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Preface

This is an introductory textbook of linear programming, written mainly for
students of computer science and mathematics. Our guiding phrase is, “what
every theoretical computer scientist should know about linear programming.”

The book is relatively concise, in order to allow the reader to focus on
the basic ideas. For a number of topics commonly appearing in thicker books
on the subject, we were seriously tempted to add them to the main text, but
we decided to present them only very briefly in a separate glossary. At the
same time, we aim at covering the main results with complete proofs and in
sufficient detail, in a way ready for presentation in class.

One of the main focuses is applications of linear programming, both in
practice and in theory. Linear programming has become an extremely flex-
ible tool in theoretical computer science and in mathematics. While many
of the finest modern applications are much too complicated to be included
in an introductory text, we hope to communicate some of the flavor (and
excitement) of such applications on simpler examples.

We present three main computational methods. The simplex algorithm is
first introduced on examples, and then we cover the general theory, putting
less emphasis on implementation details. For the ellipsoid method we give
the algorithm and the main claims required for its analysis, omitting some
technical details. From the vast family of interior point methods, we concen-
trate on one of the most efficient versions known, the primal–dual central
path method, and again we do not present the technical machinery in full.
Rigorous mathematical statements are clearly distinguished from informal
explanations in such parts.

The only real prerequisite to this book is undergraduate linear algebra.
We summarize the required notions and results in an appendix. Some of the
examples also use rudimentary graph-theoretic terminology, and at several
places we refer to notions and facts from calculus; all of these should be a
part of standard undergraduate curricula.

Errors. If you find errors in the book, especially serious ones, we would
appreciate it if you would let us know (email: matousek@kam.mff.cuni.cz,
gaertner@inf.ethz.ch). We plan to post a list of errors at http://www.

inf.ethz.ch/personal/gaertner/lpbook.
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1. What Is It, and What For?

Linear programming, surprisingly, is not directly related to computer pro-
gramming. The term was introduced in the 1950s when computers were few
and mostly top secret, and the word programming was a military term that,
at that time, referred to plans or schedules for training, logistical supply,
or deployment of men. The word linear suggests that feasible plans are re-
stricted by linear constraints (inequalities), and also that the quality of the
plan (e.g., costs or duration) is also measured by a linear function of the
considered quantities. In a similar spirit, linear programming soon started
to be used for planning all kinds of economic activities, such as transport
of raw materials and products among factories, sowing various crop plants,
or cutting paper rolls into shorter ones in sizes ordered by customers. The
phrase “planning with linear constraints” would perhaps better capture this
original meaning of linear programming. However, the term linear program-
ming has been well established for many years, and at the same time, it has
acquired a considerably broader meaning: Not only does it play a role only
in mathematical economy, it appears frequently in computer science and in
many other fields.

1.1 A Linear Program

We begin with a very simple linear programming problem (or linear pro-
gram for short):

Maximize the value x1 + x2

among all vectors (x1, x2) ∈ R2

satisfying the constraints x1 ≥ 0
x2 ≥ 0
x2 − x1 ≤ 1
x1 + 6x2 ≤ 15
4x1 − x2 ≤ 10.

For this linear program we can easily draw a picture. The set {x ∈ R2 :
x2 − x1 ≤ 1} is the half-plane lying below the line x2 = x1 + 1, and similarly,



2 1. What Is It, and What For?

each of the remaining four inequalities defines a half-plane. The set of all
vectors satisfying the five constraints simultaneously is a convex polygon:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≤ 1

(3, 2)

(1, 1)

4x1 − x2 ≤ 10

x2

x1

Which point of this polygon maximizes the value of x1 + x2? The one lying
“farthest in the direction” of the vector (1, 1) drawn by the arrow; that is,
the point (3, 2). The phrase “farthest in the direction” is in quotation marks
since it is not quite precise. To make it more precise, we consider a line
perpendicular to the arrow, and we think of translating it in the direction of
the arrow. Then we are seeking a point where the moving line intersects our
polygon for the last time. (Let us note that the function x1 + x2 is constant
on each line perpendicular to the vector (1, 1), and as we move the line in
the direction of that vector, the value of the function increases.) See the next
illustration:

(0, 0)

(3, 2)

(1, 1)

x1 + x2 = 2

x1 + x2 = 4 x1 + x2 = 5
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In a general linear program we want to find a vector x∗ ∈ Rn maximizing
(or minimizing) the value of a given linear function among all vectors x ∈ Rn

that satisfy a given system of linear equations and inequalities. The linear
function to be maximized, or sometimes minimized, is called the objective
function. It has the form cT x = c1x1 + · · · + cnxn, where c ∈ Rn is a given
vector.1

The linear equations and inequalities in the linear program are called the
constraints. It is customary to denote the number of constraints by m.

A linear program is often written using matrices and vectors, in a way
similar to the notation Ax = b for a system of linear equations in linear
algebra. To make such a notation simpler, we can replace each equation in
the linear program by two opposite inequalities. For example, instead of the
constraint x1 + 3x2 = 7 we can put the two constraints x1 + 3x2 ≤ 7 and
x1 + 3x2 ≥ 7. Moreover, the direction of the inequalities can be reversed
by changing the signs: x1 + 3x2 ≥ 7 is equivalent to −x1 − 3x2 ≤ −7, and
thus we can assume that all inequality signs are “≤”, say, with all variables
appearing on the left-hand side. Finally, minimizing an objective function
cT x is equivalent to maximizing −cT x, and hence we can always pass to a
maximization problem. After such modifications each linear program can be
expressed as follows:

Maximize the value of cT x
among all vectors x ∈ Rn satisfying Ax ≤ b,

where A is a given m×n real matrix and c ∈ Rn, b ∈ Rm are given vectors.
Here the relation ≤ holds for two vectors of equal length if and only if it
holds componentwise.

Any vector x ∈ Rn satisfying all constraints of a given linear program is
a feasible solution. Each x∗ ∈ Rn that gives the maximum possible value
of cT x among all feasible x is called an optimal solution, or optimum for
short. In our linear program above we have n = 2, m = 5, and c = (1, 1).
The only optimal solution is the vector (3, 2), while, for instance, (2, 3

2 ) is a
feasible solution that is not optimal.

A linear program may in general have a single optimal solution, or in-
finitely many optimal solutions, or none at all.

We have seen a situation with a single optimal solution in the first example
of a linear program. We will present examples of the other possible situations.

1 Here we regard the vector c as an n×1 matrix, and so the expression c
T
x is a

product of a 1×n matrix and an n×1 matrix. This product, formally speaking,
should be a 1×1 matrix, but we regard it as a real number.

Some readers might wonder: If we consider c a column vector, why, in the
example above, don’t we write it as a column or as (1, 1)T ? For us, a vector
is an n-tuple of numbers, and when writing an explicit vector, we separate the
numbers by commas, as in c = (1, 1). Only if a vector appears in a context where
one expects a matrix, that is, in a product of matrices, then it is regarded as (or
“converted to”) an n×1 matrix. (However, sometimes we declare a vector to be
a row vector, and then it behaves as a 1×n matrix.)
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If we change the vector c in the example to (1
6 , 1), all points on the side

of the polygon drawn thick in the next picture are optimal solutions:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≤ 1

( 1

6
, 1)

4x1 − x2 ≤ 10

If we reverse the directions of the inequalities in the constraints x2 − x1 ≤ 1
and 4x1 − x2 ≤ 10 in our first example, we obtain a linear program that has
no feasible solution, and hence no optimal solution either:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≥ 1

(1, 1)

4x1 − x2 ≥ 10

Such a linear program is called infeasible.
Finally, an optimal solution need not exist even when there are feasible

solutions. This happens when the objective function can attain arbitrarily
large values (such a linear program is called unbounded). This is the case
when we remove the constraints 4x1 − x2 ≤ 10 and x1 + 6x2 ≤ 15 from the
initial example, as shown in the next picture:
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(0, 0)

x2 ≥ 0

x1 ≥ 0

x2 − x1 ≤ 1

(1, 1)

Let us summarize: We have seen that a linear program can have one or
infinitely many optimal solutions, but it may also be unbounded or infeasible.
Later we will prove that no other situations can occur.

We have solved the initial linear program graphically. It was easy since
there are only two variables. However, for a linear program with four variables
we won’t even be able to make a picture, let alone find an optimal solution
graphically. A substantial linear program in practice often has several thou-
sand variables, rather than two or four. A graphical illustration is useful for
understanding the notions and procedures of linear programming, but as a
computational method it is worthless. Sometimes it may even be mislead-
ing, since objects in high dimension may behave in a way quite different from
what the intuition gained in the plane or in three-dimensional space suggests.

One of the key pieces of knowledge about linear programming that one
should remember forever is this:

A linear program is efficiently solvable, both in theory and in practice.

• In practice, a number of software packages are available. They can han-
dle inputs with several thousands of variables and constraints. Linear
programs with a special structure, for example, with a small number of
nonzero coefficients in each constraint, can often be managed even with
a much larger number of variables and constraints.

• In theory, algorithms have been developed that provably solve each linear
program in time bounded by a certain polynomial function of the input
size. The input size is measured as the total number of bits needed to
write down all coefficients in the objective function and in all the con-
straints.

These two statements summarize the results of long and strenuous research,
and efficient methods for linear programming are not simple.

In order that the above piece of knowledge will also make sense forever,
one should not forget what a linear program is, so we repeat it once again:
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A linear program is the problem of maximizing a given linear function
over the set of all vectors that satisfy a given system of linear equations
and inequalities. Each linear program can easily be transformed to the
form

maximize cT x subject to Ax ≤ b.

1.2 What Can Be Found in This Book

The rest of Chapter 1 briefly discusses the history and importance of linear
programming and connects it to linear algebra.

For a large majority of readers it can be expected that whenever they
encounter linear programming in practice or in research, they will be using it
as a black box. From this point of view Chapter 2 is crucial, since it describes
a number of algorithmic problems that can be solved via linear programming.

The closely related Chapter 3 discusses integer programming, in which
one also optimizes a linear function over a set of vectors determined by linear
constraints, but moreover, the variables must attain integer values. In this
context we will see how linear programming can help in approximate solutions
of hard computational problems.

Chapter 4 brings basic theoretical results on linear programming and on
the geometric structure of the set of all feasible solutions. Notions introduced
there, such as convexity and convex polyhedra, are important in many other
branches of mathematics and computer science as well.

Chapter 5 covers the simplex method, which is a fundamental algorithm
for linear programming. In full detail it is relatively complicated, and from
the contemporary point of view it is not necessarily the central topic in a first
course on linear programming. In contrast, some traditional introductions to
linear programming are focused almost solely on the simplex method.

In Chapter 6 we will state and prove the duality theorem, which is one
of the principal theoretical results in linear programming and an extremely
useful tool for proofs.

Chapter 7 deals with two other important algorithmic approaches to linear
programming: the ellipsoid method and the interior point method. Both of
them are rather intricate and we omit some technical issues.

Chapter 8 collects several slightly more advanced applications of linear
programming from various fields, each with motivation and some background
material.

Chapter 9 contains remarks on software available for linear programming
and on the literature.

Linear algebra is the main mathematical tool throughout the book. The
required linear-algebraic notions and results are summarized in an appendix.

The book concludes with a glossary of terms that are common in linear
programming but do not appear in the main text. Some of them are listed to
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ensure that our index can compete with those of thicker books, and others
appear as background material for the advanced reader.

Two levels of text. This book should serve mainly as an introductory text
for undergraduate and early graduate students, and so we do not want to
assume previous knowledge beyond the usual basic undergraduate courses.
However, many of the key results in linear programming, which would be a
pity to omit, are not easy to prove, and sometimes they use mathematical
methods whose knowledge cannot be expected at the undergraduate level.
Consequently, the text is divided into two levels. On the basic level we are
aiming at full and sufficiently detailed proofs.

The second, more advanced, and “edifying” level is typographically
distinguished like this. In such parts, intended chiefly for mathemati-
cally more mature readers, say graduate or PhD students, we include
sketches of proofs and somewhat imprecise formulations of more ad-
vanced results. Whoever finds these passages incomprehensible may
freely ignore them; the basic text should also make sense without them.

1.3 Linear Programming and Linear Algebra

The basics of linear algebra can be regarded as a theory of systems of linear
equations. Linear algebra considers many other things as well, but systems
of linear equations are surely one of the core subjects. A key algorithm is
Gaussian elimination, which efficiently finds a solution of such a system, and
even a description of the set of all solutions. Geometrically, the solution set
is an affine subspace of Rn, which is an important linear-algebraic notion.2

In a similar spirit, the discipline of linear programming can be regarded
as a theory of systems of linear inequalities.

In a linear program this is somewhat obscured by the fact that we
do not look for an arbitrary solution of the given system of inequalities,
but rather a solution maximizing a given objective function. But it
can be shown that finding an (arbitrary) feasible solution of a linear
program, if one exists, is computationally almost equally difficult as
finding an optimal solution. Let us outline how one can gain an optimal
solution, provided that feasible solutions can be computed (a different
and more elegant way will be described in Section 6.1). If we somehow
know in advance that, for instance, the maximum value of the objective
function in a given linear program lies between 0 and 100, we can first
ask, whether there exists a feasible x ∈ Rn for which the objective

2 An affine subspace is a linear subspace translated by a fixed vector x ∈ Rn. For
example, every point, every line, and R2 itself are the affine subspaces of R2.
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function is at least 50. That is, we add to the existing constraints a
new constraint requiring that the value of the objective function be
at least 50, and we find out whether this auxiliary linear program
has a feasible solution. If yes, we will further ask, by the same trick,
whether the objective function can be at least 75, and if not, we will
check whether it can be at least 25. A reader with computer-science-
conditioned reflexes has probably already recognized the strategy of
binary search, which allows us to quickly localize the maximum value
of the objective function with great accuracy.

Geometrically, the set of all solutions of a system of linear inequalities
is an intersection of finitely many half-spaces in Rn. Such a set is called a
convex polyhedron, and familiar examples of convex polyhedra in R3 are a
cube, a rectangular box, a tetrahedron, and a regular dodecahedron. Con-
vex polyhedra are mathematically much more complex objects than vector
subspaces or affine subspaces (we will return to this later). So actually, we
can be grateful for the objective function in a linear program: It is enough to
compute a single point x∗ ∈ Rn as a solution and we need not worry about
the whole polyhedron.

In linear programming, a role comparable to that of Gaussian elimination
in linear algebra is played by the simplex method. It is an algorithm for
solving linear programs, usually quite efficient, and it also allows one to prove
theoretical results.

Let us summarize the analogies between linear algebra and linear pro-
gramming in tabular form:

Basic problem Algorithm Solution set
Linear system of Gaussian affine
algebra linear equations elimination subspace
Linear system of simplex convex
programming linear inequalities method polyhedron

1.4 Significance and History of Linear Programming

In a special issue of the journal Computing in Science & Engineering, the
simplex method was included among “the ten algorithms with the greatest
influence on the development and practice of science and engineering in the
20th century.”3 Although some may argue that the simplex method is only

3 The remaining nine algorithms on this list are the Metropolis algorithm for
Monte Carlo simulations, the Krylov subspace iteration methods, the decompo-
sitional approach to matrix computations, the Fortran optimizing compiler, the
QR algorithm for computing eigenvalues, the Quicksort algorithm for sorting,
the fast Fourier transform, the detection of integer relations, and the fast multi-
pole method.
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number fourteen, say, and although each such evaluation is necessarily sub-
jective, the importance of linear programming can hardly be cast in doubt.

The simplex method was invented and developed by George Dantzig in
1947, based on his work for the U.S. Air Force. Even earlier, in 1939, Leonid
Vitalyevich Kantorovich was charged with the reorganization of the timber
industry in the U.S.S.R., and as a part of his task he formulated a restricted
class of linear programs and a method for their solution. As happens under
such regimes, his discoveries went almost unnoticed and nobody continued his
work. Kantorovich together with Tjalling Koopmans received the Nobel Prize
in Economics in 1975, for pioneering work in resource allocation. Somewhat
ironically, Dantzig, whose contribution to linear programming is no doubt
much more significant, was never awarded a Nobel Prize.

The discovery of the simplex method had a great impact on both the-
ory and practice in economics. Linear programming was used to allocate
resources, plan production, schedule workers, plan investment portfolios, and
formulate marketing and military strategies. Even entrepreneurs and man-
agers accustomed to relying on their experience and intuition were impressed
when costs were cut by 20%, say, by a mere reorganization according to
some mysterious calculation. Especially when such a feat was accomplished
by someone who was not really familiar with the company, just on the basis
of some numerical data. Suddenly, mathematical methods could no longer be
ignored with impunity in a competitive environment.

Linear programming has evolved a great deal since the 1940s, and new
types of applications have been found, by far not restricted to mathematical
economics.

In theoretical computer science it has become one of the fundamental tools
in algorithm design. For a number of computational problems the existence
of an efficient (polynomial-time) algorithm was first established by general
techniques based on linear programming.

For other problems, known to be computationally difficult (NP-hard, if
this term tells the reader anything), finding an exact solution is often hope-
less. One looks for approximate algorithms, and linear programming is a key
component of the most powerful known methods.

Another surprising application of linear programming is theoretical: the
duality theorem, which will be explained in Chapter 6, appears in proofs of
numerous mathematical statements, most notably in combinatorics, and it
provides a unifying abstract view of many seemingly unrelated results. The
duality theorem is also significant algorithmically.

We will show examples of methods for constructing algorithms and proofs
based on linear programming, but many other results of this kind are too
advanced for a short introductory text like ours.

The theory of algorithms for linear programming itself has also grown con-
siderably. As everybody knows, today’s computers are many orders of mag-
nitude faster than those of fifty years ago, and so it doesn’t sound surprising
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that much larger linear programs can be solved today. But it may be sur-
prising that this enlargement of manageable problems probably owes more to
theoretical progress in algorithms than to faster computers. On the one hand,
the implementation of the simplex method has been refined considerably, and
on the other hand, new computational methods based on completely differ-
ent ideas have been developed. This latter development will be described in
Chapter 7.



2. Examples

Linear programming is a wonderful tool. But in order to use it, one first
has to start suspecting that the considered computational problem might be
expressible by a linear program, and then one has to really express it that
way. In other words, one has to see linear programming “behind the scenes.”

One of the main goals of this book is to help the reader acquire skills in
this direction. We believe that this is best done by studying diverse examples
and by practice. In this chapter we present several basic cases from the wide
spectrum of problems amenable to linear programming methods, and we
demonstrate a few tricks for reformulating problems that do not look like
linear programs at first sight. Further examples are covered in Chapter 3,
and Chapter 8 includes more advanced applications.

Once we have a suitable linear programming formulation (a “model” in
the mathematical programming parlance), we can employ general algorithms.
From a programmer’s point of view this is very convenient, since it suffices to
input the appropriate objective function and constraints into general-purpose
software.

If efficiency is a concern, this need not be the end of the story. Many prob-
lems have special features, and sometimes specialized algorithms are known,
or can be constructed, that solve such problems substantially faster than
a general approach based on linear programming. For example, the study
of network flows, which we consider in Section 2.2, constitutes an extensive
subfield of theoretical computer science, and fairly efficient algorithms have
been developed. Computing a maximum flow via linear programming is thus
not the best approach for large-scale instances.

However, even for problems where linear programming doesn’t ultimately
yield the most efficient available algorithm, starting with a linear program-
ming formulation makes sense: for fast prototyping, case studies, and deciding
whether developing problem-specific software is worth the effort.
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2.1 Optimized Diet: Wholesome and Cheap?

. . . and when Rabbit said, “Honey or condensed milk
with your bread?” he was so excited that he said,
“Both,” and then, so as not to seem greedy, he added,
“But don’t bother about the bread, please.”

A.A. Milne, Winnie the Pooh

The Office of Nutrition Inspection of the EU recently found out that dishes
served at the dining and beverage facility “Bullneck’s,” such as herring, hot
dogs, and house-style hamburgers do not comport with the new nutritional
regulations, and its report mentioned explicitly the lack of vitamins A and
C and dietary fiber. The owner and operator of the aforementioned facility
is attempting to rectify these shortcomings by augmenting the menu with
vegetable side dishes, which he intends to create from white cabbage, carrots,
and a stockpile of pickled cucumbers discovered in the cellar. The following
table summarizes the numerical data: the prescribed amount of the vitamins
and fiber per dish, their content in the foods, and the unit prices of the foods.1

Food Carrot, White Cucumber, Required
Raw Cabbage, Raw Pickled per dish

Vitamin A [mg/kg] 35 0.5 0.5 0.5mg
Vitamin C [mg/kg] 60 300 10 15mg
Dietary Fiber [g/kg] 30 20 10 4 g
price [e /kg] 0.75 0.5 0.15∗ —
∗Residual accounting price of the inventory, most likely unsaleable.

At what minimum additional price per dish can the requirements of the
Office of Nutrition Inspection be satisfied? This question can be expressed
by the following linear program:

Minimize 0.75x1 + 0.5x2 + 0.15x3

subject to x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
35x1 + 0.5x2 + 0.5x3 ≥ 0.5
60x1 + 300x2 + 10x3 ≥ 15
30x1 + 20x2 + 10x3 ≥ 4.

The variable x1 specifies the amount of carrot (in kg) to be added to each dish,
and similarly for x2 (cabbage) and x3 (cucumber). The objective function

1 For those interested in healthy diet: The vitamin contents and other data are
more or less realistic.
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expresses the price of the combination. The amounts of carrot, cabbage, and
cucumber are always nonnegative, which is captured by the conditions x1 ≥ 0,
x2 ≥ 0, x3 ≥ 0 (if we didn’t include them, an optimal solution might perhaps
have the amount of carrot, say, negative, by which one would seemingly save
money). Finally, the inequalities in the last three lines force the requirements
on vitamins A and C and of dietary fiber.

The linear program can be solved by standard methods. The optimal
solution yields the price of e 0.07 with the following doses: carrot 9.5 g,
cabbage 38 g, and pickled cucumber 290 g per dish (all rounded to two
significant digits). This probably wouldn’t pass another round of inspection.
In reality one would have to add further constraints, for example, one on the
maximum amount of pickled cucumber.

We have included this example so that our treatment doesn’t look too
revolutionary. It seems that all introductions to linear programming begin
with various dietary problems, most likely because the first large-scale prob-
lem on which the simplex method was tested in 1947 was the determination
of an adequate diet of least cost. Which foods should be combined and in
what amounts so that the required amounts of all essential nutrients are sat-
isfied and the daily ration is the cheapest possible. The linear program had
77 variables and 9 constraints, and its solution by the simplex method using
hand-operated desk calculators took approximately 120 man-days.

Later on, when George Dantzig had already gained access to an electronic
computer, he tried to optimize his own diet as well. The optimal solution of
the first linear program that he constructed recommended daily consumption
of several liters of vinegar. When he removed vinegar from the next input,
he obtained approximately 200 bouillon cubes as the basis of the daily diet.
This story, whose truth is not entirely out of the question, doesn’t diminish
the power of linear programming in any way, but it illustrates how difficult it
is to capture mathematically all the important aspects of real-life problems.
In the realm of nutrition, for example, it is not clear even today what exactly
the influence of various components of food is on the human body. (Although,
of course, many things are clear, and hopes that the science of the future will
recommend hamburgers as the main ingredient of a healthy diet will almost
surely be disappointed.) Even if it were known perfectly, few people want
and can formulate exactly what they expect from their diet—apparently,
it is much easier to formulate such requirements for the diet of someone
else. Moreover, there are nonlinear dependencies among the effects of various
nutrients, and so the dietary problem can never be captured perfectly by
linear programming.

There are many applications of linear programming in industry, agricul-
ture, services, etc. that from an abstract point of view are variations of the
diet problem and do not introduce substantially new mathematical tricks.
It may still be challenging to design good models for real-life problems of
this kind, but the challenges are not mathematical. We will not dwell on
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such problems here (many examples can be found in Chvátal’s book cited in
Chapter 9), and we will present problems in which the use of linear program-
ming has different flavors.

2.2 Flow in a Network

An administrator of a computer network convinced his employer to purchase
a new computer with an improved sound system. He wants to transfer his
music collection from an old computer to the new one, using a local network.
The network looks like this:
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What is the maximum transfer rate from computer o (old) to computer n
(new)? The numbers near each data link specify the maximum transfer rate
of that link (in Mbit/s, say). We assume that each link can transfer data in
either direction, but not in both directions simultaneously. So, for example,
through the link ab one can either send data from a to b at any rate from 0
up to 1 Mbit/s, or send data from b to a at any rate from 0 to 1 Mbit/s.

The nodes a, b, . . . , e are not suitable for storing substantial amounts of
data, and hence all data entering them has to be sent further immediately.
From this we can already see that the maximum transfer rate cannot be used
on all links simultaneously (consider node a, for example). Thus we have to
find an appropriate value of the data flow for each link so that the total
transfer rate from o to n is maximum.

For every link in the network we introduce one variable. For example, xbe

specifies the rate by which data is transfered from b to e. Here xbe can also be
negative, which means that data flow in the opposite direction, from e to b.
(And we thus do not introduce another variable xeb, which would correspond
to the transfer rate from e to b.) There are 10 variables: xoa, xob, xoc, xab,
xad, xbe, xcd, xce, xdn, and xen.

We set up the following linear program:
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Maximize xoa + xob + xoc

subject to −3 ≤ xoa ≤ 3, −1 ≤ xob ≤ 1, −1 ≤ xoc ≤ 1
−1 ≤ xab ≤ 1, −1 ≤ xad ≤ 1, −3 ≤ xbe ≤ 3
−4 ≤ xcd ≤ 4, −4 ≤ xce ≤ 4, −4 ≤ xdn ≤ 4
−1 ≤ xen ≤ 1

xoa = xab + xad

xob + xab = xbe

xoc = xcd + xce

xad + xcd = xdn

xbe + xce = xen.

The objective function xoa +xob +xoc expresses the total rate by which data
is sent out from computer o. Since it is neither stored nor lost (hopefully)
anywhere, it has to be received at n at the same rate. The next 10 constraints,
−3 ≤ xoa ≤ 3 through −1 ≤ xen ≤ 1, restrict the transfer rates along the
individual links. The remaining constraints say that whatever enters each of
the nodes a through e has to leave immediately.

The optimal solution of this linear program is depicted below:
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The number near each link is the transfer rate on that link, and the arrow
determines the direction of the data flow. Note that between c and e data has
to be sent in the direction from e to c, and hence xce = −1. The optimum
value of the objective function is 4, and this is the desired maximum transfer
rate.

In this example it is easy to see that the transfer rate cannot be larger,
since the total capacity of all links connecting the computers o and a to the
rest of the network equals 4. This is a special case of a remarkable theorem
on maximum flow and minimum cut, which is usually discussed in courses on
graph algorithms (see also Section 8.2).

Our example of data flow in a network is small and simple. In practice,
however, flows are considered in intricate networks, sometimes even with
many source nodes and sink nodes. These can be electrical networks (current
flows), road or railroad networks (cars or trains flow), telephone networks
(voice or data signals flow), financial (money flows), and so on. There are
also many less-obvious applications of network flows—for example, in image
processing.
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Historically, the network flow problem was first formulated by
American military experts in search of efficient ways of disrupting
the railway system of the Soviet block; see

A. Schrijver: On the history of the transportation and max-
imum flow problems, Math. Programming Ser. B 91(2002)
437–445.

2.3 Ice Cream All Year Round

The next application of linear programming again concerns food (which
should not be surprising, given the importance of food in life and the diffi-
culties in optimizing sleep or love). The ice cream manufacturer Icicle Works
Ltd.2 needs to set up a production plan for the next year. Based on history,
extensive surveys, and bird observations, the marketing department has come
up with the following prediction of monthly sales of ice cream in the next
year:
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Now Icicle Works Ltd. needs to set up a production schedule to meet
these demands.

