model of APS activities to
the APS software offerings of the major software vendors in this market—namely Baan, i2
Technologies, J.D. Edwards, Manugistics, and SAP. Each company offers its software in a
series of modules that focus on discrete problem areas—for example, forecasting and demand
management, transportation management, inventory management—very much along the
lines of the discussion in this chapter.

Indeed, supply chain management is a wide-ranging and challenging subject. Solving
the decision problems that frame SCM requires a similarly wide-ranging knowledge and
an appreciation of the manner in which the various aspects of SC design solutions and
SCM policy solutions interact to impact company objectives like minimizing operating costs
at acceptably high levels of customer service. However, armed by this chapter with an
appreciation of the challenges implied by designing and managing—let alone optimizing—
the supply chain, my sincere hope is that you, the reader, won’t be tempted to rush into
buying that bridge in Brooklyn.
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23.1 Introduction

Commerce is the exchange of goods and services between a buyer and a seller for an agreed
price. The commerce ecosystem starts with a customer who interacts with a salesperson,
typically at a storefront; the store gets the supply from a distributor; the distribution is
typically from a warehouse or a factory; if the customer decides to buy the goods, the seller
invoices the buyer for the price of goods, including taxes and shipping charges, if any; and
finally the invoiced amount is collected either immediately or through an intermediary such
as a bank or credit company. This commerce ecosystem has evolved over centuries. With the
explosion of the Internet since 1995, every aspect of commerce could be supplemented by
electronic support leading to an e-commerce ecosystem similar to the commerce eco-system.
This includes systems to support customer acquisition, price negotiation, order processing,
contracting, order fulfillment, logistics and delivery, bill presentation and payment, and
post-sales support [1–3].

E-commerce or electronic commerce is commerce conducted electronically, typically over
the Internet. E-commerce includes support to all stages of commerce.

E-commerce initially was limited to “digital goods”—software, e-books, and information.
Thanks to “digitization,” today digital goods encompass a large set of items including

• Computer and telecom software;
• Music with analog recording on tapes evolving to digital music—first as CD audio

and currently digital audio in the form of MP3 and other forms like RealAudio;

23-1
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• Video with the evolution of digital cinematography and MPEG compression
scheme;

• Images including still images captured by digital camera, video images captured
by camcorders, document images and medical images like ultrasound image, dig-
ital X-ray image, CAT scan, and MRI image;

• Documents including books, journals, tech reports, magazines, handbooks, man-
uals, catalogs, standards documentation, brochures, newspapers, phone books,
and a multitude of other “forms” often created using DTP; and

• Drawings including building plans, circuit diagrams, and flow diagrams typically
created using CAD tools.

Digital goods could be completely delivered electronically, and formed the first focus of
e-commerce. Soon it was clear that a whole range of information services lend themselves
to electronic delivery. This includes

• Financial services that include banking, insurance, stock trading, and advisory
services;

• E-governance including electronic delivery of justice and legal services, electronic
support to legislation and law making, issue of identities like passport and social
service numbers, visa processing, licensing for vehicles, toll collection, and tax
collection;

• Education that includes classroom support, instructional support, library,
laboratories, textbooks, conducting examinations, evaluation, and issue of tran-
scripts; and

• Healthcare delivery including diagnostics using imaging, record keeping, and pre-
scription handling.

Thanks to the success of digital goods delivery and electronic delivery of information ser-
vices, e-commerce could address the support issues for buying and selling of physical goods
as well. For example,

• Customer acquisition through search engine-based advertisements, online promo-
tion, and e-marketing;

• E-ticketing for airline seats, hotel rooms, and movie tickets;
• E-procurement including e-tendering, e-auction, reverse auction, and electronic

order processing;
• Electronic payment that includes electronic shopping cart and online

payments; and
• Electronic post-sales support through status monitoring, tracking, health-checking,

and online support.

To support digital goods delivery, delivery of information services, and support commerce
related to physical goods, a huge Internet infrastructure had to be built (and continues to
get upgraded). Optimizing this infrastructure that converged data communications with
voice communications on the one hand and wire-line with wireless communications on the
other hand is leading to several interesting challenges that are being addressed today. Behind
those challenges are the key techniques and algorithms perfected by the OR/MS community
over the past five decades [4–6]. In this chapter, we will address the key OR/MS applications
relating to the distribution of digital goods, electronic delivery of information services, and
optimizing the supporting Internet infrastructure.
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23.2 Evolution of E-Commerce

Electronic commerce predates the widespread use of the Internet. Electronic data inter-
change (EDI) used from the early 1960s did facilitate transfer of commercial data between
seller and buyer. The focus, however, of EDI was mostly to clear congestion of goods move-
ment at seaports and airports due to rapid globalization of manufacturing, improved trans-
portation, and the emergence of global logistics hubs such as Rotterdam and Singapore.
EDI helped many governments in the process of monitoring of export and import of goods
between countries and also control the movement of undesired goods such as drugs and
narcotics across borders [1,2,7–15].

Less widely known e-commerce applications in the pre-Internet era include

• Online databases like MEDLARS for medical professionals and Lexis-Nexis for
legal professionals;

• Electronic funds transfer such as SWIFT network; and
• Online airline tickets reservations such as SABRE from American Airlines.

In all these cases electronic data transfer was used to facilitate business between partners:

• Pre-determined intermediaries such as port authorities, customs inspectors, and
export-import agencies in the case of EDI;

• Librarians and publishing houses in the case of online databases;
• Banks and banking networks in the case of electronic funds transfer; and
• Airlines and travel agents in the case of online reservations systems.

The ordering of books online on Amazon.com in 1994 brought e-commerce to the end
users. One could order books electronically, and by the year 2000 make payments also
electronically through a secure payment gateway that connects the buyer to a bank or a
credit company. All this could be achieved from the desktop computer of an end user, a key
differentiator compared to the earlier generation of electronic commerce. Such a develop-
ment that permitted individual buyers to complete end-to-end buying (and later selling
through eBay) made e-commerce such a revolutionary idea in the past decade.

The rise of digital goods (software, music, and e-books), the growth of the Internet, and
the emergence of the “Internet-economy” companies—Yahoo and eBay—led to the second
stage of e-commerce. Software was the next commodity to embrace e-commerce, thanks to
iconic companies like Microsoft, Adobe, and Macromedia. Selling software over the Internet
was far more efficient than any other means, particularly for many small software companies
that were writing software to run on Wintel (Windows + Intel) platform (as PCs powered
by Intel microprocessors were a dominant hardware platform and Windows dominated the
desktop software platform). The outsourcing of software services to many countries including
India gave further impetus to e-commerce.

The spectacular growth of the Internet and World Wide Web (WWW) fueled the demand
for widespread access and very large network-bandwidth, leading to phenomenal investment
in wire-line (fiber optic networks and undersea cables) and wireless networks in the past
decade (the trend is continuing even today). With consumers demanding broadband Internet
access both at home and in the office, developed countries (USA, Western Europe, Japan,
and Australia) saw near ubiquitous access to Internet at least in urban areas. Widespread
Internet reach became a natural choice to extend e-commerce to support the sale of physical
goods as well.

• E-procurement (e.g., CommerceOne)
• Electronic catalogs (e.g., Library of Congress)
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• Electronic shopping cart (e.g., Amazon)
• Payment gateway (e.g., PayPal), and
• On-line status tracking (e.g., FedEx)

are tools used by ordinary citizens today. Practically every industry dealing with physical
goods—steel, automotive, chemicals, retail stores, logistics companies, apparel stores, and
transportation companies—could benefit from this third stage of e-commerce.

With the widespread adoption of e-commerce by thousands of corporations and millions
of consumers by the turn of the century, the equivalent of Yellow Pages emerged in the
form of online catalogs like Yahoo. The very size of the Yellow Pages and the need for speed
in exploration of the desired items by the buyer from online catalogs led to the arrival of
the search engines. The algorithmic approach to search (in place of database search) per-
fected by Google was a watershed in the history of e-commerce, leading to a fourth stage
in e-commerce.

The next stage of growth in e-commerce was the end-to-end delivery of information
services. Banks and financial institutions moved to online banking and online delivery of
insurance booking. NASDAQ in USA and National Stock Exchange (NSE) in India moved
to all-electronic stock trading. Airlines moved beyond online reservations to e-ticketing.
Hotels moved to online reservations, even linking to online reservations of airline tickets
to offer seamless travel services. Several movie theaters, auditoriums, and games/stadiums
moved to online ticketing. Even governments in Australia and Canada started delivering
citizen services online. Many libraries and professional societies such as IEEE shifted to
electronic libraries and started serving their global customers electronically from the year
2000, representing the fifth stage of e-commerce.

The sixth stage is the maturing of the Internet into a highly reliable, available, and
scaleable infrastructure that can be depended upon for 24× 7 delivery of services world-
wide. Services like Napster selling music to millions of users (before its unfortunate closure)
and the recent success of Apple iTunes puts enormous pressure on network bandwidth
and availability. In turn, this demand led to significant improvements in content delivery
mechanisms, pioneered by companies like Akamai.

A whole range of issues including next generation network infrastructure, such as

• Internet II
• IPv6
• Security issues
• Privacy issues
• Legal issues, and
• Social issues

are getting addressed today to take e-commerce to the next stage.
During the dotcom boom, e-commerce created a lot of hype. It was predicted that all

commerce will become e-commerce and eventually “brick and mortar” stores will be engulfed
by “click and conquer” electronic storefront. Commerce in its conventional form is far from
dead (it may never happen); yet e-commerce has made considerable progress [1,16].

• By December 2005 the value of goods and services transacted electronically
exceeded $1 trillion, as per Forrester Research.

• Stock trading, ticketing (travel, cinema, and hospitality), and music are the
“top 3” items traded electronically today.

• Online trading accounts for 90% of all stock trading.
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• Online ticketing accounts for 40% of the total ticketing business.
• Online music accounts for 30% of all “label” music sales is increasing dramatically,

thanks to iPod and iTunes from Apple.
• By the year 2010, it is expected that nearly 50% of all commercial transactions

globally will happen electronically.

23.3 OR/MS and E-Commerce

“Operations Research (OR) is the discipline of applying analytical methods to help make
better decisions using the key techniques of Simulation, Optimization and the principles
of Probability and Statistics,” according to Institute of Management Science and Opera-
tions Research (INFORMS) [17]. Starting with the innovative application of sophisticated
mathematical tools to solve logistics support issues for the Allied Forces during the Second
World War, OR has moved into every key industry segment. For example, OR has been
successfully used in the

• Airline industry to improve “yield” (percentage of “paid” seats);
• Automotive industry to optimize production planning;
• Consumer goods industry for supply chain optimization;
• Oil industry for optimizing product mix;
• Financial services for portfolio optimization; and
• Transportation for traffic simulation.

Practically all Fortune 500 companies use one or the other of the well-developed tools of
OR, namely,

• Linear, integer, nonlinear, and dynamic programming
• Network optimization
• Decision analysis and multi-criteria decision making
• Stochastic processes and queuing theory
• Inventory control
• Simulation, and
• Heuristics, AI, genetic algorithms, and neural networks.

OR tools have been extensively used in several aspects of e-commerce in the past decade. The
success behind many iconic companies of the past decade can be traced to OR embedded
within their patented algorithms—Google’s Page Ranking algorithm, Amazon’s Affiliate
program, and i2’s Supply Chain Execution Engine, for example [4–6,18–20].

During the dotcom boom a number of e-commerce companies started using OR tools
extensively to offer a range of services and support a variety of business models, though
many of them collapsed during the dotcom bust. As early as the year 1998 Geoffrion went to
the extent of stating “OR professionals should prepare for a future in which most businesses
will be e-business” [5,6] and enumerated numerous OR applications to e-commerce including

• OptiBid using integer programming for Internet-based auction;
• Trajectra using stochastic optimization for optimizing credit card portfolio planning;
• SmartSettle using integer programming for automated settling of claims;
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• Optimal Retirement Planner that used linear programming to provide advisory
services;

• Home Depot using integer programming-based bidding for truck transportation
planning;

indicating the importance of OR to e-commerce. Over the past 8 years the applications
have increased manyfold and the area has matured.

In this chapter, we will outline a number of OR applications that are widely used in
the different stages of e-commerce. This being a handbook, we will limit ourselves to out-
lining the interesting applications, indicating the possible use of OR tools to address the
selected applications, and the benefits generated. The actual formulation and the algorith-
mic implementation details of specific applications are beyond the scope of this chapter,
though interested readers can refer to literature for further details. There are dozens of OR
tools, hundreds of algorithms, and thousands of e-commerce companies, often with their
own patented implementation of algorithms. Instead of making a “shopping list” of the
algorithms and companies, we will limit our scope to nine key applications that provide a
broad sense of the applications and their richness.

We limit our scope to Internet-based e-commerce in this chapter. With the spectacular
growth of wireless networks and mobile phones—particularly in India and China with lower
PC penetration and land-line phones—e-commerce might take different forms including

• Mobile commerce (m-commerce)
• Smart cards, and
• Internet kiosks.

This is an evolving area with not-so-clear patterns of e-commerce and best captured after
the market matures.

In the next section, we will outline the OR tools that are useful in the different stages of
e-commerce, namely,

• Customer acquisition
• Order processing
• Order fulfillment
• Payment, and
• Post-sales support.

Section 23.4.1 will be devoted to the case of e-commerce related to digital goods. Sec-
tion 23.4.2 will address the issues relating to e-commerce for physical goods. Section 23.4.3
will be devoted to the case of electronic delivery of services. Section 23.4.4 will focus on the
optimization of the infrastructure to support e-commerce.

A very large number of e-commerce applications and business models have emerged over
the past decade. For brevity, we have identified a set of nine key tools/applications that
form the core set of tools to support e-commerce today. These nine candidates have been
so chosen that they are representative of the dozens of issues involved and comprehensive
enough to capture the essence of contemporary e-commerce.

We will discuss the chosen nine core tools/applications under one of the four categories
mentioned earlier, where the specific tool/application is most relevant to the particular
category. Accordingly,

i. Internet search
ii. Recommendation algorithms
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iii. Internet affiliate programs

will be discussed in Section 23.4.1.
Section 23.4.2 will address

iv. Supply chain optimization
v. Auction and reverse auction engines

Section 23.4.3 will be devoted to

vi. Pricing engines

And finally Section 23.4.4 will focus on

vii. Content delivery network (CDN)
viii. Web-site performance tuning
ix. Web analytics.

23.4 OR Applications in E-Commerce

OR applications predate Internet e-commerce, as demonstrated by the airline industry that
used seat reservation information to optimize route planning; in the process, innovative
concepts like “planned overbooking” were developed that dramatically improved “yield.”
In the past decade (1995–2005) a lot more has been achieved in terms of the use of algorithms
to significantly improve user experience, decrease transactions cost, reach a larger customer
base, or improve service quality. We will outline the major applications of OR to the key
aspects of e-commerce in this section.

23.4.1 E-Commerce Relating to Digital Goods

Goods that are inherently “soft” are referred to as “digital goods” as they are likely to
be created by digital technology. Packaged software such as Microsoft Office and Adobe
Acrobat that are used by millions of users globally are among the first recognizable digi-
tal goods. Until the mid-1990s shrink-wrapped software was packaged in boxes; with the
widespread availability of the Internet and high-speed access at least in schools and offices,
if not homes, software could be distributed electronically. It is common these days even for
lay people, let alone IT professionals, to routinely “download” and “install” software on
to their desktop or notebook computers. With the arrival of MP3 standard digital music
and freely downloadable digital music players for PCs, such as Real Networks’ RealAudio
player, and Microsoft Media Player, digital music became a widely traded digital good,
particularly during the Napster days. In recent years, with the phenomenal success of the
Apple iPod MP3 player and the digital music stores Apple iTunes, music has become the
fastest growing digital goods. With the world’s largest professional society IEEE launching
its Digital Library in the year 2000, online books from Safari Online have become popular;
and with many global stock exchanges going online, e-books, digital libraries, and stock
trading became popular digital goods in the past 5 years.

i. Internet Search
The first stage in commerce is the identification and acquisition of customers by the seller.
In traditional commerce this is accomplished by advertising, promotion, catalog printing
and distribution, and creation of intermediaries like agents. In e-commerce, particularly
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in the case of digital goods, the customer acquisition process itself often happens on the
Internet. Typically, a customer looking for a digital good is likely to “Google” (a term that
has become synonymous with “searching” thanks to the overwhelming success of Google
over the past 7 years) for the item over the Internet.

Search engines like Google and portals like Yahoo, MSN, eBay, and AOL have become
the focal points of customer identification today and many corporations, big and small,
are fine-tuning their strategies to reach potential customers’ eyeballs over the portal sites.
Internet advertising is only next to TV advertising today. The portal sites Yahoo and MSN
and online bookstore Amazon have their own search engines today; eBay has started using
Yahoo’s search engine recently.

Search engines help the customer acquisition process by way of helping potential cus-
tomers to explore alternatives. The reason for the phenomenal success of Google is its speed
and relevance, as well as the fact that it is free. Very few users would use Google if every
search took 5 minutes, however good the search is; similarly, Google usage would be minis-
cule if users have to wade through a large file with millions of “hits” to find the item they
are looking for, even if the million-long list is delivered within seconds.

The secret behind the speed–relevance combination of Google (and other search engines
today) is the sophisticated use of algorithms, many of them being OR algorithms.

Search engines broke the tradition followed by librarians for centuries; instead of using
databases (catalogs in the language of librarians), search engines use indexes to store the
links to the information (often contained in Web pages); they use automated tools to index,
update the index, and most importantly, use algorithms to rank the content. For the ranking
of the content another principle perfected by information scientists in the form of “citation
index” is used; it is quite natural that important scientific papers will be cited by many
scientific authors and the count of citation can be used as a surrogate for the quality of the
paper. Scientific literature goes through peer review and fake citations are exceptions. In
the “free-for-all” world of WWW publishing, a simple count of citation will not do; also the
sheer size of the content on the WWW and the instantaneous response expected by Internet
users (unlike the scientific community that is used to waiting for a year for the citations to
be “compiled”) makes it imperative to use fast algorithms to aid search. Google manages
speed through its innovative use of server farms with nearly 1 million inexpensive servers
across multiple locations and distributed algorithms to provide availability. Search engine
vendors like Google also use some of the optimization techniques discussed in Section 23.4.4
(multicommodity flows over networks, graph algorithms, scheduling and sequencing algo-
rithms) to optimize Internet infrastructure. The success behind the “relevance” of search
engines is contributed by another set of algorithms, the famous one being Google’s patented
“page ranking” algorithm [21–23].

A typical user looking for an item on the Internet would enter a couple of keywords on
the search window (another successful idea by Google of a simple text-box on a browser
screen as user interface). Google uses the keywords to match; instead of presenting all the
items that would match (often several millions), Google presents a list of items that are
likely to be the most relevant items for the keywords input by the user. Often the search
is further refined using local information (location of the computer and the network from
where the search is originating and user preferences typically stored in cookies). Google is
able to order the relevant items using a rank (patented Page Rank); the rank is computed
using some simple graph theoretic algorithm.

A typical Web page has several pieces of content (text, graphics, and multimedia); often
the contents are hyperlinked to other elements in the same Web page or to other Web pages.
Naturally, a Web page can be reduced to a graph with Web pages as nodes and hyperlinks
as edges. There are outward edges that point to other Web pages and inward edges that
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link other pages. Inward edges are equivalent to citations and outward edges are similar to
references. By counting the number of edges one can compute a surrogate for citation; this
can be a starting point for computing the rank of a Web page; the more the citations the
better the rank. What is special about Google’s page ranking algorithm is that it recognizes
that there are important Web pages that must carry a lot of weight compared to a stray
Web page. While a page with several inward links must get a higher importance, a page
with a single inward link from an important page must get its due share of importance.
However, the importance of a page would be known only after all the pages are ranked.
Using a recursive approach, Google’s page ranking algorithm starts with the assumption
that the sum of ranks of all Web pages will be a constant (normalized to unity). If page
A has inward links (citations) T1, T2, . . . , Tn and C(A) is the number of outward links of
page A, the page rank (PR) could be defined as

PR(A) = (1 − d) + d{PR(T1)/C(T1) + PR(T2)/C(T2) + · · · + PR(Tn)/C(Tn)} (23.1)

In a sense, instead of adding the citations linearly (as in the case of citation index), page
rank algorithm takes the weighted rank approach with citation from higher-ranked page
getting higher weight. “d” is used as a “dampening” constant with an initial value of 0.85
in the original Google proposal. In a sense, page rank is used as a probability distribu-
tion over the collection of Web pages. Defining page rank for the millions of Web pages
leads to a very large system of linear equations; fortunately, OR professionals have the
experience of solving such large system of linear equations using linear programming for
years. The special structure of the set of equations admits even a faster algorithm. Accord-
ing to the original paper by Google co-founders Sergey and Page, their collection had 150
million pages (nodes) and 1.7 billion links (edges) way back in 1998. Their paper reports
the following performance: 24 million pages had links to 75 million unique URLs; with an
average 11 links per page and 50 Web pages per second it took 5 days to update the con-
tent. Distributing the load to several workstations they could get convergence to the set
of equations (Equation 23.1) within 52 iterations; the total work distributed across several
workstations took 5 hours (about 6 min/workstation). Based on this empirical performance
the algorithm is extremely efficient (with complexity of O(log n) and can scale to Web
scale [21]. That explains why Google search performs so well even today, though Web page
collection has increased severalfold over the period 1998 to 2006 and Google is still serv-
ing results real fast. There are a number of special issues such as dangling links that have
been addressed well; in the year 2005 Google introduced the no-follow link to address spam
control, too.

To constantly keep pace with the changing content of the Web pages, search engines
use a crawler to collect new information from the sites all over the world. The background
infrastructure constantly updates the content and keeps an index of links to documents for
millions of possible keyword combinations as a sorted list. After matching the user-provided
keywords, Google collects the links to the documents, formats them as HTML page, and
gives it to the browser that renders it over the user screen.

Google is not the only search engine; there are many other search engines including spe-
cialized search engines used by eBay for searching price lists. Many of them use specialized
algorithms to improve ranking [20]; there are others like Vivisimo [24] and Kartoo [25] that
use clustering techniques and visual display to improve user experience with search; yet
Google remains the supreme search engine today.

The key OR algorithms used by search engines include linear programming to solve
large-scale linear equations, neural networks for updating new information (learning), and
heuristics to provide a good starting solution for the rank.

© 2008 by Taylor & Francis Group, LLC



CH023.tex 30/10/2007 10: 56 Page 23-10

23-10 Operations Research and Management Science Handbook

ii. Recommendation Algorithms
When a customer visits an online store to order an item there is a huge opportunity to
up sell and cross sell similar items. Recommending such potential buy items to prospective
buyers is a highly researched area. While such direct selling is not new, online direct selling
is new. Common sense suggests that the online store recommends items similar to those
bought by the customer during the current interaction or based on prior purchases (using
database of prior purchases); a more refined common sense is to use the customer profile
(based on cookies or customer-declared profile information) and match items that suit the
customer profile. A more sophisticated approach is to use similarity between customers
with preferences that match the current customer. Many users are familiar with Amazon
Recommends [26,27] that talks of “people who ordered this book also ordered these books.”
Knowing customer profiles and customer interests it makes sense to suggest items that are
likely to appeal “most” to the customer (taking care not to hurt any customer sensitivities).
All such approaches form the core of recommendation algorithms [28].