A simple solution would be to produce “just in time,” meaning that all
the ice cream needed in month i is also produced in month i, i = 1, 2, . . . , 12.
However, this means that the produced amount would vary greatly from
month to month, and a change in the produced amount has significant costs:
Temporary workers have to be hired or laid off, machines have to be adjusted,

2 Not to be confused with a rock group of the same name. The name comes from
a nice science fiction story by Frederik Pohl.
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and so on. So it would be better to spread the production more evenly over
the year: In months with low demand, the idle capacities of the factory could
be used to build up a stock of ice cream for the months with high demand.

So another simple solution might be a completely “flat” production sched-
ule, with the same amount produced every month. Some thought reveals that
such a schedule need not be feasible if we want to end up with zero surplus
at the end of the year. But even if it is feasible, it need not be ideal either,
since storing ice cream incurs a nontrivial cost. It seems likely that the best
production schedule should be somewhere between these two extremes (pro-
duction following demand and constant production). We want a compromise
minimizing the total cost resulting both from changes in production and from
storage of surpluses.

To formalize this problem, let us denote the demand in month i by di ≥ 0
(in tons). Then we introduce a nonnegative variable xi for the production in
month i and another nonnegative variable si for the total surplus in store
at the end of month i. To meet the demand in month i, we may use the
production in month i and the surplus at the end of month i − 1:

xi + si−1 ≥ di for i = 1, 2, . . . , 12.

The quantity xi + si−1 − di is exactly the surplus after month i, and thus we
have

xi + si−1 − si = di for i = 1, 2, . . . , 12.

Assuming that initially there is no surplus, we set s0 = 0 (if we took the
production history into account, s0 would be the surplus at the end of the
previous year). We also set s12 = 0, unless we want to plan for another year.

Among all nonnegative solutions to these equations, we are looking for one
that minimizes the total cost. Let us assume that changing the production
by 1 ton from month i − 1 to month i costs e 50, and that storage facilities
for 1 ton of ice cream cost e 20 per month. Then the total cost is expressed
by the function

50
12∑

i=1

|xi − xi−1| + 20
12∑

i=1

si,

where we set x0 = 0 (again, history can easily be taken into account).
Unfortunately, this cost function is not linear. Fortunately, there is a

simple but important trick that allows us to make it linear, at the price of
introducing extra variables.

The change in production is either an increase or a decrease. Let us intro-
duce a nonnegative variable yi for the increase from month i− 1 to month i,
and a nonnegative variable zi for the decrease. Then

xi − xi−1 = yi − zi and |xi − xi−1| = yi + zi.

A production schedule of minimum total cost is given by an optimal so-
lution of the following linear program:
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Minimize 50
∑12

i=1 yi + 50
∑12

i=1 zi + 20
∑12

i=1 si

subject to xi + si−1 − si = di for i = 1, 2, . . . , 12
xi − xi−1 = yi − zi for i = 1, 2, . . . , 12
x0 = 0
s0 = 0
s12 = 0
xi, si, yi, zi ≥ 0 for i = 1, 2, . . . , 12.

To see that an optimal solution (s∗,y∗, z∗) of this linear program indeed
defines a schedule, we need to note that one of y∗

i and z∗i has to be zero for
all i, for otherwise, we could decrease both and obtain a better solution. This
means that y∗

i + z∗i indeed equals the change in production from month i− 1
to month i, as required.

In the Icicle Works example above, this linear program yields the follow-
ing production schedule (shown with black bars; the gray background graph
represents the demands).
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Below is the schedule we would get with zero storage costs (that is, after
replacing the “20” by “0” in the above linear program).
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The pattern of this example is quite general, and many problems of opti-
mal control can be solved via linear programming in a similar manner. A neat
example is “Moon Rocket Landing,” a once-popular game for programmable
calculators (probably not sophisticated enough to survive in today’s compe-
tition). A lunar module with limited fuel supply is descending vertically to
the lunar surface under the influence of gravitation, and at chosen time inter-
vals it can flash its rockets to slow down the descent (or even to start flying
upward). The goal is to land on the surface with (almost) zero speed before
exhausting all of the fuel. The reader is invited to formulate an appropriate
linear program for determining the minimum amount of fuel necessary for
landing, given the appropriate input data. For the linear programming for-
mulation, we have to discretize time first (in the game this was done anyway),
but with short enough time steps this doesn’t make a difference in practice.

Let us remark that this particular problem can be solved analytically, with
some calculus (or even mathematical control theory). But in even slightly
more complicated situations, an analytic solution is out of reach.

2.4 Fitting a Line

The loudness level of nightingale singing was measured every evening for a
number of days in a row, and the percentage of people watching the principal
TV news was surveyed by questionnaires. The following diagram plots the
measured values by points in the plane:

loudness level [dB]

TV watchers [%]
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40
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The simplest dependencies are linear, and many dependencies can be well
approximated by a linear function. We thus want to find a line that best fits
the measured points. (Readers feeling that this example is not sufficiently
realistic can recall some measurements in physics labs, where the measured
quantities should actually obey an exact linear dependence.)
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How can one formulate mathematically that a given line “best fits” the
points? There is no unique way, and several different criteria are commonly
used for line fitting in practice.

The most popular one is the method of least squares, which for given
points (x1, y1),. . . , (xn, yn) seeks a line with equation y = ax + b minimizing
the expression

n∑

i=1

(axi + b − yi)
2. (2.1)

In words, for every point we take its vertical distance from the line, square
it, and sum these “squares of errors.”

This method need not always be the most suitable. For instance, if a few
exceptional points are measured with very large error, they can influence the
resulting line a great deal. An alternative method, less sensitive to a small
number of “outliers,” is to minimize the sum of absolute values of all errors:

n∑

i=1

|axi + b − yi|. (2.2)

By a trick similar to the one we have seen in Section 2.3, this apparently
nonlinear optimization problem can be captured by a linear program:

Minimize e1 + e2 + · · · + en

subject to ei ≥ axi + b − yi for i = 1, 2, . . . , n
ei ≥ −(axi + b − yi) for i = 1, 2, . . . , n.

The variables are a, b, and e1, e2, . . . , en (while x1, . . . , xn and y1, . . . , yn are
given numbers). Each ei is an auxiliary variable standing for the error at the
ith point. The constraints guarantee that

ei ≥ max
(
axi + b − yi,−(axi + b − yi)

)
= |axi + b − yi|.

In an optimal solution each of these inequalities has to be satisfied with
equality, for otherwise, we could decrease the corresponding ei. Thus, an
optimal solution yields a line minimizing the expression (2.2).

The following picture shows a line fitted by this method (solid) and a line
fitted using least squares (dotted):
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In conclusion, let us recall the useful trick we have learned here and in
the previous section:

Objective functions or constraints involving absolute values can often be
handled via linear programming by introducing extra variables or extra
constraints.

2.5 Separation of Points

A computer-controlled rabbit trap “Gromit RT 2.1” should be programmed
so that it catches rabbits, but if a weasel wanders in, it is released. The trap
can weigh the animal inside and also can determine the area of its shadow.

These two parameters were collected for a number of specimens of rabbits
and weasels, as depicted in the following graph:

weight

shadow area

(empty circles represent rabbits and full circles weasels).
Apparently, neither weight alone nor shadow area alone can be used to

tell a rabbit from a weasel. One of the next-simplest things would be a lin-
ear criterion distinguishing them. That is, geometrically, we would like to
separate the black points from the white points by a straight line if possi-
ble. Mathematically speaking, we are given m white points p1,p2, . . . ,pm
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and n black points q1,q2, . . . ,qn in the plane, and we would like to find out
whether there exists a line having all white points on one side and all black
points on the other side (none of the points should lie on the line).

In a solution of this problem by linear programming we distinguish three
cases. First we test whether there exists a vertical line with the required prop-
erty. This case needs neither linear programming nor particular cleverness.

The next case is the existence of a line that is not vertical and that has all
black points below it and all white points above it. Let us write the equation
of such a line as y = ax + b, where a and b are some yet unknown real
numbers. A point r with coordinates x(r) and y(r) lies above this line if
y(r) > ax(r) + b, and it lies below it if y(r) < ax(r) + b. So a suitable line
exists if and only if the following system of inequalities with variables a and b
has a solution:

y(pi) > ax(pi) + b for i = 1, 2, . . . , m

y(qj) < ax(qj) + b for j = 1, 2, . . . , n.

We haven’t yet mentioned strict inequalities in connection with linear
programming, and actually, they are not allowed in linear programs. But here
we can get around this issue by a small trick: We introduce a new variable δ,
which stands for the “gap” between the left and right sides of each strict
inequality. Then we try to make the gap as large as possible:

Maximize δ
subject to y(pi) ≥ ax(pi) + b + δ for i = 1, 2, . . . , m

y(qj) ≤ ax(qj) + b − δ for j = 1, 2, . . . , n.

δ

δ

y ≥ ax + b + δ

y = ax + b

y ≤ ax + b − δ

This linear program has three variables: a, b, and δ. The optimal δ is positive
exactly if the preceding system of strict inequalities has a solution, and the
latter happens exactly if a nonvertical line exists with all black points below
and all white points above.
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Similarly, we can deal with the third case, namely the existence of a non-
vertical line having all black points above it and all white points below it. This
completes the description of an algorithm for the line separation problem.

A plane separating two point sets in R3 can be computed by the
same approach, and we can also solve the analogous problem in higher
dimensions. So we could try to distinguish rabbits from weasels based
on more than two measured parameters.

Here is another, perhaps more surprising, extension. Let us imagine
that separating rabbits from weasels by a straight line proved impos-
sible. Then we could try, for instance, separating them by a graph of
a quadratic function (a parabola), of the form ax2 + bx + c. So given
m white points p1,p2, . . . ,pm and n black points q1,q2, . . . ,qn in the
plane, we now ask, are there coefficients a, b, c ∈ R such that the graph
of f(x) = ax2 +bx+c has all white points above it and all black points
below? This leads to the inequality system

y(pi) > ax(pi)
2 + bx(pi) + c for i = 1, 2, . . . , m

y(qj) < ax(qj)
2 + bx(qj) + c for j = 1, 2, . . . , n.

By introducing a gap variable δ as before, this can be written as the
following linear program in the variables a, b, c, and δ:

Maximize δ
subject to y(pi) ≥ ax(pi)

2 + bx(pi) + c + δ for i = 1, 2, . . . , m
y(qj) ≤ ax(qj)

2 + bx(qj) + c − δ for j = 1, 2, . . . , n.

In this linear program the quadratic terms are coefficients and there-
fore they cause no harm.

The same approach also allows us to test whether two point sets in
the plane, or in higher dimensions, can be separated by a function of
the form f(x) = a1ϕ1(x) + a2ϕ2(x) + · · ·+ akϕk(x), where ϕ1, . . . , ϕk

are given functions (possibly nonlinear) and a1, a2, . . . , ak are real co-
efficients, in the sense that f(pi) > 0 for every white point pi and
f(qj) < 0 for every black point qj .

2.6 Largest Disk in a Convex Polygon

Here we will encounter another problem that may look nonlinear at first
sight but can be transformed to a linear program. It is a simple instance of a
geometric packing problem: Given a container, in our case a convex polygon,
we want to fit as large an object as possible into it, in our case a disk of the
largest possible radius.
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Let us call the given convex polygon P , and let us assume that it has
n sides. As we said, we want to find the largest circular disk contained in P .

P

???

For simplicity let us assume that none of the sides of P is vertical. Let the
ith side of P lie on a line �i with equation y = aix + bi, i = 1, 2, . . . , n, and
let us choose the numbering of the sides in such a way that the first, second,
up to the kth side bound P from below, while the (k + 1)st through nth side
bound it from above.

(s1, s2)

r

�k

�k+1

�1
�2

�n

Let us now ask, under what conditions does a circle with center s = (s1, s2)
and radius r lie completely inside P? This is the case if and only if the point
s has distance at least r from each of the lines �1, . . . , �n, lies above the lines
�1, . . . , �k, and lies below the lines �k+1, . . . , �n. We compute the distance of s
from �i. A simple calculation using similarity of triangles and the Pythagorean
theorem shows that this distance equals the absolute value of the expression

s2 − ais1 − bi√
a2

i + 1
.

Moreover, the expression is positive if s lies above �i, and it is negative if
s lies below �i:
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(s1, s2)

(s1, ais1 + bi)

y = aix + bi

The disk of radius r centered at s thus lies inside P exactly if the following
system of inequalities is satisfied:

s2 − ais1 − bi√
a2

i + 1
≥ r, i = 1, 2, . . . , k

s2 − ais1 − bi√
a2

i + 1
≤ −r, i = k + 1, k + 2, . . . , n.

Therefore, we want to find the largest r such that there exist s1 and s2 so that
all the constraints are satisfied. This yields a linear program! (Some might be
frightened by the square roots, but these can be computed in advance, since
all the ai are concrete numbers.)

Maximize r

subject to
s2 − ais1 − bi√

a2
i + 1

≥ r for i = 1, 2, . . . , k

s2 − ais1 − bi√
a2

i + 1
≤ −r for i = k + 1, k + 2, . . . , n.

There are three variables: s1, s2, and r. An optimal solution yields the desired
largest disk contained in P .

A similar problem in higher dimension can be solved analogously. For
example, in three-dimensional space we can ask for the largest ball that can
be placed into the intersection of n given half-spaces.

Interestingly, another similar-looking problem, namely, finding the small-
est disk containing a given convex n-gon in the plane, cannot be expressed
by a linear program and has to be solved differently; see Section 8.7.

Both in practice and in theory, one usually encounters geometric packing
problems that are more complicated than the one considered in this section
and not so easily solved by linear programming. Often we have a fixed collec-
tion of objects and we want to pack as many of them as possible into a given
container (or several containers). Such problems are encountered by confec-
tioners when cutting cookies from a piece of dough, by tailors or clothing
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manufacturers when making as many trousers, say, as possible from a large
piece of cloth, and so on. Typically, these problems are computationally hard,
but linear programming can sometimes help in devising heuristics or approx-
imate algorithms.

2.7 Cutting Paper Rolls

Here we have another industrial problem, and the application of linear pro-
gramming is quite nonobvious. Moreover, we will naturally encounter an in-
tegrality constraint, which will bring us to the topic of the next chapter.

A paper mill manufactures rolls of paper of a standard width 3 meters.
But customers want to buy paper rolls of shorter width, and the mill has to
cut such rolls from the 3 m rolls. One 3 m roll can be cut, for instance, into
two rolls 93 cm wide, one roll of width 108 cm, and a rest of 6 cm (which
goes to waste).

Let us consider an order of

• 97 rolls of width 135 cm,
• 610 rolls of width 108 cm,
• 395 rolls of width 93 cm, and
• 211 rolls of width 42 cm.

What is the smallest number of 3 m rolls that have to be cut in order to
satisfy this order, and how should they be cut?

In order to engage linear programming one has to be generous in intro-
ducing variables. We write down all of the requested widths: 135 cm, 108 cm,
93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper roll
into rolls of some of these widths (we need to consider only possibilities for
which the wasted piece is shorter than 42 cm):

P1: 2 × 135 P7: 108 + 93 + 2 × 42
P2: 135 + 108 + 42 P8: 108 + 4 × 42
P3: 135 + 93 + 42 P9: 3 × 93
P4: 135 + 3 × 42 P10: 2 × 93 + 2 × 42
P5: 2 × 108 + 2 × 42 P11: 93 + 4 × 42
P6: 108 + 2 × 93 P12: 7 × 42

For each possibility Pj on the list we introduce a variable xj ≥ 0 rep-
resenting the number of rolls cut according to that possibility. We want to
minimize the total number of rolls cut, i.e.,

∑12
j=1 xj , in such a way that the

customers are satisfied. For example, to satisfy the demand for 395 rolls of
width 93 cm we require

x3 + 2x6 + x7 + 3x9 + 2x10 + x11 ≥ 395.
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For each of the widths we obtain one constraint.

For a more complicated order, the list of possibilities would most
likely be produced by computer. We would be in a quite typical situ-
ation in which a linear program is not entered “by hand,” but rather
is generated by some computer program. More-advanced techniques
even generate the possibilities “on the fly,” during the solution of the
linear program, which may save time and memory considerably. See
the entry “column generation” in the glossary or Chvátal’s book cited
in Chapter 9, from which this example is taken.

The optimal solution of the resulting linear program has x1 = 48.5, x5 =
206.25, x6 = 197.5, and all other components 0. In order to cut 48.5 rolls
according to the possibility P1, one has to unwind half of a roll. Here we
need more information about the technical possibilities of the paper mill:
Is cutting a fraction of a roll technically and economically feasible? If yes,
we have solved the problem optimally. If not, we have to work further and
somehow take into account the restriction that only feasible solutions of the
linear program with integral xi are of interest. This is not at all easy in
general, and it is the subject of Chapter 3.
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3.1 Integer Programming

In Section 2.7 we encountered a situation in which among all feasible so-
lutions of a linear program, only those with all components integral are of
interest in the practical application. A similar situation occurs quite often in
attempts to apply linear programming, because objects that can be split into
arbitrary fractions are more an exception than the rule. When hiring workers,
scheduling buses, or cutting paper rolls one somehow has to deal with the
fact that workers, buses, and paper rolls occur only in integral quantities.

Sometimes an optimal or almost-optimal integral solution can be obtained
by simply rounding the components of an optimal solution of the linear pro-
gram to integers, either up, or down, or to the nearest integer. In our paper-
cutting example from Section 2.7 it is natural to round up, since we have to
fulfill the order. Starting from the optimal solution x1 = 48.5, x5 = 206.25,
x6 = 197.5 of the linear program, we thus arrive at the integral solution
x1 = 49, x5 = 207, and x6 = 198, which means cutting 454 rolls. Since we
have found an optimum of the linear program, we know that no solution
whatsoever, even one with fractional amounts of rolls allowed, can do better
than cutting 452.5 rolls. If we insist on cutting an integral number of rolls, we
can thus be sure that at least 453 rolls must be cut. So the solution obtained
by rounding is quite good.

However, it turns out that we can do slightly better. The integral solution
x1 = 49, x5 = 207, x6 = 196, and x9 = 1 (with all other components
0) requires cutting only 453 rolls. By the above considerations, no integral
solution can do better.

In general, the gap between a rounded solution and an optimal integral
solution can be much larger. If the linear program specifies that for most of
197 bus lines connecting villages it is best to schedule something between
0.1 and 0.3 buses, then, clearly, rounding to integers exerts a truly radical
influence.

The problem of cutting paper rolls actually leads to a problem with a lin-
ear objective function and linear constraints (equations and inequalities), but
the variables are allowed to attain only integer values. Such an optimization
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problem is called an integer program, and after a small adjustment we can
write it in a way similar to that used for a linear program in Chapter 1:

An integer program:

Maximize cT x
subject to Ax ≤ b

x ∈ Zn.

Here A is an m×n matrix, b ∈ Rm, c ∈ Rn, Z denotes the set of integers,
and Zn is the set of all n-component integer vectors.

The set of all feasible solutions of an integer program is no longer a convex
polyhedron, as was the case for linear programming, but it consists of separate
integer points. A picture illustrates a two-dimensional integer program with
five constraints:

(0, 0)

Feasible solutions are shown as solid dots and the optimal solution is marked
by a circle. Note that it lies quite far from the optimum of the linear program
with the same five constraints and the same objective function.

It is known that solving a general integer program is computationally dif-
ficult (more exactly, it is an NP-hard problem), in contrast to solving a linear
program. Linear programs with many thousands of variables and constraints
can be handled in practice, but there are integer programs with 10 variables
and 10 constraints that are insurmountable even for the most modern com-
puters and software.
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Adding the integrality constraints can thus change the difficulty
of a problem in a drastic way indeed. This may not look so surpris-
ing anymore if we realize that integer programs can model yes/no
decisions, since an integer variable xj satisfying the linear constraints
0 ≤ xj ≤ 1 has possible values only 0 (no) and 1 (yes). For those
familiar with the foundations of NP-completeness it is thus not hard
to model the problem of satisfiability of logical formulas by an integer
program. In Section 3.4 we will see how an integer program can ex-
press the maximum size of an independent set in a given graph, which
is also one of the basic NP-hard problems.

Several techniques have been developed for solving integer programs. In
the literature, some of them can be found under the headings cutting planes,
branch and bound, as well as branch and cut (see the glossary). The most
successful strategies usually employ linear programming as a subroutine for
solving certain auxiliary problems. How to do this efficiently is investigated
in a branch of mathematics called polyhedral combinatorics.

The most widespread use of linear programming today, and the one that
consumes the largest share of computer time, is most likely in auxiliary com-
putations for integer programs.

Let us remark that there are many optimization problems in which some
of the variables are integral, while others may attain arbitrary real values.
Then one speaks of mixed integer programming. This is in all likelihood the
most frequent type of optimization problem in practice.

We will demonstrate several important optimization problems that can
easily be formulated as integer programs, and we will show how linear pro-
gramming can or cannot be used in their solution. But it will be only a small
sample from this area, which has recently developed extensively and which
uses many complicated techniques and clever tricks.

3.2 Maximum-Weight Matching

A consulting company underwent a thorough reorganization, in order to
adapt to current trends, in which the department of Creative Accounting
with 7 employees was closed down. But flexibly enough, seven new positions
have been created. The human resources manager, in order to assign the new
positions to the seven employees, conducted interviews with them and gave
them extensive questionnaires to fill out. Then he summarized the results in
scores: Each employee got a score between 0 and 100 for each of the positions
she or he was willing to accept. The manager depicted this information in a
diagram, in which an expert can immediately recognize a bipartite graph:
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Amos
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For example, this diagram tells us that Boris is willing to accept the job in
quality management, for which he achieved score of 87, or the job of a trend
analyst, for which he has score 70. Now the manager wants to select a position
for everyone so that the sum of scores is maximized. The first idea naturally
coming to mind is to give everyone the position for which he/she has the
largest score. But this cannot be done, since, for example, three people are
best suited for the profession of webmaster: Eleanor, Gudrun, and Devdatt.
If we try to assign the positions by a “greedy” algorithm, meaning that in
each step we make an assignment of largest possible score between a yet
unoccupied position and a still unassigned employee, we end up with filling
only 6 positions:
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(The bold digits 1–6 indicate the order of making assignments by the greedy
algorithm.)

In the language of graph theory we have a bipartite graph with vertex
set V = X

.
∪ Y and edge set E. Each edge connects a vertex of X to a

vertex of Y . Moreover, we have |X | = |Y |. For each edge e ∈ E we are given
a nonnegative weight we. We want to find a subset M ⊆ E of edges such
that each vertex of both X and Y is incident to exactly one edge of M (such
an M is called a perfect matching), and the sum

∑
e∈M we is the largest

possible.
In order to formulate this problem as an integer program, we introduce

variables xe, one for each edge e ∈ E, that can attain values 0 or 1. They
will encode the sought-after set M : xe = 1 means e ∈ M and xe = 0 means
e �∈ M . Then

∑
e∈M we can be written as

∑

e∈E

wexe,

and this is the objective function. The requirement that a vertex v ∈ V have
exactly one incident edge of M is expressed by having the sum of xe over all
edges incident to v equal to 1. In symbols,

∑
e∈E:v∈e xe = 1. The resulting

integer program is

maximize
∑

e∈E wexe

subject to
∑

e∈E:v∈e xe = 1 for each vertex v ∈ V, and
xe ∈ {0, 1} for each edge e ∈ E.

(3.1)

If we leave out the integrality conditions, i.e., if we allow each xe to attain
all values in the interval [0, 1], we obtain the following linear program:

Maximize
∑

e∈E wexe

subject to
∑

e∈E:v∈e xe = 1 for each vertex v ∈ V, and
0 ≤ xe ≤ 1 for each edge e ∈ E.

It is called an LP relaxation of the integer program (3.1)—we have relaxed
the constraints xe ∈ {0, 1} to the weaker constraints 0 ≤ xe ≤ 1. We can
solve the LP relaxation, say by the simplex method, and either we obtain
an optimal solution x∗, or we learn that the LP relaxation is infeasible. In
the latter case, the original integer program must be infeasible as well, and
consequently, there is no perfect matching.

Let us now assume that the LP relaxation has an optimal solution x∗.
What can such an x∗ be good for? Certainly it provides an upper bound on the
best possible solution of the original integer program (3.1). More precisely, the
optimum of the objective function in the integer program (3.1) is bounded
above by the value of the objective function at x∗. This is because every
feasible solution of the integer program is also a feasible solution of the LP
relaxation, and so we are maximizing over a larger set of vectors in the LP
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relaxation. An upper bound can be very valuable: For example, if we manage
to find a feasible solution of the integer program for which the value of the
objective function is 98% of the upper bound, we can usually stop striving,
since we know that we cannot improve by more than roughly 2% no matter
how hard we try. (Of course, it depends on what we are dealing with; if it is
a state budget, even 2% is still worth some effort.)

A pleasant surprise awaits us in the particular problem we are considering
here: The LP relaxation not only yields an upper bound, but it provides an
optimal solution of the original problem! Namely, if we solve the LP relaxation
by the simplex method, we obtain an optimal x∗ that has all components
equal to 0 or 1, and thus it determines an optimum perfect matching. (If a
better perfect matching existed, it would determine a better solution of the
LP relaxation.) The optimal solution discovered in this way is drawn below:
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The following (nontrivial) theorem shows that things work this nicely for
every problem of the considered type.

3.2.1 Theorem. Let G = (V, E) be an arbitrary bipartite graph with real
edge weights we. If the LP relaxation of the integer program (3.1) has at least
one feasible solution, then it has at least one integral optimal solution. This
is an optimal solution for the integer program (3.1) as well.

An interested reader can find a proof at the end of this section.
The theorem doesn’t say that every optimal solution of the LP relaxation

is necessarily integral. However, the proof gives an easy recipe for producing
an integral optimal solution from an arbitrary optimal solution. Moreover,
it can be shown (see Section 8.2) that the simplex method always returns
an integral optimal solution (using the terminology of Chapter 4, each basic
feasible solution is integral).

An LP relaxation can be considered for an arbitrary integer program: The
condition x ∈ Zn is simply replaced by x ∈ Rn. Cases in which we always
get an optimal solution of the integer program from the LP relaxation, such
as in Theorem 3.2.1, are rather rare, but LP relaxation can also be useful in
other ways.



3.2 Maximum-Weight Matching 35

The maximum of the objective function for the LP relaxation always pro-
vides an upper bound for the maximum of the integer program. Sometimes
this bound is quite tight, but at other times it can be very bad; see Section 3.4.
The quality of the upper bound from an LP relaxation has been studied for
many types of problems. Sometimes one adds new linear constraints to the
LP relaxation that are satisfied by all integral solutions (that is, all feasible
solutions of the integer program satisfy these new constraints) but that ex-
clude some of the nonintegral solutions. In this way the upper bound on the
optimum of the integer program can often be greatly improved. If we continue
adding suitable new constraints for long enough, then we even arrive at an
optimal solution of the integer program. This is the main idea of the method
of cutting planes.

A nonintegral optimal solution of the LP relaxation can sometimes be
converted to an approximately optimal solution of the integer program by
appropriate rounding. We will see a simple example in Section 3.3, and a
more advanced one in Section 8.3.

Proof of Theorem 3.2.1. Let x∗ be an optimal solution of the LP re-
laxation, and let w(x∗) =

∑
e∈E wex

∗
e be the value of the objective function

at x∗. Let us denote the number of nonintegral components of the vector x∗

by k(x∗).
If k(x∗) = 0, then we are done. For k(x∗) > 0 we describe a procedure that

yields another optimal solution x̃ with k(x̃) < k(x∗). We reach an integral
optimal solution by finitely many repetitions of this procedure.

Let x∗
e1

be a nonintegral component of the vector x∗, corresponding to
some edge e1 = {a1, b1}. Since 0 < x∗

e1
< 1 and

∑

e∈E:b1∈e

x∗
e = 1,

there exists another edge e2 = {a2, b1}, a2 �= a1, with x∗
e2

nonintegral. For a
similar reason we can also find a third edge e3 = {a2, b2} with 0 < x∗

e3
< 1.