Recommendation needs a lot of computation; both associative prediction and statisti-
cal prediction have been widely used by market researchers for ages, but at the back-end;
tons of junk promotional materials and free credit card offers are the results of such rec-
ommendation. Recently recommendation has invaded e-mail too. But recommendation in
e-commerce space needs superfast computation, as online visitors will not wait beyond sec-
onds; this poses special challenges. Considering the fact that online stores like eBay or
Amazon stock tens of thousands of items, millions of customers, and billions of past sales
transaction data, the computational challenge is immense even with super computers and
high-speed networks. Brute force method will not work! There are other constraints too.
A typical user browsing the Internet will typically see the results on a PC screen that at
best accommodates a handful of products’ information; even if the screen size is large the
customer is unlikely to view hundreds of products. The challenge is to present just a handful
of the most relevant products out of hundreds or thousands.

Starting with crude technology that simply recommended items others have purchased,
recommendation technology has evolved to use complex algorithms, use large volume of
data, incorporate tastes, demographics, and user profiles to improve customer satisfaction
and increased sales for the e-commerce site. The Group Lens project of the University of
Minnesota was an early pioneer in recommendation algorithms. E-commerce sites today
have much larger data sets leading to additional challenges. For example, Amazon had 29
million customers in 2003 and a million catalog items. While the earlier generation of OR
analysts had the problem of powerful methods and scanty data, today’s recommendation
algorithms have to contend with excessive data!

Common approaches to recommendation include [27,28]

• Simple ‘‘similarity’’ search that treats recommendation as a search problem over
the user’s purchased item and related items stocked by the e-commerce seller.

• Collaborative filtering uses a representation of a typical customer as an
N -dimensional vector of items where N is the number of distinct catalog items
with positive vector for items purchased or rated positively and negative vector
for negatively rated products. The vector is scaled by the number of customers
who purchased the item or recommended the item. Typically the vector is quite
sparse as most customers purchase just a few items. Collaborative filtering algo-
rithm measures the similarity between two customers (cosine of the angle between
the two vectors) and uses this similarity measure to recommend items.

• Item-to-item collaborative filtering goes beyond matching the purchased item
to each of the user’s purchased items and items rated by the user to similar
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items and combines them into a recommendation list. The Amazon site “Your
recommendations” leads to the customer’s earlier recommendations categorized
by product lines and provides feedback as to why an item was recommended.

• Cluster methods that divide the customer base into many segments using a clas-
sification scheme. A prospective user is classified into one of the groups and a
recommendation list is based on the buying pattern of the users in that segment.

Recommendation algorithms have been fairly successful; with unplanned online purchases
amounting to just 25%, it is important to recommend the right items—those the customer
likes but did not plan to buy, a sure way to increase sales.

Major recommendation technology vendors include AgentArts, ChoiceStream, Expert-
Maker, and Movice in addition to Google.

The tools of OR that recommendation algorithms use include graphs—to capture simi-
larity and identify clusters—and in turn implement collaborative filtering. Simulation and
heuristics are used to cut down computation (dimensionality reduction).

iii. Internet Affiliate Programs
The Internet search techniques help in reaching the eyeballs of potential customers; the
recommendation algorithms address the issue of recommending the right products to the
customers. Obviously the customer might purchase some or all of the items recommended.
The next stage is to retain the customer and attempt to convert the recommendation into
an actual sale. As the Internet is a platform available to billions of people and a great
equalizer that makes the platform accessible even to a small vendor in a remote area, it is
not possible for all vendors to be able to reach potential customers through search engines
or portals; an alternative is to ride on the major e-commerce sites like Amazon; the small
vendors act as intermediaries or referrals that bring customers to the major sites and get a
small commission in return. These are generally known as affiliate programs in marketing
literature. The Internet gave a new meaning to the entire area of affiliate programs [9,29].

Intermediation is not new. For decades the print advertisement media have been engaging
agents who design and get the advertisement for their agents displayed in the newspapers
and get paid a small commission from the publishers for bringing advertisement revenue and
a nominal fee from clients toward the labor of designing the advertisement. The Internet,
however, is more complex in the sense that the intermediary has no precise control on the real
estate, being a personalizeable medium rather than a mass medium, the advertisement—
typically “banner ad”—gets displayed differently on different user screens.

Amazon is credited to be a pioneer in affiliate programs. Starting in 1994, Amazon let
small booksellers link their site to Amazon site; if a prospective buyer who visits the affiliate
site is directed to the Amazon site and buys an item from Amazon, the small bookstore ven-
dor is entitled to receive a commission (a small percentage of the sale value). At a later date,
it was extended to any associate that brings the buyer to the Amazon site. Today Ama-
zon has more than 600,000 affiliates (one of the largest Internet affiliate programs). Google
started its affiliate program in 2003; initially it was AdWords meant for large Web sites and
extended later as AdSense in May 2005 for all sites. Google and others took the program to
further sophistication through cost per lead, cost per acquisition, and cost per action and
also extended it to cost per thousand that is more like the print advertisements. Dealing
with such large intermediaries (affiliates) calls for significant management resources (track
earnings, accounting, reporting, quality of service monitoring, and filter sensitive content)
leading to Internet-based solutions to manage affiliate programs from third party compa-
nies. LinkShare [29] is one of the most successful agencies to manage Internet-based affiliate
programs.
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Yahoo Search Marketing and Microsoft adCenter are other large-size affiliate programs
to watch.

Managing the banner ad that is typically 460 pixels wide× 60 pixels high is itself a
sophisticated space optimization; the banner ad must be placed within the small real estate
of the space earmarked for banner ad within the display page of the browser window on the
user screen—an interesting integer programming problem (Knapsack problem).

Internet affiliate programs use optimization techniques to optimize banner ads and esti-
mate initial cost per click; they use genetic algorithms and neural networks to adaptively
optimize and improve estimates; and graph theory to capture associations.

23.4.2 E-Commerce Relating to Physical Goods

The success of e-commerce in digital goods sales prompted the brick and mortar industry
to utilize the power of the Internet. One of the key challenges of many physical goods
companies embracing e-commerce is the speed mismatch between electronic information
delivery and the physical movement of goods that must be shipped to the customer who
has ordered electronically. It is one thing to be able to order groceries over the Internet and
yet another thing to receive it at your home by the time you reach home.

Obviously, logistics and supply chain optimization are two key issues that would make or
mar the success of e-commerce for physical goods.

iv. Supply Chain Optimization
Traditional OR models focused on the optimization of inventory, typically in a factory.
Typically one would forecast sales as accurately as possible, including variations, build
optimal level of safety stocks suiting a particular replenishment policy. Supply chain opti-
mization refers to the optimization of inventory across the entire supply chain—factory to
warehouse to distributors to final stores. Supply chain optimization must ensure that at
every stage of the supply chain there is the right material in the right quantity and quality
at the right time and supplied at the right price. Often there will be uncontrollability in
predicting the demand; this must be protected against through the cushion of safety stocks
at different levels. One must optimize the safety stocks so that they are neither too small
leading to nonavailability when needed, nor too large leading to unnecessary locking up of
capital. Naturally, supply chain optimization would involve multistage optimization and the
forecasting of inventory must evolve from a simple probability distribution to a sophisticated
stochastic process.

A key success behind today’s supply chain optimization is the power of online databases
to forecast at low granularity involving hundreds, if not thousands of items and to aggregate
the forecasts; today’s distributed computing power permits statistical forecasting to arrive
at the best fit using past demand pattern, even if it involves thousands of items.

Today’s supply chain optimization engines [30,31] use academically credible algorithms
and commercially effective implementations. Supply chain optimization leads to

• Lower inventories,
• Increased manufacturing throughput,
• Better return on investment,
• Reduction in overall supply chain costs.

Pioneering companies like i2 and Manugistics took many of the well-studied algorithms
in multistage optimization, inventory control, network optimization, and mixed-integer
programming, and combining them with recent concepts like third party logistics and
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comanaged inventory along with exceptional computing power available to corporations,
they created supply chain optimization techniques that could significantly save costs. The
simultaneous development of enterprise resource planning (ERP) software—SAP R/3 and
PeopleSoft (now part of Oracle)—helped supply chain optimization to be integrated with
the core enterprise functions; together it was possible to integrate

• Supply chain network design
• Product families
• Suppliers/customers integration
• Multiple planning processes
• Demand planning
• Sales and operations planning
• Inventory planning
• Manufacturing planning
• Shipment planning

with

• Execution systems

paving the way for optimizing across the supply chain (compared to single-stage optimiza-
tion earlier).

Today’s supply chain optimizing engines use established OR tools like

• Mixed integer programming
• Network optimization
• Simulation
• Theory of constraints
• Simulated annealing
• Genetic algorithms, and
• Heuristics

routinely; and solvers like iLog are part of such supply chain optimization engines.
Dell and Cisco are two vendors who used supply chain optimization extensively and built

highly successful extranets that enabled suppliers and customers to conduct end-to-end busi-
ness online—ordering, status monitoring, delivery, and payment—leading to unprecedented
improvements in managing the supply chain. For example, Dell reported the following met-
rics for its online business [30]

• User configurable ordering with maximum of 3 days for feasibility checking
• Online order routing to the plant with a maximum of 8 h
• Assembly within 8 h
• Shipping within 5 days.

With the estimated value of 0.5–2.0% value depletion per week in the PC industry, opti-
mizing supply chain makes a lot of sense; the leadership position that Dell enjoyed for
several years is attributed to its success with supply chain optimization—a classic success
story in e-commerce for physical goods.

Supply chain uses multistage optimization and inventory control theory to reduce the
overall inventory and hence the costs; it uses networks to model multistage material
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flows; queuing theory and stochastic processes to model demand uncertainty; simulation
to model scenarios; and heuristics to reduce computation.

v. Internet Auction
In e-commerce relating to physical goods, supply chain optimization dramatically improves
the delivery side of many manufacturing enterprises. Material inputs (raw materials, sub-
assemblies) account for a significant part of the overall business of most manufacturing enter-
prises and procuring the inputs, if optimized, will lead to significant savings in costs. Another
area where e-commerce made a big difference to physical goods sales is that of auction over
the Internet pioneered by eBay. Another interesting twist pioneered by Freemarket Online
is that of reverse auction used by many in the procurement space. Internet-based reverse
auction brings unprecedented efficiency and transparency in addition to billions of dollars of
savings to large corporations like GE (though not always sustainable over a longer period).

Auction is not new; antiques, second-hand goods, flower auctions, or tea auctions are cen-
turies old. The technology industry is familiar with spectrum auction. Electricity auction is
an idea that is being experimented with in different parts of the world, though with limited
success [32].

Auctioning is an idea that has been well researched. Simply stated, a seller (generally a
single seller) puts out an item for sale; many buyers bid for it by announcing a bid price; the
process is transparent with all bidders knowing the bid price of other bidders; the bidders
can quote a higher price to annul the earlier bid; generally, an auction is for a limited time
and at the end of the time limit, the seller sells the item to the highest bidder; the seller
reserves the right to fix a floor price or reserve price below which bids are not accepted.
If there are no bids at a price higher than the reserve price, the sale does not go through,
though the seller might bring down the reserve price.

The Internet brings a number of efficiencies to the process of auctioning; unlike physical
auction electronic auction can happen across time zones globally and on a 24 × 7 basis;
with geographic constraints removed electronic auction (e-auction) may bring larger num-
bers of bidders leading to network economics and improving the efficiency of the auction
process [33].

To conduct e-auction an auction engine has to be built either by the service provider
(eBay) or the seller can use third-party e-auction engines from a number of vendors Over-
Stock, TenderSystem, and TradeMe, for example.

The auction engine has modules to publish the tender, process queries, accept quotations
from the bidders, present the highest bid at any time (call out) electronically to any of
the bidders over the Net, provide time for the next higher bidder to bid, close the bid
at the end of the time, collect commission charges for conducting the auction, and declare
the results—all in a transparent manner. Though the process is fairly simple, sophisticated
algorithms have to work behind the screen as tens of thousands of auctions would be taking
place simultaneously; even the New Zealand-based TradeMe.com reports 565,000 auctions
running at any day, while eBay talks of millions of auctions running simultaneously [34,35].

A more interesting Internet auction is reverse auction (also called procurement auc-
tion) pioneered by an ex-GE employee, who founded Freemarkets Online (later acquired
by Ariba). In reverse auction, instead of the seller putting out the auction for the buyers
to bid, the buyer puts out the auction for all the sellers to bid; a typical application is the
procurement manager wanting to buy items from multiple suppliers.

In the conventional purchase, the specifications for an item, that the buyer is interested
to buy, is put out as tender. Typically, sellers put out a sealed bid; after ensuring that all the
bids have quoted for the same item the sealed bids are opened and the seller who quotes the
minimum price is awarded the contract. In reverse auction, there is no sealed bid; everyone
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would know the bid price, leading to higher levels of transparency and efficiency. Such
buying is a huge opportunity globally—Fortune magazine estimated that industrial goods
buying alone was $50 billion in year 2000—and even a single percentage improvement could
translate to millions of dollars of savings.

A typical reverse auction engine facilitates the process of auctioning [33–35] by way of

• Preparation (help in preparing standardized quotations that makes supply/
payment schedule, payment terms, and inventory arrangements common across
suppliers to get everyone a “level playing field”). In the process, many industrial
items with complex specifications that are vaguely spelt out get so standardized
that they become almost a “commodity” that can be “auctioned”;

• Finding new suppliers (being an intermediary and a “market maker,” reverse
auction vendors bring in a larger range of suppliers to choose from);

• Training the suppliers (reverse auction engine vendors train the suppliers so that
they take part more effectively in the process, leading to efficiency and time
savings);

• Organizing the auction (including the necessary electronic support, server capac-
ity, network capacity, interface software, special display to indicate the various
stages of bidding);

• Providing auction data (analysis for future auctions).

Several large buyers including General Electric and General Motors have found reverse
auctions extremely valuable. There are also consortiums like GM, Ford, and Daimler
Chrysler who run their own “specialized” reverse auction sites. A whole range of industry-
specific portals such as MetalJunction also offer reverse auction as a standard option today.

Internet auctions use economic theory (often modeled through simultaneous equations
that are solved through LP Solver), multicriteria decision making to model conflicting
requirements between bidder and buyer, and neural networks to model learning.

23.4.3 Electronic Delivery of Services

Internet search helps in the identification of potential customers; recommendation algo-
rithms help in suggesting the most relevant items for possible buy by a visitor to the specific
site or portal; affiliate programs bring in intermediaries who help in converting the potential
customer visit on the Internet to a possible sale; supply chain optimization helps in sup-
porting the sales of physical good; auction and reverse auction help in bringing efficiency
of online markets to business-to-business commerce, particularly in the case of physical
goods [36].

There are a whole range of services that are delivered electronically; these include infor-
mation services—hotel room booking, airline booking, e-trading, banking, online stores,
e-governance services, and e-learning. The delivery is completely online in the case of digital
goods and information services while all but the physical shipment (seeking, price negotia-
tion, ordering, order tracking, and payment) happen over the Net. For example [37],

• Hotel rooms are physical that the visitor physically occupies during the visit, but
all supporting services are delivered online.

• University classes are held in the classrooms of a University, but registration for
the course, payment of fees, reading materials, assignment submission, and award
of the grades happen electronically.

• In electronic trading if the stock exchange is online (like NASDAQ) the entire
process happens electronically.
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• Many banks provide full service-banking electronically, with the customer using
the “physical world” (the branch of a bank or ATM) only for cash withdrawal/
payment.

• Many governments provide electronic access to their services (marriage registra-
tion, passport, tax payment, drivers license) where all but physical documents
(actual passports, driver license, license plates) are delivered electronically.

• Many stores (bookstores, computers, electronic gadgets, video stores, merchan-
dise, and even groceries) support electronic access for all but except the actual
delivery.

vi. Price Engines
A key advantage of e-commerce is a far superior “comparison shopping” that the electronic
stores can offer. Normal paper-based comparison shopping is limited to a few stores, a few
items, and a few merchants/agents, typically in the same area. Thanks to the global footprint
of the Internet and the 24× 7 availability, “pricing engines” [38] can offer a far richer
information source, electronic support to compare “real” prices (calculating the tax, freight
charges, and accounting for minor feature variations all within seconds) and displaying the
results in a far more user-friendly manner. Special discounts that are in place in specific
time zones or geographies for specific customer segments (age groups, profession, and sex)
can be centrally served from a common database with the user not having to “scout” for
all possible promotions for which he/she is eligible on that day in that geography.

A number of price engines are available today. Google offers “Froogle”; the early pioneer
NexTag started with a focus on electronics and computer products and recently expanded to
cars, mortgages, and interestingly online education programs! PriceGrabber is an innovator
in comparative shopping with 22 channels and brings the entire ecosystem together that
includes merchants, sellers, and other intermediaries; BestBuy, Office Depot, and Wal-Mart
are PriceGrabber customers.

Comparison shopping can be viewed as a specialized search engine, specialized
e-marketplace, or as a shopping advisory service firm. Yahoo introduced YahooShopping,
another comparative shopping service.

Comparative shopping sites organize structured data—price lists, product catalog, feature
lists—unlike ordinary search engines like Google that deal with unstructured Web pages.
Specialized techniques are needed (table comparison) as well as “intelligence” to check which
accessory goes with what main item. Often many of these higher level processes are done
manually by experts and combined with automated search, though attempts to automate
structured data are underway by many comparative shopping engines. Specialized compar-
ative shopping engines focusing on travel would address issues like connectivity of different
segments, multimodal availability checking like room availability, transportation facilities,
along with airline booking.

Comparative shopping engines use expert systems, ideas from AI, heuristics, and spe-
cialized algorithms like assignment and matching to get the speed and richness of the rec-
ommendations (in that sense a comparative shopping engine can be viewed as another
“recommendation engine”).

Price engines use simulation to study millions of alternatives to generate initial alterna-
tives, linear and nonlinear programming to optimize costs, and multiattribute utility theory
to balance the conflicting requirements of buyers and sellers.

23.4.4 Support for E-Commerce Infrastructure

The sale of digital goods, electronic support for sale of physical goods, or electronic delivery
of other services need a reliable, highly available, and scaleable Internet infrastructure with
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a range of challenges. We address the challenges relating to the distribution of content by
building a specialized infrastructure for mission critical sites; we address the issues relating
to content distribution of very demanding sites like the World Cup games site or Olympic
games site during the peak period using Web-caching.

Finally, e-commerce should address post-sales support also. While there are many issues,
we address the specific technology of “Web analytics” that provides insights into customer
behavior in the e-commerce context.

vii. Content Delivery Network
Mission critical servers that distribute large content (software downloads, music, video) must
plan for sustained high performance. Downloading of software, if it takes too much time
due to network congestion, would lead to “lost customers” as the customer would “give up”
after some time; dynamic information like Web-casting (for Webinar support) would need
guaranteed steady network availability to sustain delivery of audio or video content; any
significant delay would lead to poor quality sessions that the users would give up. Compa-
nies like Akamai [39] have pioneered a way of distributing content by equipping the “edge”
with sufficient content delivery for high availability, replicating the content at multiple loca-
tions for faster delivery, and running an independent managed network for sustained high
performance, in addition to tools to manage the whole process without human intervention.

A content delivery network (CDN) consists of servers, storage, and network working in
a cooperative manner to deliver the right content to the right user as fast as possible,
typically serving the user from the nearest possible server location, and if possible using the
cheapest network. Obviously, it is a continuously adaptive optimization problem for which
multicommodity flow algorithms have been extensively applied.

The key issues that must be optimized are the location of the servers and the choice of
multiple backbones that improves performance (user gets the content delivered real fast) and
decreases cost (minimal replication, least number of servers/least expensive servers, minimal
usage of bandwidth/least cost bandwidth). Naturally the objective is to provide consistent
experience to the users without their having to direct their search to specific locations; work-
ing behind the infrastructure must be a smart system that constantly watches the network,
copies content at multiple locations, replicates servers at multiple networks/locations, and
negotiates bandwidth.

Typically, content delivery networks are built as “overlay network” over the public Inter-
net and use DNS re-direct to re-direct traffic to the overlay network. The key elements of
CDN include

• High-performance servers
• Large storage
• Backup/storage equipment and “smart” policies to manage backup/storage
• Automated content distribution/replication
• Content-specific (audio/video, file transfer) delivery
• Content routing
• Performance measurement, and
• Accounting for charging the clients.

A content delivery network can be viewed as “higher layer” routing [39]; “Ethernet rout-
ing” happens at Layer 2 (as per OSI protocol); IP routing happens at Layer 3; port-based
routing takes place at Layer 4; and content-based routing can be viewed as Layer 4 to Layer
7 routing. New protocols that permit query of cache have led to the maintenance of “cache
farms” to improve content delivery.
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Akamai, Speedera (now part of Akamai), Nexus, Clearway, and iBeam Broadcasting (that
pioneered the use of satellite for replication) are the pioneers in CDN technology develop-
ment. This is an evolving area of research currently.

The importance of CDN can be gauged by the fact that the leader in CDN, Akamai, has
Google, Microsoft, AOL, Symantec, American Express, and FedEx as its customers today.

Google uses commodity servers and high availability algorithms that use a distributed
computing model to optimize search; content delivery is optimized using sophisticated
caching servers; as search results are less demanding (compared to video streaming, Webi-
nars, and Webcasts) Google is able to provide high performance at lower costs; with Google
getting into video, some of the strategies used by other CDN vendors might be pursued by
Google also.

CDN uses a distributed computing model to improve availability, networks to model the
underlying infrastructure, linear and dynamic programming to optimize flows, stochastic
processes to model user behavior, and heuristics to decide routing at high-speed for real-
time high performance.

viii. Web Site Performance Tuning
With Internet penetration on the rise, end users depending on Google, Yahoo, MSN, AOL,
and eBay for their day-to-day operations (search, mail, buy), the demand on the Inter-
net infrastructure is increasing both quantitatively and qualitatively. Users expect better
performance and ISPs want more customers. Users want screen refresh to happen within
a couple of seconds irrespective of network congestion or the number of users online at a
time. The users also expect the same response irrespective of the nature of the content—
text, graphics, audio, or video. Several researchers have addressed this issue. Google uses
several server farms with tens of thousands of servers to make its site available all the time
and the site contents refresh fairly fast. A whole area of “load-balancing” content delivery
has emerged over the past decade with several novel attempts [40,41].

One attempt to improve Web-site performance by load balancing is to use content dis-
tribution strategies that use differentiated content delivery strategies for different content
[41]. In this scheme, the differential content is distributed to servers of varying capability:

• High-end mainframe database servers for critical content
• Medium-end Unix box running low-end DBMS for less-critical content
• Low-end commodity server for storing other information as text files.

For example, in an airline reservation system,

• Fast-changing and critical content like “seat matrix” could be stored on a
mainframe/high-performance server,

• Less frequently changing content like “fare data” that is less critical for access
performance could be stored on a mid-range database server, and

• “Time table” information that does not change for a year can be kept as a flat
file on a commodity server.

By storing differentiated content on servers of different capability, criticality, and costs, it
is possible to cut down costs without compromising on quality of service; of course, sophis-
ticated replication schemes must be in place to ensure that the data across the three levels
of servers are consistent. The queries would arrive at an intermediate server and be directed
to the right server based on the content, yet another content delivery distribution scheme.

With the rising popularity of some sites, hit rates are reaching staggering proportions—
access rates of up to million hits per minute on some sites are not uncommon, posing
great challenges to servers, software, storage, and network. Content-based networking is a
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solution for some premier sites (Microsoft and FedEx), but ordinary sites too need enhanced
performance.

One approach to improve Web-site performance is to create concurrency through

• Process-based server (e.g., Apache server)
• Thread-based server (e.g., Sun Java server)
• Event-driven server (e.g., Zeus server), or
• In-kernel servers (very fast though not portable).

OR algorithms have been used to combine the various schemes; in addition, the “pop-
ularity index” of the content is used in a prioritization algorithm to improve Web site
performance of critical application infrastructure.

Such strategies have been used successfully to optimize Web servers for critical appli-
cations like the Olympic Games site during the days of the Olympic Games with telling
performance. For example, the Guinness Book of World Records announced on July 14,
1998, has two notable records:

• Most popular Internet record of 634.7 million requests over the 16 days of the
Olympic Games.

• Most hits on an Internet site in a minute—110,114 hits—occurred at the time of
women’s freestyle figure skating.

Using special techniques that use embedded O/S to improve router performance by opti-
mizing TCP stack, such strategies helped IBM achieve superior performance—serving
5000 pages/second on a single PowerPC-processor-based PC class machines running at
200 MHz [41].

Yet another technique widely used for Web-caching uses “greedy algorithms” to improve
server throughput and client response; typical strategies include

1. Least recently used (LRV) caching and
2. Greedy dual size that uses cost of object cashing (how expensive it is to fetch the

object) and size of the object (Knapsack problem)

to fill the cache.
Web site performance tuning uses simulation to get broad patterns of usage, optimization,

and decision analysis for arriving at strategies, stochastic processes and queuing theory to
model network delays, and inventory control to decide on network storage needs.

ix. Web Analytics
The final stage of e-commerce is post-sales support. In the context of the Web it is important
to analyze the consumer behavior in terms of the number of visits, how much time it took for
the user to find the information that was being searched, the quality of the recommendations,
the time the user spent on the various activities of the buyer–seller interaction that takes
place on the Internet. In turn, such insights would help the seller to offer better buying
experience and offer more focused products in the next buying cycle. Web analytics is the
technology that addresses this issue [42].

From the early days, Web site administrators have used logs to study the visit pattern of
the visitors visiting the site—number of visitors, distribution of visitors over time, popular
Web pages of the site, most frequently visited Web page, least frequently visited Web page,
most downloaded Web page, and so on. With the proliferation of the Web and the sheer size
of the Web content, many Web masters could not cope up with the large numbers thrown
up by the logs to get any key insights. It is the marketing and marketing communications
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professionals along with tool vendors that have helped the ideas of Web analytics mature
over the past decade.

The technique of page tagging that permitted a client to write an entry on an exter-
nal server paved the way for third-party Web analytics vendors who could use the “logs”
and “page tag databases” to provide a comprehensive analysis of the way a particular
e-commerce Web site was being used. JavaScript technology permitted a script file to
be copied (say, for example, a “counter” application) that would let third party vendors
remotely “manage” the site and provide analytics.

Google started providing “Google Analytics” free of charge on an invitation basis since
2005. SAS Web Analytics, Webtrends, WebsideStory, Coremetrics, Site Catalyst, and HitBix
are other Web analytics vendors who pioneered many ideas in this emerging area [42]. A
comprehensive Web analytics report goes beyond simple page counts, unique visitors, or
page impressions to provide insights into usability, segmentation, campaigns to reach specific
customers, and identification of potential customers, in the process becoming a powerful
marketing tool.

Web analytics uses data mining including optimization and simulation for pattern gen-
eration and pattern matching, stochastic processes, and simulation for traffic analysis and
neural networks, and genetic algorithms for postulating patterns and hypotheses.

23.5 Tools–Applications Matrix

We have outlined a range of OR applications for e-commerce in this section. Instead of
listing the tools and techniques we have discussed the different OR algorithms within the
life-cycle of typical e-commerce—customer acquisition, promotion, price negotiation, order
processing, delivery, payment, and after-sales support. We have indicated at the end of every
subsection describing the nine tools and applications (Internet search to Web analytics), the
key OR algorithms that the researchers have found useful. To provide a better perspective of
the interplay of e-commerce applications and tools of OR, the following tools–applications
matrix indicates the applicability of all relevant tools for each of the nine key e-commerce
tools and applications discussed in this chapter. The chart is more indicative and includes
the tools most likely to be used; after all, most tools can be used on every occasion.

OR Techniques used in 1 2 3 4 5 6 7

Internet search � �
Recommendation algorithms � � � �
Internet affiliate programs � �
Supply chain optimization � � � � � �
Internet auction � � �
Price engines � � � �
Content delivery network � � � � �
Web performance tuning � � � � � � �
Web analytics � � � � �

1. Linear, integer, nonlinear, and dynamic programming
2. Network optimization
3. Decision analysis and multi-criteria decision making
4. Stochastic processes and queuing theory
5. Inventory control
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6. Simulation, and
7. Heuristics, AI, genetic algorithms, and neural networks.

23.6 Way Forward

E-commerce is fundamentally transforming every business—corporations, universities,
NGOs, media, and governments. With Internet still reaching only 2 billion of the 6+ billion
people in the world, e-commerce has the potential to grow; the existing users of e-commerce
will see further improvements in the services they see today and a whole new set of services
that have not even been touched. We are still in the growth phase of global e-commerce.
OR algorithms have influenced significantly the various business models and services offered
by e-commerce today. Several of the e-commerce applications pose special challenges; OR
professionals would find new algorithms and techniques to solve the challenges arising out of
e-commerce powered by WWW 2.0 and Internet II. It will be exciting to see OR influencing
the future of e-commerce and OR getting influenced by e-commerce applications.

23.7 Summary

In this chapter, we have outlined a number of OR applications in the context of e-commerce.
With e-commerce growing phenomenally, it is impossible to document all the e-commerce
applications and the OR tools used in those applications. We have taken a more pragmatic
view of outlining the key OR tools used in the different stages of the life-cycle of a typical
e-commerce transaction, namely, customer acquisition, promotion, order processing, logis-
tics, payment, and after-sales support. A set of nine key e-commerce applications, namely,

1. Internet search
2. Recommendation algorithms
3. Internet affiliate programs
4. Supply chain optimization
5. Internet auction
6. Price engines
7. Content delivery network
8. Web-site performance tuning
9. Web analytics

have been discussed as a way to provide insight into the role of OR models in e-commerce.
It is not possible to list the thousands of e-commerce applications and the use of hundreds
of OR tools; what is indicated in this chapter is the immense potential of OR applications to
e-commerce through a set of nine core tools/applications within the world of e-commerce.
A tools–applications matrix provides the e-commerce applications versus OR tools match.
While a lot has happened in the past decade, one expects a much larger application of OR
to the next stage of growth in global e-commerce.
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24.1 Introduction

24.1.1 Sustainability

There has been an increased awareness and concern in sustaining precious natural resources.
Water resources planning is rising to the top of the international agenda (Berry, 1996). In the
following, we present some of the problems that are affecting water resources. Chiras et al.
(2002) list the following water-related problems in the United States: increasing demand
in states such as Florida, Colorado, Utah, and Arizona; water used for food has tripled in
the last 30 years to about 24(106) hectares straining one of the largest aquifers, Ogallala
aquifer, ranging from Nebraska to Texas with a water table decline of 1.5 m per year in
some regions; high industrial and personal use; unequal distribution; and water pollution.
In the United States, the estimated water use is about 408 billion [408(109)] gallons per
day with a variation of less than 3% since 1985. The water use by categories is as follows:
48% for thermoelectric power, 34% for irrigation, 11% for public supply, and 5% for other
industrial use (Hutson et al., 2004).

Sustaining this resource is attracting significant attention (Smith and Lant, 2004). Sus-
tainability is defined as “meeting current needs without compromising the opportunities

24-1
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of future generations to meet their need” (World Commission, 1987). According to the
American Society of Civil Engineers (1998) and UNESCO, “Sustainable water systems are
designed and managed to fully contribute to the objective of the society now and in the
future, while maintaining their ecological, environmental and hydrologic integrity.” Heintz
(2004) points to economics to provide a framework for sustainability as not spending the
“principal.” He also elucidates the use of technology for resource substitution especially
for nonrenewable resources. Dellapenna (2004) argues that if the replenishment time is too
long, such as for iron ore or oil cycles, the resource should not be considered sustainable.
Replenishing groundwater in general is a long-term process. Kranz et al. (2004), Smith
(2004), Loucks (2002), and Loucks and Gladwell (1999) provide indicators for sustaining
water resources. An indicator used for assessing the receiving water quality is the total
maximum daily load (TMDL), which is the maximum mass of contaminant per time that a
waterway can receive from a watershed without violating water quality standards; an allo-
cation of that mass to pollutant’s sources is also required. In 2004, about 11,384 miles of
Virginia’s 49,220 miles of rivers and streams were monitored; of these, 6948 miles have been
designated as impaired under Virginia’s water quality standards (Younos, 2005). Reinstat-
ing water resources to acceptable standards requires a holistic engineering approach. Delleur
(2003) emphasizes alternative technological solutions that should be assessed for (i) scien-
tific and technical reliability, (ii) economic effectiveness, (iii) environmental impact, and
(iv) social equity.

24.1.2 Minor Systems

In the following, we draw attention to a minor system, namely the home plumbing sys-
tem. Domestic copper plumbing pipes (for drinking water use) are experiencing pinhole
leaks. Figure 24.1 shows the distribution of locations reporting pinhole leaks around the
country. We define the major system as the public utility water distribution system that
brings drinking water to houses. While the major system is readily recognized as a vast
infrastructure system of nearly 1,409,800 km of piping within the United States (Material

FIGURE 24.1 Plumbing pipe pinhole leak distribution (2000–2004) (small triangles show number of
leaks less than 10). (From Lee and Loganathan, Virginia Water Central, Virginia Water Resources Research
Center, 2006. With permission.)
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Performance, 2002), the minor system that is at least 5–10 times larger is generally not well
addressed. When a pipe has a leak, the homeowner is faced with the following issues: water
damage cost, repair cost, service disruption, possible lowering of home value, home insur-
ance/premium increase/nonrenewal, and health consequences, resulting from brown mold
growth and mental stress. The interaction between hydraulics, water quality parameters,
and pipe material has to be understood. There is a need for a decision model recommending
whether to continue to repair or replace the system.

Another example is related to urbanization, which increases imperviousness along with
quick draining channelization for runoff. These modifications result in increases in runoff
volume and peak flow and decreases in time to peak and recharge to groundwater storage.
It is required by many local governments that the post development peak flows of certain
designated frequencies must not exceed those of the predevelopment conditions and proper
flood controlling detention ponds must be installed to contain the increased post devel-
opment peak flows. An associated problem is that the falling rain can capture airborne
pollutants with it as well as dislodge particulate matter settled on the ground. The surface
runoff can dissolve as well as carry the adsorbed pollutants downstream. The water quality
impacts of stormwater discharges on receiving lakes and rivers are quite significant, as indi-
cated by the Environmental Protection Agency’s (EPA) guidelines for stormwater discharge
permits in the National Pollutant Discharge Elimination System (NPDES) program. Civil
action may be brought by the EPA against large municipalities that do not comply with
the permit requirements.

The above description addresses the most frequent drainage problem within an urban
area. The control measures put in place together to alleviate the problem constitute the
minor drainage system consisting of street gutters, inlets, culverts, roadside ditches, swales,
small channels, and pipes. A less frequent but significant flood damage problem arises when
an urban area is located along a water course draining a large basin. The issue here is con-
trolling the flood plain use and providing for proper drainage of flood waters. The Federal
Emergency Management Agency (FEMA) issues guidelines with regard to flood plain man-
agement under the National Flood Insurance Program (NFIP). The components involved in
this latter problem are the natural waterways, large man-made conduits including the trunk-
line sewer system that receives the stormwater from the minor drainage system, large water
impoundments, and other flood protection devices. These components together are desig-
nated as the major drainage system. Distributing, dimensioning, maintaining, and operating
these devices for maximum benefit is part of efficient water resources management.

24.1.3 Chapter Organization

Even though the foregoing discussion seems to delineate large and small-scale systems, in
reality they all are intertwined. For example, phosphate is typically added as a corrosion
inhibitor at the treatment plant but may have to be removed at the wastewater plant before
it reaches the receiving water body. It has become clearer that water systems cannot be
engineered in isolation. This introduction emphasizes the need for a holistic approach. In
the following, we present a set of water resources problem formulations with the understand-
ing that by no means are these exhaustive. All real life water resources problems require
an examination of alternatives. These problems typically require a combined simulation-
optimization approach highly suited to evolutionary optimization techniques.

There are also specific structures that can be exploited for many of the problems. They
seem to break into the following categories, namely (1) project planning including sequenc-
ing of multiple projects, (2) design, (3) operation, and (4) replacement. The goals and data
needs under these categories differ. Project planning involves national and regional economic
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development, damage reduction, protection of ecosystems, and improvement of quality of
life. Planning process requires a reconnaissance study followed by feasibility assessment on
a system-wide basis (National Research Council, 1999). Typically, a design life is used. It
includes factors such as period of cost recovery, meeting the intended function, technological
obsolescence, and the life of the weakest component. The design aspect mainly focuses on
dimensioning of the components subject to regulatory, physical, societal, and technical con-
straints. The operational phase addresses system behavior of an already built system and
its coexistence under changing needs. McMahon and Farmer (2004) provide a lucid account
of the need for reallocation of federal multipurpose reservoirs because of changing social
preferences and purposes that were originally intended. The replacement facet assumes that
the facility’s continued service is essential and it fails periodically. Here the analysis focuses
on failure patterns and alternative components to provide improved service.

In this chapter, we cover two major systems, namely, reservoirs and water distribution
networks. The minor system, namely, the home plumbing system, is actually much larger
than the public water distribution system and is addressed next. We present outcomes of a
focus study group on consumer preferences toward different attributes of plumbing pipes.
Urban stormwater management related to nonpoint source pollution is a major problem. In
addition to regulations, financial considerations due to limited space and price of land steer
the engineering design. Groundwater contamination is widespread and remains a significant
cause of concern. All these problems require a process simulation-optimization approach. In
this chapter, mathematical formulations for the efficient utilization of water resources are
presented.

24.2 Optimal Operating Policy for Reservoir Systems

24.2.1 Introduction

In this section, we consider one of the largest and most complex water resource systems,
namely, the reservoir. Labadie (2004) provides a comprehensive updated review of optimiza-
tion of reservoir systems. He also includes a discussion on available software. He points out
that with construction of no new large-scale projects there is a need for methods that can
guide in efficient operation of these systems. It is not clear whether the increased demands on
fossil fuels will result in a re-examination of policy toward building dams. A comprehensive
analysis of reallocation of reservoir storage for changing uses and social preferences is given
in McMahon and Farmer (2004) (also see National Research Council, 1999). A reservoir sys-
tem captures, stores, and distributes water in sufficient quantities at sufficient head when
and where needed. Such a system is typically subjected to three kinds of analysis. At precon-
struction planning stage, determine the required capacity using the lowest inflows called the
critical duration sequence that shifts burden to storage in meeting the demand; or compute
the maximum yield that is obtainable for a given capacity. At post-construction planning
stage, reevaluate performance with multiple inflow sequences in meeting the demand.

The United States Army Corps of Engineers (USACE) is the primary agency responsible
for flood control for major reservoir systems. In the following, USACE’s storage classification
(Feldman, 1981; Wurbs, 1991) is adopted. In broad terms, reservoir storage is divided into
three zones. The bottom zone, called inactive pool, is located beneath the low-level outlet so
that no release is possible. This storage is meant to trap sediment and may provide for fish
habitat. The top zone, called flood control storage, is empty space and is used only during
periods of high flows so that releases will not exceed downstream channel capacity. When
the top of the flood control zone is exceeded, the reservoir is out of control and an emergency
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spillway is used to divert the bulk of the flow. Major dams are designed for large flood events
called probable maximum floods based on meteorological factors. The moisture maximization
procedure employed in computing probable maximum precipitation provides the upperbound
flood and it is highly unlikely this design event can ever be exceeded (Wurbs, 1991). The
middle zone, called conservation storage, is utilized to satisfy day to day demands.

The USACE employs an index level associated with the top of each storage zone from
the inactive pool, conservation pool to the flood pool. For example, a reservoir of capacity
700,000 ac-ft may have an index level of 1 assigned to a storage of 50,000 ac-ft at the top
of the inactive pool; index 2 may correspond to 200,000 ac-ft at the top of the conservation
pool; and index 3 corresponds to 700,000 ac-ft at the top of the flood control pool. The
number of index levels can be increased by further subdividing the storage zones, mainly
in the conservation pool. When the index levels at all reservoirs coincide, the entire system
is considered to be in equilibrium and deviations from the equilibrium should be mini-
mized. The equilibrium maintenance of index levels sets up a framework for a mathematical
formulation in determining the reservoir operations schedule (Loganathan, 1996).

In real-time operations, forecasted inflows are used. The problem is solved with a rolling
horizon of a few days with the results being implemented for the current day only. For the
next day, the problem is re-solved with the updated forecast information from the current
day observations. To aid the operator in day to day operations a rule curve is used. It
specifies where the water level (storage) should be as a function of a particular month
or week. These rule curves are based on the river flow sequence and the storage capacity
that are available to smooth out operations. Because they are typically based on long-term
simulations subjecting the system to a variety of inflow sequences, inherent in a rule curve is
the anticipatory nature with regard to the stream flow. Hedging is the ability to shift storage
to later times by providing only a portion of the demand when in fact it is possible to meet
the entire demand. It is done to minimize drastic deficits over prolonged low flow periods.

The maximum flow that can be guaranteed during the most adverse stream flow period,
also known as critical period, is the firm yield. The energy that can be produced under the
most adverse flow conditions is called firm energy (Mays and Tung, 1992). The firm yield
and firm energy set the lower bounds on flow and energy that are available for all times from
a reservoir. A flow duration curve, which is a plot of flow versus percentage of times flow
that is equaled or exceeded, is utilized to select the firm yield and firm energy at the near
100% exceedance level. This curve is important because it shows the inflow potential for a
reservoir. The larger the reservoir, the higher the firm yield and energy that can be sustained
for a prolonged time period. Preliminary power plant capacity is determined based on the
average flow between selected threshold percentage exceedance values (American Society of
Civil Engineers, 1989; Warnick et al., 1984). These limits help to impose a realistic demand
pattern over the system.

The demand requirements are as follows. The water supply demands require specific
amounts of flow at various locations and time; hydropower demands require both flow and
hydraulic head at the turbine; navigation operations require sufficient flow depths in the
channels and flows for the locks; recreation aspects require minimum water level fluctuations
in the reservoir and sufficient depth for boats in rivers; ecological considerations require
maintaining water quality, selective withdrawal of water from certain zones of storage for
temperature maintenance downstream, providing sufficient amounts of aeration for required
quantity of dissolved oxygen and at the same time avoiding supersaturation of water with
gases such as nitrogen, which can cause gas bubble disease in fish and other biota (Mattice,
1991). These requirements in general become constraints on flow and reservoir storage. In
the following some general guidelines as recommended by the U.S. Army Corps of Engineers
(USACE) in meeting the demands are outlined.
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24.2.2 Reservoir Operation Rules

The USACE’s (2003) HEC-ResSim computer program [HEC5 (USACE, 1982)] is designed to
simulate system behavior including hydropower under a set of operating rules. The storage
index levels for each reservoir along with downstream flow conditions, anticipated inflows,
and a view toward reaching equilibrium for the system as a whole dictate how the releases
should be made. This approach eliminates much of the leeway in determining the releases;
however, this strategy helps in minimizing flooding and empties the system as quickly as
possible. Such a strategy should be reconsidered in a situation wherein flood control is not
a major issue. In the following the operating rules are presented.

Reservoir Releases

Reservoir releases can be based on the following criteria: (1) channel capacity at the dam;
(2) rate of change of release so that current period release cannot deviate from previous
period release by more than a specified amount unless the reservoir is in flood surcharge
operation; (3) storage not exceeding the top of conservation pool; (4) downstream control
point flooding potential; (5) meeting specified target levels; (6) exceeding required low flows;
(7) reaching various storage values; and (8) hydropower requirements.

Reservoir Filling/Drawing Down

Reservoirs are operated to satisfy constraints at the individual reservoirs to maintain spec-
ified flows at downstream control points and to keep the system as a whole in balance.

Constraints at individual reservoirs:

1. When the level of a reservoir is between the top of the conservation pool and top
of the flood pool, releases are made to attempt to draw the reservoir to the top
of the conservation pool without exceeding the channel capacity.

2. Releases are made compatible with the storage divisions within the conserva-
tion pool.

3. Channel capacity releases (or greater) are to be made prior to the time the reser-
voir storage reaches the top of the flood pool if forecasted inflows are excessive.
The excess flood water is dumped if sufficient outlet capacity is available. If
insufficient capacity exists, a surcharge routing is made.

4. Rate of change criterion specifies the maximum difference between consecutive
period releases.

Constraints for downstream control points:

1. Releases are not made (as long as flood storage remains) which would contribute
to flooding during a predetermined number of future periods. During flooding at
a downstream location, there may not be any release for power requirements.

2. Releases are made, where possible, to exactly maintain downstream releases at
channel capacity for flood operation or for minimum desired or required flows for
conservation operation.

System Balancing

To keep the entire system in balance, priority is given to making releases from the reservoir
with the highest index level; if one of two parallel reservoirs has one or more reservoirs
upstream, whose storage should be considered in making the releases, an upstream reservoir
release is permitted only if its index level is greater than both the levels of the downstream
reservoir and the combined reservoir equivalent index level. The combined equivalent index

© 2008 by Taylor & Francis Group, LLC



CH024.tex 22/10/2007 14: 23 Page 24-7

Water Resources 24-7

level corresponds to the sum of the reservoirs’ storage at the appropriate index levels. For
example, if reservoirs A, B, and C have index level 5 at storage 400, 300, and 200 (in
kiloacre feet say) the combined equivalent index 5 corresponds to the storage of 900. For an
elaborate discussion the reader is referred to the HEC5 user’s manual (USACE, 1982). In
the following, a general problem formulation that accommodates many of the facets of the
above operating policy guidelines is presented.