We continue in this manner and look for nonintegral components along a
longer and longer path (a1, b1, a2, b2, . . .):

a1

b1

a2

b2

e1e2e3

Since the graph G has finitely many vertices, eventually we reach a vertex
that we have already visited before. This means that we have found a cycle
C ⊆ E in which 0 < x∗

e < 1 for all edges. Since the graph is bipartite, the
length t of the cycle C is even. For simplicity of notation let us assume that
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the edges of C are e1, e2, . . . , et, although in reality the cycle found as above
need not begin with the edge e1.

Now for a small real number ε we define a vector x̃ by

x̃e =






x∗
e − ε for e ∈ {e1, e3, . . . , et−1}

x∗
e + ε for e ∈ {e2, e4, . . . , et}

x∗
e otherwise.

a1

b1

a2

b2

−ε
−ε

+ε

+ε
+ε

It is easy to see that this x̃ satisfies all the conditions

∑

e∈E:v∈e

x̃e = 1, v ∈ V,

since at the vertices of the cycle C we have added ε once and subtracted it
once, while for all other vertices the variables of the incident edges haven’t
changed their values at all. For ε sufficiently small the conditions 0 ≤ x̃e ≤ 1
are satisfied too, since all components x∗

ei
are strictly between 0 and 1. Hence

x̃ is again a feasible solution of the LP relaxation for all sufficiently small ε
(positive or negative).

What happens with the value of the objective function? We have

w(x̃) =
∑

e∈E

wex̃e = w(x∗) + ε

t∑

i=1

(−1)iwei
= w(x∗) + ε∆,

where we have set ∆ =
∑t

i=1(−1)iwei
. Since x∗ is optimal, necessarily ∆ = 0,

for otherwise, we could achieve w(x̃) > w(x∗) either by choosing ε > 0 (for
∆ > 0) or by choosing ε < 0 (for ∆ < 0). This means that x̃ is an optimal
solution whenever it is feasible, i.e., for all ε with a sufficiently small absolute
value.

Let us now choose the largest ε > 0 such that x̃ is still feasible. Then there
has to exist e ∈ {e1, e2, . . . , et} with x̃e ∈ {0, 1}, and x̃ has fewer nonintegral
components than x∗. �

Let us now consider another situation, in which we have more
employees than positions and we want to fill all positions optimally,
i.e., so that the sum of scores is maximized. Then we have |X | < |Y |
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in the considered bipartite graph, and for vertices v ∈ Y the condition∑
e∈E:v∈e xe = 1 (every vertex of Y is incident to exactly one edge of

M) is replaced by
∑

e∈E:v∈e xe ≤ 1 (every vertex of Y is incident to
at most one edge of M). The claim of Theorem 3.2.1 remains valid: If
the LP relaxation has a feasible solution, then it also has an integral
optimal solution. The proof presented above can be modified to show
this. We present a different and more conceptual proof in Section 8.2
(which also yields an alternative proof of Theorem 3.2.1). We will also
briefly discuss the nonbipartite case in Section 8.2.

3.3 Minimum Vertex Cover

The Internet had been expanding rapidly in the Free Republic of West Mor-
dor, and the government issued a regulation, purely in the interest of im-
proved security of the citizens, that every data link connecting two computers
must be equipped with a special device for gathering statistical data about
the traffic. An operator of a part of the network has to attach the govern-
ment’s monitoring boxes to some of his computers so that each link has a
monitored computer on at least one end. Which computers should get boxes
so that the total price is minimum? Let us assume that there is a flat rate
per box.

It is again convenient to use graph-theoretic terminology. The computers
in the network are vertices and the links are edges. So we have a graph
G = (V, E) and we want to find a subset S ⊆ V of the vertices such that each
edge has at least one end-vertex in S (such an S is called a vertex cover),
and S is as small as possible.

This problem can be written as an integer program:

Minimize
∑

v∈V xv

subject to xu + xv ≥ 1 for every edge {u, v} ∈ E
xv ∈ {0, 1} for all v ∈ V.

(3.2)

For every vertex v we have a variable xv, which can attain values 0 or 1.
The meaning of xv = 1 is v ∈ S, and xv = 0 means v �∈ S. The constraint
xu +xv ≥ 1 guarantees that the edge {u, v} has at least one vertex in S. The
objective function is the size of S.

It is known that finding a minimum vertex cover is a computationally
difficult (NP-hard) problem. We will describe an approximation algorithm
based on linear programming that always finds a vertex cover with at most
twice as many vertices as in the smallest possible vertex cover.

An LP relaxation of the above integer program is

minimize
∑

v∈V xv

subject to xu + xv ≥ 1 for every edge {u, v} ∈ E
0 ≤ xv ≤ 1 for all v ∈ V.

(3.3)
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The first step of the approximation algorithm for vertex cover consists in
computing an optimal solution x∗ of this LP relaxation (by some standard
algorithm for linear programming). The components of x∗ are real numbers
in the interval [0, 1]. In the second step we define the set

SLP = {v ∈ V : x∗
v ≥ 1

2}.

This is a vertex cover, since for every edge {u, v} we have x∗
u + x∗

v ≥ 1, and
so x∗

u ≥ 1
2 or x∗

v ≥ 1
2 .

Let SOPT be some vertex cover of the minimum possible size (we don’t
have it but we can theorize about it). We claim that

|SLP| ≤ 2 · |SOPT|.

To see this, let x̃ be an optimal solution of the integer program (3.2),
which corresponds to the set SOPT, i.e., x̃v = 1 for v ∈ SOPT and x̃v = 0
otherwise. This x̃ is definitely a feasible solution of the LP relaxation (3.3),
and so it cannot have a smaller value of the objective function than an optimal
solution x∗ of (3.3): ∑

v∈V

x∗
v ≤

∑

v∈V

x̃v.

On the other hand, |SLP| =
∑

v∈SLP
1 ≤

∑
v∈V 2x∗

v, since x∗
v ≥ 1

2 for each
v ∈ SLP. Therefore

|SLP| ≤ 2 ·
∑

v∈V

x∗
v ≤ 2 ·

∑

v∈V

x̃v = 2 · |SOPT|.

This proof illustrates an important aspect of approximation algorithms:
In order to assess the quality of the computed solution, we always need a
bound on the quality of the optimal solution, although we don’t know it. The
LP relaxation provides such a bound, which can sometimes be useful, as in
the example of this section. In other problems it may be useless, though, as
we will see in the next section.

Remarks. A natural attempt at an approximate solution of the con-
sidered problem is again a greedy algorithm: Select vertices one by one
and always take a vertex that covers the maximum possible number
of yet uncovered edges. Although this algorithm may not be bad in
most cases, examples can be constructed in which it yields a solution
at least ten times worse, say, than an optimal solution (and 10 can be
replaced by any other constant). Discovering such a construction is a
lovely exercise.

There is another, combinatorial, approximation algorithm for the
minimum vertex cover: First we find a maximal matching M , that is, a
matching that cannot be extended by adding any other edge (we note
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that such a matching need not have the maximum possible number
of edges). Then we use the vertices covered by M as a vertex cover.
This always gives a vertex cover at most twice as big as the optimum,
similar to the algorithm explained above.

The algorithm based on linear programming has the advantage of
being easy to generalize for a weighted vertex cover (the govern-
ment boxes may have different prices for different computers). In the
same way as we did for unit prices one can show that the cost of the
computed solution is never larger than twice the optimum cost. As in
the unweighted case, this result can also be achieved with combina-
torial algorithms, but these are more difficult to understand than the
linear programming approach.

3.4 Maximum Independent Set

Here the authors got tired of inventing imitations of real-life problems, and
so we formulate the next problem in the language of graph theory right away.
For a graph G = (V, E), a set I ⊆ V of vertices is called independent (or
stable) if no two vertices of I are connected by an edge in G.

Computing an independent set with the maximum possible number of
vertices for a given graph is one of the notoriously difficult graph-theoretic
problems. It can be easily expressed by an integer program:

Maximize
∑

v∈V xv

subject to xu + xv ≤ 1 for each edge {u, v} ∈ E, and
xv ∈ {0, 1} for all v ∈ V.

(3.4)

An optimal solution x∗ corresponds to a maximum independent set: v ∈ I if
and only if x∗

v = 1. The constraints xu + xv ≤ 1 ensure that whenever two
vertices u and v are connected by an edge, only one of them can get into I.

In an LP relaxation the condition xv ∈ {0, 1} is replaced by the inequali-
ties 0 ≤ xv ≤ 1. The resulting linear program always has a feasible solution

with all xv = 1
2 , which yields objective function equal to |V |

2 . Hence the op-

timal value of the objective function is |V |
2 or larger.

Let us consider a complete graph on n vertices (the graph in which every
two vertices are connected by an edge). The largest independent set consists
of a single vertex and thus has size 1. However, as we have seen, the optimal
value for the LP relaxation is at least n/2. Hence, and this is the point of
this section, the LP relaxation behaves in a way completely different from
the original integer program.

The complete graph is by no means an isolated case. Dense graphs
typically have a maximum independent set much smaller than half of
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the vertices, and so for such graphs, too, an optimal solution of the
LP relaxation tells us almost nothing about the maximum independent
set.

It is even known that the size of a maximum independent set can-
not be approximated well by any reasonably efficient algorithm what-
soever (provided that some widely believed but unproved assumptions
hold, such as P �=NP). This result is from

J. H̊astad: Clique is hard to approximate within n1−ε, Acta
Mathematica 182(1999) 105–142,

and

http://www.nada.kth.se/~viggo/problemlist/compendium.

html

is a comprehensive website for inapproximability results.



4. Theory of Linear Programming:

First Steps

4.1 Equational Form

In the introductory chapter we explained how each linear program can be
converted to the form

maximize cT x subject to Ax ≤ b.

But the simplex method requires a different form, which is usually called the
standard form in the literature. In this book we introduce a less common,
but more descriptive term equational form. It looks like this:

Equational form of a linear program:

Maximize cT x
subject to Ax = b

x ≥ 0.

As usual, x is the vector of variables, A is a given m×n matrix, c ∈ Rn,
b ∈ Rm are given vectors, and 0 is the zero vector, in this case with n
components.

The constraints are thus partly equations, and partly inequalities of a
very special form xj ≥ 0, j = 1, 2, . . . , n, called nonnegativity constraints.
(Warning: Although we call this form equational, it contains inequalities as
well, and these must not be forgotten!)

Let us emphasize that all variables in the equational form have to satisfy
the nonnegativity constraints.

In problems encountered in practice we often have nonnegativity con-
straints automatically, since many quantities, such as the amount of con-
sumed cucumber, cannot be negative.

Transformation of an arbitrary linear program to equational form.
We illustrate such a transformation for the linear program

maximize 3x1 − 2x2

subject to 2x1 − x2 ≤ 4
x1 + 3x2 ≥ 5
x2 ≥ 0.
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We proceed as follows:

1. In order to convert the inequality 2x1 − x2 ≤ 4 to an equation, we in-
troduce a new variable x3, together with the nonnegativity constraint
x3 ≥ 0, and we replace the considered inequality by the equation
2x1 − x2 + x3 = 4. The auxiliary variable x3, which won’t appear any-
where else in the transformed linear program, represents the difference
between the right-hand side and the left-hand side of the inequality. Such
an auxiliary variable is called a slack variable.

2. For the next inequality x1 + 3x2 ≥ 5 we first multiply by −1, which
reverses the direction of the inequality. Then we introduce another slack
variable x4 with the nonnegativity constraint x4 ≥ 0, and we replace the
inequality by the equation −x1 − 3x2 + x4 = −5.

3. We are not finished yet: The variable x1 in the original linear program
is allowed to attain both positive and negative values. We introduce two
new, nonnegative, variables y1 and z1, y1 ≥ 0, z1 ≥ 0, and we substitute
for x1 the difference y1−z1 everywhere. The variable x1 itself disappears.

The resulting equational form of our linear program is

maximize 3y1 − 3z1 − 2x2

subject to 2y1 − 2z1 − x2 + x3 = 4
−y1 + z1 − 3x2 + x4 = −5
y1 ≥ 0, z1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

So as to comply with the conventions of the equational form in full, we should
now rename the variables to x1, x2, . . . , x5.

The presented procedure converts an arbitrary linear program with n vari-
ables and m constraints into a linear program in equational form with at most
m + 2n variables and m equations (and, of course, nonnegativity constraints
for all variables).

Geometry of a linear program in equational form. Let us consider a
linear program in equational form:

Maximize cT x subject to Ax = b, x ≥ 0.

As is derived in linear algebra, the set of all solutions of the system Ax = b
is an affine subspace F of the space Rn. Hence the set of all feasible solutions
of the linear program is the intersection of F with the nonnegative orthant,
which is the set of all points in Rn with all coordinates nonnegative.1 The
following picture illustrates the geometry of feasible solutions for a linear
program with n = 3 variables and m = 1 equation, namely, the equation
x1 + x2 + x3 = 1:

1 In the plane (n = 2) this set is called the nonnegative quadrant, in R3 it is the
nonnegative octant, and the name orthant is used for an arbitrary dimension.
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x1

x3

x2

0

The set of all solutions of Ax = b
(a plane)

The set of all feasible solutions
(a triangle)

(In interesting cases we usually have more than 3 variables and no picture
can be drawn.)

A preliminary cleanup. Now we will be talking about solutions of the
system Ax = b. By this we mean arbitrary real solutions, whose components
may be positive, negative, or zero. So this is not the same as feasible solutions
of the considered linear program, since a feasible solution has to satisfy Ax =
b and have all components nonnegative.

If we change the system Ax = b by some transformation that preserves
the set of solutions, such as a row operation in Gaussian elimination, it influ-
ences neither feasible solutions nor optimal solutions of the linear program.
This will be amply used in the simplex method.

Assumption: We will consider only linear programs in equational form
such that

• the system of equations Ax = b has at least one solution, and
• the rows of the matrix A are linearly independent.

As an explanation of this assumption we need to recall a few facts from
linear algebra. Checking whether the system Ax = b has a solution is easy
by Gaussian elimination, and if there is no solution, the considered linear
program has no feasible solution either, and we can thus disregard it.

If the system Ax = b has a solution and if some row of A is a linear
combination of the other rows, then the corresponding equation is redundant
and it can be deleted from the system without changing the set of solutions.
We may thus assume that the matrix A has m linearly independent rows and
(therefore) rank m.
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4.2 Basic Feasible Solutions

Among all feasible solutions of a linear program, a privileged status is granted
to so-called basic feasible solutions. In this section we will consider them only
for linear programs in equational form. Let us look again at the picture of
the set of feasible solutions for a linear program with n = 3, m = 1:

x1

x3

x2

0

p
q

r

Among the feasible solutions p, q, and r only r is basic. Expressed geomet-
rically and very informally, a basic feasible solution is a tip (corner, spike) of
the set of feasible solutions. We will formulate this kind of geometric descrip-
tion of a basic feasible solution later (see Theorem 4.4.1).

The definition that we present next turns out to be equivalent, but it
looks rather different. It requires that, very roughly speaking, a basic feasible
solution have sufficiently many zero components. Before stating it we intro-
duce a new piece of notation.

In this section A is always a matrix with m rows and n columns (n ≥ m),
of rank m. For a subset B ⊆ {1, 2, . . . , n} we let AB denote the matrix
consisting of the columns of A whose indices belong to B. For instance, for

A =

(
1 5 3 4 6
0 1 3 5 6

)
and B = {2, 4} we have AB =

(
5 4
1 5

)
.

We will use a similar notation for vectors; e.g., for x = (3, 5, 7, 9, 11) and
B = {2, 4} we have xB = (5, 9).

Now we are ready to state a formal definition.

A basic feasible solution of the linear program

maximize cT x subject to Ax = b and x ≥ 0

is a feasible solution x ∈ Rn for which there exists an m-element set
B ⊆ {1, 2, . . . , n} such that

• the (square) matrix AB is nonsingular, i.e., the columns indexed by
B are linearly independent, and

• xj = 0 for all j �∈ B.

4. Theory of Linear Programming: First Steps
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For example, x = (0, 2, 0, 1, 0) is a basic feasible solution for

A =

(
1 5 3 4 6
0 1 3 5 6

)
, b = (14, 7)

with B = {2, 4}.
If such a B is fixed, we call the variables xj with j ∈ B the basic vari-

ables, while the remaining variables are called nonbasic. We can thus briefly
say that all nonbasic variables are zero in a basic feasible solution.

Let us note that the definition doesn’t consider the vector c at all, and so
basic feasible solutions depend solely on A and b.

For some considerations it is convenient to reformulate the definition of a
basic feasible solution a little.

4.2.1 Lemma. A feasible solution x of a linear program in equational form
is basic if and only if the columns of the matrix AK are linearly independent,
where K = {j ∈ {1, 2, . . . , n} : xj > 0}.

Proof. One of the implications is obvious: If x is a basic feasible solution
and B is the corresponding m-element set as in the definition, then K ⊆ B
and thus the columns of the matrix AK are linearly independent.

Conversely, let x be feasible and such that the columns of AK are linearly
independent. If |K| = m, then we can simply take B = K. Otherwise, for
|K| < m, we extend K to an m-element set B by adding m−|K| more indices
so that the columns of AB are linearly independent. This is a standard fact
of linear algebra, which can be verified using the algorithm described next.

We initially set the current B to K, and repeat the following step: If A
has a column that is not in the linear span of the columns of AB, we add the
index of such a column to B. As soon as this step is no longer possible, that
is, all columns of A are in the linear span of the columns of B, it is easily seen
that the columns of AB constitute a basis of the column space of A. Since
A has rank m, we have |B| = m as needed. �

4.2.2 Proposition. A basic feasible solution is uniquely determined by the
set B. That is, for every m-element set B ⊆ {1, 2, . . . , n} with AB nonsingular
there exists at most one feasible solution x ∈ Rn with xj = 0 for all j �∈ B.

Let us stress right away that a single basic feasible solution may be ob-
tained from many different sets B.

Proof of Proposition 4.2.2. For x to be feasible we must have Ax = b.
The left-hand side can be rewritten to Ax = ABxB + ANxN , where N =
{1, 2, . . . , n} \ B. For x to be a basic feasible solution, the vector xN of
nonbasic variables must equal 0, and thus the vector xB of basic variables
satisfies ABxB = b. And here we use the fact that AB is a nonsingular square
matrix: The system ABxB = b has exactly one solution x̃B. If all components
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of x̃B are nonnegative, then we have exactly one basic feasible solution for
the considered B (we amend x̃B by zeros), and otherwise, we have none. �

We introduce the following terminology: We call an m-element set B ⊆
{1, 2, . . . , n} with AB nonsingular a basis.2 If, moreover, B determines a
basic feasible solution, or in other words, if the unique solution of the system
ABxB = b is nonnegative, then we call B a feasible basis.

The following theorem deals with the existence of optimal solutions, and
moreover, it shows that it suffices to look for them solely among basic feasible
solutions.

4.2.3 Theorem. Let us consider a linear program in equational form

maximize cT x subject to Ax = b,x ≥ 0.

(i) (“Optimal solutions may fail to exist only for obvious reasons.”) If there is
at least one feasible solution and the objective function is bounded from
above on the set of all feasible solutions, then there exists an optimal
solution.

(ii) If an optimal solution exists, then there is a basic feasible solution that
is optimal.

A proof is not necessary for further reading and we defer it to the end
of this section. The theorem also follows from the correctness of the simplex
method, which will be discussed in the next chapter.

The theorem just stated implies a finite, although entirely impractical,
algorithm for solving linear programs in equational form. We consider all m-
element subsets B ⊆ {1, 2, . . . , n} one by one, and for each of them we check
whether it is a feasible basis, by solving a system of linear equations (we
obtain at most one basic feasible solution for each B by Proposition 4.2.2).
Then we calculate the maximum of the objective function over all basic fea-
sible solutions found in this way.

Strictly speaking, this algorithm doesn’t work if the objective function is
unbounded. Formulating a variant of the algorithm that functions properly
even in this case, i.e., it reports that the linear program is unbounded, we leave
as an exercise. Soon we will discuss the considerably more efficient simplex
method, and there we show in detail how to deal with unboundedness.

We have to consider
(

n
m

)
sets B in the above algorithm.3 For example,

for n = 2m, the function
(
2m
m

)
grows roughly like 4m, i.e., exponentially, and

this is too much even for moderately large m.

2 This is a shortcut. The index set B itself is not a basis in the sense of linear
algebra, of course. Rather the set of columns of the matrix AB constitutes a
basis of the column space of A.

3 We recall that the binomial coefficient
`

n
m

´
= n!

m!(n−m)!
counts the number of

m-element subsets of an n-element set.

4. Theory of Linear Programming: First Steps
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As we will see in Chapter 5, the simplex method also goes through basic
feasible solutions, but in a more clever way. It walks from one to another while
improving the value of the objective function all the time, until it reaches an
optimal solution.

Let us summarize the main findings of this section.

A linear program in equational form has finitely many basic feasible
solutions, and if it is feasible and bounded, then at least one of the basic
feasible solutions is optimal.

Consequently, any linear program that is feasible and bounded has an
optimal solution.

Proof of Theorem 4.2.3. We will use some steps that will reappear in the
simplex method in a more elaborate form, and so the present proof is a kind
of preparation. We prove the following statement:

If the objective function of a linear program in equational form is
bounded above, then for every feasible solution x0 there exists a
basic feasible solution x̃ with the same or larger value of the objective
function; i.e., cT x̃ ≥ cT x0.

How does this imply the theorem? If the linear program is feasible and
bounded, then according to the statement, for every feasible solution there
is a basic feasible solution with the same or larger objective function. Since
there are only finitely many basic feasible solutions, some of them have to
give the maximum value of the objective function, which means that they
are optimal. We thus get both (i) and (ii) at once.

In order to prove the statement, let us consider an arbitrary feasible solu-
tion x0. Among all feasible solutions x with cT x ≥ cT x0 we choose one that
has the largest possible number of zero components, and we call it x̃ (it need
not be determined uniquely). We define an index set

K = {j ∈ {1, 2, . . . , n} : x̃j > 0}.

If the columns of the matrix AK are linearly independent, then x̃ is a basic
feasible solution as in the statement, by Lemma 4.2.1, and we are done.

So let us suppose that the columns of AK are linearly dependent, which
means that there is a nonzero |K|-component vector v such that AKv = 0.
We extend v by zeros in positions outside K to an n-component vector w
(so wK = v and Aw = AKv = 0).

Let us assume for a moment that w satisfies the following two conditions
(we will show later why we can assume this):

(i) cT w ≥ 0.
(ii) There exists j ∈ K with wj < 0.
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For a real number t ≥ 0 let us consider the vector x(t) = x̃ + tw. We show
that for some suitable t1 > 0 the vector x(t1) is a feasible solution with
more zero components than x̃. At the same time, cTx(t1) = cT x̃ + t1c

T w ≥
cT x0 + t1c

T w ≥ cT x0, and so we get a contradiction to the assumption that
x̃ has the largest possible number of zero components.

We have Ax(t) = b for all t since Ax(t) = Ax̃ + tAw = Ax̃ = b, because
x̃ is feasible. Moreover, for t = 0 the vector x(0) = x̃ has all components from
K strictly positive and all other components zero. For the jth component of
x(t) we have x(t)j = x̃j + twj , and if wj < 0 as in condition (ii), we get
x(t)j < 0 for all sufficiently large t > 0. If we begin with t = 0 and let t grow,
then those x(t)j with wj < 0 are decreasing, and at a certain moment t̃ the
first of these decreasing components reaches 0. At this moment, obviously,
x(t̃) still has all components nonnegative, and thus it is feasible, but it has
at least one extra zero component compared to x̃. This, as we have already
noted, is a contradiction.

Now what do we do if the vector w fails to satisfy condition (i) or (ii)?
If cT w = 0, then (i) holds and (ii) can be recovered by changing the sign
of w (since w �= 0). So we assume cT w �= 0, and again after a possible
sign change we can achieve cTw > 0 and thus (i). Now if (ii) fails, we must
have w ≥ 0. But this means that x(t) = x̃ + tw ≥ 0 for all t ≥ 0, and
hence all such x(t) are feasible. The value of the objective function for x(t)
is cTx(t) = cT x̃ + tcT w, and it tends to infinity as t → ∞. Hence the linear
program is unbounded. This concludes the proof. �

4.3 ABC of Convexity and Convex Polyhedra

Convexity is one of the fundamental notions in all mathematics, and in the
theory of linear programming it is encountered very naturally. Here we recall
the definition and present some of the most basic notions and results, which,
at the very least, help in gaining a better intuition about linear programming.

On the other hand, linear programming can be presented without these
notions, and in concise courses there is usually no time for such material.
Accordingly, this section and the next are meant as extending material, and
the rest of the book should mostly be accessible without them.

A set X ⊆ Rn is convex if for every two points x,y ∈ X it also contains
the segment xy. Expressed differently, for every x,y ∈ X and every
t ∈ [0, 1] we have tx + (1−t)y ∈ X .

A word of explanation might be in order: tx + (1−t)y is the point on the
segment xy at distance t from y and distance 1−t from x, if we take the
length of the segment as unit distance.

Here are a few examples of convex and nonconvex sets in the plane:

4. Theory of Linear Programming: First Steps
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nonconvex convex

The convex set at the bottom right in this picture, a stadium, is worth re-
membering, since often it is a counterexample to statements about convex
sets that may look obvious at first sight but are false.

In calculus one works mainly with convex functions. Both notions, convex
sets and convex functions, are closely related: For instance, a real function
f : R → R is convex if and only if its epigraph, i.e., the set {(x, y) ∈ R2 : y ≥
f(x)}, is a convex set in the plane. In general, a function f : X → R is called
convex if for every x,y ∈ X and every t ∈ [0, 1] we have

f(tx + (1−t)y) ≤ tf(x) + (1−t)f(y).

The function is called strictly convex if the inequality is strict for all x �= y.

Convex hull and convex combinations. It is easily seen that the inter-
section of an arbitrary collection of convex sets is again a convex set. This
allows us to define the convex hull.

Let X ⊂ Rn be a set. The convex hull of X is the intersection of all
convex sets that contain X . Thus it is the smallest convex set containing X ,
in the sense that any convex set containing X also contains its convex hull.

X

the convex hull of X

This is not a very constructive definition. The convex hull can also be
described using convex combinations, in a way similar to the description of
the linear span of a set of vectors using linear combinations. Let x1,x2, . . . ,xm

be points in Rn. Every point of the form

t1x1 + t2x2 + · · · + tmxm, where t1, t2, . . . , tm ≥ 0 and

m∑

i=1

ti = 1,

is called a convex combination of x1,x2, . . . ,xm. A convex combination is
thus a particular kind of a linear combination, in which the coefficients are
nonnegative and sum to 1.
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Convex combinations of two points x and y are of the form tx+(1−t)y, t ∈
[0, 1], and as we said after the definition of a convex set, they fill exactly the
segment xy. It is easy but instructive to show that all convex combinations
of three points x,y, z fill exactly the triangle xyz (unless the points are
collinear, that is).

4.3.1 Lemma. The convex hull C of a set X ⊆ Rn equals the set

C̃ =

{ m∑

i=1

tixi : m ≥ 1,x1, . . . ,xm ∈ X, t1, . . . , tm ≥ 0,

m∑

i=1

ti = 1

}

of all convex combinations of finitely many points of X .

Proof. First we prove by induction on m that each convex combination has
to lie in the convex hull C. For m = 1 it is obvious and for m = 2 it follows
directly from the convexity of C.

Let m ≥ 3 and let x = t1x1 + · · · + tmxm be a convex combination of
points of X . If tm = 1, then we have x = xm ∈ C. For tm < 1 let us put
t′i = ti/(1 − tm), i = 1, 2, . . . , m − 1. Then x′ = t′1x1 + · · · + t′m−1xm−1 is
a convex combination of the points x1, . . . ,xm−1 (the t′i sum to 1), and by
the inductive hypothesis x′ ∈ C. So x = (1 − tm)x′ + tmxm is a convex
combination of two points of the (convex) set C and as such it also lies in C.