24.2.3 Problem Formulation

A general mathematical programming formulation for the reservoir-operations problem may
be stated as
Problem 24.1:

minimize: deviations = F(Sd+
11, Qd+

11, Ed+
11, Sd−

11, Qd−
11, Ed−

11, . . .) (24.1)

Subject to:

Real Constraints

Reservoir continuity

S(i, t + 1) + R(i, t) = S(i, t) + I(i, t) for i = 1, . . .,NRES; t = 1, . . ., T (24.2)

Reach routing

Q(i, t) = g[P (i, t), TF(i, t), Q(ji), R(ji)] for i = 1, . . .,NREACH; t = 1, . . ., T (24.3)

Hydropower

R(i, t) = A(i, t) + B(i, t) for i = 1, . . .,NPLANT; t = 1, . . ., T (24.4)

E(i, t) = η(i)γA(i, t)H [S(i, t)] for i = 1, . . .,NPLANT; A = 1, . . ., T (24.5)

Bounds on flows

LQ(i) ≤ Q(i, t) ≤ UQ(i) for i = 1, . . .,NREACH; t = 1, . . ., T (24.6)

Bounds on storages

LS(i) ≤ S(i, t) ≤ US(i) for i = 1, . . .,NRES; t = 1, . . ., T (24.7)

Powerplant capacity
E(i, t) ≤ EP(i) for i = 1, . . .,NPLANT (24.8)

Nonnegativity of variables

S(i, t), R(i, t), Q(i, t), Sd−
i,t, Sd+

i,t, Qd−
i,t, Qd+

i,t, Ed−
i,t, Ed+

i,t ≥ 0 (24.9)

Goal Constraints

S(i, t) + Sd−
i,t − Sd+

i,t = TS(i, t) for i = 1, . . .,NRES; t = 1, . . ., T (24.10)

Q(i, t) + Qd−
i,t − Qd+

i,t = TQ(i, t) for i = 1, . . .,NREACH; t = 1, . . ., T (24.11)

E(i, t) + Ed−
i,t − Ed+

i,t = TE(i, t) for i = 1, . . .,NPLANT; t = 1, . . ., T (24.12)

in which S(i, t) = the storage at the beginning of period; I(i, t) and R(i, t) = inflow and
release during period t for reservoir i, respectively; NRES is the number of reservoirs;
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T = the operating horizon; Q(i, t) = the flow in reach i written as some function g; P (i, t) and
TF (i, t) = precipitation and tributary flow to reach i for period t, respectively; A(i, t) = flow
for hydropower from reservoir i for period t; B(i, t) = nonpower release from reservoir i for
period t; η(i) = efficiency of plant i; γ = specific weight of water; H[S(i, t)] = head over the
turbine, a function of reservoir storage and tailwater level; EP(i) = plant capacity for the ith
power plant; NPLANT = the number of power plants; ji= the set of control stations con-
tributing flow for reach i; NREACH = the number of reaches; LQ(i) and UQ(i) = lower and
upper bounds for flow in reach i, respectively; LS(i) and US(i) = lower and upper bounds for
storage in reservoir i, respectively; Sd−

i , Sd+
i , and Qd−

i , Qd+
i , and Ed−

i , Ed+
i = the slack

and surplus deviational variables for storage, flow, and power respectively; TS(i, t) = the
storage target for reservoir i at time t; TQ(i, t) = the flow target for reach i at time t;
and TE(i, t) = power target for plant i at time t. The storage goal constraints provide for
recreation and hydropower; the flow goal constraints provide for water supply, navigation,
instream flow and irrigation; the hydropower goal constraints provide for target power pro-
duction at each plant.

Hydropower

Eschenbach et al. (2001) provide a detailed description of Riverware optimization decision
support software based on a goal programming formulation. Linearization is used to solve it
as a linear program. They also include a description of Tennessee Valley Authority’s use of
the software in managing their reservoirs to determine optimal hydropower schedules. The
hydropower aspect has been considered in various forms, such as assigning a target storage
for power production; maintaining a fixed head; linearization by Taylor series about an iter-
ate; induced separability/subsequent linearization; division of storage into known intervals
and choosing constant heads for each interval with the selection of intervals aided by integer
variables or by dynamic programming state transition; optimal control strategy and direct
nonlinear optimization. Comprehensive reviews are given in Labadie (2004), Yeh (1985),
Wurbs (1991), and Wunderlich (1991). Martin (1987) and Barritt-Flatt and Cormie (1988)
provide detailed formulations. Successive linear programming (Palacios-Gomez et al., 1982;
Martin, 1987; Tao and Lennox 1991) and separable programming (Can et al., 1982; Ellis and
ReVelle, 1988) are widely adopted for solution. Pardalos et al. (1987) have offered a strat-
egy to convert an indefinite quadratic objective into tight lower bounding separable convex
objective which can be solved efficiently. If the hydropower constraints are dropped or lin-
earized, then using linear routing schemes in (Equation 24.3) Problem 24.1 becomes a linear
program (Loganathan and Bhattacharya, 1990; Changchit and Terrell, 1989). Martin (1995)
presents a well-detailed real system application to the Lower Colorado River Authority dis-
trict. Moore and Loganathan (2002) present an application to a pumped storage system.

Trigger Volumes for Rationing

Thus far the discussion has paid more attention to floods. However, water shortages do
occur and how to cope with them is a critical issue. Lohani and Loganathan (1997) offer a
procedure for predicting droughts on a regional scale. In the case of a reservoir one should
know at what low storage levels the regular releases should be curtailed toward an impending
drought (Shih and ReVelle, 1995). If the available storage plus forecasted inflow is less than
V1p, the first-level trigger volume, level 1 rationing is initiated. If the anticipated storage
for the next period is less than V2p, the second level trigger volume, level 2 rationing, which
is severer than level 1 rationing, is initiated. The objective is not to have any rationing at
all by prudently utilizing the storage to satisfy the regular demands. With this objective,
the V1p and V2p will be chosen optimally by preserving storage whenever possible to hedge
against future shortfalls.
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Shih and ReVelle (1995) propose optimal trigger volumes V1p and V2p to initiate two levels
of rationing of water during drought periods as described by the following constraints.

St−1 + It ≤ V1p + Mδ1t (24.13)

St−1 + It ≥ V1p − M(1 − δ1t) (24.14)

St−1 + It ≤ V2p + Mδ2t (24.15)

St−1 + It ≥ V2p − M(1 − δ2t) (24.16)

Rt = (1 − α1)D∗δ1t + (α1 − α2)D ∗ δ2t + α2D (24.17)

V1p ≥ (1 + β1)V2p (24.18)

δ1t ≤ δ2,t+1 with δ1t, δ2t ∈ 0 or 1 binary (24.19)

in which V1p, V2p = cutoff storage values for levels 1 and 2 rationing; α1, α2 = percentages
of demand D provided during rationing levels 1 and 2, respectively; β1 = suitably chosen
percentage level, say 20%. When δ1t = 1, from Equation 24.14 there is no rationing; when
δ1t = 0, and δ2t = 1 from Equations 24.13 and 24.16 there is level 1 rationing. When δ2t = 0,
there is level 2 rationing and Rt = α2D. Note that when δ2t = 0, we must have δ1t = 0 by
Equation 24.14. When δ1t = 1, δ2t has to be 1 and Rt = D. Constraint 24.19 says that level 1
rationing must precede level 2 rationing. The objective is to maximize

∑
δ1t over t.

Linear Release Rule

There have been attempts to follow the rule curve in the sense of relating a fixed amount
of storage to a specific time period. For example, the release rule given by ReVelle et al.
(1969), also called linear decision rule, is

Rt = St−1 − bt (24.20)

in which St−1 = storage at the end of t − 1; bt = decision parameter for period t; Rt = release
for period t. This rule says that from the end of t − 1 period storage St−1, save bt amount
and release the remaining during period t as Rt regardless of inflow, It, which will add to
bt. It is seen from Equation 24.20 that the end period of period t storage St is the sum of
the left-over storage bt from the previous period plus the inflow. That is,

St = bt + It (24.21)

With the aid of Equation 24.21 each storage variable St can be replaced by the corresponding
decision variable bt which will be optimally determined for each t. If t represents a month,
b1 = b (January) is fixed and repeats in an annual cycle in replacing S1, S13, S25, and so on.
From Equation 24.21 it is seen that the single decision variable b1 along with the known I1,
I13, and I25 replaces the three variables S1, S13, and S25. Therefore, this substitution leads
to a few decision variables. These twelve bt values help to regulate a reservoir. Refinements
to this type of release rule are given in Loucks et al. (1981) (also see Karamouz et al., 2003,
and Jain and Singh, 2003).

Chance Constraint

Instead of using the predicted value of the inflow, its quantile may be used at a particular
probability level. For example, consider the probability that storage at the end of time
period t denoted by St exceeding some maximum storage SMAX must be less than or equal
to a small value, say 0.1. That is,

P [St ≥ SMAX] ≤ 0.1 (24.22)
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Substituting Equation 24.21 in Equation 24.22 we obtain

P [It ≥ SMAX − bt] ≤ 0.1 (24.23)

with its deterministic equivalent given by

SMAX − bt ≥ i0.9(t) (24.24)

in which i0.9(t) = cutoff value at the 90% cumulative probability level for period t.

Firm Yield, Storage Capacity, and Maximization of Benefits

As mentioned before, firm yield and storage capacity to meet fixed demands are important
parameters. The determination of firm yield requires maximize [minimum R(i, t)] for spec-
ified reservoir capacity. The required storage capacity is obtained by minimizing capacity
to satisfy the demands. The optimal capacity therefore will be determined by the critical
period with the most adverse flow situation requiring maximum cumulative withdrawal as
dictated by the continuity constraint (Equation 24.2). Of course, a large demand that cannot
be supported by the inflow sequence would trigger infeasibility. While the objective in Equa-
tion 24.1 minimizes the deviations from targets, one may choose to maximize the benefits
from the releases including hydropower, and recreation. Such a formulation can yield a prob-
lem with nonlinear objective and linear constraint region. Can et al. (1982) discuss strategies
to linearize the objective function so that the problem can be solved as a linear program.

In the simulation program HEC5, by employing the index level discretization scheme for
storage capacity, releases compatible with the storage are made, which enhances operations
within the conservation zone. This scheme also minimizes flood risk at a reservoir by having
its storage compatible with the others. The program attempts to find near optimal policies
by cycling through the allocation routines several times. This approach has a tendency to
place the releases at their bounds. Practical considerations in reservoir operations include a
well spelt out emergency preparedness plan and the operation and maintenance of electri-
cal, mechanical, structural, and dam instrumentation facilities by the operating personnel
located at or nearest to the dam. These practical operating procedures at the dam site are
covered in the standing operating procedures guide (U.S. Department of Interior, 1985).
Because loss of lives and property damages are associated with any faulty decisions with
regard to reservoir operations, all model results should be subjected to practical scrutiny.

24.3 Water Distribution Systems Optimization

24.3.1 Introduction

Water distribution systems constitute one of the largest public utilities. Optimal water
distribution system design remains intriguing because of its complexity and utility. Com-
prehensive reviews of optimization of water distribution systems are given in Boulos et al.
(2004) and Mays (2000). Bhave (1991) and Walski (1984) provide thorough details on for-
mulating water distribution network problems. The pipe network problems have feasible
regions that are nonconvex. Also, the objective function is multimodal. These two aspects
make the conventional (convex) optimization methods to result in a local optimum sensitive
to the starting point of the search. In this section, a standard test problem from the liter-
ature is considered. The pipe network is judiciously subjected to an outer search scheme
that chooses alternative flow configurations to find an optimal flow division among pipes.
An inner linear program is employed for the design of least cost diameters for the pipes.
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The algorithm can also be employed for the optimal design of parallel expansion of exist-
ing networks. Three global search schemes, multistart-local search, simulated annealing, and
genetic algorithm, are discussed. Multistart-local search selectively saturates portions of the
feasible region to identify the local minima. Simulated annealing iteratively improves the
objective function by finding successive better points and to escape out of a local minimum
it exercises the Metropolis step, which requires an occasional acceptance of a worse point.
Genetic algorithm employs a generation of improving solutions as opposed to the other two
methods that use a single solution as an iterate. Spall (2003) provides comprehensive details
on search methods.

24.3.2 Global Optimization

It is not uncommon to find real life problems that have cost or profit functions defined
over a nonconvex feasible region involving multiple local optima and the pipe network
optimization problem falls into this group. While classical optimization methods find only
a local optimum, global optimization schemes adapt the local optimum seeking methods
to migrate among local optima to find the best one. Of course, without presupposing the
nature of local optima, a global optimum cannot be guaranteed except to declare a relatively
best optimum. Detailed reviews are given in Torn and Zilinskas (1987) and Rinnooy Kan
and Timmer (1989). Consider Problem P0 given by:

Problem P0:

Minimize f(x)
Subject to : gi(x) ≥ 0 for i = 1, 2, . . ., m

Let the feasible region be X = {x|gi(x) ≥ 0}. A solution x1 is said to be a local optimum
if there exists a neighborhood B around x1 such that f(x1) ≤ f(x) for all x∈B(x1). A
solution xg is said to be a global optimum if f(xg) ≤ f(x) for all x∈X.

24.3.3 Two-Stage Decomposition Scheme

In this section, a two-stage decomposition with the outer search being conducted among
feasible flows, and an inner linear programming to optimally select pipe diameters and
hydraulic heads is employed. The following formulation retains the same general inner linear
programming framework when addressing multiple loadings, pumps, and storage tanks as
given in Loganathan et al. (1990). However, for the sake of clarity and the nature of the
example problem these elements are suppressed. Consider a pipe network comprised of N
nodes. Let S be the set of fixed head nodes. Let {N–S} be the set of junction nodes and
L be the set of links. Q(i,j) is the steady state flow rate through link (i, j) ∈L. Let L(i,j)
denote the length of link (i, j) ∈L and D(i,j) be its diameter which must be selected from
a standard set of discrete diameters D = {d1, d2, . . ., dM}. In the present formulation it is
assumed that each link (i, j) is made up of M segments of unknown lengths x(i,j)m (decision
variable) but of known diameter dm for m = 1, 2, . . ., M (Karmeli et al., 1968). Let C(i,j)m
be the cost per unit length of a pipe of diameter dm. Let rk be the path from a fixed head
node (source) to demand node, k. Let P be the set of paths connecting fixed head nodes
and basic loops. Let there be Pl loops and bp denote the head difference between the fixed
head nodes for path p connecting them; and it is zero corresponding to loops. Let Hs be
the fixed head and Hmin

k be the minimum head at node k ∈ {N–S}. Let qi be the supply at
node i which is positive; if it is demand, it is negative. Let J(i,j)m be the hydraulic gradient
for segment m (partial length of a link with diameter dm) which is given by

J(i,j)m = K[Q(i,j)/C]1.85d−4.87
m (24.25)
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in which K = 8.515(105) for Q(i,j) in cfs and dm in inches; C = Hazen-Williams Coefficient.
The pipe network problem may be stated as follows:

Problem P1:

Minimize f(x) =
∑
(i,j)

M∑
m=1

C(i,j)mx(i,j)m (24.26)

Subject to:
∑

j

Q(i,j) −
∑

j

Q(j,i) = qi for i ∈ {N–S} (24.27)

Hs − Hmin
k −

∑
(i,j)∈rk

±
∑
m

J(i,j)mx(i,j)m ≥ 0 for s ∈ S and k ∈ {N–S}

(24.28)
∑

(i,j)∈p

±
∑
m

J(i,j)mx(i,j)m = bp for p ∈ P (24.29)

∑
m

x(i,j)m = L(i,j) for (i, j) ∈ L (24.30)

x(i,j) ≥ 0 (24.31)

In Problem P1 pipe cost objective function (Equation 24.26) is minimized; constraint 24.27
represents steady state flow continuity; constraint 24.28 is the minimum head restriction;
constraint 24.29 represents the sum of head losses in a path which is zero for loops; constraint
24.30 dictates that sum of segment lengths must equal link length; constraint 24.31 is the
nonnegativity on segment lengths. The decision variables are: Q(i,j), J(i,j)m, and x(i,j)m.
The following two-stage strategy Problem P2 is suggested for the solution of Problem P1.

Problem P2:

Min
Q(i,j)

[
Min
x∈X

f(x)
]

(24.32)

in which Q(i,j) are selected as perturbations of the flows of an underlying near optimal
spanning tree of the looped layout satisfying constraint 24.27 and X is the feasible region
made up of constraints 24.28 through 24.31. It is worth noting that the optimal layout tends
to be a tree layout. Deb (1973) shows that a typical pipe cost objective is a concave function
that attains its minimum on a boundary point resulting in a tree solution (also see Deb and
Sarkar, 1971). Gessler (1982) and Templeman (1982) also argue that because optimization
has the tendency to remove any redundancy in the system the optimal layout should be a
tree. However, a tree gets disconnected even when one link fails. Loganathan et al. (1990)
have proposed a procedure that yields a set of near optimal trees that are to be augmented
by loop-forming pipes so that each node has two distinct paths to source. It is suggested
that the flows of the optimal tree be considered as initial flows that are to be perturbed to
obtain flows in all pipes of the looped network. It is observed that the inner Problem P3 of
Problem P2 given by

Problem P3:

Min
x∈X

f(x), for fixed flows (24.33)
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is a linear program that can be solved efficiently. To choose the flows in the outer problem
of P3, multistart-local search and simulated annealing are adopted. To make the search
efficient, first a set of flows corresponding to a near optimal spanning tree of the network is
found. The flows in the looped network are taken as the perturbed tree link flows by

Q(i,j)(loop) = Q(i,j)(tree) +
∑

±∆Qp(i,j) (24.34)

in which the sum is taken over loops “p” which contain link (i, j) with positive loop change
flow ∆Q used for clockwise flow.

24.3.4 Multistart-Local Search

Multistart-local search covers a large number of local minima by saturating the feasible
region with randomly generated starting points and applying a local minimization proce-
dure to identify the local optima. A suitable generating function is needed. Because flows
in the looped network are generated by perturbing the optimal tree flows, a probability
density function for loop change flows with mean zero is a good choice. However, other
parameters of the density function must be adjusted by experimentation for the problem
under consideration. The algorithm is summarized as follows:

Procedure MULTISTART

Step 0: (Initialization) Select a suitable density function (pdf) with known parameters
and assign number of seed points to be generated, NMAX; determine an estimate of global
optimal value fg; assign a large value for the incumbent best objective function value, BEST;
set n = 1.

Step 1: (Iterative Local Minimization) Until n = NMAX
do: Generate a point using the pdf that serves as perturbation flow in Equation 24.34.

Apply the minimizer Problem P3. Update incumbent BEST.
Step 2: (Termination) If |fg −BEST |< tolerance, report BEST and the optimal solu-

tion and stop. Otherwise, revise parameter values for the generating function, and/or global
value, fg and tolerance. Set n = 1; go to Step 1.

END Procedure.

24.3.5 Simulated Annealing

Simulated annealing is an iterative improvement algorithm in which the cost of the current
design is compared with the cost of the new iterate. The new iterate is used as the starting
point for the subsequent iteration if the cost difference is favorable. Otherwise, the new
iterate is discarded. It is clear that such an algorithm needs help to get out of a local
optimum to wander among local minima in search of the global minimum. It uses the
Metropolis step to accomplish this. The Metropolis step dictates that a worse point (higher
objective value for a minimization problem) be accepted from the current point with a user
specified probability “pR.” The algorithm accepts the next iterate from the current iterate
with probability one if it is a better point (lower objective value).

From the given initial point, the corresponding objective function value, f0, is calculated.
Then, a point is randomly generated from a unit hypersphere with the current iterate at
its center. This random point specifies a random direction along which a new point is gen-
erated by taking a user specified step size of α from the current iterate. A new objective
function value (f1) is evaluated at the point. The new point is accepted with the probability
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p given by:

pR = 1 if ∆f = f1 − f0 ≤ 0 (24.35)
= exp(−β∆f/fθ

0 ) if ∆f > 0

where β and θ are user-specified parameters. From the first condition of Equation 24.35
it is seen that the method readily accepts an improving solution if it is found. From the
second condition, it is apparent that an inferior point (i.e., with worse objective function
value) becomes an acceptable solution with probability exp(−β∆f/fθ

0 ) when an improving
solution is not available. Bohachevsky et al. (1986) recommend selecting the parameter β
such that the inequality 0.5< exp(−β∆f/fθ

0 ) < 0.9 holds, which implies that 50–90% of
the detrimental steps are accepted. The procedure continues until a solution that is within
a tolerance level from the user-specified (estimated) global optimal value is obtained. The
algorithm is stated as follows (Loganathan et al., 1995).

Procedure ANNEALING

Step 0: (Initialization) Let fg be the user-specified (estimated) global optimal value
(which may be unrealistic): α a step size, and β and θ acceptance probability parameters.
Let the vector of loop change flows be ε = {∆Q1, ∆Q2, . . .,∆QPl

}. Let ε0 be the arbitrary
feasible starting point of dimension Pl.

Step 1: (Local Minimization) Set f0 = f(ε0). If |f0 − fg|< tolerance, stop.
Step 2: (Random Direction) Generate Pl (number of loops) independent standard nor-

mal variates, Y1, . . ., YPl
and compute components of unit vector U: Ui = Yi/(Y 2

1 + · · ·Y 2
Pl

)1/2,
for i= 1, . . ., Pl.

Step 3: (Iterative Local Minimum) Set ε1 = ε0 + αU. Apply minimizer Problem P3. If
ε1 is infeasible, return to Step 2. Otherwise, set f1 = f(ε1) and ∆f = f1 − f0.

Step 4: (Termination) If f1 > f0, go to step 5. Otherwise, set ε0 = ε1 and f0 = f1. If
|f0 − fg|< tolerance, save ε1 and stop. Otherwise go to Step 2.

Step 5: (Acceptance–Rejection) (f1 > f0): Set pR = exp(−β∆f/fθ
0 ). Generate a uniform

0–1 variate v. If v ≥ pR, go to Step 2. Else v < pR and set ε0 = ε1, f0 = f1, and go to Step 2.
END Procedure.

The success of the procedure depends upon the selection of the parameters α (step size),
β (exponential probability parameter), and θ (exponent in the exponential probability func-
tion), which must be adjusted as necessary. If β is too large (pR is too small) too many
function evaluations are needed to escape from a local minimum; if β is too small (pR is close
to unity), an inefficient search results by accepting almost every inferior point generated.
The parameter α controls the search radius around ε0: α should be chosen such that the
distance is sufficiently long to prevent from falling back to the same local minimum. Also,
estimates for fg and tolerance should be updated based on the performance of the algo-
rithm. Goldman and Mays (2005) provide additional applications of simulated annealing to
water distribution systems.

24.3.6 Extension to Parallel Expansion of Existing Networks

Another important aspect that must be considered is the expansion of existing networks.
In the present formulation parallel expansion of existing pipes is considered. Adaptation
of Problem P2 for existing networks is as follows. For existing pipes, the pipe diameters
are fixed and parallel links may be required for carrying additional flow in order not to
increase the head loss. The flow from node i to node j, for a parallel system, is denoted by
Q(i,j) = Q(i,j),O + Q(i,j),N , in which subscripts O and N indicate Old and New, respectively.
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FIGURE 24.2 Two-loop example network.

TABLE 24.1 Node Data
Node i Elevation (m) Minimum Head (m) Demand (m3/h)

1 210 0 −1120
2 150 30 100
3 160 30 100
4 155 30 120
5 150 30 270
6 165 30 330
7 160 30 200

It is suggested that Problem P2 be solved with the restriction that an existing pipe should
not be undersized. From the solution to Problem P2 the head loss for each pipe can be
obtained by multiplying the optimal segment lengths, x(i,j)m’s and the corresponding head
gradients J(i,j)m’s. Because optimal head loss, friction parameter, and existing pipe size
are known, the flow in an existing link and therefore the flow for the parallel pipe can be
computed (Wylie and Streeter, 1985). The parallel pipe in turn is decomposed into discrete
diameter pipes in series.