We have thus proved C̃ ⊆ C. For the reverse inclusion it suffices to prove
that C̃ is convex, that is, to verify that whenever x,y ∈ C̃ are two convex
combinations and t ∈ (0, 1), then tx+(1− t)y is again a convex combination.
This is straightforward and we take the liberty of omitting further details.

�

Convex sets encountered in the theory of linear programming are of a
special type and they are called convex polyhedra.

Hyperplanes, half-spaces, polyhedra. We recall that a hyperplane
in Rn is an affine subspace of dimension n−1. In other words, it is the set of
all solutions of a single linear equation of the form

a1x1 + a2x2 + · · · + anxn = b,

where a1, a2, . . . , an are not all 0. Hyperplanes in R2 are lines and hyperplanes
in R3 are ordinary planes.

A hyperplane divides Rn into two half-spaces and it constitutes their
common boundary. For the hyperplane with equation a1x1 + a2x2 + · · · +
anxn = b, the two half-spaces have the following analytic expression:

{
x ∈ Rn : a1x1 + a2x2 + · · · + anxn ≤ b

}

and {
x ∈ Rn : a1x1 + a2x2 + · · · + anxn ≥ b

}
.

More exactly, these are closed half-spaces that contain their boundary.

4. Theory of Linear Programming: First Steps
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A convex polyhedron is an intersection of finitely many closed half-
spaces in Rn.

A half-space is obviously convex, and hence an intersection of half-spaces
is convex as well. Thus convex polyhedra bear the attribute convex by right.

A disk in the plane is a convex set, but it is not a convex polyhedron
(because, roughly speaking, a convex polyhedron has to be “edgy”. . . but
try proving this formally).

A half-space is the set of all solutions of a single linear inequality (with
at least one nonzero coefficient of some variable xj). The set of all solutions
of a system of finitely many linear inequalities, a.k.a. the set of all feasible
solutions of a linear program, is geometrically the intersection of finitely many
half-spaces, alias a convex polyhedron. (We should perhaps also mention that
a hyperplane is the intersection of two half-spaces, and so the constraints can
be both inequalities and equations.)

Let us note that a convex polyhedron can be unbounded, since, for ex-
ample, a single half-space is also a convex polyhedron. A bounded convex
polyhedron, i.e. one that can be placed inside some large enough ball, is
called a convex polytope.

The dimension of a convex polyhedron P ⊆ Rn is the smallest dimension
of an affine subspace containing P . Equivalently, it is the largest d for which
P contains points x0,x1, . . . ,xd such that the d-tuple of vectors (x1−x0,x2−
x0, . . . ,xd − x0) is linearly independent.

The empty set is also a convex polyhedron, and its dimension is usually
defined as −1.

All convex polygons in the plane are two-dimensional convex polyhe-
dra. Several types of three-dimensional convex polyhedra are taught at high
schools and decorate mathematical cabinets, such as cubes, boxes, pyramids,
or even regular dodecahedra, which can also be met as desktop calendars.
Simple examples of convex polyhedra of an arbitrary dimension n are:

• The n-dimensional cube [−1, 1]n, which can be written as the intersec-
tion of 2n half-spaces (which ones?):

n = 1 n = 2 n = 3
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• the n-dimensional crosspolytope {x ∈ Rn : |x1|+ |x2|+ · · ·+ |xn| ≤ 1}:

n = 1 n = 2 n = 3

For n = 3 we get the regular octahedron. For expressing the n-dimensional
crosspolytope as an intersection of half-spaces we need 2n half-spaces (can
you find them?).

• The regular n-dimensional simplex

n = 1 n = 2 n = 3

can be defined in a quite simple and nice way as a subset of Rn+1:

{x ∈ Rn+1 : x1, x2, . . . , xn+1 ≥ 0, x1 + x2 + · · · + xn+1 = 1}.

We note that this is exactly the set of all feasible solutions of the linear
program with the single equation x1 + x2 + · · · + xn+1 = 1 and non-
negativity constraints;4 see the picture in Section 4.1. In general, any
n-dimensional convex polytope bounded by n+1 hyperplanes is called a
simplex.

Many interesting examples of convex polyhedra are obtained as sets of feasible
solutions of natural linear programs. For example, the LP relaxation of the
problem of maximum-weight matching (Section 3.2) for a complete bipartite
graph leads to the Birkhoff polytope. Geometric properties of such polyhedra

4 On the other hand, the set of feasible solutions of a linear program in equational
form certainly isn’t always a simplex! The simplex method is so named for a
rather complicated reason, related to an alternative geometric view of a linear
program in equational form, different from the one discussed in this book. Ac-
cording to this view, the m-tuple of numbers in the jth column of the matrix A
together with the number cj is interpreted as a point in Rm+1. Then the simplex
method can be interpreted as a walk through certain simplices with vertices at
these points. It was this view that gave Dantzig faith in the simplex method and
convinced him that it made sense to study it.

4. Theory of Linear Programming: First Steps
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are often related to properties of combinatorial objects and to solutions of
combinatorial optimization problems in an interesting way. A nice book about
convex polyhedra is

G. M. Ziegler: Lectures on Polytopes, Springer-Verlag, Heidelberg,
1994 (corrected 2nd edition 1998).

The book

B. Grünbaum: Convex Polytopes, second edition prepared by Volker
Kaibel, Victor Klee, and Günter Ziegler, Springer-Verlag, Heidelberg,
2003

is a new edition of a 1967 classics, with extensive updates on the material
covered in the original book.

4.4 Vertices and Basic Feasible Solutions

A vertex of a convex polyhedron can be thought of as a “tip” or “spike.” For
instance, a three-dimensional cube has 8 vertices, and a regular octahedron
has 6 vertices.

Mathematically, a vertex is defined as a point where some linear function
attains a unique maximum. Thus a point v is called a vertex of a convex
polyhedron P ⊂ Rn if v ∈ P and there exists a nonzero vector c ∈ Rn

such that cT v > cT y for all y ∈ P \ {v}. Geometrically it means that the
hyperplane {x ∈ Rn : cT x = cTv} touches the polyhedron P exactly at v.

c

cT x = cT v

v

Three-dimensional polyhedra have not only vertices, but also edges
and faces. A general polyhedron P ⊆ Rn of dimension n can have
vertices, edges, 2-dimensional faces, 3-dimensional faces, up to (n−1)-
dimensional faces. They are defined as follows: A subset F ⊆ P is a
k-dimensional face of a convex polyhedron P if F has dimension k
and there exist a nonzero vector c ∈ Rn and a number z ∈ R such that
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cT x = z for all x ∈ F and cT x < z for all x ∈ P \ F . In other words,
there exists a hyperplane that touches P exactly at F . Since such an
F is the intersection of a hyperplane with a convex polyhedron, it is
a convex polyhedron itself, and its dimension is thus well defined. An
edge is a 1-dimensional face and a vertex is a 0-dimensional face.

Now we prove that vertices of a convex polyhedron and basic feasible
solutions of a linear program are the same concept.

4.4.1 Theorem. Let P be the set of all feasible solutions of a linear program
in equational form (so P is a convex polyhedron). Then the following two
conditions for a point v ∈ P are equivalent:

(i) v is a vertex of the polyhedron P .
(ii) v is a basic feasible solution of the linear program.

Proof. The implication (i)⇒(ii) follows immediately from Theorem 4.2.3
(with c being the vector defining v). It remains to prove (ii)⇒(i).

Let us consider a basic feasible solution v with a feasible basis B, and let
us define a vector c̃ ∈ Rn by c̃j = 0 for j ∈ B and c̃j = −1 otherwise. We have
c̃T v = 0, and c̃T x ≤ 0 for any x ≥ 0, and hence v maximizes the objective
function c̃T x. Moreover, c̃T x < 0 whenever x has a nonzero component
outside B. But by Proposition 4.2.2, v is the only feasible solution with all
nonzero components in B, and therefore v is the only point of P maximizing
c̃T x. �

Basic feasible solutions for arbitrary linear programs. A sim-
ilar theorem is valid for an arbitrary linear program, not only for one
in equational form. We will not prove it here, but we at least say what
a basic feasible solution is for a general linear program:

4.4.2 Definition. A basic feasible solution of a linear program
with n variables is a feasible solution for which some n linearly inde-
pendent constraints hold with equality.

A constraint that is an equation always has to be satisfied with
equality, while an inequality constraint may be satisfied either with
equality or with a strict inequality. The nonnegativity constraints
satisfied with equality are also counted. The linear independence of
constraints means that the vectors of the coefficients of the vari-
ables are linearly independent. For example, for n = 4, the constraint
3x1 + 5x3 − 7x4 ≤ 10 has the corresponding vector (3, 0, 5,−7).

As is known from linear algebra, a system of n linearly independent
linear equations in n variables has exactly one solution. Hence, if x is
a basic feasible solution and it satisfies some n linearly independent

4. Theory of Linear Programming: First Steps



4.4 Vertices and Basic Feasible Solutions 55

constraints with equality, then it is the only point in Rn that satisfies
these n constraints with equality. Geometrically speaking, the con-
straints satisfied with equality determine hyperplanes, x lies on some
n of them, and these n hyperplanes meet in a single point.

The definition of a basic feasible solution for the equational form
looks quite different, but in fact, it is a special case of the new defini-
tion, as we now indicate. For a linear program in equational form we
have m linearly independent equations always satisfied with equality,
and so it remains to satisfy with equality some n − m of the non-
negativity constraints, and these must be linearly independent with
the equations. The coefficient vector of the nonnegativity constraint
xj ≥ 0 is ej , with 1 at position j and with zeros elsewhere. If x is a ba-
sic feasible solution according to the new definition, then there exists
a set N ⊆ {1, 2, . . . , n} of size n−m such that xj = 0 for all j ∈ N and
the rows of the matrix A together with the vectors (ej : j ∈ N) con-
stitute a linearly independent collection. This happens exactly if the
matrix AB has linearly independent rows, where B = {1, 2, . . . , n}\N ,
and we are back at the definition of a basic feasible solution for the
equational form.

For a general linear program none of the optimal solutions have to
be basic, as is illustrated by the linear program

maximize x1 + x2 subject to x1 + x2 ≤ 1.

This contrasts with the situation for the equational form (cf. Theo-
rem 4.2.3) and it is one of the advantages of the equational form.

Vertices and extremal points. The intuitive notion of a “tip” of
a convex set can be viewed mathematically in at least two ways. One
of them is captured by the above definition of a vertex of a convex
polyhedron: A tip is a point for which some linear function attains a
unique maximum. The other one leads to a definition talking about
points that cannot be “generated by segments.” These are called ex-
tremal points; thus a point x is an extremal point of a convex set
C ⊆ Rn if x ∈ C and there are no two points y, z ∈ C different from x
such that x lies on the segment yz.

For a convex polyhedron it is not difficult to show that the extremal
points are exactly the vertices. Hence we have yet another equivalent
description of a basic feasible solution.

A convex polytope is the convex hull of its vertices. A gen-
eral convex polyhedron need not have any vertices at all—consider
a half-space. However, a convex polytope P , i.e., a bounded convex
polyhedron, always has vertices, and even more is true: P equals the
convex hull of the set of its vertices. This may look intuitively obvi-
ous from examples in dimensions 2 and 3, but a proof is nontrivial
(Ziegler’s book cited in the previous section calls this the “Main The-
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orem” of polytope theory). Consequently, every convex polytope can
be represented either as the intersection of finitely many half-spaces
or as the convex hull of finitely many points.

4. Theory of Linear Programming: First Steps



5. The Simplex Method

In this chapter we explain the simplex method for solving linear programs.
We will make use of the terms equational form and basic feasible solution
from the previous chapter.

Gaussian elimination in linear algebra has a fundamental theoretical and
didactic significance, as a starting point for further developments. But in
practice it has mostly been replaced by more complicated and more efficient
algorithms. Similarly, the basic version of the simplex method that we discuss
here is not commonly used for solving linear programs in practice. We do not
put emphasis on the most efficient possible organization of the computations,
but rather we concentrate on the main ideas.

5.1 An Introductory Example

We will first show the simplex method in action on a small concrete example,
namely, on the following linear program:

Maximize x1 + x2

subject to −x1 + x2 ≤ 1
x1 ≤ 3

x2 ≤ 2
x1, x2 ≥ 0.

(5.1)

We intentionally do not take a linear program in equational form: The vari-
ables are nonnegative, but the inequalities have to be replaced by equations,
by introducing slack variables. The equational form is

maximize x1 + x2

subject to −x1 + x2 + x3 = 1
x1 + x4 = 3

x2 + x5 = 2
x1, x2, . . . , x5 ≥ 0,

with the matrix

A =




−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1



 .
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In the simplex method we first express each linear program in the form
of a simplex tableau. In our case we begin with the tableau

x3 = 1 + x1 − x2

x4 = 3 − x1

x5 = 2 − x2

z = x1 + x2

The first three rows consist of the equations of the linear program, in which
the slack variables have been carried over to the left-hand side and the re-
maining terms are on the right-hand side. The last row, separated by a line,
contains a new variable z, which expresses the objective function.

Each simplex tableau is associated with a certain basic feasible solution.
In our case we substitute 0 for the variables x1 and x2 from the right-hand
side, and without calculation we see that x3 = 1, x4 = 3, x5 = 2. This feasible
solution is indeed basic with B = {3, 4, 5}; we note that AB is the identity
matrix. The variables x3, x4, x5 from the left-hand side are basic and the vari-
ables x1, x2 from the right-hand side are nonbasic. The value of the objective
function z = 0 corresponding to this basic feasible solution can be read off
from the last row of the tableau.

From the initial simplex tableau we will construct a sequence of tableaus of
a similar form, by gradually rewriting them according to certain rules. Each
tableau will contain the same information about the linear program, only
written differently. The procedure terminates with a tableau that represents
the information so that the desired optimal solution can be read off directly.

Let us go to the first step. We try to increase the value of the objective
function by increasing one of the nonbasic variables x1 or x2. In the above
tableau we observe that increasing the value of x1 (i.e. making x1 positive)
increases the value of z. The same is true for x2, because both variables have
positive coefficients in the z-row of the tableau. We can choose either x1

or x2; let us decide (arbitrarily) for x2. We will increase it, while x1 will stay
0.

By how much can we increase x2? If we want to maintain feasibility, we
have to be careful not to let any of the basic variables x3, x4, x5 go below zero.
This means that the equations determining x3, x4, x5 may limit the increment
of x2. Let us consider the first equation

x3 = 1 + x1 − x2.

Together with the implicit constraint x3 ≥ 0 it lets us increase x2 up to the
value x2 = 1 (while keeping x1 = 0). The second equation

x4 = 3 − x1

does not limit the increment of x2 at all, and the third equation

x5 = 2 − x2
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allows for an increase of x2 up to x2 = 2 before x5 gets negative. The most
stringent restriction thus follows from the first equation.

We increase x2 as much as we can, obtaining x2 = 1 and x3 = 0. From the
remaining equations of the tableau we get the values of the other variables:

x4 = 3 − x1 = 3
x5 = 2 − x2 = 1.

In this new feasible solution x3 became zero and x2 nonzero. Quite natu-
rally we thus transfer x3 to the right-hand side, where the nonbasic variables
live, and x2 to the left-hand side, where the basic variables reside. We do it
by means of the most stringent equation x3 = 1 + x1 − x2, from which we
express

x2 = 1 + x1 − x3.

We substitute the right-hand side for x2 into the remaining equations, and
we arrive at a new tableau:

x2 = 1 + x1 − x3

x4 = 3 − x1

x5 = 1 − x1 + x3

z = 1 + 2x1 − x3

Here B = {2, 4, 5}, which corresponds to the basic feasible solution x =
(0, 1, 0, 3, 1) with the value of the objective function z = 1.

This process of rewriting one simplex tableau into another is called a
pivot step. In each pivot step some nonbasic variable, in our case x2, enters
the basis, while some basic variable, in our case x3, leaves the basis.

In the new tableau we can further increase the value of the objective
function by increasing x1, while increasing x3 would lead to a smaller z-value.
The first equation does not restrict the increment of x1 in any way, from the
second one we get x1 ≤ 3, and from the third one x1 ≤ 1, so the strictest
limitation is implied by the third equation. Similarly as in the previous step,
we express x1 from it and we substitute this expression into the remaining
equations. Thereby x1 enters the basis and moves to the left-hand side, and
x5 leaves the basis and migrates to the right-hand side. The tableau we obtain
is

x1 = 1 + x3 − x5

x2 = 2 − x5

x4 = 2 − x3 + x5

z = 3 + x3 − 2x5

with B = {1, 2, 4}, basic feasible solution x = (1, 2, 0, 2, 0), and z = 3. After
one more pivot step, in which x3 enters the basis and x4 leaves it, we arrive
at the tableau

x1 = 3 − x4

x2 = 2 − x5

x3 = 2 − x4 + x5

z = 5 − x4 − x5
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with basis {1, 2, 3}, basic feasible solution x = (3, 2, 2, 0, 0), and z = 5. In this
tableau, no nonbasic variable can be increased without making the objective
function value smaller, so we are stuck. Luckily, this also means that we have
already found an optimal solution! Why?

Let us consider an arbitrary feasible solution x̃ = (x̃1, . . . , x̃5) of our
linear program, with the objective function attaining some value z̃. Now x̃
and z̃ satisfy all equations in the final tableau, which was obtained from the
original equations of the linear program by equivalent transformations. Hence
we necessarily have

z̃ = 5 − x̃4 − x̃5.

Together with the nonnegativity constraints x̃4, x̃5 ≥ 0 this implies z̃ ≤ 5.
The tableau even delivers a proof that x = (3, 2, 2, 0, 0) is the only optimal
solution: If z = 5, then x4 = x5 = 0, and this determines the values of the
remaining variables uniquely.

A geometric illustration. For each feasible solution (x1, x2) of the original
linear program (5.1) with inequalities we have exactly one corresponding
feasible solution (x1, x2, . . . , x5) of the modified linear program in equational
form, and conversely. The sets of feasible solutions are isomorphic in a suitable
sense, and we can thus follow the progress of the simplex method narrated
above in a planar picture for the original linear program (5.1):

(0, 1)

(1, 2) (3, 2)

(0, 0)

x1 ≤ 3

x2 ≤ 2

x1 ≥ 0

x2 ≥ 0

−x1 + x2 ≤ 1

We can see the simplex method moving along the edges from one feasible
solution to another, while the value of the objective function grows until it
reaches the optimum. In the example we could also take a shorter route if we
decided to increase x1 instead of x2 in the first step.

Potential troubles. In our modest example the simplex method has run
smoothly without any problems. In general we must deal with several com-
plications. We will demonstrate them on examples in the next sections.
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5.2 Exception Handling: Unboundedness

What happens in the simplex method for an unbounded linear program? We
will show it on the example

maximize x1

subject to x1 − x2 ≤ 1
−x1 + x2 ≤ 2
x1, x2 ≥ 0

illustrated in the picture below:

x1 ≥ 0

x2 ≥ 0

x1 − x2 ≤ 1

−x1 + x2 ≤ 2

After the usual transformation to equational form by introducing slack vari-
ables x3, x4, we can use these variables as a feasible basis and we obtain the
initial simplex tableau

x3 = 1 − x1 + x2

x4 = 2 + x1 − x2

z = x1

After the first pivot step with entering variable x1 and leaving variable x3

the next tableau is
x1 = 1 + x2 − x3

x4 = 3 − x3

z = 1 + x2 − x3

If we now try to introduce x2 into the basis, we discover that none of the
equations in the tableau restrict its increase in any way. We can thus take
x2 arbitrarily large, and we also get z arbitrarily large—the linear program
is unbounded.

Let us analyze this situation in more detail. From the tableau one can see
that for an arbitrarily large number t ≥ 0 we obtain a feasible solution by
setting x2 = t, x3 = 0, x1 = 1+ t, and x4 = 3, with the value of the objective
function z = 1 + t. In other words, the semi-infinite ray

{(1, 0, 0, 3) + t(1, 1, 0, 0) : t ≥ 0}
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is contained in the set of feasible solutions. It “witnesses” the unbounded-
ness of the linear program, since the objective function attains arbitrarily
large values on it. The corresponding semi-infinite ray for the original two-
dimensional linear program is drawn thick in the picture above.

A similar ray is the output of the simplex method for all unbounded linear
programs.

5.3 Exception Handling: Degeneracy

While we can make some nonbasic variable arbitrarily large in the unbounded
case, the other extreme happens in a situation called a degeneracy: The equa-
tions in a tableau do not permit any increment of the selected nonbasic vari-
able, and it may actually be impossible to increase the objective function z
in a single pivot step.

Let us consider the linear program

maximize x2

subject to −x1 + x2 ≤ 0
x1 ≤ 2

x1, x2 ≥ 0.

(5.2)

x1 ≥ 0

x2 ≥ 0

x1 ≤ 2
−x1 + x2 ≤ 0

In the usual way we convert it to equational form and construct the initial
tableau

x3 = x1 − x2

x4 = 2 − x1

z = x2

The only candidate for entering the basis is x2, but the first row of the
tableau shows that its value cannot be increased without making x3 negative.
Unfortunately, the impossibility of making progress in this case does not
imply optimality, so we have to perform a degenerate pivot step, i.e., one
with zero progress in the objective function. In our example, bringing x2 into
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the basis (with x3 leaving) results in another tableau with the same basic
feasible solution (0, 0, 0, 2):

x2 = x1 − x3

x4 = 2 − x1

z = x1 − x3

Nevertheless, the situation has improved. The nonbasic variable x1 can now
be increased, and by entering it into the basis (replacing x4) we already obtain
the final tableau

x1 = 2 − x4

x2 = 2 − x3 − x4

z = 2 − x3 − x4

with an optimal solution x = (2, 2, 0, 0).
A situation that forces a degenerate pivot step may occur only for a linear

program in which several feasible bases correspond to a single basic feasible
solution. Such linear programs are called degenerate.

It is easily seen that in order that a single basic feasible solution be ob-
tained from several bases, some of the basic variables have to be zero.

In this example, after one degenerate pivot step we could again make
progress. In general, there might be longer runs of degenerate pivot steps. It
may even happen that some tableau is repeated in a sequence of degenerate
pivot steps, and so the algorithm might pass through an infinite sequence
of tableaus without any progress. This phenomenon is called cycling. An
example of a linear program for which the simplex method may cycle can be
found in Chvátal’s textbook cited in Chapter 9 (the smallest possible example
has 6 variables and 3 equations), and we will not present it here.

If the simplex method doesn’t cycle, then it necessarily finishes in a finite
number of steps. This is because there are only finitely many possible simplex
tableaus for any given linear program, namely at most

(
n
m

)
, which we will

prove in Section 5.5.
How can cycling be prevented? This is a nontrivial issue and it will be

discussed in Section 5.8.

5.4 Exception Handling: Infeasibility

In order that the simplex method be able to start at all, we need a feasible
basis. In examples discussed up until now we got a feasible basis more or less
for free. It works this way for all linear programs of the form

maximize cT x subject to Ax ≤ b and x ≥ 0

with b ≥ 0. Indeed, the indices of the slack variables introduced in the
transformation to equational form can serve as a feasible basis.
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However, in general, finding any feasible solution of a linear program is
equally as difficult as finding an optimal solution (see the remark in Sec-
tion 1.3). But computing the initial feasible basis can be done by the simplex
method itself, if we apply it to a suitable auxiliary problem.

Let us consider the linear program in equational form

maximize x1 + 2x2

subject to x1 + 3x2 + x3 = 4
2x2 + x3 = 2

x1, x2, x3 ≥ 0.

Let us try to produce a feasible solution starting with (x1, x2, x3) = (0, 0, 0).
This vector is nonnegative, but of course it is not feasible, since it does not
satisfy the equations of the linear program. We introduce auxiliary variables
x4 and x5 as “corrections” of infeasibility: x4 = 4−x1−3x2−x3 expresses by
how much the original variables x1, x2, x3 fail to satisfy the first equation, and
x5 = 2−2x2−x3 plays a similar role for the second equation. If we managed
to find nonnegative values of x1, x2, x3 for which both of these corrections
come out as zeros, we would have a feasible solution of the considered linear
program.

The task of finding nonnegative x1, x2, x3 with zero corrections can be
captured by a linear program:

Maximize − x4 − x5

subject to x1 + 3x2 + x3 + x4 = 4
2x2 + x3 + x5 = 2

x1, x2, . . . , x5 ≥ 0.

The optimal value of the objective function −x4 − x5 is 0 exactly if there
exist values of x1, x2, x3 with zero corrections, i.e., a feasible solution of the
original linear program.

This is the right auxiliary linear program. The variables x4 and x5 form
a feasible basis, with the basic feasible solution (0, 0, 0, 4, 2). (Here we use
that the right-hand sides, 4 and 2, are nonnegative, but since we deal with
equations, this can always be achieved by sign changes.) Once we express
the objective function using the nonbasic variables, that is, in the form z =
−6+x1 +5x2 +2x3, we can start the simplex method on the auxiliary linear
program.

The auxiliary linear program is surely bounded, since the objective func-
tion cannot be positive. The simplex method thus computes a basic feasible
solution that is optimal.

As training the reader can check that if we let x1 enter the basis in the
first pivot step and x3 in the second, the final simplex tableau comes out as

x1 = 2 − x2 − x4 + x5

x3 = 2 − 2x2 − x5

z = − x4 − x5.
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The corresponding optimal solution (2, 0, 2, 0, 0) yields a basic feasible solu-
tion of the original linear program: (x1, x2, x3) = (2, 0, 2). The initial simplex
tableau for the original linear program can even be obtained from the final
tableau of the auxiliary linear program, by leaving out the columns of the
auxiliary variables x4 and x5,

1 and by changing the objective function back
to the original one, expressed in terms of the nonbasic variables:

x1 = 2 − x2

x3 = 2 − 2x2

z = 2 + x2

Starting from this tableau, a single pivot step already reaches the optimum.

5.5 Simplex Tableaus in General

In this section and the next one we formulate in general, and mostly with
proofs, what has previously been explained on examples.

Let us consider a general linear program in equational form

maximize cT x subject to Ax = b and x ≥ 0.

The simplex method applied to it computes a sequence of simplex tableaus.
Each of them corresponds to a feasible basis B and it determines a basic
feasible solution, as we will soon verify. (Let us recall that a feasible basis is
an m-element set B ⊆ {1, 2, . . . , n} such that the matrix AB is nonsingular
and the (unique) solution of the system ABxB = b is nonnegative.)

Formally, we will define a simplex tableau as a certain system of linear
equations of a special form, in which the basic variables and the variable z,
representing the value of the objective function, stand on the left-hand side
and they are expressed in terms of the nonbasic variables.

A simplex tableau T (B) determined by a feasible basis B is a system
of m+1 linear equations in variables x1, x2, . . . , xn, and z that has the
same set of solutions as the system Ax = b, z = cT x, and in matrix
notation looks as follows:

xB = p + QxN

z = z0 + rT xN

where xB is the vector of the basic variables, N = {1, 2, . . . , n}\B, xN is
the vector of nonbasic variables, p ∈ Rm, r ∈ Rn−m, Q is an m×(n−m)
matrix, and z0 ∈ R.

1 It may happen that some auxiliary variables are zero but still basic in the final
tableau of the auxiliary program, and so they cannot simply be left out. Section
5.6 discusses this (easy) issue.
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The basic feasible solution corresponding to this tableau can be read off
immediately: It is obtained by substituting xN = 0; that is, we have xB = p.
From the feasibility of the basis B we see that p ≥ 0. The objective function
for this basic feasible solution has value z0 + rT0 = z0.

The values of p, Q, r, z0 can easily be expressed using B and A,b, c:

5.5.1 Lemma. For each feasible basis B there exists exactly one simplex
tableau, and it is given by

Q = −A−1
B AN , p = A−1

B b, z0 = cT
BA−1

B b, and r = cN − (cT
BA−1

B AN )T .