24.3.7 Analysis of an Example Network

In this section, an example network (Alperovits and Shamir, 1977) using the data given
therein is considered (see Figure 24.2). The data for the minimization problem P2 are
the minimum and maximum heads and demand at each node, length and Hazen-Williams
coefficient C for each link, and the unit cost for different pipe diameters. These data for
Alperovits and Shamir network are given in Tables 24.1 and 24.2. Each link has length
1000 m and a Hazen-Williams coefficient of 130. For known flow rates, Problem P3 is a
linear program. The decision variables are the unknown segment lengths of known diameters.
The network consists of seven nodes, eight links (see Figure 24.2), and fourteen different
candidate diameters as shown in Table 24.2. Because there are only fifteen possible spanning
trees for the network, the global optimal tree solution is easily obtained (Loganathan et al.,
1990). These flows are {1120, 370, 650, 0, 530, 200, 270, 0} in links {(1,2), (2,3), (2,4),
(4,5), (4,6), (6,7), (3,5), (7,5)}, respectively, which are systematically perturbed to obtain
the flows for the looped network.
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TABLE 24.2 Diameter/Cost Data
Diameter (in.) Unit Cost ($/m) Diameter (in.) Unit Cost ($/m)

1 2 12 50
2 5 14 60
3 8 16 90
4 11 18 130
6 16 20 170
8 23 22 300

10 32 24 550

TABLE 24.3 Optimal Flows for Different Methods (Flow Rate m3/h)
Link Loganathan et al. (1990) Global Search Global Search with Min. Flow

(1,2) 1120.0 1120.0 1120.0
(2,3) 360.0 368.33 368.0
(2,4) 660.0 651.67 652.0
(3,5) 260.0 268.33 268.0
(4,6) 534.0 530.69 531.0
(6,7) 204.0 200.69 201.0
(7,5) 4.0 0.97 1.0
(4,5) 6.0 0.69 1.0
Total Cost 412,931 403,657 405,381

TABLE 24.4 Optimal Solution without Minimum Flow
Link Diameter (in.) Length (m) Hydraulic Gradient (m/m) Head Loss (m)

(1,2) 18 1000.00 0.0068 6.76
(2,3) 10 792.54 0.0150 11.95

12 207.46 0.0062 1.29
(2,4) 16 1000.00 0.0044 4.40
(4,5) 1 1000.00 0.0190 18.84
(4,6) 14 303.46 0.0058 1.75

16 696.54 0.0030 2.09
(6,7) 8 10.32 0.0150 0.15

10 989.68 0.0049 4.85
(3,5) 8 97.70 0.0250 2.43

10 902.30 0.0084 7.57
(7,5) 1 1000.00 0.0100 10.00

To implement the procedure MULTISTART, a probability distribution function with a
high probability mass near the origin (loop change flow vector is zero) accounting for the
core tree link flows, is needed. The generated random points are used within Problem P3 to
obtain the optimal designs. Because the normal distribution allows for positive or negative
perturbations and high probability mass close to the mean, it is chosen as the standard
distribution for each loop flow change variable ∆Qp. A standard deviation of 6.5 is used
both for ∆Q1 and ∆Q2 and the maximum number of points generated NMAX is set at 200.
The optimal point ε = (∆Q1, ∆Q2) = (1.95, 0.69) is further refined by gradient search to
obtain ε = (∆Q1, ∆Q2) = (1.67, 0.69) producing a cost of 403,657.94 units. The optimal link
flows after ∆Q change flows applied to the optimal tree link flows are given in Table 24.3. The
procedure ANNEALING is implemented next. When the procedure locates the optimum,
ε = (∆Q1, ∆Q2) = (2.25, 1.22), it circles around the neighborhood and does not escape. The
parameters are β = 1, θ = 1, α = 2.5, fg = 405,000, and NMAX = 200. Further refinement as
well as the gradient search yields the same optimum point (1.67, 0.69).

The global optimal tree solution made up of links {(1, 2), (2, 3), (2, 4), (3, 5), (4, 6), (6, 7)}
has a cost of $399,561 (Loganathan et al., 1990). Using the minimum possible diameter of 1
in. for two loop-forming links {(4, 5), (5, 7)} at a unit cost of $2/meter length we obtain the
global minimum cost $403,561. The proposed algorithm yields $403,657, verifying global
optimality. It is noted that for this solution a minimum diameter of 1 in. is imposed for
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TABLE 24.5 Energy Heads without Minimum Flow
Node (i) Elevation (m) Minimum Head (m) Head (m)

1 210.00 210.00 210.00
2 150.00 180.00 203.24
3 160.00 190.00 190.00
4 155.00 185.00 198.84
5 150.00 180.00 180.00
6 165.00 195.00 195.00
7 160.00 190.00 190.00

TABLE 24.6 Optimal Solution with Minimum Flow
Link Diameter (in) Length (m) Hydraulic Gradient (m/m) Head Loss (m)

(1,2) 18 1000.00 0.0068 6.76
(2,3) 10 795.05 0.0150 11.97

12 204.95 0.0062 1.27
(2,4) 16 1000.00 0.0044 4.40
(4,5) 1 951.65 0.0200 18.81

2 48.35 0.00068 0.03
(4,6) 14 300.46 0.0058 1.73

16 699.54 0.0030 2.11
(6,7) 8 9.01 0.0150 0.13

10 990.99 0.0049 4.87
(3,5) 8 99.12 0.0250 2.46

10 900.88 0.0084 7.54
(7,5) 1 488.53 0.0200 9.65

2 511.46 0.00068 0.35

TABLE 24.7 Energy Heads with Minimum Flow
Node (i) Elevation (m) Minimum Head (m) Head (m)

1 210.00 210.00 210.00
2 150.00 180.00 203.24
3 160.00 190.00 190.00
4 155.00 185.00 198.84
5 150.00 180.00 180.00
6 165.00 195.00 195.00
7 160.00 190.00 190.00

all the pipes in the looped layout as previously done by the other authors. The results are
given in Tables 24.3 through 24.5. A minimum flow of constraint 1 m3/h, in addition to the
minimum diameter of 1 in., was implemented and the results are given in Tables 24.6 and
24.7, with the cost of $405,301.

24.3.8 Genetic Algorithm

Savic and Walters (1997) applied genetic algorithms for the same problem. Deb (2001)
presents an authoritative description of genetic algorithms (GA). In GA solutions are rep-
resented by strings called chromosomes. A locus is the location of a gene (bit in binary) on a
chromosome. An allele represents the set of values that can be assigned to a gene. Good solu-
tions in terms of their objective function value are identified from an initial set of solutions.
Multiple copies of good solutions are made while eliminating the weak solutions keeping the
population size constant (Selection). The selected good solutions are combined to create
new solutions by exchanging portions of strings (Crossover). Note this process retains the
population size. To enhance diversity in the populations a bit may be changed (Mutation).
Using the new population from crossover and mutation operators, the cycle is restarted with
the selection operator. Deb (2001) makes the following key points. The three operators pro-
gressively result in strings with similarities at certain string positions (schema). A GA with
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its selection operator alone increases the density of solutions with above average value while
reducing the variance; mutation increases the variance. The crossover operator has the ten-
dency to decorrelate the decision variables. The combined effect of selection and crossover
is to enable hyperplanes of higher average fitness values to be sampled more frequently.

Handling constraints is an issue in direct search methods. Variable elimination by con-
straint substitution for equality constraints, penalty function methods including biasing
feasible solutions over infeasible solutions, hybrid methods, and methods based on decoders
are procedures for accommodating constraints. Hybrid methods combine the classical pat-
tern search methods within the GA. Bazaraa et al. (2006) and Reklaitis et al. (1983) provide
a thorough analysis of penalty function methods. Savic and Walters (1997) use a penalty
for constraint violation. They report a cost of $419,000 with a minimum diameter of 1 in.
and without using split pipes.

24.4 Preferences in Choosing Domestic
Plumbing Materials

24.4.1 Introduction

In the United States, about 90% of drinking water home plumbing systems are copper pipes.
Pinhole leaks in copper plumbing pipes are reported in several parts of the country. Fig-
ure 24.1 shows the distribution of pinhole leaks over a five-year period, from 2000 to 2004.
For a majority of homeowners, their home is the most valuable asset. A decision has to be
made on whether to continue to repair or replace the system. Loganathan and Lee (2005)
have proposed an optimal replacement time for the home plumbing system exploiting an
economically sustainable optimality criterion. Dietrich et al. (2006) present results of their
study related to material propensity to leach organic chemicals, metals, and odorants; ability
to promote growth of nitrifying bacteria; and their impact on residual disinfectant for five
polymeric and four metallic pipes. Typically, copper, PEX (cross-linked polyethylene), and
CPVC (chlorinated polyvinyl chloride) pipes are used. Stainless steel is also being consid-
ered. The material-related attributes of price, corrosion resistance, fire retardance, health
effects, longevity, re-sale value of home, and taste and odor are considered in making a
selection. Consumer preferences toward these attributes are assessed with the aid of a focus
group.

24.4.2 Analytical Hierarchy Process

Marshutz (2001) reports that copper accounts for 90% of new homes, followed by PEX (cross
linked polyethylene) at 7%, and CPVC (chlorinated polyvinyl chloride) at 2%. All materials
have relative advantages and disadvantages. One material may be easy to install but may
not be reliable while another material may be corrosion resistant but may have health or
taste and odor problems. It is generally recognized that comparing several attributes simul-
taneously is complicated and people tend to compare two attributes at a time. The analytic
hierarchy process (AHP) is used to determine the preference for attributes by pair-wise
comparison. Assessing pair-wise preferences is easier as it enables to concentrate judgment
on taking a pair of elements and compare them on a single property without thinking about
other properties or elements (Saaty, 1990). It is noted that elicited preferences may be based
on the standards already established in memory through a person’s experience or educa-
tion. Based on Saaty (1980) the following steps are adopted in performing the analytical
hierarchy process.

Step 0: (Identify attributes) For plumbing material the following seven attributes are
considered: Price—includes cost of materials and labor for installation and repair; Corrosion
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TABLE 24.8 Standard Numerical Scores
Preference Level Numerical Score, a(i, j) 1–9 Scale

Equally preferred 1
Equally to moderately preferred 2
Moderately preferred 3
Moderately to strongly preferred 4
Strongly preferred 5
Strongly to very strongly preferred 6
Very strongly preferred 7
Very strongly to extremely preferred 8
Extremely preferred 9

TABLE 24.9 Pair-Wise Preference Weight Matrix [General]
Attribute 1 Attribute 2 . . . Attribute n

Attribute 1 w1/w1 w1/w2 . . . w1/wn
Attribute 2 w2/w1 w2/w2 . . . w2/wn
. . . . . . . . . . . . . . .
Attribute n wn/w1 wn/w2 . . . wn/wn
Sum X/w1 X/w2 . . . X/wn

[X = (w1 + w2 + · · · + wn)].

TABLE 24.10 Pair-Wise Preference Weight Matrix
P C F H L R T

P 1 0.20 0.25 0.14 0.20 0.50 0.33
C 5 1 5 0.33 1 6 1
F 4 0.20 1 0.17 0.33 1 0.25
H 7 3 6 1 4 8 3
L 5 1 3 0.25 1 2 0.33
R 2 0.17 1 0.13 0.50 1 0.50
T 3 1 4 0.33 3 2 1
Sum 27.00 6.57 20.25 2.35 10.03 20.50 6.42

P: price, C: corrosion resistance, F: fire retardance, H: health effects,
L: longevity, R: resale value of home, and T: taste and odor.

resistance—dependability of material to remain free of corrosion; Fire retardance—ability
of material to remain functional at high temperatures and not to cause additional dangers
such as toxic fumes; Health effects—ability of material to remain inert in delivering water
without threatening human health; Longevity—length of time material remains functional;
Resale value of home—people’s preference for a particular material including aesthetics;
and Taste and odor—ability of material to deliver water without imparting odor or taste.

Step 1: (Use standard preference scores) A scale (1–9) of pair-wise preference weights is
given in Table 24.8 (Saaty, 1980).

Step 2: (Develop pair-wise preference matrix) In AHP, instead of directly assessing the
weight for attribute, i, we assess the relative weight aij = wi/wj between attribute i and j.
As shown in Tables 24.9 and 24.10, each participant is asked to fill in a 7× 7 attribute
matrix of pair-wise preferential weights. An example is given in Table 24.10. In Table 24.10,
row H and column P, the entry of 7 implies that health effects are very strongly preferred
in comparison to price in the ratio of 7:1. Row H for health effects overwhelms all other
attributes with the entries staying well above 1. In row P and column C, the cell value of
0.2 indicates corrosion resistance is strongly preferred to price in the ratio of 5:1.

Step 3: (Evaluate re-scaled pair-wise preference matrix) A rescaled preference matrix
is generated by dividing each column entry in Table 24.10 by that column’s sum, yielding
Table 24.11. The last column “Average” contains average weights for each row and shows the
ranking of the attributes. Table 24.12 shows the ordered relative ranking of the attributes.
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TABLE 24.11 Rescaled Pair-Wise Weight Matrix
Attribute P C F H L R T Average

P 0.04 0.03 0.01 0.06 0.02 0.02 0.05 0.03
C 0.19 0.15 0.25 0.14 0.10 0.29 0.16 0.18
F 0.15 0.03 0.05 0.07 0.03 0.05 0.04 0.06
H 0.26 0.46 0.30 0.43 0.40 0.39 0.47 0.38
L 0.19 0.15 0.15 0.11 0.10 0.10 0.05 0.12
R 0.07 0.03 0.05 0.05 0.05 0.05 0.08 0.05
T 0.11 0.15 0.20 0.14 0.30 0.10 0.16 0.17
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE 24.12 Relative Ranking of Attributes
Attribute Weight

Health effects 0.38
Corrosion resistance 0.18
Taste and odor 0.17
Longevity 0.12
Fire resistance 0.06
Resale value 0.05
Price 0.03

TABLE 24.13 Material Pair-Wise Matrix and the Associated Rescaled Matrix for
the Attribute Price

Price

Material Mat. A Mat. B Mat. C Mat. A Mat. B Mat. C Average

Mat. A 1.000 0.333 2.000 Mat. A 0.222 0.200 0.333 0.252
Mat. B 3.000 1.000 3.000 Mat. B 0.667 0.600 0.500 0.589
Mat. C 0.500 0.333 1.000 Mat. C 0.111 0.200 0.167 0.159
Sum 4.500 1.667 6.000 Sum 1.000 1.000 1.000 1.000

Step 4: (Evaluate preferences) Corresponding to each attribute, pair-wise weight matrix
and the associated rescaled matrix for three hypothetical pipe materials A, B, and C are
obtained. Results for the price attribute are shown as Table 24.13. This procedure is repeated
for the other attributes for the three materials. Table 24.14 shows the results. We obtain the
final ranking of the three materials by multiplying the pipe material preference matrix given
in Table 24.14 and the attribute preference vector given as the last column of Table 24.11.
The results are shown in Table 24.15. Mat. C is the most preferred material with a preference
score of 0.460, followed by Mat. A with a score of 0.279. Mat. B and Mat. A have rather
close scores of 0.261 and 0.279, respectively. A consistency check can be performed following
Saaty (1980) as given in Step 5. Participants were advised to reassess the pair-wise weights
if the consistency check failed.

Step 5: (Perform consistency check) The calculated maximum eigenvalue for the pair-
wise weight matrix, λmax =n. If it is different from n, we have inconsistencies in our
weight assignments. Saaty (1980) defines a consistency index as C.I. = (λ max −n)/(n − 1).
Instead of the eigenvalue, it is possible to manipulate the matrices to get a different form of
the consistency index. Let the average ratio AR = 1/n

∑n
i=1(ith row of [A]{ave W})/(ith row

{ave W}) in which [A] = matrix of pair-wise preference weights in Table 24.10, {ave W} =
vector of average rescaled weights in the last column of Table 24.11. The newly formed con-
sistency index is C.I. = [AR−n]/(n − 1). If the ratio of C.I. to R.I. (random index given in
Table 24.16) is less than 0.1, the weights should be taken as consistent. Table 24.16 contains
the random index values calculated from randomly generated weights as a function of the
pair-wise matrix size (number of criteria).

Table 24.17 contains the attribute ranking for 10 participants. From Table 24.17, it is seen
that the participants rank health effects the highest, followed by taste and odor, corrosion
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TABLE 24.14 Average Ranking for the Materials and Attributes
P C F H L R T

Mat. A 0.252 0.164 0.444 0.328 0.250 0.297 0.250
Mat. B 0.589 0.297 0.111 0.261 0.250 0.164 0.250
Mat. C 0.159 0.539 0.444 0.411 0.500 0.539 0.500
Average 0.03 0.18 0.06 0.38 0.12 0.05 0.17

TABLE 24.15 Final Preference Matrix
Material Preference

Mat. A 0.279
Mat. B 0.261
Mat. C 0.460

TABLE 24.16 Random Index (R.I.)
Matrix Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I. 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

TABLE 24.17 Participants’ Ranking of Attributes
Participant/Attribute 1 2 3 4 5 6 7 8 9 10

P 0.034 0.161 0.025 0.040 0.200 0.063 0.310 0.202 0.048 0.087
C 0.182 0.037 0.107 0.061 0.090 0.091 0.158 0.111 0.112 0.256
F 0.060 0.056 0.078 0.085 0.070 0.119 0.044 0.057 0.188 0.044
H 0.385 0.211 0.395 0.304 0.270 0.450 0.154 0.369 0.188 0.367
L 0.120 0.097 0.101 0.132 0.090 0.120 0.154 0.067 0.112 0.062
R 0.054 0.020 0.027 0.127 0.050 0.098 0.103 0.064 0.033 0.029
T 0.165 0.419 0.267 0.250 0.230 0.059 0.078 0.131 0.318 0.155

P: price, C: corrosion resistance, F: fire retardance, H: health effects, L: longevity, R: resale value of home,
and T: taste and odor.

resistance, and longevity; price, resale value, and fire resistance are showing the lower ranks
of the list. Participants 2 and 9 rate taste and odor above health. Participant 5 has the closest
preferences among price, health, and taste and odor. Participant 7 has the highest preference
for price. These results indicate that health, and taste, and odor may be a surrogate for
the purity of water that dominates preferences for a plumbing material. The mental stress
resulting from frequent leaks is also an issue. While copper may have remained a relatively
inert carrier of water, the corrosion leaks have forced consumers to consider alternatives
including other materials, the use of corrosion inhibitors such as phosphate, and lining the
interior of the pipe.

24.5 Stormwater Management

24.5.1 Introduction

Urban runoff is a carrier of contaminants. As discussed in Section 24.1.1, the total maximum
daily load (TMDL) study should not only estimate the maximum permissible load per
time but also should allocate it. Runoff contributes to nonpoint source pollution and a
distributed pollutant control strategy is needed. The best management practices (BMPs)
are both nonstructural measures and structural controls employed to minimize contaminants
carried by the surface runoff. The BMPs also help to serve to control the peak flows due to
development. Therefore, the decision should be comprised of optimal location and level of
treatment at a selected location.
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24.5.2 Problem Formulation

Zhen et al. (2004) suggest the following general framework.

Minimize total annual cost =
I∑

i=1

C(di)

subject to : Lj ≤ Lmaxj for j = 1, 2, . . ., J

di ∈Si

in which C(di) = annual cost of implementing a BMP at level di at location i; di = decision
vector pertaining to the dimensions of the BMP; Lj = annual contaminant load at the desig-
nated check point j; I = total number of potential BMP locations; J = total number of check
points; and Si = feasible set of BMPs applicable at location i. The decision vector is given
by {Ti; Hi} in which Ti is the vector of possible detention times compatible with the BMP
dimension vector (height) Hi at location i. Typically, for a choice of the decision vectors the
load, Lj at location j will have to be obtained from a simulation model. Zhen et al. (2004)
use the scatter search (Glover, 1999) to find near optimal solutions. Kuo et al. (1987) use
the complex search (Box, 1965; Reklaitis et al., 1983) to obtain near optimal solutions.

Loganathan and Sherali (1987) consider the probability of failure of a BMP (also see
Loganathan et al., 1994). They consider the risk of failure and cost of the BMP as two
objectives within a mutiobjective optimization framework. They generate a cutting plane
based on pair-wise tradeoff between objective functions provided by the decision maker at
each iterate. It is shown that the iterates are on the efficient frontier and any accumulation
point generated by the algorithm is a best compromise solution. The method is applicable
even when the feasible region is nonconvex. Lee et al. (2005) consider a production function
of release rate and storage for a certain percent pollutant removal. They recommend using an
evolutionary optimizer for the solution. They also provide a review of progress in optimizing
the storm water control systems. Adams and Papa (2000) provide analytical probabilistic
models for estimating the performance of the storm water control systems. They include
optimization strategies for these systems.

Mujumdar and Vemula (2004) present an optimization-simulation model for waste load
allocation. They apply the genetic algorithm along with an appealing constraint handling
strategy due to (Koziel and Michalewicz, 1998, 1999). The decoder method proposed by
Koziel and Michalewicz (1999) is based on homomorphous mapping between the represen-
tation space of [−1, 1]nn-dimensional cube and the feasible region, X in the decision space.
Because the feasible region may be nonconvex, it may have several points of intersection
between a line segment L and the boundary of the feasible region X. The method permits
selecting points from the broken feasible parts of the line segment L. To identify these
break points, the following procedure is used. A feasible point r is chosen. A line segment
L= r+ α (s− r) for 0 ≤α ≤ 1, starting with r and ending with a boundary point s of the
search space S encompassing the feasible region is considered. Such a defined line segment
L involves a single variable α when substituted into each of the constraints, gi(x)≤ 0. The
domain of α is partitioned into v subintervals of length (1/v). Each subinterval is explored
for the root gi(α) = 0. The subintervals are chosen in such a manner that there can be at
most one root within each subinterval. The intersection points between the line segment
and the constraints gi(x) ≤ 0 can thus be found.

The problem is as follows. A discharger m (source) removes a fractional amount x(i, m, n)
of pollutant n to control water quality indicator i at check point l. For discharger m after
removing a fractional load x(i, m, n) of pollutant n, the concentration is c(m, n). This input
concentration c(m, n) for m = 1, 2, . . ., M and n = 1, 2, . . ., N and the effluent flow at m

© 2008 by Taylor & Francis Group, LLC



CH024.tex 22/10/2007 14: 23 Page 24-23

Water Resources 24-23

denoted as q(m) for m = 1, 2, . . ., M serve as forcing functions in the water quality simulation
model QUAL2E (Brown and Barnwell, 1987) to determine the concentration c(i, l) of water
quality indicator i (dissolved oxygen) at the check point l. The discharger would like to
limit x(i, m, n) and the pollutant controlling agency would like to control c(i, l) for all check
points l. The problem is given below:

Maximize Level of satisfaction = λ

subject to : [c(i, l) − cL(i, l)]/[cD(i, l) − cL(i, l)]a(i,l) ≥ λ

[xM(i, m, n) − x(i, m, n)]/[xM(i, m, n) − xL(i, m, n)]b(i,m,n) ≥ λ

cL(i, l) ≤ c(i, l) ≤ cD(i, l)

xL(i, m, n) ≤ x(i, m, n) ≤ xM(i, m, n)

0 ≤ λ ≤ 1

in which cD(i, l) = desirable concentration level such as the dissolved oxygen, cL(i, l) =
permissible safe level concentration, xM(i, m, n) = technologically possible maximum pol-
lutant removal, xL(i, m, n) = minimum pollutant removal, a(i, l) and b(i, m, n) = positive
parameters, and λ = compromise satisfactory level.

The decision variables x(i, m, n) are determined with the aid of the genetic algorithm.
They use QUAL2E and genetic algorithm optimization packages PGAPack (Levine, 1996)
and GENOCOP (Koziel and Michalewicz, 1999) to solve the problem. Using the GA gen-
erated population of pollutant reduction values x(i, m, n), QUAL2E determines the corre-
sponding concentration of water quality indicator i at check point l, c(i, l). The feasibility
is checked by GENOCOP. They point out that the selection of the initial feasible point in
constraint handling could affect the final solution. They recommend using the incumbent
best solution as the initial point.