It is neither necessary nor very useful to remember these formulas; they
are easily rederived if needed. The proof is not very exciting and we write it
more concisely than other parts of the text and we leave some details to a
diligent reader. We will proceed similarly with subsequent proofs of a similar
kind.

Proof. First let us see how these formulas can be discovered: We
rewrite the system Ax = b to ABxB = b−ANxN , and we multiply it
by the inverse matrix A−1

B from the left (these transformations preserve
the solution set), which leads to

xB = A−1
B b − A−1

B ANxN .

We substitute the right-hand side for xB into the equation z = cT x =
cT

BxB + cT
NxN , and we obtain

z = cT
B(A−1

B b− A−1
B ANxN ) + cT

NxN

= cT
BA−1

B b + (cT
N − cT

BA−1
B AN )xN .

Thus the formulas in the lemma do yield a simplex tableau, and it
remains to verify the uniqueness.

Let p, Q, r, z0 determine a simplex tableau for a feasible basis B,
and let p′, Q′, r′, z′0 do as well. Since each choice of xN determines
xB uniquely, the equality p + QxN = p′ + Q′xN has to hold for all
xN ∈ Rn−m. The choice xN = 0 gives p = p′, and if we substitute the
unit vectors ej of the standard basis for xN one by one, we also get
Q = Q′. The equalities z0 = z′0 and r = r′ are proved similarly. �

5.6 The Simplex Method in General

Optimality. Exactly as in the concrete example in Section 5.1, we have the
following criterion of optimality of a simplex tableau:
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If T (B) is a simplex tableau such that the coefficients of the nonbasic
variables are nonpositive in the last row, i.e., if

r ≤ 0,

then the corresponding basic feasible solution is optimal.

Indeed, the basic feasible solution corresponding to such a tableau has the
objective function equal to z0, while for any other feasible solution x̃ we have
x̃N ≥ 0 and cT x̃ = z0 + rT x̃N ≤ z0.

A pivot step: who enters and who leaves. In each step of the simplex
method we go from an “old” basis B and simplex tableau T (B) to a “new”
basis B′ and the corresponding simplex tableau T (B′). A nonbasic variable
xv enters the basis and a basic variable xu leaves the basis,2 and hence B′ =
(B \ {u}) ∪ {v}.

We always select the entering variable xv first.

A nonbasic variable may enter the basis if and only if its coefficient in
the last row of the simplex tableau is positive.

Only incrementing such nonbasic variables increases the value of the objective
function.

Usually there are several positive coefficients in the last row, and hence
several possible choices of the entering variable. For the time being the reader
may think of this choice as arbitrary. We will discuss ways of selecting one of
these possibilities in Section 5.7.

Once we decide that the entering variable is some xv, it remains to pick
the leaving variable.

The leaving variable xu has to be such that its nonnegativity, together
with the corresponding equation in the simplex tableau having xu on
the left-hand side, limits the increment of the entering variable xv most
strictly.

Expressed by a formula, this condition might look complicated because
of some double indices, but the idea is simple and we have already seen it
in examples. Let us write B = {k1, k2, . . . , km}, k1 < k2 < · · · < km, and
N = {�1, �2, . . . , �n−m}, �1 < �2 < · · · < �n−m. Then the ith equation of the
simplex tableau has the form

xki
= pi +

n−m∑

j=1

qijx�j
.

2 The letters u and v do not denote vectors here (the alphabet is not that long,
after all).
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We now want to write the index v of the chosen entering variable as v = �β.
In more detail, we define β ∈ {1, 2, . . . , n−m} as the index for which v = �β.
Similarly, the index u of the leaving variable (which hasn’t been selected yet)
will be written in the form u = kα.

Since all nonbasic variables x�j
, j �= β, should remain zero, the nonneg-

ativity condition xki
≥ 0 limits the possible values of the entering variable

x�β
by the inequality −qiβx�β

≤ pi. If qiβ ≥ 0, then this inequality doesn’t
restrict the increase of x�β

in any way, while for qiβ < 0 it yields the restric-
tion x�β

≤ −pi/qiβ .
The leaving variable xkα

is thus always such that

qαβ < 0 and − pα

qαβ
= min

{
− pi

qiβ
: qiβ < 0, i = 1, 2, . . . , m

}
. (5.3)

That is, in the simplex tableau we consider only the rows in which the coeffi-
cient of xv is negative. In such rows we divide by this coefficient the compo-
nent of the vector p, we change sign, and we seek a minimum among these
ratios. If there is no row with a negative coefficient of xv, i.e., the minimum
of the right-hand side of equation (5.3) is over an empty set, then the linear
program is unbounded and the computation finishes.

For a proof that the simplex method really goes through a sequence of
feasible bases we need the following lemma.

5.6.1 Lemma. If B is a feasible basis and T (B) is the corresponding simplex
tableau, and if the entering variable xv and the leaving variable xu have been
selected according to the criteria described above (and otherwise arbitrarily),
then B′ = (B \ {u}) ∪ {v} is again a feasible basis.

If no xu satisfies the criterion for a leaving variable, then the linear pro-
gram is unbounded. For all t ≥ 0 we obtain a feasible solution by substituting
t for xv and 0 for all other nonbasic variables, and the value of the objective
function for these feasible solutions tends to infinity as t → ∞.

The proof is one of those not essential for a basic understanding of the
material.

Proof (sketch). We first need to verify that the matrix AB′ is non-
singular. This holds exactly if A−1

B AB′ is nonsingular, since we as-
sume nonsingularity of AB. The matrix AB′ agrees with AB in m− 1
columns corresponding to the basic variable indices B \ {u}. For the
basic variable with index ki, i �= α, we get the unit vector ei, in the
corresponding column of A−1

B AB′ .
The negative of the remaining column of the matrix A−1

B AB′ occurs
in the simplex tableau T (B) as the column of the entering variable xv,
since Q = −A−1

B AN by Lemma 5.5.1. There is a nonzero number qαβ in
row α corresponding to the leaving variable xu, since we have selected
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xu that way, and the other columns of A−1
B AB′ have 0 in that row.

Hence the matrix is nonsingular as claimed.
Next, we need to check feasibility of the basis B′. Here we use the

fact that the new basic feasible solution, that for B′, can be written
in terms of the old one, and the nonnegativity of its basic variables
are exactly those conditions that are used for choosing the leaving
variable.

In practically the same way one can show the part of the lemma
dealing with unbounded linear programs. We omit further details. �

A geometric view. As we saw in Section 4.4, basic feasible solutions
are vertices of the polyhedron of feasible solutions. It is not hard to
verify that a pivot step of the simplex method corresponds to a move
from one vertex to another along an edge of the polyhedron (where an
edge is a 1-dimensional face, i.e., a segment connecting the considered
vertices; see Section 4.4).

Degenerate pivot steps are an exception, where we stay at the
same vertex and only the feasible basis changes. A vertex of an n-
dimensional convex polyhedron is generally determined by n of the
bounding hyperplanes (think of a 3-dimensional cube, say). Degener-
acy can occur only if we have more than n of the bounding hyperplanes
meeting at a vertex (this happens for the 3-dimensional regular octa-
hedron, for example).

Organization of the computations. Whenever we find a new feasible
basis as above, we could compute the new simplex tableau according to the
formulas from Lemma 5.5.1. But this is never done since it is inefficient.

For hand calculation the new simplex tableau is computed from the old
one. We have already illustrated one possible approach in the examples. We
take the equation of the old tableau with the leaving variable xu on the left,
and in this equation we carry the entering variable xv over to the left and
xu to the right. The modified equation becomes the equation for xv in the
new tableau. The right-hand side is then substituted for xv into all of the
other equations, including the one for z in the last row. This finishes the
construction of the new tableau.

In computer implementations of the simplex method, the simplex
tableau is typically not computed in full. Rather, only the basic com-
ponents of the basic feasible solution, i.e., the vector p = A−1

B b, and
the matrix A−1

B are maintained. The latter allows for a fast computa-
tion of other entries of the simplex tableau when they are needed. (Let
us note that for the optimality test and for selecting the entering vari-
able we need only the last row, and for selecting the leaving variable
we need only p and the column of the entering variable.) With respect
to efficiency and numerical accuracy, the explicit inverse A−1

B is not



70 5. The Simplex Method

the best choice, and in practice, it is often represented by an (approxi-
mate) LU-factorization of the matrix AB, or by other devices that can
easily be updated during a pivot step of the simplex method. Since an
efficient implementation of the simplex method is not among our main
concerns, we will not describe how these things are actually done.

This computational approach is called the revised simplex method.
For m considerably smaller than n it is usually much more efficient
than maintaining all of the simplex tableau. In particular, O(m2)
arithmetic operations per pivot step are sufficient for maintaining an
LU-factorization of AB, as opposed to about mn operations required
for maintaining the simplex tableau.

Computing an initial feasible basis. If the given linear program has no
“obvious” feasible basis, we look for an initial feasible basis by the procedure
indicated in Section 5.4. For a linear program in the usual equational form

maximize cT x subject to Ax = b and x ≥ 0

we first arrange for b ≥ 0: We multiply the equations with bi < 0 by −1.
Then we introduce m new variables xn+1 through xn+m, and we solve the
auxiliary linear program

maximize −(xn+1 + xn+2 + · · · + xn+m)
subject to Āx = b

x ≥ 0,

where x = (x1, . . . , xn+m) is the vector of all variables including the new
ones, and Ā = (A | Im) is obtained from A by appending the m×m identity
matrix to the right. The original linear program is feasible if and only if every
optimal solution of the auxiliary linear program satisfies xn+1 = xn+2 = · · · =
xn+m = 0. Indeed, it is clear that an optimal solution of the auxiliary linear
program with xn+1 = xn+2 = · · · = xn+m = 0 yields a feasible solution of
the original linear program. Conversely, any feasible solution of the original
linear program provides a feasible solution of the auxiliary linear program
that has the objective function equal to 0 and is thus optimal.

The auxiliary linear program can be solved by the simplex method di-
rectly, since the new variables xn+1 through xn+m constitute an initial fea-
sible basis. In this way we obtain some optimal solution. If it doesn’t satisfy
xn+1 = xn+2 = · · · = xn+m = 0, we are done—the original linear program is
infeasible.

Let us assume that the optimal solution of the auxiliary linear program
has xn+1 = xn+2 = · · · = xn+m = 0. The simplex method always returns a
basic feasible solution. If none of the new variables xn+1 through xn+m are
in the basis for the returned optimal solution, then such a basis is then a
feasible basis for the original linear program, too, and it allows us to start
the simplex method.
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In some degenerate cases it may happen that the basis returned by the
simplex method for the auxiliary linear program contains some of the vari-
ables xn+1, . . . , xn+m, and such a basis cannot directly be used for the original
linear program. But this is a cosmetic problem only: From the returned op-
timal solution one can get a feasible basis for the original linear program by
simple linear algebra. Namely, the optimal solution has at most m nonzero
components, and their columns in the matrix A are linearly independent.
If these columns are fewer than m, we can add more linearly independent
columns and thus get a basis; see the proof of Lemma 4.2.1.

5.7 Pivot Rules

A pivot rule is a rule for selecting the entering variable if there are several
possibilities, which is usually the case. Sometimes there may also be more
than one possibility for choosing the leaving variable, and some pivot rules
specify this choice as well, but this part is typically not so important.

The number of pivot steps needed for solving a linear program depends
substantially on the pivot rule. (See the example in Section 5.1.) The problem
is, of course, that we do not know in advance which choices will be good in
the long run.

Here we list some of the common pivot rules. By an “improving variable”
we mean any nonbasic variable with a positive coefficient in the z-row of the
simplex tableau, in other words, a candidate for the entering variable.

Largest coefficient. Choose an improving variable with the largest co-
efficient in the row of the objective function z. This is the original rule, sug-
gested by Dantzig, that maximizes the improvement of z per unit increase of
the entering variable.

Largest increase. Choose an improving variable that leads to the largest
absolute improvement in z. This rule is computationally more expensive than
the largest coefficient rule, but it locally maximizes the progress.

Steepest edge. Choose an improving variable whose entering into the
basis moves the current basic feasible solution in a direction closest to the
direction of the vector c. Written by a formula, the ratio

cT (xnew − xold)

‖xnew − xold‖

should be maximized, where xold is the basic feasible solution for the current
simplex tableau and xnew is the basic feasible solution for the tableau that
would be obtained by entering the considered improving variable into the
basis. (We recall that ‖v‖ = (v2

1 + v2
2 + · · · + v2

n)1/2 =
√

vT v denotes the
Euclidean length of the vector v, and the expression uT v/(‖u‖ · ‖v‖) is the
cosine of the angle of the vectors u and v.)
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The Steepest edge rule is a champion among pivot rules in practice.
According to extensive computational studies it is usually faster than all
other pivot rules described here and many others. An efficient approximate
implementation of this rule is discussed in the glossary under the heading
“Devex.”

Bland’s rule. Choose the improving variable with the smallest index, and
if there are several possibilities for the leaving variable, also take the one with
the smallest index. Bland’s rule is theoretically very significant since it
prevents cycling, as we will discuss in Section 5.8.

Random edge. Select the entering variable uniformly at random among all
improving variables. This is the simplest example of a randomized pivot rule,
where the choice of the entering variable uses random numbers in some way.
Randomized rules are also very important theoretically, since they lead to the
current best provable bounds for the number of pivot steps of the simplex
method.

5.8 The Struggle Against Cycling

As we have already mentioned, it may happen that for some linear programs
the simplex method cycles (and theoretically this is the only possibility of
how it may fail). Such a situation is encountered very rarely in practice, if at
all, and thus many implementations simply ignore the possibility of cycling.

There are several ways that provably avoid cycling. One of them is the
already mentioned Bland’s rule: We prove below that the simplex method
never cycles if Bland’s rule is applied consistently. Unfortunately, regarding
efficiency, Bland’s rule is one of the slowest pivot rules and it is almost never
used in practice.

Another possibility can be found in the literature under the head-
ing lexicographic rule, and here we only sketch it.

Cycling can occur only for degenerate linear programs. Degeneracy
may lead to ties in the choice of the leaving variable. The lexicographic
method breaks these ties as follows. Suppose that we have a set S of
row indices such that for all α ∈ S,

qαβ < 0 and − pα

qαβ
= min

{
− pi

qiβ
: qiβ < 0, i = 1, 2, . . . , m

}
.

In other words, all indices in S are candidates for the leaving variable.
We then choose the index α ∈ S for which the vector

(
qα1

qαβ
, . . . ,

qα(n−m)

qαβ

)
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is the smallest in the lexicographic ordering. (We recall that a vector
x ∈ Rk is lexicographically smaller than a vector y ∈ Rk if x1 < y1,
or if x1 = y1 and x2 < y2, etc., in general, if there is an index j ≤ k
such that x1 = y1,. . . , xj−1 = yj−1 and xj < yj .) Since the matrix A
has rank m, it can be checked that any two of those vectors indeed
differ at some index, and so we can resolve ties between any set S of
rows. The chosen row index determines the leaving variable.

It can be shown that under the lexicographic rule, cycling is im-
possible. In very degenerate cases the lexicographic rule can be quite
costly, since it may have to compute many components of the afore-
mentioned vectors before the ties can eventually be broken.

Geometrically, the lexicographic rule has the following interpreta-
tion. For linear programs in equational form, degeneracy means that
the set F of solutions of the system Ax = b contains a point with more
than n − m zero components, and thus it is not in general position
with respect to coordinate axes. The lexicographic rule has essentially
the same effect as a well-chosen perturbation of the set F , achieved by
changing the vector b a little. This brings F into “general position”
and therefore resolves all ties, while the optimal solution changes only
by very little. The lexicographic rule simulates the effects of a suitable
“infinitesimal” perturbation.

Now we return to Bland’s rule.

5.8.1 Theorem. The simplex method with Bland’s pivot rule (the entering
variable is the one with the smallest index among the eligible variables, and
similarly for the leaving variable) is always finite; i.e., cycling is impossible.

This is a basic result in the theory of linear programming (the duality
theorem is an easy consequence, for example). Unfortunately, the proof is
somewhat demanding. Its plot is simple, though: Assuming that there is a
cycle, we get a contradiction in the form of an auxiliary linear program that
has an optimal solution and is unbounded at the same time.

Proof. We assume that there is a cycle, and we let the set F consist of the
indices of all variables that enter (and therefore also leave) the basis at least
once during the cycle. We call these the fickle variables. First we verify a
general claim about cycling of the simplex method, valid for any pivot rule.

Claim. All bases encountered in the cycle yield the same basic feasible solu-
tion, and all the fickle variables are 0 in it.

Proof of the claim. Since the objective function never decreases, it has to
stay constant along the cycle.

Let B be a feasible basis encountered along the cycle, let N = {1, 2, . . . , n}\
B as usual, and let B′ = (B \ {u}) ∪ {v} be the next basis. The only one
among the nonbasic variables that may possibly change value in the pivot
step from B to B′ is the entering variable xv; all others remain nonbasic
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and thus 0. By the rule for selecting the entering variable, the coefficient of
xv in the z-row of the tableau T (B) (i.e., in the vector r) is strictly pos-
itive. Since the objective function is given by z = z0 + rT xN , we see that
if xv became strictly positive, the objective function would increase. Hence
the basic feasible solutions corresponding to B and B′, respectively, agree in
all components in N . Since these components determine the remaining ones
uniquely (Proposition 4.2.2), the basic feasible solution does not change at
all.

Finally, since every fickle variable is nonbasic at least once during the
cycle, it has to be 0 all the time. The claim is proved.

The first trick in the proof of Theorem 5.8.1 is to consider the largest
index v in the set F . Let B be a basis in the cycle just before xv enters, and
B′ another basis just before xv leaves (and xu enters, say). Let p, Q, r, z0

be the parameters of the simplex tableau T (B), and let p′, Q′, r′, z′0 be the
parameters of T (B′). (We remark that neither B nor B′ has to be determined
uniquely.)

Next, we use Bland’s rule to infer some properties of the tableaus T (B)
and T (B′). First we focus on the situation at B. As in Section 5.6, we write
B and N = {1, 2, . . . , n} \ B as ordered sets: B = {k1, k2, . . . , km}, k1 <
k2 < · · · < km, and N = {�1, �2, . . . , �n−m}, �1 < �2 < · · · < �n−m. Since
we have chosen v as the largest index in F , and Bland’s rule requires v to
be the smallest index of a candidate for entering the basis, no other fickle
variable is a candidate at this point. Thus all fickle variables except for xv

have nonpositive coefficients in the z-row of T (B). Expressed formally, if β is
the index such that v = �β, we have

rβ > 0 and rj ≤ 0 for all j such that �j ∈ F \ {v}. (5.4)

Second, we consider the tableau T (B′). We write B′ = {k′
1, k

′
2, . . . , k

′
m},

N ′ = {1, 2, . . . , n} \ B′ = {�′1, �′2, . . . , �′n−m}, we let α′ be the index of the
leaving variable xv in B′, i.e., the one with k′

α′ = v, and we let β′ be the
index of the entering variable xu in N ′, i.e., the one with �′β′ = u. By the
same logic as above, xv is the only candidate for leaving the basis among all
the basic fickle variables in T (B′). Recalling the criterion (5.3) for leaving the
basis, we get that i = α′ is the only i with k′

i ∈ F and q′iβ′ < 0 that minimizes
the ratio −p′i/q′iβ′ . Since p′ specifies the values of the basic variables and all
fickle variables remain 0 during the cycle, we have p′i = 0 for all i with k′

i ∈ F .
Consequently,

q′α′β′ < 0 and q′iβ′ ≥ 0 for all i such that k′
i ∈ F \ {v}. (5.5)

The idea is now to construct an auxiliary linear program for which (5.4)
proves that it has an optimal solution, while (5.5) shows that it is unbounded.
This is a clear contradiction, which rules out the initial assumption, the
existence of a cycle.
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The auxiliary linear program is the following:

Maximize cT x
subject to Ax = b

xF\{v} ≥ 0
xv ≤ 0
xN\F = 0.

We want stress that here the variables xB\F may assume any signs.

Optimality of the auxiliary linear program. We let x̃ be the basic feasible
solution of our original linear program associated with the basis B. Since
x̃N = 0 and x̃F = 0 (by the claim), x̃ is feasible for the auxiliary program.
Moreover, for every x satisfying Ax = b the value of the objective function
can be expressed as

cT x = z = z0 + rT xN .

For all feasible solutions x of the auxiliary linear program, we have

x�j

{
≥ 0 if �j ∈ F \ {v}
≤ 0 if �j = �β = v,

and so (5.4) implies

rjx�j
≤ 0 for all j such that �j ∈ F .

Together with xN\F = 0, we get rT xN ≤ 0, and hence z ≤ z0 for all feasible
solutions of the auxiliary linear program. It follows that x̃ is an optimal
solution of the auxiliary linear program.

Unboundedness of the auxiliary linear program. By the claim at the beginning
of the proof, x̃ is also the basic feasible solution of our original linear program
associated with the basis B′. For all solutions x of Ax = b we have

xB′ = p′ + Q′xN ′ . (5.6)

Let us now change x̃N ′ , by letting x̃u grow from its current value 0 to some
value t > 0. Using (5.6), this determines a new solution x̃(t) of Ax = b; we
will show that for all t > 0, this solution is feasible for the auxiliary problem,
but that the objective function value cT x̃(t) tends to infinity as t → ∞. Here
are the details.

We set

x̃�′
j
(t) :=

{
0 if �′j ∈ N ′ \ u
t if �′j = �′β′ = u.

With x̃v = 0 and t > 0, (5.6) and (5.5) together show that

x̃k′

i
(t) = x̃k′

i
+ tq′iβ′

{
≥ 0 if k′

i ∈ F \ {v}
< 0 if k′

i = k′
α′ = v.
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In particular, x̃(t) is again feasible for the auxiliary linear program.
Since the variable xu = x�′

β′
was a candidate for entering the basis B′, we

know that r′β′ > 0, and hence

cT x̃(t) = z′0 + r′T x̃N ′(t) = z′0 + tr′β′ → ∞ for t → ∞.

This means that the auxiliary linear program is unbounded. �

5.9 Efficiency of the Simplex Method

In practice, the simplex method performs very satisfactorily even for large lin-
ear programs. Computational experiments indicate that for linear programs
in equational form with m equations it typically reaches an optimal solution
in something between 2m and 3m pivot steps.

It was thus a great surprise when Klee and Minty constructed a linear
program with n nonnegative variables and n inequalities for which the simplex
method with Dantzig’s original pivot rule (largest coefficient) needs
exponentially many pivot steps, namely 2n − 1!

The set of feasible solutions is an ingeniously deformed n-dimens-
ional cube, called the Klee–Minty cube, constructed in such a way that
the simplex method passes through all of its vertices. It is not hard to
see that there is a deformed n-dimensional cube with an xn-increasing
path, say, through all vertices. Instead of a formal description we il-
lustrate such a construction by pictures for dimensions 2 and 3:

n = 3

n = 2

The deformed cube is inscribed in an ordinary cube in order to better
convey the shape. With some pivot rules, the simplex method may
traverse the path marked with a thick line. The particular deformed
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cube shown in the picture won’t fool Dantzig’s rule, for which the orig-
inal example of Klee and Minty was constructed, though. A deformed
cube that does fool Dantzig’s rule looks more bizarre:

The direction of the objective function is drawn vertically. The corre-
sponding linear program with n = 3 variables is simple:

Maximize 9x1 + 3x2 + x3

subject to x1 ≤ 1
6x1 + x2 ≤ 9

18x1 + 6x2 + x3 ≤ 81
x1, x2, x3 ≥ 0.

It is instructive to see how, after the standard conversion to equational
form, this linear program forces Dantzig’s rule to go through all feasi-
ble bases.

Later on, very slow examples of a similar type were discovered for many
other pivot rules, among them all the rules mentioned above. Many people
have tried to design a pivot rule and prove that the number of pivot steps is
always bounded by some polynomial function of m and n, but nobody has
succeeded so far. The best known bound has been proved for the following
simple randomized pivot rule: Choose a random ordering of the variables at
the beginning of the computation (in other words, randomly permute the
indices of the variables in the input linear program); then use Bland’s rule
for choosing the entering variable, and the lexicographic method for choosing
the leaving variable. For every linear program with at most n variables and
at most n constraints, the expected number of pivot steps is bounded by

eC
√

n lnn, where C is a (not too large) constant. (Here the expectation means
the arithmetic average over all possible orderings of the variables.) This bound
is considerably better than 2n, say, but much worse than a polynomial bound.

This algorithm was found independently and almost at the same
time by Kalai and by Matoušek, Sharir, and Welzl. For a recent treat-
ment in a somewhat broader context see

B. Gärtner and E. Welzl: Explicit and implicit enforcing—ran-
domized optimization, in Lectures of the Graduate Program
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Computational Discrete Mathematics, Lecture Notes in Com-
puter Science 2122 (2001), Springer, Berlin etc., pages 26–49.

A very good bound is not known even for the cleverest possible
pivot rule, let us call it the clairvoyant’s rule, that would always se-
lect the shortest possible sequence of pivot steps leading to an optimal
solution. The Hirsch conjecture, one of the famous open problems in
mathematics, claims that the clairvoyant’s rule always reaches opti-
mum in O(n) pivot steps. But the best result proved so far gives only
the bound of n1+ln n, due to

G. Kalai and D. Kleitman: Quasi-polynomial bounds for the
diameter of graphs of polyhedra, Bull. Amer Math. Soc.
26(1992), 315–316.

This is better than eC
√

n ln n, but still worse than any polynomial func-
tion of n, and it doesn’t provide a real pivot rule since nobody knows
how to simulate clairvoyant’s decisions by an efficient algorithm.

Here is an approach that looks promising and has been tried more
recently, although without a clear success so far. One tries to modify
the given linear program in such a way that polynomiality of a suitable
pivot rule for the modified linear program would be easier to prove, and
of course, so that an optimal solution of the original linear program
could easily be derived from an optimal solution of the modified linear
program.

In spite of the Klee–Minty cube and similar artificial examples,
the simplex method is being used successfully. Remarkable theoret-
ical results indicate that these willful examples are rare indeed. For
instance, it is known that if a linear program in equational form is
generated in a suitable (precisely defined) way at random, then the
number of pivot steps is of order at most m2 with high probability.
More recent results, in the general framework of the so-called smoothed
complexity, claim that if we take an arbitrary linear program and then
we change its coefficients by small random amounts, then the simplex
method with a certain pivot rule reaches the optimum of the resulting
linear program by polynomially many steps with high probability (a
concrete bound on the polynomial depends on a precise specification
of the “small random amounts” of change). The first theorem of this
kind is due to Spielman and Teng, and for recent progress see

R. Vershynin: Beyond Hirsch conjecture: Walks on ran-
dom polytopes and the smoothed complexity of the simplex
method, preprint, 2006.

An exact formulation of these results requires a number of rather
technical notions that we do not want to introduce here, and so we
omit it.
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5.10 Summary

Let us review the simplex method once again.

Algorithm SIMPLEX METHOD

1. Convert the input linear program to equational form

maximize cT x subject to Ax = b and x ≥ 0

with n variables and m equations, where A has rank m (see Section 4.1).
2. If no feasible basis is available, arrange for b ≥ 0, and solve the following

auxiliary linear program by the simplex method:

Maximize −(xn+1 + xn+2 + · · · + xn+m)
subject to Āx = b

x ≥ 0,

where xn+1, . . . , xn+m are new variables, x = (x1, . . . , xn+m), and Ā =
(A | Im). If the optimal value of the objective function comes out negative,
the original linear program is infeasible; stop. Otherwise, the first n
components of the optimal solution form a basic feasible solution of the
original linear program.

3. For a feasible basis B ⊆ {1, 2, . . . , n} compute the simplex tableau T (B),
of the form

xB = p + QxN

z = z0 + rT xN

4. If r ≤ 0 in the current simplex tableau, return an optimal solution
(p specifies the basic components, while the nonbasic components are
0); stop.

5. Otherwise, select an entering variable xv whose coefficient in the vector
r is positive. If there are several possibilities, use some pivot rule.

6. If the column of the entering variable xv in the simplex tableau is non-
negative, the linear program is unbounded; stop.

7. Otherwise, select a leaving variable xu. Consider all rows of the simplex
tableau where the coefficient of xv is negative, and in each such row divide
the component of the vector p by that coefficient and change sign. The
row of the leaving variable is one in which this ratio is minimal. If there
are several possibilities, decide by a pivot rule, or arbitrarily if the pivot
rule doesn’t specify how to break ties in this case.

8. Replace the current feasible basis B by the new feasible basis (B \ {u})∪
{v}. Update the simplex tableau so that it corresponds to this new basis.
Go to Step 4.

This is all we wanted to say about the simplex method here. May your
pivot steps lead you straight to the optimum and never cycle!
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6.1 The Duality Theorem

Here we formulate arguably the most important theoretical result about lin-
ear programs.

Let us consider the linear program

maximize 2x1 + 3x2

subject to 4x1 + 8x2 ≤ 12
2x1 + x2 ≤ 3
3x1 + 2x2 ≤ 4
x1, x2 ≥ 0.

(6.1)

Without computing the optimum, we can immediately infer from the first
inequality and from the nonnegativity constraints that the maximum of the
objective function is not larger than 12, because for nonnegative x1 and x2

we have
2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12.

We obtain a better upper bound if we first divide the first inequality by two:

2x1 + 3x2 ≤ 2x1 + 4x2 ≤ 6.

An even better bound results if we add the first two inequalities together and
divide by three, which leads to the inequality

2x1 + 3x2 =
1

3
(4x1 + 8x2 + 2x1 + x2) ≤

1

3
(12 + 3) = 5,

and hence the objective function cannot be larger than 5.
How good an upper bound can we get in this way? And what does “in

this way” mean? Let us begin with the latter question: From the constraints,
we are trying to derive an inequality of the form

d1x1 + d2x2 ≤ h,

where d1 ≥ 2, d2 ≥ 3, and h is as small as possible. Then we can claim that
for all x1, x2 ≥ 0 we have
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2x1 + 3x2 ≤ d1x1 + d2x2 ≤ h,

and therefore, h is an upper bound on the maximum of the objective function.
How can we derive such inequalities? We combine the three inequalities in the
linear program with some nonnegative coefficients y1, y2, y3 (nonnegativity is
needed so that the direction of inequality is not reversed). We obtain

(4y1 + 2y2 + 3y3)x1 + (8y1 + y2 + 2y3)x2 ≤ 12y1 + 3y2 + 4y3,

and thus d1 = 4y1 +2y2 +3y3, d2 = 8y1 + y2 +2y3, and h = 12y1 +3y2 +4y3.
How do we choose the best coefficients y1, y2, y3? We must ensure that

d1 ≥ 2 and d2 ≥ 3, and we want h to be as small as possible under these
constraints. This is again a linear program:

Minimize 12y1 + 3y2 + 4y3

subject to 4y1 + 2y2 + 3y3 ≥ 2
8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0.

It is called the linear program dual to the linear program (6.1) we started
with. The dual linear program “guards” the original linear program from
above, in the sense that every feasible solution (y1, y2, y3) of the dual linear
program provides an upper bound on the maximum of the objective function
in (6.1).

How well does it guard? Perfectly! The optimal solution of the dual linear
program is y = ( 5

16 , 0, 1
4 ) with objective function equal to 4.75, and this

is also the optimal value of the linear program (6.1), which is attained for
x = (1

2 , 5
4 ).

The duality theorem asserts that the dual linear program always guards
perfectly. Let us repeat the above considerations in a more general setting,
for a linear program of the form

maximize cT x subject to Ax ≤ b and x ≥ 0, (P)

where A is a matrix with m rows and n columns. We are trying to combine
the m inequalities of the system Ax ≤ b with some nonnegative coefficients
y1, y2, . . . , ym so that

• the resulting inequality has the jth coefficient at least cj , j = 1, 2, . . . , n,
and

• the right-hand side is as small as possible.

This leads to the dual linear program

minimize bT y subject to AT y ≥ c and y ≥ 0; (D)

whoever doesn’t believe this may write it in components. In this context the
linear program (P) is referred to as the primal linear program.

From the way we have produced the dual linear program (D), we obtain
the following result:
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6.1.1 Proposition. For each feasible solution y of the dual linear program
(D) the value bT y provides an upper bound on the maximum of the objective
function of the linear program (P). In other words, for each feasible solution
x of (P) and each feasible solution y of (D) we have

cT x ≤ bTy.

In particular, if (P) is unbounded, (D) has to be infeasible, and if (D) is
unbounded (from below!), then (P) is infeasible.

This proposition is usually called the weak duality theorem, weak because
it expresses only the guarding of the primal linear program (P) by the dual
linear program (D), but it doesn’t say that the guarding is perfect. The latter
is expressed only by the duality theorem (sometimes also called the strong
duality theorem).

Duality theorem of linear programming

For the linear programs

maximize cT x subject to Ax ≤ b and x ≥ 0 (P)

and
minimize bT y subject to AT y ≥ c and y ≥ 0 (D)

exactly one of the following possibilities occurs:

1. Neither (P) nor (D) has a feasible solution.
2. (P) is unbounded and (D) has no feasible solution.
3. (P) has no feasible solution and (D) is unbounded.
4. Both (P) and (D) have a feasible solution. Then both have an optimal

solution, and if x∗ is an optimal solution of (P) and y∗ is an optimal
solution of (D), then

cT x∗ = bT y∗.

That is, the maximum of (P) equals the minimum of (D).

The duality theorem might look complicated at first encounter. For un-
derstanding it better it may be useful to consider a simpler version, called
the Farkas lemma and discussed in Section 6.4. This simpler statement has
several intuitive interpretations, and it contains the essence of the duality
theorem.

Proving the duality theorem, which we will undertake in Sections 6.3
and 6.4, does take some work, unlike a proof of the weak duality theorem,
which is quite easy.

The heart of the duality theorem is the equality cT x∗ = bT y∗ in
the fourth possibility, i.e., for both (P) and (D) feasible.
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Since a linear program can be either feasible and bounded, or fea-
sible and unbounded, or infeasible, there are 3 possibilities for (P)
and 3 possibilities for (D), which at first sight gives 9 possible com-
binations for (P) and (D). The three cases “(P) unbounded and (D)
feasible bounded,” “(P) unbounded and (D) unbounded,” and “(P)
feasible bounded and (D) unbounded” are ruled out by the weak du-
ality theorem. In the proof of the duality theorem, we will rule out the
cases “(P) infeasible and (D) feasible bounded,” as well as “(P) fea-
sible bounded and (D) infeasible.” This leaves us with the four cases
listed in the duality theorem. All of them can indeed occur.

Once again: feasibility versus optimality. In Chapter 1 we remarked
that finding a feasible solution of a linear program is in general computation-
ally as difficult as finding an optimal solution. There we briefly substantiated
this claim using binary search. The duality theorem provides a considerably
more elegant argument: The linear program (P) has an optimal solution if and
only if the following linear program, obtained by combining the constraints
of (P), the constraints of (D), and an inequality between the objective func-
tions, has a feasible solution:

Maximize cT x
subject to Ax ≤ b,

AT y ≥ c,
cT x ≥ bT y,
x ≥ 0,y ≥ 0.

(the objective function is immaterial here, and the variables are x1, . . . , xn

and y1, . . . , ym). Moreover, for each feasible solution (x̃, ỹ) of the last linear
program, x̃ is an optimal solution of the linear program (P). All of this is a
simple consequence of the duality theorem.

6.2 Dualization for Everyone

The duality theorem is valid for each linear program, not only for one of the
form (P); we have only to construct the dual linear program properly. To
this end, we can convert the given linear program to the form (P) using the
tricks from Sections 1.1 and 4.1, and then the dual linear program has the
form (D). The result can often be simplified; for example, the difference of
two nonnegative variables can be replaced by a single unbounded variable
(one that may attain all real values).

Simpler than doing this again and again is to adhere to the recipe be-
low (whose validity can be proved by the just mentioned procedure). Let us
assume that the primal linear program has variables x1, x2, . . . , xn, among



6.2 Dualization for Everyone 85

which some may be nonnegative, some nonpositive, and some unbounded.
Let the constraints be C1, C2, . . . , Cm, where Ci has the form

ai1x1 + ai2x2 + · · · + ainxn






≤
≥
=




 bi.

(The nonnegativity or nonpositivity constraints for the variables are not
counted among the Ci.) The objective function cT x should be maximized.

Then the dual linear program has variables y1, y2, . . . , ym, where yi cor-
responds to the constraint Ci and satisfies






yi ≥ 0
yi ≤ 0
yi ∈ R




 if we have






≤
≥
=




 in Ci.

The constraints of the dual linear program are Q1, Q2, . . . , Qn, where Qj

corresponds to the variable xj and reads

a1jy1 + a2jy2 + · · · + amjym






≥
≤
=




 cj if xj satisfies






xj ≥ 0
xj ≤ 0
xj ∈ R




 .

The objective function is bT y, and it is to be minimized.
Note that in the first part of the recipe (from primal constraints to dual

variables) the direction of inequalities is reversed, while in the second part
(from primal variables to dual constraints) the direction is preserved.

Dualization Recipe

Primal linear program Dual linear program

Variables x1, x2, . . . , xn y1, y2, . . . , ym

Matrix A AT

Right-hand side b c

Objective function max cT x min bTy

Constraints ith constraint has ≤
≥
=

yi ≥ 0
yi ≤ 0
yi ∈ R

xj ≥ 0
xj ≤ 0
xj ∈ R

jth constraint has ≥
≤
=
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If we want to dualize a minimization linear program, we can first trans-
form it to a maximization linear program by changing the sign of the objective
function, and then follow the recipe.

In this way one can also find out that the rules work symmetrically “there”
and “back.” By this we mean that if we start with some linear program,
construct the dual linear program, and then again the dual linear program, we
get back to the original (primal) linear program; two consecutive dualizations
cancel out. In particular, the linear programs (P) and (D) in the duality
theorem are dual to each other.

A physical interpretation of duality. Let us consider a linear
program

maximize cT x subject to Ax ≤ b.

According to the dualization recipe the dual linear program is

minimize bT y subject to AT y = c and y ≥ 0.

Let us assume that the primal linear program is feasible and bounded,
and let n = 3. We regard x as a point in three-dimensional space, and
we interpret c as the gravitation vector; it thus points downward.

Each of the inequalities of the system Ax ≤ b determines a half-
space. The intersection of these half-spaces is a nonempty convex poly-
hedron bounded from below. Each of its two-dimensional faces is given
by one of the equations aT

i x = bi, where the vectors a1,a2, . . . ,am are
the rows of the matrix A, but interpreted as column vectors. Let us
denote the face given by aT

i x = bi by Si (not every inequality of the
system Ax ≤ b has to correspond to a face, and so Si is not necessarily
defined for every i).

Let us imagine that the boundary of the polyhedron is made of
cardboard and that we drop a tiny steel ball somewhere inside the
polyhedron. The ball falls and rolls down to the lowest vertex (or
possibly it stays on a horizontal edge or face). Let us denote the re-
sulting position of the ball by x∗; thus, x∗ is an optimal solution of
the linear program. In this stable position the ball touches several two-
dimensional faces, typically 3. Let D be the set of i such that the ball
touches the face Si. For i ∈ D we thus have

aT
i x∗ = bi. (6.2)

Gravity exerts a force F on the ball that is proportional to the
vector c. This force is decomposed into forces of pressure on the faces
touched by the ball. The force Fi by which the ball acts on face Si is
orthogonal to Si and it is directed outward from the polyhedron (if we
neglect friction); see the schematic two-dimensional picture below:
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F

Fi2Fi1

Si1 Si2

The forces acting on the ball are in equilibrium, and thus F =∑
i∈D Fi. The outward normal of the face Si is ai; hence Fi is propor-

tional to ai, and for some nonnegative numbers y∗
i we have

∑

i∈D

y∗
i ai = c.

If we set y∗
i = 0 for i �∈ D, we can write

∑m
i=1 y∗

i ai = c, or AT y∗ = c
in matrix form. Therefore, y∗ is a feasible solution of the dual linear
program.

Let us consider the product (y∗)T (Ax∗ − b). For i �∈ D the ith
component of y∗ equals 0, while for i ∈ D the ith component of
Ax∗−b is 0 according to (6.2). So the product is 0, and hence (y∗)T b =
(y∗)T Ax∗ = cT x∗.

We see that x∗ is a feasible solution of the primal linear program,
y∗ is a feasible solution of the dual linear program, and cT x∗ = bT y∗.
By the weak duality theorem y∗ is an optimal solution of the dual
linear program, and we have a situation exactly as in the duality the-
orem. We have just “physically verified” a special three-dimensional
case of the duality theorem.

We remark that the dual linear program also has an economic inter-
pretation. The dual variables are called shadow prices in this context.
The interested reader will find this nicely explained in Chvátal’s text-
book cited in Chapter 9.

6.3 Proof of Duality from the Simplex Method

The duality theorem of linear programming can be quickly derived from the
correctness of the simplex method. To be precise, we will prove the following:

If the primal linear program (P) is feasible and bounded, then the dual
linear program (D) is feasible (and bounded as well, by weak duality),
with the same optimum value as the primal.
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Since the dual of the dual is the primal, we may interchange (P) and (D)
in this statement. Together with our considerations about the possible cases
after the statement of the duality theorem, this will prove the theorem.

The key observation is that we can extract an optimal solution of the dual
linear program from the final tableau. We should recall, though, that proving
the correctness of the simplex method, and in particular, the fact that one
can always avoid cycling, requires considerable work.

Let us consider a primal linear program

maximize cTx subject to Ax ≤ b and x ≥ 0. (P)

After a conversion to equational via slack variables xn+1, . . . , xn+m we arrive
at the linear program

maximize cTx subject to Āx = b and x ≥ 0,

where x = (x1, . . . , xn+m), c = (c1, . . . , cn, 0, . . . , 0), and Ā = (A | Im). If this
last linear program is feasible and bounded, then according to Theorem 5.8.1,
the simplex method with Bland’s rule always finds some optimal solution x∗

with a feasible basis B. The first n components of the vector x∗ constitute
an optimal solution x∗ of the linear program (P). By the optimality criterion
we have r ≤ 0 in the final simplex tableau, where r is the vector in the z-row
of the tableau as in Section 5.5. The following lemma and the weak duality
theorem (Proposition 6.1.1) then easily imply the duality theorem.

6.3.1 Lemma. In the described situation the vector y∗ = (cT
BĀ−1

B )T is a
feasible solution of the dual linear program (D) and the equality cT x∗ = bT y∗

holds.

Proof. By Lemma 5.5.1, x∗ is given by x∗
B = Ā−1

B b and x∗
N = 0, and so

cT x∗ = cTx∗ = cT
Bx∗

B = cT
B(Ā−1

B b) = (cT
BĀ−1

B )b = (y∗)T b = bTy∗.

The equality cT x∗ = bT y∗ thus holds, and it remains to check the feasibility
of y∗, that is, AT y∗ ≥ c and y∗ ≥ 0.

The condition y∗ ≥ 0 can be rewritten to Imy∗ ≥ 0, and hence both of
the feasibility conditions together are equivalent to

ĀT y∗ ≥ c. (6.3)

After substituting y∗ = (cT
BĀ−1

B )T the left-hand side becomes ĀT (cT
BĀ−1

B )T =
(cT

BĀ−1
B Ā)T . Let us denote this (n+m)-component vector by w. For the basic

components of w we have

wB = (cT
BĀ−1

B ĀB)T = (cT
BIm)T = cB,

and thus we even have equality in (6.3) for the basic components. For the
nonbasic components we have
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wN = (cT
BĀ−1

B ĀN )T = cN − r ≥ cN

since r = cN − (cT
BĀ−1

B ĀN )T by Lemma 5.5.1, and r ≤ 0 by the optimality
criterion. The lemma is proved. �

6.4 Proof of Duality from the Farkas Lemma

Another approach to the duality theorem of linear programming consists in
first proving a simplified version, called the Farkas lemma, and then substi-
tuting a skillfully composed matrix into it and thus deriving the theorem.
A nice feature is that the Farkas lemma has very intuitive interpretations.

Actually, the Farkas lemma comes in several natural variants. We begin
by discussing one of them, which has a very clear geometric meaning.

6.4.1 Proposition (Farkas lemma). Let A be a real matrix with m rows
and n columns, and let b ∈ Rm be a vector. Then exactly one of the following
two possibilities occurs:

(F1) There exists a vector x ∈ Rn satisfying Ax = b and x ≥ 0.
(F2) There exists a vector y ∈ Rm such that yT A ≥ 0T and yT b < 0.

It is easily seen that both possibilities cannot occur at the same time.
Indeed, the vector y in (F2) determines a linear combination of the equa-
tions witnessing that Ax = b cannot have any nonnegative solution: All
coefficients on the left-hand side of the resulting equation (yT A)x = yT b are
nonnegative, but the right-hand side is negative.

The Farkas lemma is not exactly a difficult theorem, but it is not trivial
either. Many proofs are known, and we will present some of them in the
subsequent sections. The reader is invited to choose the “best” one according
to personal taste.

A geometric view. In order to view the Farkas lemma geometrically, we
need the notion of convex hull; see Section 4.3. Further we define, for vectors
a1, a2, . . . ,an ∈ Rm, the convex cone generated by a1,a2, . . . ,an as the set
of all linear combinations of the ai with nonnegative coefficients, that is, as

{
t1a1 + t2a2 + · · · + tnan : t1, t2, . . . , tn ≥ 0

}
.

In other words, this convex cone is the convex hull of the rays p1, p2, . . . , pn,
where pi = {tai : t ≥ 0} emanates from the origin and passes through the
point ai.

6.4.2 Proposition (Farkas lemma geometrically). Let a1, a2,. . . , an,b
be vectors in Rm. Then exactly one of the following two possibilities occurs:

(F1′) The point b lies in the convex cone C generated by a1,a2, . . . ,an.
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(F2′) There exists a hyperplane h passing through the point 0, of the form

h = {x ∈ Rm : yT x = 0}

for a suitable y ∈ Rm, such that all the vectors a1,a2, . . . ,an (and thus
the whole cone C) lie on one side and b lies (strictly) on the other side.
That is, yT ai ≥ 0 for all i = 1, 2, . . . , n and yT b < 0.

A drawing illustrates both possibilities for m = 2 and n = 3:

0

a1

a2

a3

b

C

0

a1

a2

a3 b

C
h

(F1′)

(F2′)

To see that Proposition 6.4.1 and Proposition 6.4.2 really tell us the same
thing, it suffices to take the columns of the matrix A for a1,a2, . . . ,an. The
existence of a nonnegative solution of Ax = b can be reexpressed as b =
t1a1+t2a2+· · ·+tnan, t1, t2, . . . , tn ≥ 0, and this says exactly that b ∈ C. The
equivalence of (F2) and (F2′) hopefully doesn’t need any further explanation.

This result is an instance of a separation theorem for convex sets. Sepa-
ration theorems generally assert that disjoint convex sets can be separated
by a hyperplane. There are several versions (depending on whether one re-
quires strict or nonstrict separation, etc.) and several proof strategies. Sepa-
ration theorems in infinite-dimensional Banach spaces are closely related to
the Hahn–Banach theorem, one of the cornerstones of functional analysis.
In Section 6.5 we prove the Farkas lemma along these lines, viewing it as a
geometric separation theorem.

Variants of the Farkas lemma. Proposition 6.4.1 provides an answer to
the question, “When does a system of linear equalities have a nonnegative
solution?” In part (i) of the following proposition, we restate Proposition 6.4.1
(in a slightly different, but clearly equivalent form), and in parts (ii) and (iii),
we add two more variants of the Farkas lemma. Part (ii) answers the question,
“When does a system of linear inequalities have a nonnegative solution?” and
part (iii) the question, “When does a system of linear inequalities have any
solution at all?”

6.4.3 Proposition (Farkas lemma in three variants). Let A be a real
matrix with m rows and n columns, and let b ∈ Rm be a vector.
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(i) The system Ax = b has a nonnegative solution if and only if every
y ∈ Rm with yT A ≥ 0T also satisfies yT b ≥ 0.

(ii) The system Ax ≤ b has a nonnegative solution if and only if every
nonnegative y ∈ Rm with yT A ≥ 0T also satisfies yT b ≥ 0.

(iii) The system Ax ≤ b has a solution if and only if every nonnegative
y ∈ Rm with yT A = 0T also satisfies yT b ≥ 0.

The three parts of Proposition 6.4.3 are mutually equivalent, in the sense
that any of them can easily be derived from any other. Having three forms
at our disposal provides more flexibility, both for applying the Farkas lemma
and for proving it.

The proof of the equivalence (i)⇔(ii)⇔(iii) is easy, using the tricks
familiar from transformations of linear programs to equational form.
We will take a utilitarian approach: Since we will use (ii) in the proof
of the duality theorem, we prove only the implications (i)⇒(ii) and
(iii)⇒(ii), leaving the remaining implications to the reader.

Proof of (i)⇒(ii). In (ii) we need an equivalent condition for Ax ≤ b
having a nonnegative solution. To this end, we form the matrix Ā =
(A | Im). We note that Ax ≤ b has a nonnegative solution if and only
if Āx = b has a nonnegative solution. By (i), this is equivalent to
the condition that all y with yT Ā ≥ 0T satisfy yT b ≥ 0. And finally,
yT Ā ≥ 0T says exactly the same as yT A ≥ 0T and y ≥ 0, and hence
we have the desired equivalence. �

Proof of (iii)⇒(ii). Again we need an equivalent condition for Ax ≤
b having a nonnegative solution. This time we form the matrix Ā and
the vector b according to

Ā =

(
A

−In

)
, b =

(
b
0

)
.

Then Ax ≤ b has a nonnegative solution if and only if Āx ≤ b has
any solution. The latter is equivalent, by (iii), to the condition that
all y ≥ 0 with yT Ā = 0T satisfy yT b ≥ 0. Writing

y =

(
y
y′

)
,

y a vector with m components, we have

y ≥ 0, yT Ā = 0T exactly if y ≥ 0, y′T = yT A ≥ 0T

and
yT b = yT b.

From this and our chain of equivalences, we deduce that Ax ≤ b has
a nonnegative solution if and only if all y ≥ 0 with yT A ≥ 0T satisfy
yT b ≥ 0, and this is the statement of (ii). �



92 6. Duality of Linear Programming

Remarks. A reader with a systematic mind may like to see the
variants of the Farkas lemma summarized in a table:

The system
Ax ≤ b

The system
Ax = b

has a solution
x ≥ 0 iff

y ≥ 0,yT A ≥ 0
⇒ yT b ≥ 0

yT A ≥ 0T

⇒ yT b ≥ 0

has a solution
x ∈ Rn iff

y ≥ 0,yT A = 0
⇒ yT b ≥ 0

yT A = 0T

⇒ yT b = 0

We had three variants of the Farkas lemma, but the table has four
entries. We haven’t mentioned the statement corresponding to the
bottom right corner of the table, telling us when a system of linear
equations has any solution. We haven’t mentioned it because it doesn’t
deserve to be called a Farkas lemma—the proof is a simple exercise
in linear algebra, and there doesn’t seem to be any way of deriving
the Farkas lemma from this variant along the lines of our previous
reductions. However, we will find this statement useful in Section 6.6,
where it will serve as a basis of a proof of a “real” Farkas lemma.

Let us note that, similar to “dualization for everyone,” we could
also establish a unifying “Farkas lemma for everyone,” dealing with
a system containing both linear equations and inequalities and with
some of the variables nonnegative and some unrestricted. This would
contain all of the four variants considered above as special cases, but
we will not go in this direction.

A logical view. Now we explain yet another way of understanding the
Farkas lemma, this time variant (iii) in Proposition 6.4.3. We begin with
something seemingly different, namely, deriving new linear inequalities from
old ones. From two given inequalities, say

4x1 + x2 ≤ 4 and − x1 + x2 ≤ 1,

we can derive new inequalities by multiplying the first inequality by a positive
real number α, the second one by a positive real number β, and adding the
resulting inequalities together (we must be careful so that both inequality
signs have the same direction!); we have already used this many times. For
instance, for α = 3 and β = 2 we derive the inequality 10x1 + 5x2 ≤ 14.
More generally, if we start with a system of several linear inequalities, of the
form Ax ≤ b, we can derive new inequalities by repeating this operation for
various pairs, which may involve both the original inequalities and new ones
derived earlier. So if we start with the system

4x1 + x2 ≤ 4, −x1 + x2 ≤ 1, and − 2x1 − x2 ≤ −3,

we can first derive 10x1 + 5x2 ≤ 14 from the first two as before, and then
we can add to this new inequality the third inequality multiplied by 5. In
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this case both of the coefficients on the left-hand side cancel out, and we get
the inequality 0 ≤ −1. This last inequality obviously never holds, and so the
original triple of inequalities cannot be satisfied by any (x1, x2) ∈ R either
(as is easy to check using a picture).

The Farkas lemma turns out to be equivalent to the following statement:

Whenever a system Ax ≤ b of finitely many linear inequalities is in-
consistent, that is, there is no x ∈ Rn satisfying it, we can derive the
(obviously inconsistent) inequality 0 ≤ −1 from it by the above proce-
dure.

A little thought reveals that each inequality derived by the procedure
(repeated combinations of pairs) has the form (yT A)x ≤ yT b for some non-
negative vector y ∈ Rm, and thus, equivalently, we claim that whenever
Ax ≤ b is inconsistent, there exists a vector y ≥ 0 with yT A = 0T and
yT b = −1. This is clearly equivalent to part (iii) of Proposition 6.4.3.

The reader may wonder why we have bothered to consider repeated
pairwise combinations of inequalities, instead of using a single vector
y specifying a combination of all of the inequalities right away. The
reason is that the “pairwise” formulation makes the statement more
similar to a number of important and famous statements in various
branches of mathematics. In logic, for example, theorems are derived
(proved) from axioms by repeated application of certain simple deriva-
tion rules. In the first-order propositional calculus, there is a complete-
ness theorem: Any true statement (that is, a statement valid in every
model) can be derived from the axioms by a finite sequence of steps,
using the appropriate derivation rules, such as modus ponens. In con-
trast, the celebrated Gödel’s first incompleteness theorem asserts that
in Peano arithmetic, as well as in any theory containing it, there are
statements that are true but cannot be derived.

In analogy to this, we can view the inequalities of the original sys-
tem Ax ≤ b as “axioms,” and we have a single derivation rule (derive a
new inequality from two existing ones by a positive linear combination
as above). Then the Farkas lemma tells us that any inconsistent system
of “axioms” can be refuted by a suitable derivation. (This is a “weak”
completeness theorem; we could also consider a more general “com-
pleteness theorem,” stating that whenever a linear inequality is valid
for all x ∈ Rn satisfying Ax ≤ b, then it can be derived from Ax ≤ b,
but we will not go into this here.) Such a completeness result means
that the theory of linear inequalities is, in a sense, “easy.” Moreover,
the simplex method, or also the Fourier–Motzkin elimination consid-
ered in Section 6.7, provide ways to construct such a derivation.

This view makes the Farkas lemma a (small) cousin of various
completeness theorems of logic and of other famous results, such as
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Hilbert’s Nullstellensatz in algebraic geometry. Computer science also
frequently investigates the possibility of deriving some object from
given initial objects by certain derivation rules, say in the theory of
formal languages.

Proof of the duality theorem from the Farkas lemma. Let us assume
that the linear program (P) has an optimal solution x∗. As in the proof of
the duality theorem from the simplex method, we show that the dual (D) has
an optimal solution as well, and that the optimum values of both programs
coincide.