24.6 Groundwater Management

24.6.1 Introduction

As rain falls over land, a part of it runs over land and a part of it infiltrates into the ground.
There is void space between soil grains underground and water and air occupy that space.
Groundwater flows through the tortuous paths between the solid grains. Because of the
extremely small diameter, the tortuous nature of the path, and the nature of the hydraulic
head, the groundwater velocity is very small. Therefore, if the groundwater storage is mined,
it cannot be replenished in a short time. Driscoll (1986) reports that there has been a 400-ft
decline in groundwater table in Phoenix, Arizona, in the last 50 years. Perennial rivers
carry the base flow resulting from groundwater storage even when there is no rain. In the
United States 83.3 billion [83.3(109)] gallons of fresh groundwater and 1.26 billion gallons
of saline groundwater are used, whereas 262 billion gallons of fresh and 61 billion gallons
of saline surface water are used (Hutson et al., 2004). Declining groundwater storage and
contaminated groundwater are two major problems.

Willis and Yeh (1987), Bear and Verruijt (1987), and Bedient et al. (1999) provide com-
prehensive details on groundwater flow and contaminant transport modeling. The ground-
water problem involves detailed numerical modeling. There is an added complexity because
of the complex nature of the underground domain. The groundwater velocity is determined
by hydraulic conductivity which is not known deterministically. Chan Hilton and Culver
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(2005) offer a comprehensive review of groundwater remediation problem. They also propose
a strategy within the framework of simulation-optimization to consider the uncertainty in
the hydraulic conductivity field. Following Bedient et al. (1999) the groundwater remedia-
tion may involve one of the following: (1) removal of source by excavation, (2) containment
of source by barriers and hydraulic control, (3) reducing the mass of the source by pump
and treat, bioremediation, soil vapor extraction, and natural attenuation.

Chan Hilton and Culver (2005) propose the following simulation-optimization approach
to groundwater remediation problems. The procedure differs from the previous studies in
accommodating the uncertainty in the hydraulic conductivity field. There are three ways in
which the hydraulic conductivity field is incorporated: (1) Keep the same field throughout
the simulation-optimization study. In the genetic algorithm framework all strings are sub-
jected to the same field in every generation. (2) Use multiple fields within each generation
and each such realization is applied to all strings for that generation. Calculate the average
fitness value over all these realizations for each string. (3) Obtain a hydraulic conductivity
field for a generation. Apply the same field to all the strings in that generation. For the
next generation, obtain a new hydraulic conductivity field. The fitness value is calculated
applicable to that conductivity field. Chan Hilton and Culver use the third type and call it
the robust genetic algorithm.

24.6.2 Problem Formulation

The groundwater remediation problem formulation is as follows. There are N sampling
points for checking contaminant concentration (computational nodes) and W potential
extraction wells. The problem is to optimally decide which extraction wells should be used
such that the contaminant concentration, C(j) can be controlled; hydraulic head, h(j), above
a minimum can be maintained; extraction flow rates can be set within chosen bounds. The
mathematical formulation is

Minimize Total Cost = Pumping cost + Treatment cost + Well cost
Subject to : C(j) ≤ C max for j = 1, 2, . . ., N

h(j) ≥ h(min) for j = 1, 2, . . ., N

Q(min) ≤ Q(i) ≤ Q(max) for I = 1, 2, . . ., W

in which Pumping cost =Cpump (c1/η) Q(i) [Hdatum−h(i) + µ Pads] Tdur, Cpump =
energy cost, c1 = unit conversion, η = pump efficiency, Q(i) = extracted flow at well i,
Hdatum = depth to datum, µ= technological coefficient for adsorber, Pads = pressure
required for the adsorber, Tdur = remediation period in appropriate units; Treatment cost =
f [Cave, Qtot] +Cads Nads, Qtot =

∑W
i=1 Q(i), Cave =

∑W
i=1

Q(i)
Qtot

[
C(i,Tbeg) + C(i,T end)

2

]
,

C(i,Tbeg) = concentration of contaminant at well i at the beginning time, Tbeg, C(i,T end) =
concentration of contaminant at well i at the ending time, T end, Tdur =T end−Tbeg, and
Cave = average influent concentration for the adsorber, Qtot = total flow, Cads = cost of an
adsorber, Nads = number of adsorbers = ceiling[Qtot(T cont)/V pore], ceiling(.) = rounds up
to nearest multiple of 1, V pore = pore volume of an adsorber, T cont = required contact time.

The above stated problem is solved using simulation–optimization approach by the
genetic algorithm. The concentration c(j), and head h(j) constraints are incorporated
through a multiplicative penalty function as

Fitness = Total cost ∗ [1 + penC ViolC + penH ViolH]

in which penC = penalty for violation in concentration C(j) and penH = penalty for viola-
tion in head h(j). For the flow Q(i) constraint, it is assumed that if a well is active, it will
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extract flow at a fixed rate. Therefore, it becomes a binary variable and is incorporated into
the decision variable string in the genetic algorithm.

The entire procedure is as follows. (1) Initialize: Generate the initial population of strings
with age(i) = 1 for the ith string. (2) Selection: For a realization of the hydraulic conductivity
field, obtain the fitness value for each string, Fitness(i). Rank order the strings by their
Fitness values with the highest rank assigned to the string with the best Fitness value. Let
r(i) be the rank for string i. Define modified rank fitness measure

rfit(i) =
[min{age(i), ageT} − 1]rprev(i) + r(i)

min{age(i), ageT} if age(i) > 1

rfit(i) = 0.9 r(i) if age(i) = 1

in which ageT = chosen value greater than 1 (set at 11), rprev(i) = rfit(i) from the previous
generation. List the strings by their rfit(i) values; assign new rnew(i) ranks to these strings.
These become rprev(i) in the next generation. Retain the highest rnew(i) strings as the elite
group. These are directly passed to the next generation without crossover and mutation.
Apply tournament selection to the population in which two strings are compared and the
string with better rank fitness is retained for crossover. The tournament selection is repeated
with replacement until the desired population size is reached. (3) Crossover: Crossover
is performed between two strings to create a new string. This new string’s age(i) = 0. If
there is no crossover due to specified probability, the first string proceeds into the next
generation with its age unchanged. (4) Mutation: If mutation causes a new string to attain
the same bits as its parent string, its age is reset to the original string’s age. If not, its
age(i) = 0. (5) New generation: The strings passed on to the next generation are assigned
age(i) = age(i) + 1. (6) Termination check: If there is convergence to lower costs, stop. If not,
go to Step (2), selection. The robust GA retains strings that perform well over a number
of different hydraulic conductivity fields. In the noisy GA, a number hydraulic conductivity
fields are used within the same generation and the fitness value is taken as the average over
the realizations. The comparison indicates that the robust GA yields comparable results to
the noisy GA while using a smaller number of fitness evaluations.

24.7 Summary

In this chapter, selected mathematical programming formulations related to water resources
systems are presented. The overarching theme has been to expose certain underlying prob-
lem structures such as in reservoir operations and water distribution systems optimization,
the need to assess public preference toward material attributes as in plumbing systems, and
the necessity to combine process simulation and optimization such as in stormwater and
groundwater management problems. The evolutionary optimization techniques provide a
good approach. The constraint handling in these techniques is an important issue; guaran-
teeing the nature of optimality is also an issue. Often, a zero-one decision has to be made.
This decision requires consideration of political and public preferences and implications over
a long term. Both the analyst and the decision maker are interested in the alternatives and
the solution behavior with changing constraints as the result of incorporating regulatory
issues and societal preferences.
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25.1 Introduction

Operations Research (OR) has evolved through the need for analytical and analysis meth-
ods for dealing with decisions involving the use and utilization of critical resources during
military operations. One could argue that OR has been around as long as standing armies
and navies. History is replete with examples of military “geniuses” who used mathematics
and science to outwit and overcome their enemy. In more recent history, one need only look
at Thomas Edison helping the United States Navy overcome the stifling effect of German
U-boats during World War I or Lanchester’s modeling of attrition rates to see OR being
applied to the military. It was not until the late 1930s, however, that OR was officially
recognized as a scientific discipline that could help the military. At that time, British sci-
entists were called upon to apply their scientific methods not to improving the technical
aspects of the recent discoveries in Radio Detection and Ranging (RADAR) but rather the
best way to use it operationally within the military. The field of OR grew rapidly from this
point and many of the advances in the field can be directly tied to their applications in
the military. Evidence of this can be found in the articles that appeared in the early issues
of OR, documenting the interest and applications of OR methods following World War II
and throughout the three decades that followed. It is easy to argue that military OR is the
beginning and actual foundation of the OR profession which has since contributed to suc-
cessful efforts in gaining and sustaining world peace, and further established the foundation
for the field of OR and management science as it is known today.

The purpose of this chapter is to introduce and provide an overview of military OR.
We will start in Section 25.2 with a brief background on its history. There is a fairly rich
literature on the field including some excellent surveys that have appeared in several books

∗ The views expressed in this chapter are those of the authors and do not reflect the official policy or
position of the United States Air Force, the Department of Defense, or the United States Government.
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during the past 10 years. Of particular note here is the chapter by Washburn (1994). He
gives an excellent summary of the measures of effectiveness, game theory applications, and
combat modeling applied in wartime applications. Our focus will be on the methodological
aspects of military OR. In Section 25.3, we discuss current military applications. Although
the first known applications of OR might be considered the application of experimental
designs for establishing optimal machine gun firing methods during World War II by the
British, the initial methodological developments were through mathematical programming
(Dantzig, 1963). In Section 25.3, these and other methods and applications are summarized.
In Section 25.4, we provide some discussion on the current trends that are prevalent in
military OR.

25.2 Background on Military OR

Before and during World War II the military recognized the value of OR and began setting
up OR groups in the different branches. The British were the first to set up these groups
and in fact by 1941 they had OR groups in all three branches of their military: Army, Air
Force, and Navy. P. M. S. Blackett, credited by most as the father of operations research,
stood up the British Army’s first group, which as mentioned earlier dealt with air defense
and the best use of radar. Blackett also stood up the British Navy’s first OR section at their
Costal Command. The naval groups were concerned with U-boats, as they were in World
War I, but also started looking at convoy operations and protection of ships from aircraft.
The Air Force OR groups in Britain were more focused on air-to-air and bombing tactics.
About this same time, OR was growing in the United States military.

Several incidents have been credited with transferring OR from Great Britain to the
United States. In 1940, Henry Tizzard from Britain’s Committee for the Scientific Study
on Air Defense traveled to the United States to share some of the secret developments
Great Britain had made in sonar, radar, and atomic energy. Although there was no direct
mention of OR in this technical interchange, there was mention of assigning scientists to
the various commands within the United States. Captain Wilder D. Baker, in charge of
antisubmarine studies for the Atlantic Fleet, was influenced by “Scientists at the Operational
Level,” a paper written by P. M. S. Blackett, and asked John Tate of the National Defense
Research Committee to provide some scientists for his studies. It was at this time that
Phillip M. Morse was brought into operations research. Finally, the commander of the
United States’ Eighth Bomber Command requested scientists be assigned to his command
after conferring with B. G. Dickens of the ORS Bomber Command of Great Britain. This
led to the formation of what became known as operations analysis in the U.S. Army Air
Forces. How much these events actually contributed to the formation of OR units in the
United States is debatable, but shortly after its entry into World War II, the U.S. Navy
had two OR groups and the Army Air Forces had its first of many (McCloskey, 1987).

Before and during World War II, operations researchers proved the value of applying
the scientific method to the day-to-day operations of the military and not just to weapon
system development and strategy. The exploits of these early researchers are chronicled
in many articles and books, too numerous to name (see, for example, Koopman’s (1980)
Search and Screening, E. S. Quade’s (1964) Analysis for Military Decisions, and any issue
of Operations Research dated in the 1950s). There is one, however, that can be used to
demonstrate how OR modeling during this time was quickly outpacing our ability to solve
many of the mathematical formulations and another that can be used to highlight the
differences between the beginnings of OR and how it is practiced today.

Saul Gass in his article “The First Linear-Programming Shoppe” (2002a) details how
the development of the computer industry and OR were linked. Of importance to this
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chapter, however, is how that link came about. In 1947, Project SCOOP (Scientific Com-
putation Of Optimal Programs) was formed by the U.S. Air Force. The members of Project
SCOOP included at some time during its eight-year existence, George B. Dantzig, Saul
I. Gass, Murray Geisler, Leon Goldstein, Walter Jacobs, Julian Holley, George O’Brien,
Alex Orden, Thomas L. Saaty, Emil D. Schell, Philip Wolfe, and Marshall K. Wood. Its
main objective was to develop better answers to the problem of programming Air Force
requirements. Wood and Dantzig defined programming as “the construction of a schedule
of actions by means of which an economy, organization, or other complex of activities may
move from one defined state to another, or from a defined state toward some specifically
defined objective” (Wood and Dantzig 1949, p. 15).

This definition led Dantzig to name his rectangular optimization model linear program-
ming (LP). In addition to research into LP and the simplex method, Project SCOOP
researched inequality systems by the relaxation method and zero-sum two-person games by
the fictitious play method. Project Scoop was the impetus for the U.S. National Bureau
of Standards contracting the first Standards Eastern Automated Computer (SEAC) and
purchasing the second production unit of the UNIVAC. During its eight-year span, Project
SCOOP went from solving a 9× 77 Stigler’s diet problem in 120 person-days on a hand-
operated desk calculator to solving an 18× 34 gasoline blending LP in 20 minutes on an
IBM 701. While Project SCOOP and other works were outpacing technology, there was also
a shift beginning to happen in military OR (Gass, 2002).

After World War II many of the scientists that had helped the war effort were returning to
their original lives in academia and were being offered jobs in industry. Businesses, seeing the
success of OR in the military, began using these techniques to improve their own operations
and the field of management science was beginning to evolve. In 1951, Morse and Kimball
published Methods of Operations Research, originally written in 1946 as a classified report
for the U.S. Navy’s Operations Evaluation Group, in hopes to share information with the
scientific population at large about the successes of OR before and during World War II.
Morse and Kimball saw that many of the successes in OR were not widely known either
due to classification or just a general lack of free flowing information. Their hope was that
by compiling this information the field of OR could be expanded in the military and be
applied to nonmilitary operations as well. Of note in this book is how Morse and his peers
performed OR during World War II.

In the early stages of OR in the military, practitioners were focused on improving tactics
and the effective use of newly invented equipment developed by scientists to enable the
military to counter or overcome enemy techniques and equipment. Military analysts used
close observation and mathematical modeling of processes and their salient properties to
improve desired outcomes. After the war, the size of the nation’s militaries was decreasing
both because the global war was over and many of the tactics had been so improved that
smaller forces could have the same effect as larger ones. Beasley in his OR notes discusses
how the probability to attack and kill a U-boat went from 2% to 3% in 1941 to over 40% by
1945. Bothers (1954) explains how the Eighth Air Force used operations analysis to increase
the percentage of bombs that fell within 1000 feet of their aimpoint from less than 15% in
1942 to over 60% by 1944.

25.3 Current Military Applications of OR

The rest of this chapter will outline selected general application areas for OR within the
military. The goal is to describe how military organizations use common OR techniques and
to provide some specific examples where it is useful. It is not a complete review of current
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literature, as that would require an entire book. On their Web site, http://www.mors.org,
the Military Operations Research Society of the United States has a list of several excel-
lent references regarding OR and the military. When talking about the application of
OR to military problems, it is useful to look at what level the tools or techniques are
being applied. These levels are similar to those of businesses. At the topmost level are
strategic (corporate) decisions that are made for the good of a nation. The bottom level
is comprised of tactical decisions. These decisions influence how small units or individu-
als will engage for short durations. Linking these levels is the operational level. At this
level, decisions are made to achieve the strategic goals. It determines the when, where,
and for what purpose forces will be employed. While each level of war is unique, many
of the OR tools talked about in Part I of this book can be applied at more than one of
these levels.

25.3.1 Linear and Integer Programming

Linear and integer programming are used throughout the military in a variety of ways. Most
of their uses are at the strategic and operational levels. At the operational level, LPs and
integer programs (IP) have been used to allocate operating room space, route unmanned air
vehicles, and even to optimize rehabilitation and restoration of damaged land at training
facilities. Its most frequent use, however, is at the strategic level in the area that it was
originally designed by Dantzig to help, that being the planning of large-scale operations.

Often called campaigns, these operations look at possible future scenarios for major wars,
that is, country on country conflicts. These models provide decision-makers with an analyt-
ical tool for determining the impacts of budget changes, force structures, target allocations,
munitions inventories, and combat attrition rates on a nation’s war-fighting capability. Typ-
ically, the scenarios analyzed use all of a nation’s military forces, air, ground, and sea, and
are modeled over a large time-period, for example, months or years. These large-scale oper-
ations can also be humanitarian in nature such as natural disaster relief. Typically, the
decision variables used reflect combinations of platform, weapon, target, profile, loadout,
and weather. A platform refers to the type of system delivering the weapon, for example, a
tank, aircraft, or naval vessel. The weapon refers to what type or types of munitions or
aid are being delivered, for example, food pallets, large equipment, flares, bombs, guided
munitions, or torpedoes. The profile refers to the manner in which the platform will attack
a target or deliver its cargo. For aircraft, this might include altitude, angle of attack, or
landing area. The loadout refers to the number of weapons used against or delivered to the
target. A submarine might use a volley of two torpedoes against a single target, or a large
cargo aircraft might deliver bags of grain and a truck to haul them to a different location.
Finally, target and weather are self-explanatory and refer to the target to be attacked or
location of aid delivery and the weather expected at the target area. Associated with each
of the variables are several parameters.

It is beyond the scope of this chapter to outline all of the parameters that could be
associated with these decision variables, but a few bear mentioning as they will be men-
tioned later in this chapter. With respect to war-like operations, one parameter of interest
is how much damage to the target can be expected from choosing the decision variable.
This is referred to as damage expectancy (DE) or probability of kill (PK) and takes into
account all of the characteristics used to describe the decision variable as well as those of
the target. Another is the probability that the platform making the attack described by
the variable will survive and be available for subsequent attacks. The complement of this
is called the attrition rate. How these are modeled is discussed later in this chapter and is
usually done at the tactical level.

© 2008 by Taylor & Francis Group, LLC

http://www.mors.org


CH025.tex 30/10/2007 10: 57 Page 25-5

Military Applications 25-5

25.3.2 Network Optimization

Most of the applications for network optimization within the military are no different from
those of major corporations or small cities. Like corporations, they are concerned with
building reliable communication networks to include local area networks (LANs) and wide
area networks (WANs), logistics networks for supply chain management, and the exploita-
tion of network structures and formulations for LPs and IPs. As the military must build and
maintain self-sufficient bases, like municipalities they work with electrical grids, water and
sewer supply, and other public utility networks. There are, however, some aspects of net-
work optimization that are unique to the military. One area of research that is unique to the
military (and possibly law enforcement) deals with the interdiction of an enemy’s network.

When dealing with the interdiction of an enemy’s network, the military considers both
physical networks, such as command and control networks, and more esoteric networks
such as clandestine and terrorist networks. Regardless, the goal for these types of network
operations is the same, disruption. Many of the techniques used in optimizing networks
can also be used to identify vulnerabilities within networks. The most obvious of these
techniques is the max-flow min-cut. By modeling the max flow of an enemy’s network,
bottlenecks can be identified for potential exploitation. Besides looking at arcs, one might
also be interested in the nodes of a network. In this instance a facility location problem
may be useful to identify key nodes that are in contact with many other nodes or the use
of graph theoretic centrality measures might be useful to exploit.

25.3.3 Multiple Criteria Decision-Making

Like nonlinear programming, multicriteria decisionmaking within the military has followed
from LP and IP development. While not the only techniques for multicriteria decisionmak-
ing, goal programming and multiple objective linear programming are used in conjunction
with large-scale campaign models to account for various objectives. Two examples of these
techniques follow from the U.S. Strategic Command’s Weapon Allocation Model (WAM)
and the U.S. Air Force Space Command’s (AFSPC) Aerospace Integrated Investment Study
(ASIIS).

WAM is a large-scale integer goal-programming model. It allocates weapons to tar-
gets. Several goals need to be met by the allocation. These include maximizing dam-
age expectancy, ensuring specific weapons cover specific targets, and goals for damage
expectancy within varying target categories. These goals are user defined and can be spec-
ified either as a goal to be obtained or as a hard constraint. Once the user identifies the
goals, they are given priority and the model uses preemptive goal programming. That is,
the model runs with the highest priority goal remaining as the objective function and if the
goal is obtained, that goal is added to the model as a hard constraint. If a goal cannot be
achieved it will be adjusted to the level of best achievement and added to the model as a
constraint. This technique was chosen over weighting the priorities because there was no
single decision maker from whom to solicit weights. ASIIS does support a single decision
maker and therefore uses a weighted goal programming approach.

AFSPC is responsible for training and equipping the U.S. space force. They use the ASIIS
model to aid in making decisions with regard to how to balance their spending on space
assets and maintain a capable force. ASIIS is a large-scale integer program that uses elastic
constraints (Brown et al., 2003) and has a linear objective function that penalizes deviations
in the elastic constraints. This is a long-range planning tool that looks at an epoch of time,
usually 25–30 years. There are four elastic constraints or goals in ASIIS: (1) do not exceed
the authorized funding levels in any given year, (2) do not exceed total funding over the
epoch, (3) minimize capability gaps, and (4) minimize underspending.
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The first goal ensures that AFSPC does not spend more money on its investments than
is authorized by the government in any given year. The second goal ensures that if in any
year more money is needed, that money can come from a future or past year in the epoch.
The third goal tries to purchase or fund those programs that will ensure that AFSPC can
meet its current and future mission requirements with as little capability gap as possible
based on the money and technology available. The fourth goal was added to the model to let
the model choose redundant systems for better capability coverage. This was needed due to
the way the capability gaps are calculated in the third goal. The ASIIS model uses absolute
deviations from the goals and therefore, weights for each goal both prioritize the goals and
ensure that they are of equal scale. For example, the units for money and capability gaps
are several orders of magnitude different. As there is a single decision maker in charge of
AFPSC, these weights can be solicited directly from the decision maker to ensure their
priorities are met.

25.3.4 Decision Analysis

There has been much debate in the last 5 years as to what is decision analysis (DA).
Keefer et al. (2002) define DA as a normative, not descriptive, systematic quantitative
approach to making better decisions. Specifically, for an application to be considered DA, it
must “explicitly analyze alternatives for a decision problem using judgmental probabilities
and/or subjectively assessed utility/value functions.” This definition excludes multicriteria
decisionmaking and the analytic hierarchy process. In the military, DA applications fall into
two categories: decision trees and value focused thinking (VFT).

VFT has been used extensively in the military to help senior decision makers gain insight
into decisions that have competing objectives. Of the ten articles summarized by Keefer
et al. in their survey of DA literature from 1990 to 2001, eight used some form of VFT.
The models described in these articles were usually very large in size and scope. The largest
effort described was the U.S. Air Force’s 2025 (Jackson et al., 1997; Parnell et al., 1998)
study that included over 200 subject matter experts working over a year to develop a 134-
attribute model to score 43 future concepts using weights based on six different scenarios.
Not all VFT models are at the strategic level, however. The Croatian Army (Barković and
Peharda, 2004) used a VFT model to determine what rifle to acquire to replace its aging
stores and a VFT model was developed to help U.S. psychological operations (PSYOP)
detachment commanders choose the best strategy for the use of PSYOP, where PSYOPs
are defined as operations that use selected information to influence an audience’s behavior
(Kerchner et al., 2001). Along with the VFT model, the military also use decision trees.