We first define γ = cTx∗ to be the optimum value of (P). Then we know
that the system of inequalities

Ax ≤ b, cT x ≥ γ (6.4)

has a nonnegative solution, but for any ε > 0, the system

Ax ≤ b, cT x ≥ γ + ε (6.5)

has no nonnegative solution. If we define an (m+1)×n matrix Â and a vector

b̂ε ∈ Rm by

Â =

(
A

−cT

)
, b̂ε =

(
b

−γ − ε

)
,

then (6.4) is equivalent to Âx ≤ b̂0 and (6.5) is equivalent to Âx ≤ b̂ε.
Let us apply the variant of the Farkas lemma in Proposition 6.4.3(ii). For

ε > 0, the system Âx ≤ b̂ε has no nonnegative solution, so we conclude that
there is a nonnegative vector ŷ = (u, z) ∈ Rm+1 such that ŷT Â ≥ 0T but

ŷT b̂ε < 0. These conditions boil down to

AT u ≥ zc, bT u < z(γ + ε). (6.6)

Applying the Farkas lemma in the case ε = 0 (the system has a nonnegative

solution), we see that the very same vector ŷ must satisfy ŷT b̂0 ≥ 0, and
this is equivalent to

bT u ≥ zγ.

It follows that z > 0, since z = 0 would contradict the strict inequality in
(6.6). But then we may set v := 1

z u ≥ 0, and (6.6) yields

AT v ≥ c, bT v < γ + ε.

In other words, v is a feasible solution of (D), with the value of the objective
function smaller than γ + ε.

By the weak duality theorem, every feasible solution of (D) has value of
the objective function at least γ. Hence (D) is a feasible and bounded linear
program, and so we know that it has an optimal solution y∗ (Theorem 4.2.3).
Its value bTy∗ is between γ and γ + ε for every ε > 0, and thus it equals γ.
This concludes the proof of the duality theorem. �
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6.5 Farkas Lemma: An Analytic Proof

In this section we prove the geometric version of the Farkas lemma, Propo-
sition 6.4.2, by means of elementary geometry and analysis. We are given
vectors a1, . . . ,an in Rm, and we let C be the convex cone generated by
them, i.e., the set of all linear combinations with nonnegative coefficients.
Proving the Farkas lemma amounts to showing that for any vector b �∈ C
there exists a hyperplane separating it from C and passing through 0. In
other words, we want to exhibit a vector y ∈ Rm with yT b < 0 and yT x ≥ 0
for all x ∈ C.

The plan of the proof is straightforward: We let z be the point of C nearest
to b (in the Euclidean distance), and we check that the vector y = z − b is
as required; see the following illustration:

0

a1

a2

a3 b

C
z

y

The main technical part of the proof is to show that the nearest point z
exists. Indeed, in principle, it might happen that no point is the nearest (for
example, such a situation occurs for the point 0 on the real line and the open
interval (1, 2); the interval contains points with distance to 0 as close to 1 as
desired, but no point at distance exactly 1).

6.5.1 Lemma. Let C be a convex cone in Rm generated by finitely many
vectors a1, . . . ,an, and let b �∈ C be a point. Then there exists a point z ∈ C
nearest to b (it is also unique but we won’t need this).

Proof of Proposition 6.4.2 assuming Lemma 6.5.1. As announced, we
set y = z − b, where z is a point of C nearest to b.

First we check that yT z = 0. This is clear for z = 0. For z �= 0,
if z were not perpendicular to y, we could move z slightly along the ray
{tz : t ≥ 0} ⊆ C and get a point closer to b. More formally, let us first
assume that yT z > 0, and let us set z′ = (1 − α)z for a small α > 0.
We calculate ‖z′ − b‖2 = (y − αz)T (y − αz) = ‖y‖2 − 2αyT z + α2‖z‖2.
We have 2αyT z > α2‖z‖2 for all sufficiently small α > 0, and thus
‖z′ − b‖2 < ‖y‖2 = ‖z − b‖2. This contradicts z being a nearest point.
The case yT z < 0 is handled similarly.

To verify yT b < 0, we recall that y �= 0, and we compute 0 < yT y =
yT z − yT b = −yT b.

Next, let x ∈ C, x �= z. The angle ∠bzx has to be at least 90 degrees,
for otherwise, points on the segment zx sufficiently close to z would lie closer
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to b than z; equivalently, (b − z)T (x − z) ≤ 0 (this is similar to the above
argument for yT z = 0 and we leave a formal verification to the reader). Thus
0 ≥ (b−z)T (x−z) = −yT x+yT z = −yT x. The Farkas lemma is proved. �

It remains to prove Lemma 6.5.1. We do it in several steps, and each of
them is an interesting little fact in itself.

6.5.2 Lemma. Let X ⊆ Rm be a nonempty closed set and let b ∈ Rm be a
point. Then X has (at least one) point nearest to b.

Proof. This is simple but it needs basic facts about compact sets in Rd.
Let us fix an arbitrary x0 ∈ X , let r = ‖x0 − b‖, and let K = {x ∈ X :
‖x − b‖ ≤ r}. Clearly, if K has a nearest point to b, then the same point
is a point of X nearest to b. Since K is the intersection of X with a closed
ball of radius r, it is closed and bounded, and hence compact. We define the
function f : K → R by f(x) = ‖x− b‖. Then f is a continuous function on a
compact set, and any such function attains a minimum; that is, there exists
z ∈ K with f(z) ≤ f(x) for all x ∈ K. Such a z is a point of K nearest
to b. �

So it remains to prove the following statement:

6.5.3 Lemma. Every finitely generated convex cone is closed.

This lemma is not as obvious as it might seem. As a warning example,
let us consider a closed disk D in the plane with 0 on the boundary. Then
the cone generated by D, that is, the set {tx : x ∈ D}, is an open half-plane
plus the point 0, and thus it is not closed. Of course, this doesn’t contradict
to the lemma, but it shows that we must use the finiteness somehow.

Let us define a primitive cone in Rm as a convex cone generated by some
k ≤ m linearly independent vectors. Before proving Lemma 6.5.3, we deal
with the following special case:

6.5.4 Lemma. Every primitive cone P in Rm is closed.

Proof. Let P0 ⊆ Rk be the cone generated by the vectors e1, . . . , ek of the
standard basis of Rk. In other words, P0 is the nonnegative orthant, and its
closedness is hopefully beyond any doubt (for example, it is the intersection
of the closed half-spaces xi ≥ 0, i = 1, 2, . . . , k).

Let the given primitive cone P ⊆ Rm be generated by linearly independent
vectors a1, . . . ,ak. We define a linear mapping f : Rk → Rm by f(x) = x1a1 +
x2a2 + · · · + xkak. This f is injective by the linear independence of the aj ,
and we have P = f(P0). So it suffices to prove the following claim: The image
P = f(P0) of a closed set P0 under an injective linear map f : Rk → Rm is
closed.

To see this, we let L = f(Rk) be the image of f . Since f is injective, it
is a linear isomorphism of Rk and L. A linear isomorphism f has a linear
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inverse map g = f−1: L → Rk. Every linear map between Euclidean spaces
is continuous (this can be checked using a matrix form of the map), and we
have P = g−1(P0). The preimage of a closed set under a continuous map is
closed by definition (while the image of a closed set under a continuous map
need not be closed in general!), so P is closed as a subset of L. Since L is
closed in Rm (being a linear subspace), we get that P is closed as desired. �

Lemma 6.5.3 is now a consequence of Lemma 6.5.4, of the fact that the
union of finitely many closed sets is closed, and of the next lemma:

6.5.5 Lemma. Let C be a convex cone in Rm generated by finitely many
vectors a1, . . . ,an. Then C can be expressed as a union of finitely many
primitive cones.

Proof. For every x ∈ C we are going to verify that it is contained in a prim-
itive cone generated by a suitable set of linearly independent vectors among
the ai. We may assume x �= 0 (since {0} is the primitive cone generated by
the empty set of vectors).

Let I ⊆ {1, 2, . . . , n} be a set of minimum possible size such that x lies
in the convex cone generated by AI = {ai : i ∈ I} (this is a standard trick
in linear algebra and in convex geometry). That is, there exist nonnegative
coefficients αi, i ∈ I, with x =

∑
i∈I αiai. The αi are even strictly positive

since if some αi = 0, we could delete i from I. We now want to show that the
set AI is linearly independent. For contradiction, we suppose that there is
a nontrivial linear combination

∑
i∈I βiai = 0, where not all βi are 0. Then

there exists a real t such that all the expressions αi− tβi are nonnegative and
at least one of them is zero. (To see this, we can first consider the case that
some βi is strictly positive, we start with t = 0, we let it grow, and see what
happens. The case of a strictly negative βi is analogous with t decreasing
from the initial value 0.) Then the equation

x =
∑

i∈I

(αi − tβi)ai

expresses x as a linear combination with positive coefficients of fewer than
|I| vectors. �

6.6 Farkas Lemma from Minimally Infeasible

Systems

Here we derive the Farkas lemma from an observation concerning minimally
infeasible systems. A system Ax ≤ b of m inequalities is called minimally
infeasible if the system has no solution, but every subsystem obtained by
dropping one inequality does have a solution.



98 6. Duality of Linear Programming

6.6.1 Lemma. Let Ax ≤ b be a minimally infeasible system of m inequal-
ities, and let A(i)x ≤ b(i) be the subsystem obtained by dropping the ith
inequality, i = 1, 2, . . . , m. Then for every i there exists a vector x̃(i) such
that A(i)x̃(i) = b(i).

Let us set ai = (ai1, ai2, . . . , ain) and write the ith inequality as aT
i x ≤ bi.

Here is an illustration for an example in the plane (n = 2) with m = 3
inequalities:

x̃(1)

x̃(2)

x̃(3)

aT
1 x ≤ b1

aT
2 x ≤ b2

aT
3 x ≤ b3

Proof. We consider the linear program

minimize z
subject to Ax ≤ b + zei,

(LP(i))

where ei is the ith unit vector. The idea of (LP(i)) is to translate the half-space
{x : aT

i x ≤ bi} by the minimum amount necessary to achieve feasibility. For
the example illustrated above and i = 3, this results in the following picture:

x̃(1)

x̃(2)

x̃(3)

aT
1 x ≤ b1

aT
2 x ≤ b2

aT
3 x ≤ b3

aT
3 x ≤ b3 + z̃(3)
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To show formally that (LP(i)) has an optimal solution, we first argue that
it has a feasible solution. Indeed, by the assumption, the system A(i)x ≤ b(i)

has at least one solution. Let us fix an arbitrary solution of this system and
denote it by x. We put z = aT

i x − bi, and we note that the vector (x, z) is a
feasible solution of the linear program (LP(i)).

Next, we note that (LP(i)) is also bounded, since Ax ≤ b has no solution.
Therefore, the linear program has an optimal solution (x̃(i), z̃(i)) with z̃(i) > 0
by Theorem 4.2.3.

We claim that the just defined x̃(i) satisfies A(i)x̃(i) = b(i). We al-
ready know that A(i)x̃(i) ≤ b(i). Let us suppose for contradiction that
aT

j x̃(i) = bj − ε for some j �= i and ε > 0. We will show that then (x̃(i), z̃(i))

cannot be optimal for (LP(i)). To this end, let us consider an optimal solu-
tion (x̃(j), z̃(j)) of (LP(j)). The idea is that by moving the point (x̃(i), z̃(i))
slightly towards (x̃(j), z̃(j)), we remain feasible for (LP(i)), but we improve
the objective function of (LP(i)). More formally, for a real number t ≥ 0, we
define x̃(t) = (1 − t)x̃(i) + tx̃(j). It follows that

aT
j x̃(t) ≤ bj − (1 − t)ε + tz̃(j),

aT
i x̃(t) ≤ bi + (1 − t)z̃(i),

aT
k x̃(t) ≤ bk, for all k �= i, j.

Thus for t sufficiently small, namely, for 0 < t ≤ (1 − t)ε/z̃(j), the pair
(x̃(t), (1−t)z̃(i)) is a feasible solution of (LP(i)) with objective function strictly
smaller than z̃(i), contradicting the assumed optimality of (x̃(i), z̃(i)). Thus,
A(i)x̃(i) = b(i) and the lemma is proved. �

We need another lemma that proves an “easy” variant of the Farkas
lemma, concerned with arbitrary solutions of systems of equalities.

This lemma establishes the implication in the bottom right corner
of the table of Farkas lemma variants on page 92.

6.6.2 Lemma. The system Ax = b has a solution if and only if every y ∈
Rm with yT A = 0T also satisfies yT b = 0.

Proof. One direction is easy. If Ax = b has some solution x̃, and if yT A =
0T , then 0 = 0T x̃ = yT Ax̃ = yT b.

If Ax = b has no solution, we need to find a vector y such that yT A = 0T

and yT b �= 0. Let us define r = rank(A) and consider the m× (n+1) matrix
(A |b). This matrix has rank r + 1 since the last column is not a linear
combination of the first n columns. For the very same reason, the matrix

(
A b
0T −1

)
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has rank r+1. This shows that the row vector (0T | −1) is a linear combination
of rows of (A |b), and the coefficients of this linear combination define a vector
y ∈ Rm with yT A = 0T and yT b = −1, as desired. �

Now we proceed to the proof of the Farkas lemma. The variant that
results most naturally is the one with an arbitrary solution of Ax ≤ b, that
is, Proposition 6.4.3(iii).

Proof of Proposition 6.4.3(iii). As in Lemma 6.6.2, one direction is
easy: If Ax ≤ b has some solution x̃, and if y ≥ 0, yT A = 0T , we get
0 = 0T x̃ = yT Ax̃ ≤ yT b. The interesting case is that Ax ≤ b has no
solution. Our task is then to construct a vector y ≥ 0 satisfying yT A = 0T

and yT b < 0.
We may assume that Ax ≤ b is minimally infeasible, by restricting to a

suitable subsystem: A vector y for this subsystem can be extended to work
for the original system by inserting zeros at appropriate places.

Since Ax ≤ b has no solution, the system Ax = b has no solution either.
By Lemma 6.6.2, there exists a vector y ∈ Rm such that yT A = 0T and
yT b �= 0. By possibly changing signs, we may assume that yT b < 0. We will
show that this vector also satisfies y ≥ 0, and this will finish the proof. To
this end, we fix i ∈ {1, 2, . . . , m} and consider the vector x̃(i) as in Lemma
6.6.1 above. With the terminology of the lemma, we have A(i)x̃(i) = b(i), and
using yT A = 0T , we can write

yi(a
T
i x̃(i) − bi) = yT (Ax̃(i) − b) = −yT b > 0.

Proposition 6.4.3(iii) is proved. �

This proof of the Farkas lemma is based on the paper

M. Conforti, M. Di Summa, and G. Zambelli: Minimally in-
feasible set partitioning problems with balanced constraints,
Mathematics of Operations Research, to appear.

The proof given there is even more elementary than ours in the sense
that it does not use linear programming. We have chosen the linear
programming approach since we find it somewhat more transparent.

6.7 Farkas Lemma from the Fourier–Motzkin

Elimination

When explaining the “logical view” of the Farkas lemma in Section 6.4, we
started with a system of 3 inequalities and combined pairs of inequalities
together, until we managed to eliminate all variables and obtained the obvi-
ously unsatisfiable inequality 0 ≤ −1. The Fourier–Motzkin elimination is a
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systematic procedure for eliminating all variables from an arbitrary system
Ax ≤ b of linear inequalities. If the final inequalities with no variables hold,
we can reconstruct a solution of the original system by tracing the computa-
tions backward, and if one of the final inequalities does not hold, it certifies
that the original system has no solution.

The Fourier–Motzkin elimination is similar in spirit to Gaussian elimina-
tion for systems of linear equations, and it is just as simple. As in Gaussian
elimination, variables are removed one at a time, but there is a price to pay:
To get rid of one variable, we typically have to introduce many new inequal-
ities, so that the method becomes impractical already for moderately large
systems. The Fourier–Motzkin elimination can be considered as a simple but
inefficient alternative to the simplex method. For the purpose of proving
statements about systems of inequalities, efficiency is not a concern, so it is
the simplicity of the Fourier–Motzkin elimination that makes it a very handy
tool.

As an example, let us consider the following system of 5 inequalities in
3 variables:

2x − 5y + 4z ≤ 10
3x − 6y + 3z ≤ 9
5x + 10y − z ≤ 15
−x + 5y − 2z ≤ −7
−3x + 2y + 6z ≤ 12.

(6.7)

In the first step we would like to eliminate x. For a moment let us imagine that
y and z are some fixed real numbers, and let us ask under what conditions
we can choose a value of x such that together with the given values y and z it
satisfies (6.7). The first three inequalities impose an upper bound on x, while
the remaining two impose a lower bound. To make this clearer, we rewrite
the system as follows:

x ≤ 5 + 5
2y − 2z

x ≤ 3 + 2y − z
x ≤ 3 − 2y + 1

5z
x ≥ 7 + 5y − 2z
x ≥ −4 + 2

3y + 2z.

So given y and z, the admissible values of x are exactly those in the interval
from max(7+5y−2z,−4+ 2

3y+2z) to min(5+ 5
2y−2z, 3+2y−z, 3−2y+ 1

5z). If
this interval happens to be empty, there is no admissible x. So the inequality

max(7 + 5y − 2z,−4 + 2
3y + 2z)

≤ min(5 + 5
2y − 2z, 3 + 2y − z, 3 − 2y + 1

5z)
(6.8)

is equivalent to the existence of x that together with the considered y and z
solves (6.7). The key observation in the Fourier–Motzkin elimination is that
(6.8) can be rewritten as a system of linear inequalities in the variables y
and z. The inequalities simply say that each of the lower bounds is less than
or equal to each of the upper bounds :
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7 + 5y − 2z ≤ 5 + 5
2y − 2z

7 + 5y − 2z ≤ 3 + 2y − z

7 + 5y − 2z ≤ 3 − 2y + 1
5z

−4 + 2
3y + 2z ≤ 5 + 5

2y − 2z

−4 + 2
3y + 2z ≤ 3 + 2y − z

−4 + 2
3y + 2z ≤ 3 − 2y + 1

5z.

If we rewrite this system in the usual form Ax ≤ b, we arrive at

5
2y ≤ −2

3y − z ≤ −4

7y − 11
5 z ≤ −4

− 11
6 y + 4z ≤ 9

− 4
3y + 3z ≤ 7
8
3y + 9

5z ≤ 7.

(6.9)

This system has a solution exactly if the original system (6.7) has one, but it
has one variable fewer. The reader is invited to continue with this example,
eliminating y and then z. We note that (6.9) gives 4 upper bounds for y and
2 lower bounds, and hence we obtain 8 inequalities after eliminating y.

For larger systems the number of inequalities generated by the Fourier–
Motzkin elimination tends to explode. This wasn’t so apparent for our small
example, but if we have m inequalities and, say, half of them impose upper
bounds on the first variable and half impose lower bounds, then we get about
m2/4 inequalities after eliminating the first variable, about m4/16 after elimi-
nating the second variable (again, provided that about half of the inequalities
give upper bounds for the second variable and half lower bounds), etc.

Now we formulate the procedure in general.

Claim. Let Ax ≤ b be a system with n ≥ 1 variables and m inequalities.
There is a system A′x′ ≤ b′ with n− 1 variables and at most max(m, m2/4)
inequalities, with the following properties:

(i) Ax ≤ b has a solution if and only if A′x′ ≤ b′ has a solution, and
(ii) each inequality of A′x′ ≤ b′ is a positive linear combination of some

inequalities from Ax ≤ b.

Proof. We classify the inequalities into three groups, depending on
the coefficient of x1. We call the ith inequality of Ax ≤ b a ceiling if
ai1 > 0, and we call it a floor if ai1 < 0. Otherwise (if ai1 = 0), it is
a level. Let C, F, L ⊆ {1, . . . , m} collect the indices of ceilings, floors,
and levels. We may assume that

ai1 =






1 if i ∈ C
−1 if i ∈ F

0 if i ∈ L.
(6.10)
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This situation can be reached by multiplying each inequality in Ax ≤
b by a suitable positive number, which does not change the set of
solutions.

Now we can eliminate x1 between all pairs of ceilings and floors,
by simply adding up the two inequalities for each pair.

If x′ is the (possibly empty) vector (x2, . . . , xn), and a′
i is the

(possibly empty) vector (ai2, . . . , ain), then the following inequalities
are implied by Ax ≤ b:

a′T
j x′ + a′T

k x′ ≤ bj + bk, j ∈ C, k ∈ F. (6.11)

The level inequalities of Ax ≤ b can be rewritten as

a′T
� x′ ≤ b�, � ∈ L. (6.12)

So if Ax ≤ b has a solution, then the system of |C| · |F | + |L|
inequalities in n − 1 variables given by (6.11) and (6.12) has a
solution as well. Conversely, if the latter system has a solution
x̃′ = (x̃2, . . . , x̃n), we can determine a suitable value x̃1 such that
the vector (x̃1, x̃2, . . . , x̃n) solves Ax ≤ b. To find x̃1, we first ob-
serve that (6.11) is equivalent to

a′T
k x′ − bk ≤ bj − a′T

j x′, j ∈ C, k ∈ F.

This in particular implies

max
k∈F

(
a′T

k x̃′ − bk

)
≤ min

j∈C

(
bj − a′T

j x̃′
)

.

We let x̃1 be any value between these bounds. It follows that

x̃1 + a′T
j x̃′ ≤ bj, j ∈ C,

−x̃1 + a′T
k x̃′ ≤ bk, k ∈ F.

By our assumption (6.10), we have a feasible solution of the original
system Ax ≤ b. We note that this argument also works for C = ∅
or F = ∅, with the usual convention that maxt∈∅ f(t) = −∞ and
mint∈∅ f(t) = ∞.

Now we can prove the Farkas lemma. The variant that results most natu-
rally from the Fourier–Motzkin elimination is (as in Section 6.6) the one with
an arbitrary solution of Ax ≤ b, that is, Proposition 6.4.3(iii).

Proof of Proposition 6.4.3(iii). One direction is easy. If Ax ≤ b has some
solution x̃, and y ≥ 0 satisfies yT A = 0T , we get 0 = 0T x̃ = yT Ax̃ ≤ yT b.
If Ax ≤ b has no solution, then our task is to construct a vector y satisfying

y ≥ 0, yT A = 0T , and yT b < 0. (6.13)
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To find such a witness of infeasibility, we use induction on the number of
variables. Let us first consider the base case in which the system Ax ≤ b has
no variables, meaning that it is of the form 0 ≤ b with bi < 0 for some i. We
set y = ei (the ith unit vector), and this clearly satisfies the requirements for
y being a witness of infeasibility (the condition yT A = 0T is vacuous, since
A has no column).

If Ax ≤ b has at least one variable, we perform a step of the Fourier–
Motzkin elimination. This yields an infeasible system A′x′ ≤ b′, consisting of
the inequalities (6.11) and (6.12). Because the latter system has one variable
fewer, we inductively find a witness of infeasibility y′ for it. We recall that all
inequalities of A′x′ ≤ b′ are positive linear combinations of original inequal-
ities; equivalently, there is an m × m matrix M with all entries nonnegative
and

(0 |A′) = MA, b′ = Mb.

We claim that y = MT y′ is a witness of infeasibility for the original system
Ax ≤ b. Indeed, we have yT A = y′T MA = y′T (0 |A′) = 0T and yT b =
y′T Mb = y′T b′ < 0, since y′ is a witness of infeasibility for A′x′ ≤ b′. The
condition y ≥ 0 follows from y′ ≥ 0 by the nonnegativity of M . �
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Tens of different algorithms have been suggested for linear programming over
the years. Most of them didn’t work very well, and only very few have turned
out as serious competitors to the simplex method, the historically first al-
gorithm. But at least two methods raised great excitement at the time of
discovery and they are surely worth mentioning.

The first of them, the ellipsoid method, cannot compete with the simplex
method in practice, but it had immense theoretical significance. It is the first
linear programming algorithm for which it was proved that it always runs in
polynomial time (which is not known about the simplex method up to the
present, and for many pivot rules it is not even true).

The second is the interior point method, or rather, we should say interior
point methods, since it is an entire group of algorithms. For some of them a
polynomial bound on the running time has also been proved, but moreover,
these algorithms successfully compete with the simplex method in practice.
It seems that for some types of linear programs the simplex method is better,
while for others interior point methods are the winners.

Let us remark that several other algorithms, closely related to
the simplex method, are used for linear programming as well. The
dual simplex method can roughly be described as the simplex method
applied to the dual linear program. But details of the implementa-
tion, which are crucial for the speed of the algorithm in practice, are
somewhat different. The dual simplex method is particularly suitable
for linear programs that in equational form have n − m significantly
smaller than m.

The primal–dual method goes through a sequence of feasible so-
lutions of the dual linear program. To get from one such solution to
the next, it does not perform a pivot step, but it solves an auxiliary
problem that may be derived from the primal linear program or by
other means. This greater freedom can be useful, for instance, in ap-
proximation algorithms for combinatorial optimization problems.

A little more about the dual simplex method and the primal–dual
method can be found in the glossary.
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7.1 The Ellipsoid Method

The ellipsoid method was invented in 1970 by Shor, Judin, and Nemirovski
as an algorithm for certain nonlinear optimization problems. In 1979 Leonid
Khachyian outlined, in a short note, how linear programs can be solved by
this method in provably polynomial time. The world press made a sensa-
tion out of this since the journalists contorted the result and presented it as
an unprecedented breakthrough in practical computational methods (giving
the Soviets a technological edge over the West. . . ).1 However, the ellipsoid
method has never been interesting for the practice of linear programming—
Khachyian’s discovery was indeed extremely significant, but for the theory of
computational complexity. It solved an open problem that many people had
attacked in vain for many years. The solution was conceptually utterly dif-
ferent from previous approaches, which were mostly variations of the simplex
method.

Input size and polynomial algorithms. In order to describe what we
mean by a polynomial algorithm for linear programming, we have to define
the input size of a linear program. Roughly speaking, it is the total number
of bits needed for writing down the input to a linear programming algorithm.

First we define the bit size of an integer i as

〈i〉 = �log2(|i| + 1)� + 1,

which is the number of bits of i written in binary, including one bit for the
sign. For a rational number r, i.e., a fraction r = p/q, the bit size is defined as
〈r〉 = 〈p〉+〈q〉. For an n-component rational vector v we put 〈v〉 =

∑n
i=1〈vi〉,

1 The following quotation from

E.L. Lawler: The Great Mathematical Sputnik of 1979, Math. Intelligencer
2(1980) 191–198,

which is a remarkable article about the history of Khachyian’s result, is not only
of historical interest:

The Times story appears to have been based on certain unshakable precon-
ceptions of its writer, Malcolm W.Browne. Browne called George Dantzig, of
Stanford University, a great pioneering authority on linear programming, and
tried to force him into various admissions. Dantzig’s version of the interview
bears repeating:

“What about the traveling salesman problem?” asked Browne. “If there
is a connection, I don’t know what it is,” said Dantzig. (“The Russian dis-
covery proposed an approach for [solving] a class of problems related to
the “Traveling Salesman Problem,” reported Browne.) “What about cryp-
tography?” asked Browne. “If there is a connection, I don’t know what it
is,” said Dantzig. (“The theory of codes could eventually be affected,” re-
ported Browne.) “Is the Russian method practical?” asked Browne. “No,”
said Dantzig. (“Mathematicians describe the discovery . . . as a method by
which computers can find solutions to a class of very hard problems that
has hitherto been attacked on a hit-or-miss basis,” reported Browne.)



7.1 The Ellipsoid Method 107

and similarly, 〈A〉 =
∑m

i=1

∑n
j=1〈aij〉 for a rational m×n matrix A. If we

consider a linear program L, say in the form

maximize cT x subject to Ax ≤ b,

and if we restrict ourselves to the case of A, b, and c rational (which is a
reasonable assumption from a computational perspective), then the bit size
of L is 〈L〉 = 〈A〉 + 〈b〉 + 〈c〉.