The application of decision trees is most useful in the military when there is a single
objective to consider. When faced with a variety of options, the decision maker can then
choose the best option based on the expected value of the objective. An example of this
in the military was the use of a decision tree to choose the best allocation of aircraft to
targets by Griggs et al. (1997). In this example, an IP was used to build the allocations
with varying weather states and the plan with the best expected value was found by solving
a decision tree with the IP solutions at the varying weather states.

25.3.5 Stochastic Models

One of the earliest quantitative approaches to combat modeling was by F. W. Lanchester
(1916) who proposed the study of the dynamics of two opposing forces, say Red versus Blue,
through a set of differential equations. Let R(t) and B(t) be the number of combatants
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remaining for each force at a time t > 0 and assume that:

d
dt

R(t) = −bB(t), R(t) > 0

d
dt

B(t) = −aR(t), B(t) > 0

where a and b are constants representing the respective lethality rates of kill against each
other. It can be shown from these equations that

a[R(0)]2 > b[B(0)]2 ⇒ Red wins

b[B(0)]2 > a[R(0)]2 ⇒ Blue wins

implying that the force with the greatest strength will first deplete the number of com-
batants of the weaker force. Strength is given by the product of the attrition rate and the
square of the initial force. This has become known as the Lanchester square law. A sim-
pler linear law follows by assuming that the attrition rates are directly proportional to the
number of opposing units. Many variations of the attrition conditions for this model have
been studied including that by Brackney (1959) and probabilistic extensions by Morse and
Kimball (1951) and further work by Smith (1965), Kisi and Hirose (1966), and Jain and
Nagabhushanam (1974).

The earlier studies of the Lanchester models focused on the development of closed form
results for force survival probabilities and expected duration of combat. A complete treat-
ment of these models can be found in Taylor (1980, 1983). Bhat (1984) formulated a con-
tinuous parameter Markov chain model for this force-on-force combat scenario. We assume
the two forces to have given fixed initial levels R(0) =R and B(0) =B. The states of the
process are outcomes of the 2-tuple 〈R(t), B(t)〉 with transitions among the finite number of
states satisfying the Markov property. For example, for R = 2 and B = 3 the state space is

Ω = {(2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (1, 1), (1, 0)}

The survival probabilities can be derived from the Kolmogorov equations and for a Red win
with j survivors it can be shown that,

Pi,0 = bi,1

∞∫
0

Pi,1(t)dt

for the duration of combat, T

P (T > t) =
∑ ∑

i,j>0

Pi,j(t)

and

E[T ] =

∞∫
0

P (T > t)dt.

Another area of important military applications of OR is in search and detection. The
basic problem is to try to locate a hidden object in a region A through examination of
an area a∈A. This problem appears in many military settings; for example, A could be
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a region of water for antisubmarine operations, a weapon site in a region of desert, or a
failed component in a piece of equipment. Various solution approaches have been taken,
the earliest, of course, being an exhaustive search which, of course, has limitations due to
costs for searching, that is, in time, costs, or other effort, and the criticality of the objective.
Another popular method applied during World War II is the random search that can be
formulated as a nonlinear programming problem. Let pi denote the probability of a target
being in Ai ⊆A, i= l, . . ., n, and B is the amount of available search effort. The problem is
then to find a solution to

min:
n∑

i=1

pie−bi/Ai

subject to:
n∑

i=1

bi = B

More information on methods and approaches for dealing with search and detection can be
found in Washburn (2002).

25.3.6 Simulation

Simulation has become one of the most widely used OR techniques in the military. Many
of the processes that were modeled with mathematical programming or that had difficult
to find closed formed solutions using probabilistic models are now being modeled with sim-
ulations. Today’s more powerful computers allow practitioners to better model the chance
outcomes associated with many real world events and help describe how systems with many
such events react to various inputs. Within the military, Monte Carlo, discrete event, and
agent-based simulations are being used at all levels.

The most recognizable type of simulation in the military is probably the “war game.”
The “war game” gets its fame from movie and television, but actually has the same purpose
as mathematical programming at the strategic level. This type of discrete event simulation
allows decision makers to try out different strategies, force structures, and distributions of
lethality parameters and see their affect on the outcome of a given scenario. Unlike their
deterministic counterparts, these simulations show decision makers a distribution on the
output parameters of interest and not just the most likely. This provides senior military
officials insight into the inherent risks associated with war. Like their deterministic coun-
terparts, these models too are aggregated at the strategic level, but can also be used at the
operational and tactical level when disaggregated.

While senior military officials do not need to know what every soldier, sailor, or airman
is doing on the battlefield, there are leaders that do. At the operational level, simulations
focus more on small groups and allow commanders to dry run an operation. This type of
simulation is not used for planning purposes necessarily, but to provide insight to com-
manders so that they can see how different decisions might play out on the battlefield. By
identifying decisions that will likely result in bad outcomes, commanders can design new
techniques, tactics, and procedures to mitigate those bad outcomes. These same types of
simulations when run with even smaller groups can be useful at the tactical level.

At the tactical level, leaders of small units can rehearse actions, trying out different
strategies for a single scenario. An army unit might simulate patrolling a village and
try different tactics for repelling an ambush. Airmen can try several different approaches
for bombing a target and sailors for enforcing an embargo. In these cases, the simula-
tion acts as a training tool allowing the military to gain experience in what can happen
during an operation without the loss of life and with substantial monetary savings when
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compared to live exercises. There is more value to these simulations thought than just
training.

As is discussed in the section on LPs and IPs, many models require parameter estimates.
As the funding of militaries decreases and the cost of weapons increases, simulation can
help to estimate these parameters. During World War II, OR sections within bombing units
would gather data on thousands of bomb drops to try and estimate the effectiveness of
a particular tactic and try to find ways to improve them. Today’s militaries do not have
thousands of bomb drops to gather data and have turned to simulation for help. With more
powerful computers, simulations that mirror reality better can be built at the individual
weapon level. These simulations model the physics behind the weapon and its delivery
vehicle allowing researchers to generate the thousands of “bomb drops” they cannot afford.
Like their predecessors, these researchers are able to uncover problems with tactics as well
as design flaws and produce better effects. These simulations can also help militaries learn
about their enemies.

The same simulations that improve one’s own tactics and weapons can also be used to
model an enemy’s weapons. These simulations can be used to provide the distributions used
in simulations at the tactical level or higher. For example, when an aircraft is approaching a
guarded target, a simulation can be used to build a distribution on the probability that the
aircraft will survive the attack. By using engineering data and modeling the known physics
of the system guarding the target, the simulation provides both a training tool to try to
maximize the likelihood of surviving a mission, and a parameter estimate of the enemy
system that can be used in larger simulations. While all of these types of simulation are
discrete event, they are not the only type of simulation being used by the military today.

Agent-based simulations (ABS) are the newest simulation tool for the military. Originally
developed by those who study the evolution of (complex) systems, such as biologists, AI
researchers, sociologists, and psychologists, agent-based simulation is used to predict future
events as well as past processes. It is not a computational approach to rational action such as
game theory, but rather attempts to model autonomous and heterogeneous agents capable of
adapting and learning. Most military operations require that individuals interact with their
environment and other individuals. Before ABS, these interactions were modeled based on
physics vice first principles of behavior (assuming one knows what these are). That is to say,
most simulations before ABS were based on kinetics. As the military’s missions continue to
grow to include more peacekeeping and humanitarian relief, kinetic models are less useful.

For these ever-increasing missions, militaries need to be able to model the reaction of
populations to their presence. Like the tactical discrete event simulations, these ABS mod-
els can help units train for these new missions. For example, what is the best tactic for
crowd control? Should you call in more reinforcements, fire a warning shot, use non-lethal
weapons? ABS models can show how each of these choices affects different cultures and
are affected by different environments. These types of insights help commanders identify
changing situations before they get out of control. While this type of modeling is still in its
infancy, it shows promise for future military operations other than war.

25.3.7 Metrics

Once a military operations researcher has learned the techniques and tools described in
this chapter and others and applies them to a problem or process, they must then try to
build what Morse and Kimball (1970) call a “quantitative picture” for the decision maker.
This quantitative picture allows for comparisons both within an operation and between
competing alternatives that may be used for an operation. Morse and Kimball (1970) called
these comparators “constants of the operation.” Today we know them as metrics.
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The two most common categories of metrics are measures of performance (MOP) and
measures of effectiveness (MOE). MOPs are used to answer the question, “Are we doing
things right?” MOEs answer the question, “Are we doing the right things?” Examples
of military MOPs are casualties, bombs dropped, ton miles of cargo moved, or square
miles searched in a given time period. Observed actual values of MOPs can be compared
to theoretical values if calculable and show how well a unit is doing or where possible
improvements may be made. However, even when a unit is operating at or near its theoretical
limits, it still may not be effective. MOEs provide the commander or senior decision maker
insight into how well an operation or groups of operations are achieving the overall objective.
Going back to the example of ton miles of cargo moved, while a unit may be moving goods
at its capacity, if it is moving the wrong type of goods or the goods are consistently late,
then that unit is not effective.

There are countless examples in the literature of the use of metrics. Morse and Kimball
(1970) devote a whole chapter of their book to the use of metrics and give many examples
from their time with the Navy. Dyson (2006) recalls examples of metrics he used while
assigned to the Operational Research Section (ORS) of the British Royal Air Force’s Bomber
Command in 1943. While these are historical examples, they help provide today’s military
operations researchers with foundations for developing the “art” of building the quantita-
tive picture of tomorrow’s battles. To see that this “art” is still being practiced today one
need only look at recent publications. In the book by Perry et al. (2002), the Navy devel-
ops measures of effectiveness to verify the hypothesis that network-centric operations will
enhance the effectiveness of combat systems. Other examples can be found by searching the
Defense Technical Information Center (www.dtic.mil), where articles and technical reports
by Schamburg and Kwinn (2005) and West (2005) detail the use of MOPs and MOEs to
build a quantitative picture of future Army weapon systems.

25.4 Concluding Remarks

The nature of warfare is changing throughout the world and military OR practitioners
will need to change along with it. In the United States, this new generation of warfare
is referred to as the 4th generation (Lind et al., 1989). The generations of warfare are
concisely defined by Echevarria (2001) as (1) massed manpower, (2) firepower, (3) maneuver,
and (4) insurgency. While there is not complete agreement about 4th generation warfare,
one thing is clear: insurgency and terrorist attacks have presented the military with new
problems to solve.

Since World War II military OR practitioners have been focused on planning and training
and not the quick fielding of new technologies. Their modeling has been characterized by
the realistic portrayal of combat in simulations. They were often dislocated from the actual
problem being solved and have lost sight of their beginnings. The notion of 4th generation
warfare is changing this. Increased access to technology, information, and finances has given
terrorists and insurgents alike the ability to create chaos at will. The scientific community
has been asked to develop and field new technologies rapidly to thwart these new tactics.
Military OR practitioners are once again being called back to the field to help the military
employ these new technologies effectively against their enemies.

The threat of terrorism is not only affecting military OR practitioners through rapid
fielding initiatives, but also through how to plan for and respond to a terrorist attack. While
the location and timing of these attacks are not known with certainty, it is still possible to
plan for some of them. In the military, this is called contingency planning. This is in contrast
to deliberate planning where the location and enemy are known with certainty. During any
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type of planning, logistics support for personnel and equipment is important. While the
military has many systems for assessing their deliberate plans, contingency or crisis planning
assessment is lacking (Thomas, 2004). The idea of contingency logistics has been brought
to the forefront of research by the recent tsunamis in the Indian Ocean and hurricanes
in the United States. While not typically the responsibility of the military, responding to
these types of contingencies is becoming more and more common. The military can learn
from these operations what is needed to support a contingency. In the future, military OR
practitioners will need to develop models both to plan for and assess contingency operations
whether they be for war or operations other than war.

Finally, a new field of study, system of systems (SoS), is emerging and OR practitioners
seem well placed to help. While there are many definitions for SoS, this chapter will use
one from the U.S. Defense Acquisition University’s Defense Acquisition Guidebook: “[SoS]
engineering deals with planning, analyzing, organizing, and integrating the capabilities of a
mix of existing and new systems into a system of systems capability greater than the sum
of the capabilities of the constituent parts.” The notion is that there are few standalone
systems and by considering during the design phase how one system will interact with
others, we can get better results in the end. As these SoS cut across many disciplines and
OR practitioners are used to interacting with multiple disciplines it seems logical that we
can help in this new field. Since the military purchases many high-cost systems it seems
prudent that military OR practitioners begin to embrace this new field and see how they
can help save their countries money and improve military capabilities. For an example of
how the military is already beginning to use SoS, see Pei (2000).
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As per Maltz [1], Simeon-Denis Poisson developed and used the Poisson distribution in
the 1830s to analyze inherent variations in jury decisions and to calculate the probability
of conviction in French courts. There have been many other initiatives prior to the 1930s
similar to Poisson’s, highlighting the use of quantitative techniques for decision support.
However, it is widely acknowledged that operations research (OR) started as a practice
in the 1930s. It owes its origin to the needs of Great Britain during World War II to
enhance the deployment effectiveness of combat resources and the support facilities. Its
subsequent growth is credited to the achievements during the war period. The year 1937
can be considered to be the base year as this was the year the term operational research
(OR) was coined [2]. It is not even a century old and compared to other functional areas
(such as production, marketing, financial management, or human resource development) or
to scientific disciplines (like mathematics, physics, or chemistry) it is a very young field.
Yet, there are many practitioners of OR who began questioning its utility, applicability [3],
and even its survivability within four decades of its existence. Fildes and Ranyard [4] have
documented that 96% of Fortune 500 companies had in-house OR groups in 1970 but the
numbers dwindled by the 1980s.

Ackoff [5] fueled this debate in 1979 with the assertion that “The future of Operational
Research is Past.” In 1997, Gass [6] proposed that in many lines of business, issues pertain-
ing to fundamental activities have been modeled and OR has saturated. And this debate
seems to be in a continuous present tense in spite of the growth in the number of OR prac-
titioners (more than 100,000), applications, and OR/MS journals. (The 1998 estimates are
42 primary OR journals, 72 supplementary journals, 26 specialist journals, 66 models of com-
mon practices, 43 distinct arenas of application, and 77 types of related theory development,
according to Miser [7].) The fundamental issue has been the gap between developments on
the theoretical front versus the application of OR models and concepts in practical circum-
stances. Consequently, the career growth of OR professionals in corporations beyond middle
management positions has become difficult.

26-1
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Rapid growth in affordable computing power since the 1970s and the advent of Internet
access on a large scale have rekindled this debate during the current decade, however, with
one significant difference. While the earlier issues of theory versus application remain, the
need for inventing newer algorithms to locate optima is also questioned now. If exhaustive
enumeration and evaluation can be done in seconds and at a small cost, even for large or
complex problems, why would one want to invent yet another superior search algorithm?

These issues can be embedded into the larger context of the relevance and utility of
OR in the present century, considered to be the growth period of Information Age. Will
OR as a discipline survive in this digital economy? Will there be newer contexts in the
emerging market place where OR would find relevance? Does the discipline need to undergo
a paradigm shift? What is the future of OR practitioners?

26.1 Past as a Guide to the Future

I propose to start with the early days of OR in the British armed forces during World War
II [7]. The original team at Royal Coastal Command (RCC) consisted of Henry T. Tizard,
Professor P. M. S. Blackett, and A. V. Hill. They were specialists in chemistry, physics,
and anatomy, respectively. They worked with many others in the military operations with
backgrounds in a variety of other disciplines. They were asked to study the deployment of
military resources and come up with strategies to improve their effectiveness. They were to
help RCC in protecting the royal merchant ships in the Atlantic Ocean from being decimated
by the German U-Boats; in enhancing the ability of the royal airforce to sight U-Boats in
time; and in increasing the effectiveness of patrol of the coast with a given aircraft fleet size.

Time was of the essence here. Solutions had to be found quickly, often in days or weeks but
not in months. Proposed solutions could not be simulated for verification of effectiveness,
yet any wrong solution could spell doom for the entire program.

Blackett and the team relied on available but limited data not only to study each of the
stated problems but also to give it a focus. They were inventive enough to relate concepts
from mathematics (the ratio of circumference to area of a circle decreases as the radius
increases) to suggest that the size of a convoy of merchant ships be increased to minimize
damage to them against enemy attacks. They were lateral thinkers who asked for painting
the aircrafts white to reduce their visibility against a light sky so that the aircraft could
sight the U-Boats before the latter detected their presence. They converted the coast patrol
problem into one of effective maintenance of aircraft. They documented the before and
after scenarios so that the effectiveness of the solutions proposed could be measured objec-
tively. They interacted with all stakeholders throughout the project to ensure that their
understanding was correct, meaningful solutions were considered, and final recommenda-
tions would be acceptable. It helped their cause that they had the ears of RCC leaders so
that their proposals could be tried with commitment.

In other words, the team was interdisciplinary to facilitate innovative thinking. It con-
sisted of scientists who could take an objective, data-based approach for situation analysis,
solution construct, and evaluation of solution effectiveness. They were capable modelers as
they knew the concepts and their applicability. Above all, they had the management sup-
port from the start, they understood the time criticality of the assignment, and they were
tackling real world problems.

Should we ever wonder why they succeeded?

Compare this to

Mitchell and Tomlinson’s [8] enunciation of six principles for effective use of OR in practice
in 1978. The second principle calls for OR to play the role of a Change Agent.
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and
Ackoff’s assertion in 1979 [5] that “American Operations Research is dead even though it
has yet to be buried” (for want of interdisciplinary approach and due to techniques chasing
solutions and not the other way round).
or
Chamberlain’s agony [9] even in 2004 that OR faced the challenge of “to get the decision
maker to pay attention to us” and to “get the practitioner and academics to talk to each
other.”

My detailed study of innumerable OR projects (both successful and failed) reveals four
discriminators of success, namely

1. Problem formulation in an inclusive mode with all stakeholders
2. An appropriate model (that recognizes time criticality, organization structure for

decision making, and ease of availability of data)
3. Management support at all stages of the project
4. Innovative solution.

These are to be considered the Four Legs of OR. Absence of any one or more of these legs
seem to be the prime cause for any failed OR project. Presence of all four legs gives an
almost complete assurance of the project’s success. Besides, they seem to be time invariant.
They hold good when applied to the pre-Internet era as well as the current period. (A
review of the Franz Edelman Prize winning articles from 1972 to 2006 lends strength to this
assertion.) Let us explore these in detail.

26.1.1 Leg 1: Problem Formulation in an Inclusive Mode

This is a lesson learned early in my career as an OR practitioner.
The governor of the state is the chancellor of the state-run university in India. The then

governor of Maharashtra called the director-in-charge of my company, Mr. F. C. Kohli, to
discuss a confidential assignment. As a young consultant I went with Mr. Kohli and met the
governor in private. The governor, extremely upset about the malpractices in the university
examination system wanted us to take up a consulting assignment and to submit a report
suggesting remedial action. He wished to keep the study confidential and not to involve any
of the university officials whose complicity was suspected. Mr. Kohli intervened to state that
it would be impossible to do such a study focusing on malpractices without involving the
key stakeholders. Much against his belief, the governor finally relented to let Mr. Kohli try.

We went and met the vice chancellor of the university and briefed him about the assign-
ment. It was the turn of the VC to express his anguish. He berated the government in
general for not giving the university an appropriate budget to meet the growing admission
and examination needs of the university during the past decade. Mr. Kohli then suggested
that the scope of the study be enhanced to cover the functioning of the examination sys-
tem in entirety (and not the malpractices alone) and was able to get the VC to agree to
participation.

As a consequence we went back to the governor and impressed upon him the need to
enlarge the scope. He consented.

Identifying all stakeholders and getting their commitment to participate from the begin-
ning is an essential prerequisite for the success of any OR assignment. That this has to be
a part of the project process is often lost among the OR practitioners.

Stakeholder involvement enables scoping the project appropriately, facilitates problem
construction in a comprehensive manner, and eases the path for solution implementation.
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Above all it recognizes and accepts the decision making role assigned to stakeholders and
creates an inclusive environment. It is a natural route to forming a multidisciplinary team.

26.1.2 Leg 2: Evolving Appropriate Models

This has turned out to be the Achilles’ heel of OR professionals.
Stated simply, a model is not reality but a simplified and partial representation of it.

A model solution needs to be adapted to reality. The right approach calls for qualitative
description, quantification, and model building as a subset and finally qualitative evalua-
tion and adaptation of the model solution. This realization is reflected in the approach of
Professor Blackett in 1938. Yet it has been lost in many a subsequent effort by others.

Many a problem of OR practice, in the pre-Internet era, can be traced to the practitioner
lamenting about the quality or reliability of data and nonavailability of data at the desired
microlevel at the right time as per model needs. This is ironical as the role of the practitioner
is to have a firm grip on data quality, availability, and reliability at the early stages so that
an appropriate model is constructed. In other words, the relationship between model and
data is not independent but interdependent.

Shrinking time horizons for decisions is the order of the day. Model-based solutions need
to be operationalized in current time. Prevention of spread of communicable diseases before
they assume epidemic proportions is critical to societal welfare when dealing with AIDS,
SARS, or avian flu. Models that depend on knowing the spread rate of a current episode
cannot do justice to the above proposition (while they are good enough to deal with com-
municable diseases that are endemic in a society and do flare up every now and then).

I was involved in a traffic management study in suburban commuter trains in Mumbai
in the early 1980s. The intent was to minimize the peak load and flatten it across different
commuting time periods. We evolved an ingenious way of using a linear programming (LP)
model with peak load minimization as the objective and scheduling the work start time
for different firms as decision variables. And we obtained optimality that showed reduction
of peak load by 15%. This admirable solution, however, could never be implemented as it
did not reflect the goal of thousands of decision makers in those firms. Instead their goals
were to maximize interact time with their customer and supplier firms as well as with their
branch offices spread out in the city.

Having learnt this lesson, I included the study of organization structure and decision
making authority as an integral aspect of any subsequent OR project. When our group
came up with the optimal product mix for a tire company, where I was the head of systems,
we ensured that the objective function reflected the aspirations of stakeholders from sales,
marketing, production, and finance functions; the constraint sets were as stated by them
and the decision variables were realistic from their perspective. The optimal solution, along
with sensitive analysis was given as an input to their fortnightly decision committee on
production planning, resulting in a high level of acceptance of our work.

Models are context sensitive and contexts change over time. Hence data used to derive
model parameters from a given period turn out to be poor representers with the passage
of time. The model itself is considered unusable at this stage. The need to construct mod-
els where model parameters are recalculated and refreshed at regular intervals is evident.
Assessing and establishing the effectiveness of a model continuously and revising the model
at regular intervals depend on data handling capabilities inbuilt into the solution.

Data collection, analysis, hypothesis formulation, and evaluation in many instances is
iterative (as opposed to the belief that they are strictly sequential). Andy Grove, then the
CEO of Intel, was afflicted with prostate cancer in the early 1990s. He was advised to go for
surgery by eminent urologists. His approach to understanding the situation and constructing
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a solution different from their suggestion is documented in Ref. [10]. The use of data and
data-based approach and the iterative nature of finding a solution are exemplified here.

26.1.3 Leg 3: Ensuring Management Support

Operations research functionaries within a firm are usually housed in corporate planning,
production planning and scheduling, management information systems (MIS), or industrial
engineering (IE) departments or in an OR cell. They tend to be involved in staff functions.
They are given the lead or coordination responsibility in productivity improvement assign-
ments by the top management. As direct responsibility to manage resources (machines,
materials, money, or workforce) rests with functional departments such as production, pur-
chase, finance, and HRD the onus to form an all inclusive stakeholder team rests with the
OR practitioner.

Most organizations are goal driven and these are generally short term. For listed compa-
nies the time horizon can be as short as a quarter and rarely extend beyond a year. The
functional departments mirror this reality with monthly goals to be met.

Many OR assignments originate with top management support. As the assignment pro-
gresses, the OR practitioner has a challenging task of including the interest of all stakehold-
ers and ensuring their continued participation vis-à-vis keeping the support and commitment
of top management. These two interests can diverge at times as the former’s goal is to pro-
tect the interest of a particular resource team while management, concerned with overall
effectiveness of all resources, is willing for a tradeoff. Issues and conflicts arise at this stage
resulting in inordinate delay in project execution. Management support soon evaporates as
a timely solution is not found.

Mitchell and Tomlinson [8] have stressed the Change Agent role of OR. Playing this role
effectively calls for many skills such as excellent articulation, unbiased representation of
all interests, negotiation, and diplomacy. OR practitioners need to ensure that they are
adequately skilled to do justice to these role requirements.

Apart from helping to ensure top management support, possession of these skills will
facilitate long-term career growth of the OR professional by switching over to line functions.
This is a career dilemma for many OR professionals. While their services are required at all
times, their role rarely rises above that of a middle or senior management position. There are
no equivalent top management positions such as Chief Finance Officer, Chief Operations
Officer, or CEO for them. (Some with IT skills can become Chief Information Officers.)
Hence, diversifying their skill base (beyond quantitative) is a precondition for the growth
of any OR professional in most organizations.

26.1.4 Leg 4: Innovative Solutions

Andy Grove, in his article about his battle with prostate cancer [10], states that “The
tenors always sang tenor, the baritones, baritone, and the basses, bass. As a patient whose
life and well-being depended on a meeting of minds, I realized I would have to do some
cross-disciplinary work on my own.”

The single value most realized out of an interdisciplinary team is the innovativeness of the
solution generated. Either the model or the process adopted should result in its emergence.
Discussing the practice of OR, Murphy [11] asserts that the “OR tools in and of themselves
are of no value to organizations.” According to him, the ability to build a whole greater
than the sum of the parts “is the missing link.” Blackett and his team took full advantage
of this. In spite of the use of models to structure and analyze the given problems, they went
out of the box when finding solutions. (But returned to quantitative techniques to assess
the impact of solutions.)

© 2008 by Taylor & Francis Group, LLC



CH026.tex 22/10/2007 14: 24 Page 26-6

26-6 Operations Research and Management Science Handbook

OR has become integral to the success of an organization whenever the solution turns
out to be innovative. A case in point is the Revenue Management System of American
Airlines [12]. Innovation occurred here when the value of attributes such as time to book
and flexibility in travel planning were discovered and quantified in selling available seats.
This has been a breakthrough idea that has subsequently been adopted by hospitality and
other service-oriented industries extensively.

Indian Railways carries more than 14 million passengers every day. It is the second largest
rail network in the world in terms of kilometers of track laid. Booking reservations through
a manual system, catering to more than 14 different language requirements, prior to the
mid-1980s, was a dreaded and time wasting experience for most citizens. One had to stand
in multiple lines to book for different journeys; had to return in 2 days to know if one
would get a reservation in a train originating from elsewhere; an entire afternoon could
be wasted in this process. Meanwhile a gray market flourished for train reservations. The
computerized reservation system installed in the mid-1980s has been a phenomenal success
due to innovations introduced in the system using OR concepts. Citizens can stand in one
line, instead of many, to book journeys from anywhere to anywhere in any class. (Now they
can even do this online from their home.) Apart from saving valuable customer time, there
has been a manifold increase in railway staff productivity. In addition, the malpractices
have come down to a minimum.

Almost a decade ago, I led a team that was attempting to break into a segment of IT
services, namely outsourced software maintenance through competitive bidding. We had
superior quality and project management processes and a competent and dedicated team.
We knew how to measure software quality and programmer productivity in multiple plat-
forms on an ongoing basis. We had excellent knowledge management practices. But these
were not adequate to ensure our win. Delving deep into my OR background and work-
ing with a team of software experts, I could evolve a model that would treat the arrival
and service rates of software bugs in a queuing theoretical format. Our team could then
submit an innovative proposal to reduce the size of the maintenance team gradually. This
would result in continuous cost reduction and yet keep service quality undiluted. With this
approach, starting from Nynex, we won multiple assignments with many customers around
the world. Besides, post year 2000 (Y2K), when IT budgets were enhanced, we could obtain
development contracts to replace many of these old systems as many of our team members
now had in-depth knowledge of products and processes of the client organization. (True
multiplier effect of an innovative solution.)

26.2 Impact of the Internet

Two distinct developments need to be discussed here: the spread of computing capabilities
at an ever decreasing unit cost from the early 1950s to date and the exponential growth in
computer to computer networking due to the Internet since the 1990s.

The introduction of computers in industry during the early 1950s played a seminal role in
showcasing what OR can do. The field of OR flourished in this period. Statistical, linear and
nonlinear optimization, and stochastic simulation applications grew. The next two decades
turned out to be the most fertile age of growth in OR applications. Growth in computing
power, presence of personal computers, and crashing cost of computing have impacted on
management science practitioners in many ways. While they played a positive role in the
spread and growth of OR in the early decades, there has been a role reversal, however, since
the 1980s. Productivity gains can now be demonstrated easily by computerization projects
rather than taking the route of model building and optimization. Worse still is the ability
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of the computer to do exhaustive enumeration in a few seconds, thus striking a death knell
on many efforts to find the algorithms for optimal solution.

Personal productivity tools such as spreadsheets with programmable cells have enabled
wide-scale use of simulation, particularly of financial scenarios. Some optimization routines
are also embedded into functions such as internal rate of return (IRR) calculation resulting
in extensive use of OR concepts by masses but without the need to know the concepts.

The second phenomenon, namely, the Internet with its ubiquitous connectivity since the
mid-1980s, coupled with increase in computing power available per dollar, has impacted on
every field of human endeavor dramatically. The field of OR is no exception.

Gone are the days of data issues such as adequacy, granularity, reliability, and timeliness.
Instead it is a data avalanche now presenting a data management problem. Montgomery
[13] highlights issues relating to extraction of value from the huge volume of data in the
Internet era. The arrival of tools such as data warehousing and data mining has helped
the storage and analysis aspects. Yet the interpretation and cause–effect establishment
challenges remain.

Many practitioners have wondered if IT developments have overshadowed the practice of
OR. They also believe that OR applications in industry have reached a saturation point
with the modeling of all conceivable problems. Some other developments are considered
even more profound.

For example, for decades, inventory management has been a business area that has
received enormous attention from the OR community. Models have been built and success-
fully used to consider deterministic and stochastic demand patterns, supply and logistics
constraints, price discounts, and the like. The focus has remained in determining the opti-
mal inventory to hold. Contrast this with the developments in this era of supply chain.
Supply chain management (SCM) has been largely facilitated by the relative ease and cost
effective manner in which disjoint databases, processes, and decision makers can be linked
in real time and by real time collection and processing of point of sale (POS) data. Cou-
pled with the total quality management (TQM) principles it has also given rise to the new
paradigm that inventory in any form is evil and hence needs to be minimized. No one is yet
talking about the futility of inventory models, at least at the manufacturing plant level, but
that managerial focus has shifted to just in time (JIT) and minimal finished goods (FG)
inventory is real.

The Internet era has also squeezed out intermediaries between manufacturers and con-
sumers and has usurped their roles. Issues such as capacity planning and product mix
optimization (essential in made to stock scenario) have yielded place to direct order accep-
tance, delivery commitment, and efficient scheduling of available capacity (made to order
scenario). Dell’s success has been credited [14] to eliminating FG inventory as well as to
minimizing inventory held with its suppliers. They treated inventory as a liability as many
components lose 0.5% to 2.0% of value per week in the high tech industry.

OR expertise was called for in improving the forecasting techniques earlier. Forecasts
were fundamental to many capacity planning and utilization decisions. With the ability to
contact the end user directly, firms have embraced mass customization methodologies and
choose to count each order than forecast. In other words, minimal forecasting is in.

As the Internet has shrunk distances and time lines and as it has facilitated exponen-
tial growth in networking, the planning horizon has shrunk from quarters to days or even
hours. Decisions that were considered strategic once have become operational now. The
revenue management principle that originated in the airline industry is a prime example.
The allocation of seats to different price segments was strategic earlier. It is totally oper-
ational now and is embedded into the real time order processing systems. This practice
has spread to many other service industries such as hospitality, cruise lines, and rental cars
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(a beneficial side effect of strategic decisions becoming operational is the reduced need for
assumptions and worrying about the constancy aspects of assumptions).

When the look-ahead period was long, the need to unravel the cause and effect relationship
between different variables was strong. Regression and other techniques used to determine
this dependency have always been suspected of throwing up spurious correlations. This has
resulted in low acceptance of such techniques for certain purposes, particularly in the field
of social sciences. In the Internet age, the emphasis is not in unraveling but to accept the
scenario in totality, build empirical relationships without probing for root causes, and move
ahead with scenario management tasks.

Does it mean that many revered OR techniques of the past are becoming irrelevant in this
ICE (information, communication, and entertainment) age? Is there a change in paradigm
where the brute force method (applied at a low cost) of computers and the Internet is
sweeping to dust all optimization algorithms? Do we see a trend to embed relevant OR
concepts into many day to day systems that make every commoner an OR expert?

Or is there another side to this coin? Given that OR has the best set of tool kits to
cope with complexity and uncertainty and facilitates virtual experimentation, as seen by
Geoffrion and Krishnan [15], is this a door opening for vast new opportunities in the digi-
tal era?

I have chosen to highlight some situations already encountered in a limited way untill now
but are likely to be widespread in future. These are forerunners of possible opportunities
for OR professionals but are by no means exhaustive.

26.3 Emerging Opportunities

Gass [6] opined in 1997 that the future challenges for OR will come from real time deci-
sion support and control problems such as air traffic control, retail POS, inventory control,
electricity generation and transmission, and highway traffic control. This prediction is in
conformity with our findings that many strategic decisions have become operational in the
Information Age. Data collection at source, instantaneous availability of data across the sup-
ply and service chains, and shrinking planning horizons have meant that fundamental tasks
of OR such as cause–effect discovery, simulation of likely scenarios, evaluation of outcomes,
and optimal utilization of resources, all need to be performed on the fly. It implies that
for routine and repeatable situations OR faces the challenge of automating functions such
as modeling, determining the coefficient values, and selecting the best solutions. In other
words, static modeling needs to yield its place to dynamic modeling. I contend that this is a
whole new paradigm. OR professionals, both academicians and practitioners alike, have to
invent newer methodologies and processes, and construct templates to meet this challenge.

Gawande and Bohara [16], discussing the issue faced by U.S. Coast Guard, exemplify the
dilemma faced by many developed nations. As economic development reaches new highs, so
will concerns for ecology and preservation. Hence, many policy decisions have to wrestle with
the complex issue of balancing between incentives versus penalties. According to Gawande
and Bohara, maritime pollution laws dealing with oil spill prevention have to decide between
penalties for safety (and design) violations of ships and penalties for pollution caused.
This issue can be resolved only with OR models that reflect an excellent understanding
of maritime laws, public policy, incentive economics, and organizational behavior. In other
words, bringing domain knowledge along with the already identified interdisciplinary team
into the solution process and enhancing the quantitative skill sets of the OR practitioner
with appropriate soft skills is mission critical here. I assert that structuring of incentives
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vis-à-vis penalties will be a key issue in the future and OR practitioners with enhanced skill
sets and domain knowledge will play a significant role in helping to solve such issues.

Another dilemma across many systems relates to investments made for prevention as
opposed to breakdown management. Replacement models of yesteryear chose to balance
between cost of prevention against cost of failure. The scope of application of these principles
will expand vastly in this new age, from goods to services. They were difficult to quantify
for the services sector earlier. One of the significant developments in the digital era has been
the sharpening of our ability to quantify the cost of an opportunity lost or poor quality of
service. Further, a class of situations has emerged where cost of failure is backbreaking and
can lead to system shutdown. Aircraft and spaceship failures in flight, bugs in mission critical
software systems, and spread of deadly communicable diseases among humans are good
examples. Even a single failure has dramatic consequences. Innovative solutions need to be
found. Redundancy and real time alternatives are possible solutions with cost implications.
OR experts with innovation in their genes will find a great opportunity here.

The spread of avian flu is a global challenge threatening the lives of millions of birds, fowls,
and humans. Within the past 5 years it has spread from the Southeast Asian subcontinent
to Africa and Eastern Europe. The losses incurred run into millions of dollars whenever
the H5N1 virus is spotted in any place. The United States alone has budgeted 7 billion
dollars to stockpile drugs needed to tackle an epidemic. Policies to quarantine and to dis-
infect affected population, to create disjoint clusters of susceptible population, have been
implemented in some countries. Innovative measures to monitor, test, and isolate birds and
fowls that move across national borders through legitimate trade, illegitimate routes, and
natural migration are needed in many countries [17]. Formulating detection, prevention,
and treatment measures calls for spending millions of dollars judiciously. Cost effectiveness
of each of these measures and their region-wise efficacy can be ensured by application of
OR concepts at the highest levels of government in every country.

Almost a decade ago, Meyer [18] discussed the complexities in selecting employees for
random drug tests at Union Pacific Railroad. The issue of selection is entwined with concerns
for protection of employee privacy, confidentiality, as well as fairness. Post 9/11, similar
situations have occurred in the airline industry with passengers being selected randomly for
personal search. Modern society will face this dilemma more and more across many fields,
from work places to public facilities to even individual homes. For the good of the public
at large, a select few need to be subject to inconvenience, discomfort, and even temporary
suspension of their fundamental rights. (The alternative of covering the entire population
is cost prohibitive.) How does one be fair to all concerned and at the same time maximize
the search effectiveness for a given budget? Or what is an optimal budget in such cases?
OR expertise is in demand here.

Market researchers have struggled with the 4Ps and their interrelationships for four
decades since McCarthy [19] identified them, namely, Product, Performance, Price, and
Promotion. It is the application of OR that has helped to discover the value of each of
the 4Ps and relate them in a commercially viable way. The 4Ps have been applied in a
statistical sense in product and system design so far. Markets were segmented and prod-
ucts were designed to meet the needs of a given segment with features likely to appeal to
either the majority or a mythical ideal customer. This meant that product attributes were
subject to either the rule of least common denominator or with gaps in meeting specific
customer needs. The Internet era has extended direct connectivity to each customer, and
hence the 4Ps as they relate to any individual can be customized. The front end of mass
customization, namely, configuring the product with relevant Ps for each customer, under-
standing his/her tradeoffs, can be done cost effectively only with innovative application of
OR concepts.
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Thompson et al. [20] have dealt with one aspect of the above challenge, namely the need
for product design to reach a new level of sophistication. As costs plummet, every manu-
facturer wishes to cram the product with as many features as one can. Market research has
shown that buyers assign a higher weightage to product capability over its usability at the
time of purchase. This results in high expected utility. However, their experienced utility
is always lower as many features remain unused or underutilized. This results in feature
fatigue and lower customer satisfaction. Hence, manufacturers need to segment the market
better, increase product variety, and invest to learn consumer behavior on an ongoing basis.

Similarly, consumer research can scale new heights in the emerging decades. Customer
behavior can be tracked easily, whereas customer perception is hard to decipher. Correlating
the two and deriving meaningful insights will be the focus of market researchers. OR when
combined with market research and behavioral science concepts can play a vital role here.

Communicating with customers and potential customers on time and in a cost effective
manner is the dream of every enterprise. As the Internet and phone-based customer reach/
distribution channels have emerged, as customers seek to interact in multiple modes with
an organization, optimal channel design in terms of segments, activities within a segment,
and balancing of direct versus indirect reach partners will assume criticality. Channel can-
nibalization or channel conflicts are issues to contend with. Channels such as the Internet,
kiosks, and telephone have been around for a decade or more. However, data on channel
efficacy is either sparse or too macro. Over time a higher level of sophistication in channel
usage will emerge as a key competitive edge. OR has enough tools and concepts to help out
in such decisions for different segments in the financial services sector.

Banks, savings and loan associations, insurance firms, and mutual funds constitute the
financial services sector. Customer segmentation, product structuring, pricing, and credit
worthiness assessment are issues tackled through sophisticated OR applications since the
1970s in this sector. The concept of multi-layering of risk and treating each layer as a
distinct market segment is inherent to insurance and reinsurance lines of business [21].
Product portfolio optimization for a given level of capital and risk appetite is mission critical
here. The Internet and online systems have enabled firms to gather product, customer
segment, and channel specific data on costs, margins, and risks. Extending the product mix
optimization applications from the manufacturing area to financial services is an exciting
and emerging opportunity. Formulating cost effective programs to minimize identity theft
and fraudulent claims without alienating genuine customers are industry challenges where
OR professionals can play significant enabler roles.

With reference to physical goods, the back end of mass customization is intelligent manu-
facturing that can incorporate a feedback loop from the demand side into the manufacturing
processes. Modularizing components and subassemblies, delaying final assembly, and linking
final assembly line to specific customer orders as well as items on hand are tasks consequent
to mass customization. As discussed earlier, the move now is toward minimal forecasting.
Capacity management and order management are in focus rather than better forecasting
and finished goods inventory control. Simulation techniques have found wide acceptance in
shop floor layout, sequencing of production steps, scheduling and rescheduling of operations
to meet customer commitments and to make delivery commitments. While optimization
held sway when many decisions were strategic, operationalizing the strategic decisions has
resulted in simulation systems replacing the optimizers.

FedEx, UPS, and DHL are early movers in the courier transportation industry to have
used complex OR algorithms and sophisticated computer systems for routing and tracking
packages [22]. Cell phones, RFID devices, and GPS technologies have immense potential
to provide solutions to mobility-related issues of products and resources. Dynamic data
captured through such means facilitate building optimizing online and real time solutions for
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logistic and transportation problems. When coupled with context-specific information from
GIS databases as well as from enterprise-wide computers, higher levels of complex issues can
be solved in an integrated mode. Constructing such solutions is a skill and capability building
means for OR professionals, thus facilitating their career growth. Camm et al. report a
pioneering GIS application at Proctor & Gamble carried out by OR practitioners [23].

OR being called upon to play the role of a fair judge recurs in the telecom sector too.
Systems need to reach a new level of sophistication at the design stage itself. Many systems
have facilities that are multifaceted (can carry data, voice, video, etc.). Hence, they end up
serving multiple customer segments and multiple products. Then the critical issue is one
of design to honor service level agreements (SLAs) with each customer segment and at the
same time not to build overcapacity. This turns out to be both a facility design issue and
operational policy issue for a given system capacity. Ramaswamy et al. [24] have discussed
an Internet dial-up service clashing with the emergency phone services when provided over
the same carriers and how OR models have been used to resolve attendant issues.

Law enforcement and criminal justice systems have had a long history of use of quantita-
tive techniques, starting from Poisson in the 1830s [1]. From effective deployment of police
forces, determining patrol patterns, inferring criminality, concluding guilt or innocence,
deciding on appropriate level of punishment to scheduling of court resources, numerous
instances are citied in the literature about the use of OR techniques. However, a virtually
untapped arena of vast potential for OR practitioners is attacking cyber crime. This is fer-
tile ground for correlating data from multiple and unconnected sources, drawing inference,
and detection and prevention of criminal activities that take place through the Internet.

One of the telling effects of the Internet has been online auctions [25]. It is the virtual space
where the buyer and seller meet disregarding time and place separations. One can imagine
well the advantage of such auction sites when compared to physical sites. The emerging
issues in this scenario call for ensuring fairness in transactions through an objective pro-
cess while preserving user confidentiality. This is an exciting emerging application area for
OR experts with in-depth understanding of market behavior as well as appropriate domain
knowledge relating to the product or service in focus. Bidders in such auctions need to choose
not only the best prices to offer but also sequence their offer effectively. The emergence of
intelligent agents that can gather focused data, evolve user specific criteria for evaluation,
help both parties to choose the best path of behavior (price to quote and when) are chal-
lenges awaiting the OR practitioner. Gregg and Walizak [26] are early entrants to this arena.

A conventional assumption in any system design has been to overlook the transient state
and design for the steady state (in most queuing systems). Today’s computing technology
permits the analysis of the transient state within reasonable cost. Also it is true that many
systems spend a large amount of time in the transient state and hence have the need to
design them optimally in this state as well. OR theory has much to contribute in this area.

Developments in life sciences and related fields such as drug discovery, genetics, and
telemedicine have opened doors to many opportunities for OR applications. OR experts
are playing an increasingly assertive role in cancer diagnosis and treatment. 3D pattern
recognition issues rely heavily on statistical and related OR concepts to identify the best
fits. It is evident that such opportunities will grow manifold going forward.

The year 2003 is significant in the field of biology and bioinformatics. This was the 50th
anniversary of the discovery of the double helical structure of DNA and the completion of
the human genome project. While the first event gave birth to the field of genetics, the
second is the beginning of the use of genomes in medicine. The current challenge is to
utilize the genome data to its full extent and to develop tools that enhance our knowledge
of biological pathways. This would lead to accelerated drug discovery. Abbas and Holmes
[27] provide enormous insight into the opportunities for OR/MS expertise application in
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this area. Sequence alignment, phylogenetic tree, protein structure prediction, and genome
rearrangement and the like are problems solvable with OR tools of probabilistic modeling,
simulation, and Boolean networks.

Similarly, the next revolution in information technology itself awaits the invention of intel-
ligent devices that recognize inputs beyond keyboard tapping and speech. Other means of
inputs such as smell, vision, and touch require advancement in both hardware and software.
And the software would rely heavily on OR to draw meaningful conclusions.

Industries in the services sector will dominate the economies of both developed and devel-
oping countries in the twenty-first century. To answer the challenges in the service sector,
there is an emerging science of service management advocated by IBM and other global com-
panies. This would open up many opportunities for the OR/MS practitioners (see the article

service sector (airlines, energy, finance, military, and water resources) are discussed in detail.
Finally, one of the significant but unheralded contributions of OR to society at large has

been the creation of means to handle variability. Previously, most systems and products
were designed with either the average in mind or custom developed. OR with its embedded
statistical tools and optimization algorithms has enabled a better understanding of variabil-
ity at multiple levels (variance, skewness, and kurtosis), its associated costs, and has enabled
meaningful and commercially viable market segmentation (as in the airlines industry). The
twenty-first century demands that we accept diversity as an integral and inevitable aspect
of nature in every aspect of our endeavor. We as a society are expected to build systems,
evolve policies, and promote thoughts that accept diversity in totality. This can, however,
be achieved only in an economic model that balances the associated costs with resultant
benefits. OR is the only discipline that can quantify the diversity aspects anywhere and
create the economic models to deal with the issues effectively. In that sense its longevity is
assured.
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