We say that an algorithm is a polynomial algorithm for linear pro-
gramming if a polynomial p(x) exists such that for every linear program
L with rational A, b, and c the algorithm finds a correct solution in at
most p(〈L〉) steps. The steps are counted in some of the usual models of
computation, for example, as steps of a Turing machine (usually the chosen
computational model is not crucial; whatever is polynomial in one model is
also polynomial in other reasonable models). We stress right away that a
single arithmetic operation is not counted as a single step here! We count as
steps operations with single bits, and hence, addition of two k-bit integers
requires at least k steps.

Let us digress briefly from linear programming and let us consider
Gaussian elimination, a well-known algorithm for solving systems of
linear equations. For a system Ax = b, where (for simplicity) A is an
n×n matrix and both A and b are rational, we naturally define the in-
put size as 〈A〉+〈b〉. Is Gaussian elimination a polynomial algorithm?
This is a tricky question! Although this algorithm needs only order of
n3 arithmetic operations, the catch is that too large intermediate val-
ues could come up during the computation, even if all entries in A
and in b are small integers. If, for example, integers with as many as
2n bits ensued, which can indeed happen in a naive implementation
of Gaussian elimination, the computation would need exponentially
many steps, although it would involve only n3 arithmetic operations.
(All of this concerns exact computations, while many implementations
use floating-point arithmetic and hence the numbers are continually
rounded. But then there is no guarantee that the results are correct.)
We do not want to scare the reader needlessly: It is known how Gauss-
ian elimination can be implemented in polynomial time. We want only
to point out that this is not self-evident (and not too simple, either),
and call attention to one kind of trouble that may develop in attempts
at proving polynomiality.

The ellipsoid method, as well as some of the interior point methods, are
polynomial, while the simplex method with Bland’s rule (and with many
other pivot rules too) is not polynomial.2

2 The nonpolynomiality is proved by means of the Klee–Minty cube; see Sec-
tion 5.9. One has to check that an n-dimensional Klee–Minty cube can be rep-
resented by input of size polynomial in n.
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Strongly polynomial algorithms. For algorithms whose input is
described by a sequence of integers or rationals, such as algorithms for
linear programming, the number of arithmetic operations (addition,
subtraction, multiplication, division, exponentiation) is also consid-
ered, together with the number of bit operations. This often gives a
more realistic picture of the running time, because contemporary com-
puters usually execute an arithmetic operation as an elementary step,
provided that the operands are not too large.

A suitable implementation of Gaussian elimination is, on the one
hand, a polynomial algorithm in the sense discussed above, and on
the other hand, the number of arithmetic operations is bounded by a
polynomial, namely by the polynomial Cn3 for a suitable constant C,
where n is the number of equations in the system and also the number
of variables. The number of arithmetic operations thus depends only
on n, and it is the same for input numbers with 10 bits as for input
numbers with a million bits. We say that Gaussian elimination is a
strongly polynomial algorithm for solving systems of linear equa-
tions.

A strongly polynomial algorithm for linear programming would be
one that, first, would be polynomial in the sense defined above, and
second, for every linear program with n variables and m constraints
it would find a solution using at most p(m+n) arithmetic operations,
where p(x) is a fixed polynomial. But no strongly polynomial algo-
rithm for linear programming is known, and finding one is a major
open problem.

The ellipsoid method is not strongly polynomial. For every natural
number M one can find a linear program with only 2 variables and
2 constraints for which the ellipsoid method executes at least M arith-
metic operations (the coefficients in such linear programs must have
bit size tending to infinity as M → ∞). In particular, the number of
arithmetic operations for the ellipsoid method cannot be bounded by
any polynomial in m + n.

Ellipsoids. A two-dimensional ellipsoid is an ellipse plus its interior. An
ellipsoid in general can most naturally be introduced as an affine transfor-
mation of a ball. We let

Bn = {x ∈ Rn : xT x ≤ 1}
be the n-dimensional ball of unit radius centered at 0. Then an n-dimensional
ellipsoid is a set of the form

E = {Mx + s : x ∈ Bn},
where M is a nonsingular n×n matrix and s ∈ Rn is a vector. The mapping
x �→ Mx + s is a composition of a linear function and a translation; this is
called an affine map.
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By manipulating the definition we can describe the ellipsoid by an in-
equality:

E = {y ∈ Rn : M−1(y − s) ∈ Bn}
= {y ∈ Rn : (y − s)T (M−1)T M−1(y − s) ≤ 1}
= {y ∈ Rn : (y − s)T Q−1(y − s) ≤ 1}, (7.1)

where we have set Q = MMT . It is well known and easy to check that such a
Q is a positive definite matrix, that is, a symmetric square matrix satisfying
xT Qx > 0 for all nonzero vectors x. Conversely, from matrix theory it is
known that each positive definite matrix Q can be factored as Q = MMT

for some nonsingular square matrix M . Therefore, an equivalent definition is
that an ellipsoid is a set described by (7.1) for some positive definite Q and
some s.

Geometrically, s is the center of the ellipsoid E. If Q is a diagonal matrix
and s = 0, then we have an ellipsoid in axial position, of the form

{
y ∈ Rn :

y2
1

q11
+

y2
2

q22
+ · · · + y2

n

qnn
≤ 1

}
.

The axes of this ellipsoid are parallel to the coordinate axes. The numbers√
q11,

√
q22,. . . ,

√
qnn are the lengths of the semiaxes of the ellipsoid E, which

may sound familiar to those accustomed to the equation of an ellipse of the

form x2

a2 + y2

b2 = 1. As is taught in linear algebra in connection with eigenvalues,
each positive definite matrix Q can be diagonalized by an orthogonal basis
change. That is, there exists an orthogonal matrix T such that the matrix
TQT−1 is diagonal, with the eigenvalues of Q on the diagonal. Geometrically,
T represents a rotation of the coordinate system that brings the ellipsoid into
axial position.

A lion in the Sahara. A traditional mathematical anecdote gives directions
for hunting a lion in the Sahara (under the assumption that there is at most
one). We fence all of the Sahara, we divide it into two halves by another
fence, and we detect one half that has no lion in it. Then we divide the other
half by a fence, and we continue in this manner until the fenced piece of
ground is so small that the lion cannot move and so it is caught, or if there
is no lion in it, we have proved that there was none in the Sahara either.
Although the qualities of this hunting guide can be disputed, for us it is
essential that it gives a reasonably good description of the ellipsoid method.
But in the real ellipsoid method we insist that the currently fenced piece is
always an ellipsoid, even at the price that the lion can sometimes return to
places from where it was expelled earlier; it is only guaranteed that the area
of its territory shrinks all the time.

The ellipsoid method doesn’t directly solve a linear program, but rather
it seeks a solution of a system of linear inequalities Ax ≤ b. But as we know,



110 7. Not Only the Simplex Method

this is sufficient for solving a linear program (see Section 6.1). For a simpler
exposition we will first consider the following softened version of the problem:

Together with the matrix A and vector b we are given rational numbers
R > ε > 0. We assume that the set P = {x ∈ Rn : Ax ≤ b} is contained in
the ball B(0, R) centered at 0 with radius R. If P contains a ball of radius ε,
then the algorithm has to return a point y ∈ P . However, if P contains no
ball of radius ε, then the algorithm may return either some y ∈ P , or the
answer NO SOLUTION.

The ball B(0, R) thus plays the role of the Sahara and we assume that
the lion, if present, is at least ε large. If there is only a smaller lion in the
Sahara, it may escape or we may catch it—we don’t care.

Under these assumptions, the ellipsoid method generates a sequence of
ellipsoids E0, E1, . . . , Et, where P ⊆ Ek for each k, as follows:

1. Set k = 0 and E0 = B(0, R).
2. Let the current ellipsoid Ek be of the form Ek = {y ∈ Rn : (y −

sk)T Q−1
k (y−sk) ≤ 1}. If sk satisfies all inequalities of the system Ax ≤ b,

return sk as a solution; stop.
3. Otherwise, choose an inequality of the system that is violated by sk.

Let it be the ith inequality; so we have aT
i sk > bi. Define Ek+1 as the

ellipsoid of the smallest possible volume containing the “half-ellipsoid”
Hk = Ek ∩ {x ∈ Rn : aT

i x ≤ aT
i sk}; see the following picture:

Ek

Ek+1

sk

sk+1

aT
i x ≤ aT

i sk

aT
i x ≤ bi

Hk

4. If the volume of Ek+1 is smaller than the volume of a ball of radius ε,
return NO SOLUTION; stop. Otherwise, increase k by 1 and continue
with Step 2.

Let H ′
k denote the intersection of the ellipsoid Ek with the half-space

{x ∈ Rn : aT
i x ≤ bi} defined by the ith inequality of the system. If P ⊆ Ek,



7.1 The Ellipsoid Method 111

then also P ⊆ H ′
k, and the more so P ⊆ Hk. Why is the smallest ellipsoid

containing Hk taken for Ek+1, instead of the smallest ellipsoid containing H ′
k?

Purely in order to simplify the analysis of the algorithm, since the equation
of Ek+1 comes out less complicated this way.

The ellipsoid Ek+1, i.e., the ellipsoid of the smallest volume con-
taining Hk, is always determined uniquely. For illustration we mention
that it is given by

sk+1 = sk − 1

n + 1
· Qsk√

sT
k Qsk

,

Qk+1 =
n2

n2 − 1

(
Qk − 2

n + 1
· Qsks

T
k Q

sT
k Qsk

)
.

We also leave without proof a fact crucial for the proof of correctness
and efficiency of the ellipsoid method: We always have

volume(Ek+1)

volume(Ek)
≤ e−1/(2n+2).

Hence the volume of the ellipsoid Ek is at least ek/(2n+2) times smaller
than the volume of the initial ball B(0, R). Since the volume of an n-
dimensional ball is proportional to the nth power of the radius, for k
satisfying R · e−k/n(2n+2) < ε the volume of Ek is smaller than that
of a ball of radius ε. Such k provides an upper bound of �n(2n + 2)
ln(R/ε)� on the maximum number of iterations. This is bounded by
a polynomial in n + 〈R〉 + 〈ε〉.

So much for the simple and beautiful idea of the ellipsoid method—
now we are coming to manageable but unpleasant complications. First
of all, we cannot compute the ellipsoid Ek+1 exactly, at least not in
rational arithmetic, since the defining formulas contain square roots.
To get around this, Ek+1 is computed only approximately with a suit-
able precision. But one has to be careful so that P is still guaranteed
to be contained in Ek+1, and thus the approximate Ek+1 has to be
expanded slightly.

Another trouble arises, for example, when the same inequality is
used for cutting the current ellipsoid in many iterations in a row. Then
the ellipsoids may become too long (needle-like), and they have to be
shortened artificially.

Yet another problem is that we don’t really want to solve the soft-
ened problem with R and ε, but an arbitrary system of linear inequal-
ities without any restrictions. Here the bound on the bit size of the
entries of A and b comes into play, through the following facts:

(E1) (If a solution exists, then there is a not too large solution.) Let
ϕ = 〈A〉+ 〈b〉 denote the input size for the system Ax ≤ b. Then
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this system has a solution if and only if the system

Ax ≤ b
−K ≤ x1 ≤ K
−K ≤ x2 ≤ K

...
−K ≤ xn ≤ K

has a solution, where K = 2ϕ. Clearly, all solutions of the latter
system are contained in the ball B(0, R), where R = K

√
n.

(E2) (If a solution exists, then the solution set of a slightly relaxed
system contains a small ball.) Let us put η = 2−5ϕ, ε = 2−6ϕ, and
let η be the n-component vector with all components equal to η.
Then the system Ax ≤ b has a solution if and only if the system
Ax ≤ b + η has a solution, and in such case the solution set of
the latter system contains a ball of radius ε.

It is not hard to see how these facts can be used for solving an arbitrary
system Ax ≤ b by the ellipsoid method. Instead of this system we solve
the softened problem by the ellipsoid method, but for a new system
Ax ≤ b+η, −K−η ≤ x1 ≤ K+η,−K−η ≤ x2 ≤ K+η, . . . ,−K−η ≤
xn ≤ K + η, where K, R, ε, and η are chosen suitably (first we add
the constraints −K ≤ xi ≤ K as in (E1), and then we apply (E2) to
the resulting system). It is important that the bit size of R and ε, as
well as the input size of the new system, are bounded by a polynomial
function of ϕ. Thus the ellipsoid method runs in polynomial time, and
it always finds a solution of Ax ≤ b if it exists.

We will not prove facts (E1) and (E2) here, but we sketch the basic
ideas. For (E1) we first discuss the case n = 2 (in the plane). Let us
consider a system of m inequalities

ai1x + ai2y ≤ bi, i = 1, 2, . . . , m.

Let �i be the line {(x, y) ∈ R2 : ai1x+ai2y = bi}. It is easy to calculate
that the intersection of �i and �j , if it exists, has coordinates

(
ai2bj − aj2bi

ai2aj1 − ai1aj2
,

aj1bi − ai1bj

ai2aj1 − ai1aj2

)
.

If, for example, all aij and bi are integers with absolute value at most
1000, then the coordinates of all intersections are fractions with nu-
merators and denominators bounded by 2·106 in absolute value. Thus,
if the solution set of the considered system of inequalities has at least
one vertex, such a vertex has to lie in the square [−2 · 106, 2 · 106]2.
If the solution set has no vertex and it is nonempty, it can be shown
that it has to contain one of the lines �i, and that each �i intersects
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the just-mentioned square. Fact (E1) can be verified along these lines
for the considered system with two variables. For a general system in
dimension n the idea is the same, and Cramer’s rule and a bound on
the magnitude of the determinant of a matrix are used for estimating
the coordinates of vertices of the solution set.

Fact (E2) requires more work, but the idea is similar. Each solution
x̃ of the original system Ax ≤ b also satisfies the modified system
Ax ≤ b + η, and all x from the ball B(x̃, ε) satisfy it as well, because
changing x by ε cannot change any coordinate of Ax by more than η.

If Ax ≤ b has no solution, then by a suitable variant of the Farkas
lemma, namely, Proposition 6.4.3(iii), there exists a nonnegative y ∈
Rm such that yT A = 0T and yT b < 0, and by normalizing y we may
assume yT b = −1. By Cramer’s rule again it is shown that there also
exists a y with not too large components, and such y then witnesses
unsolvability for the system Ax ≤ b + η as well.

Here we finish the outline of the ellipsoid method. If some parts
were too incomplete and hazy for the reader, we can only recommend
a more extensive treatment, for instance in the excellent book

M. Grötschel, L. Lovász, L. Schrijver: Geometric Algorithms
and Combinatorial Optimization, 2nd edition, Springer, Hei-
delberg 1994.

(We have taken the Sahara metaphor from there, among others.)

Why ellipsoids? They are used in the ellipsoid method since they
constitute probably the simplest class of n-dimensional convex sets
that is closed under nonsingular affine maps. Popularly speaking, this
class is rich enough to approximate all convex polyhedra including flat
ones and needle-like ones. If desired, ellipsoids can be replaced by sim-
plices, for example, but the formulas in the algorithm and its analysis
become considerably more unpleasant than those for ellipsoids.

The ellipsoid method need not know all of the linear pro-
gram. The system of inequalities Ax ≤ b can also be given by means
of a separation oracle. This is an algorithm (black box) that accepts
a point s ∈ Rn as input, and if s is a solution of the system, it returns
the answer YES, while if s is not a solution, it returns one (arbitrary)
inequality of the system that is violated by s. (Such an inequality sep-
arates s from the solution set, and hence the name separation oracle.)
The ellipsoid method calls the separation oracle with the centers sk

of the generated ellipsoids, and it always uses the violated inequality
returned by the oracle for determining the next ellipsoid.

We talk about this since a separation oracle can be implemented
efficiently for some interesting optimization problems even when the
full system has exponentially many inequalities or even infinitely many
(so far we haven’t considered infinite systems at all).
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Probably the most important example of a situation in which an
infinite system of linear inequalities can be solved by the ellipsoid
method is semidefinite programming. In a semidefinite program
we consider not an unknown vector x, but rather an unknown square
matrix X = (xij)

n
i,j=1. We optimize a linear function of the variables

xij . The constraints are linear inequalities and equations for the xij ,
plus the requirement that the matrix X has to be positive semidefinite.
The last constraint distinguishes semidefinite programming from lin-
ear programming. It can be expressed by a system of infinitely many
linear inequalities, namely, aT Xa ≥ 0 for each a ∈ Rn. A separa-
tion oracle for this system can be constructed based on algorithms
for computing eigenvalues and eigenvectors. The ellipsoid method can
then approximate the optimum with a prescribed precision in poly-
nomial time. (In reality, though, things are not quite as simple as it
might seem from our mini-description.)

Numerous computational problems can be solved in polynomial
time via semidefinite programming, some of them exactly and some
approximately, and sometimes this yields the only known polynomial
algorithm. A nice example of application of semidefinite programming
is the maximum cut problem (MAXCUT), in which the vertex
set of a given graph G = (V, E) should be divided into two parts so
that the maximum possible number of edges go between the parts.
Semidefinite programming is an essential component of an approxi-
mation algorithm for MAXCUT, called the Goemans–Williamson al-
gorithm, that always computes a partition with the number of edges
going between the parts at least 87.8% of the optimal number. This
is the best known approximation guarantee, and most likely also the
best possible one for any polynomial algorithm. More about this and
related topics can be found, for instance, in the survey

L. Lovász: Semidefinite programs and combinatorial opti-
mization, in Recent Advances in Algorithms and Combina-
torics (B. Reed and C. Linhares-Sales, editors), pages 137–
194, Springer, New York, 2003.

Let us remark that in the just outlined applications, the ellipsoid
method can be replaced by certain interior point methods (the so-
called volumetric-center methods, which are not mentioned in our brief
discussion of interior point methods in Section 7.2 below), and this
yields algorithms efficient both in theory and in practice. See

K. Krishnan, T. Terlaky: Interior point and semidefinite ap-
proaches in combinatorial optimization, in: D. Avis, A. Hertz,
and O. Marcotte (editors): Graph Theory and Combinatorial
Optimization, Springer, Berlin etc. 2005, pages 101–158.
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Theory versus practice. The notion of polynomial algorithm was
suggested in the 1970s by Jack Edmonds as a formalized counterpart
of the intuitive notion of an efficient algorithm. Today, a theoretician’s
first question for every algorithm is, Is it polynomial?

How is it possible that the ellipsoid method, which is polynomial,
is much slower in practice than the simplex method, which is not poly-
nomial? One of the reasons is that even though the ellipsoid method
is polynomial, the degree of the polynomial is quite high. The second
and main reason is that the simplex method is slow only on artifi-
cially constructed linear programs, which it almost never encounters
in practice, while the ellipsoid method seldom behaves better than in
the worst case. But the “good behavior on all inputs with rare ex-
ceptions” of the simplex method seems hard to capture theoretically.
Moreover, a guaranteed efficiency for all inputs is much more satis-
factory than only an empirically supported belief that an algorithm is
usually fast.

The notion of polynomial algorithm thus has great shortcomings
from a practical point of view. But attempts at constructing a poly-
nomial algorithm in theory usually also leads, over time, to practically
efficient algorithms. An impressive example in the area of linear pro-
gramming are interior point methods.

7.2 Interior Point Methods

The next time linear programming made it to press headlines was in 1984.
Narendra Karmakar, a researcher at IBM, suggested an algorithm that is
named after him and belongs to the large family of interior point methods.
He proved its polynomiality and published results of computational experi-
ments suggesting that in practice it is much faster than the simplex method.
Although his statements in the latter direction turned out to be somewhat
exaggerated, interior point methods are nowadays commonly used in linear
programming and often they beat the simplex method, especially on very
large linear programs. They are also applied with success to semidefinite
programming and other important classes of optimization problems, such as
convex quadratic programming.

Interior point methods have been used for nonlinear optimization prob-
lems at least since the 1950s. For linear programs they were actually tested by
the early 1970s, and interestingly, none was found competitive to the simplex
method. This was because theory and hardware were not advanced enough—
indeed, interior point methods typically outperform the simplex methods only
on problems so large that they were beyond the capabilities of the computers
at that time, and moreover, efficient implementation of interior point meth-
ods relies on powerful routines for solving large but sparse systems of linear



116 7. Not Only the Simplex Method

equations, which were not available either. The success story began only with
Karmakar’s results.

The basic approach. When solving a linear program, the simplex method
crawls along the boundary of the set of feasible solutions. The ellipsoid
method encircles the set of feasible solutions, and up until the last step it
remains outside of it. Interior point methods walk through the interior of the
set of feasible solutions toward an optimum, carefully avoiding the boundary.
Only at the very end, when they get almost to an optimum, they jump to an
exact optimum by a rounding step. See the following schematic picture:

c

Working with an interior point all the time is the key idea that gave the
methods their name. Interior points possess various pleasant mathematical
properties, a kind of “nondegeneracy,” and they allow one to avoid intricacies
of the combinatorial structure of the boundary, which have been haunting
research of the simplex method for decades. The art of interior point methods
is how to keep away from the boundary while still progressing to the optimum.
(For the sake of exposition, let us now assume that we are dealing with a linear
program in which some initial interior point is available.)

There are several rather different basic approaches in interior point meth-
ods, and each has many variants. Interior point methods in linear program-
ming are classified as central path methods (or central trajectory methods),
potential reduction methods, and affine scaling methods, and for almost every
approach one can consider a primal version, a dual version, a primal–dual
version, or a self-dual version.

Here we will consider only central path methods, which have been com-
putationally the most successful. We will present a single algorithm from
this family: one with the best known theoretical complexity bounds and very
good practical performance. It is fair to say, though, that a number of differ-
ent interior point methods yield the same theoretical bounds and that many
practitioners might say that, from their point of view, there are even better
algorithms.

The analysis of the algorithm, as well as some important details of its
implementation, are somewhat complicated and we will not discuss them.
Modern linear programming software is based on quite advanced mathemat-
ics; for example, as was remarked above, one of the keys to the success of
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interior point methods is an efficient solver of special systems of linear equa-
tions, much more sophisticated than good old Gaussian elimination.

In addition to the existence of innumerable variants of interior
point methods in the literature, different expositions of the same al-
gorithm may be based on different intuition. For example, what is
presented as a step of Newton’s iteration method in one source may
be derived by linear approximation in another source. We say this so
that a reader who finds in the literature something seemingly rather
different from what we say below is not confused more than necessary.

The central path. First we explain the (mathematical) notion of central
path. To this end, we consider an arbitrary convex polyhedron P in Rn de-
fined by a system Ax ≤ b of m linear inequalities, and a linear objective
function f(x) = cT x as usual. We introduce a family of auxiliary objective
functions fµ, depending on a parameter µ ∈ [0,∞):

fµ(x) = cTx + µ ·
m∑

i=1

ln (bi − aix) ,

where ai is the ith row of the matrix A (regarded here as a row vector). Thus
f0 = f is the original linear objective function, while the fµ for µ > 0 are
nonlinear, due to the logarithms. The function fµ is constructed in such a way
that when x approaches the boundary of P , i.e., the difference of the right-
hand side and left-hand side of some inequality approaches 0, then fµ tends
to −∞. The expression following µ in the definition of fµ is called a barrier
function, or more definitely, a logarithmic barrier. The word barrier is more
fitting for a minimization problem, in our case minimizing −fµ, where the
graph of the objective function has barriers preventing minimization algo-
rithms from hitting the walls.

We thus consider the auxiliary problem of maximizing fµ(x) over P , for
given µ > 0. Since fµ is undefined on the boundary of P , we actually maxi-
mize over int(P ), the interior of P , and so for the problem to make sense, we
need to assume that int(P ) �= ∅.

If we assume that, moreover, P is bounded, then fµ attains a maximum
at a unique point in the interior of P , which we denote by x∗(µ).

Indeed, the existence of a maximum follows from the well-known
fact that every continuous function attains a maximum on a compact
set: The appropriate compact set is {x ∈ int(P ) : fµ(x) ≥ fµ(x0)},
where x0 ∈ int(P ) is arbitrary (a little argument, which we leave to
the reader, is needed to verify that this set is closed).

As for uniqueness, let us assume that fµ attains a maximum at
two distinct feasible points x and y. Then fµ(x) = fµ(y), and since
fµ is easily seen to be concave (meaning that −fµ is convex), it follows
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that fµ has to be constant on the segment xy. Since the logarithm is
strictly concave, this can happen only if Ax = Ay. But then P would
contain all of the line {x + s(y − x) : s ∈ R} and would not be
bounded—a contradiction. In short, the maximum is unique because
fµ is strictly concave.

The condition of P bounded can be relaxed somewhat, but some
condition forcing fµ to be bounded above on P is clearly necessary,
as is documented by P = {x ∈ R1 : x1 ≥ 0} and either c = (1) or
c = (0).

If µ is a very large number, the influence of the term cT x in fµ is negligible
and x∗(µ) is a point “farthest from the boundary,” called the analytic center
of P . The following picture shows, for a two-dimensional P , contour lines of
the function fµ for µ = 100 (the vector c is depicted by an arrow and the
point x∗(µ) by a dot):3

On the other hand, for small µ the point x∗(µ) is close to an optimum of
cT x; see the illustrations below for µ = 0.5 and µ = 0.1:

The central path is defined as the set {x∗(µ) : µ > 0}. We stress that
the central path is not associated with P itself, but rather with a particular
system of inequalities defining P and a particular linear objective function
cT x.

3 A contour line of a function f : R2 → R is a set of the form f−1({α}), α ∈ R.
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The idea of central path methods is to start at x∗(µ) with a suitable
large µ, and then follow the central path, decreasing µ until an optimum of
cT x is reached. Computing x∗(µ) exactly would be difficult, and so actual
algorithms follow the central path only approximately.

A linear program in equational form and the primal–dual central
path. Having introduced the concept of central path in a geometrically
transparent way, we change the setting slightly. It turns out that for the ac-
tual algorithm it is better to replace general inequality constraints by equa-
tions and nonnegativity constraints; this is similar to the case of the simplex
method. So now we consider the usual linear program in equational form

maximize cT x subject to Ax = b, x ≥ 0, (7.2)

where A is an m×n matrix of rank m. Here the barrier function should
prevent violation of the nonnegativity constraints (while the equations only
restrict everything to a subspace of Rn and they do not enter the objective
function). So we set

fµ(x) = cT x + µ ·
n∑

j=1

lnxj

and consider the auxiliary problem

maximize fµ(x) subject to Ax = b, x > 0,

where the notation x > 0 means that all coordinates of x are strictly positive.
We would again like to claim that under suitable conditions, the auxiliary

problem has a unique maximizer x∗(µ) for every µ > 0. Obviously, we need to
assume that there is a feasible x > 0. Also, once we make sure that fµ attains
at least one maximum, it is easily seen, as above, that the maximum is unique.

We now derive necessary conditions for the existence of a maximum, and
at the same time, we express x∗(µ) as a solution of a system of equations.
Later on, we will check that the necessary conditions are also sufficient. We
derive these conditions by the method of Lagrange multipliers from anal-
ysis.

We recall that this is a general method for maximization of f(x) subject
to m constraints g1(x) = 0, g2(x) = 0,. . . , gm(x) = 0, where f and g1, . . . , gm

are functions from Rn to R. It can be seen as a generalization of the basic
calculus trick for maximizing a univariate function by seeking a zero of its
derivative. It introduces the following system of equations with unknowns
x ∈ Rn and y ∈ Rm (the yi are auxiliary variables called the Lagrange
multipliers):

g1(x) = g2(x) = · · · = gm(x) = 0 and ∇f(x) =

m∑

i=1

yi∇gi(x). (7.3)

Here ∇ denotes the gradient (which by convention is a row vector):
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∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
.

That is, ∇f is a vector function from Rn to Rn whose ith component is
the partial derivative of f with respect to xi. Thus, the equation ∇f(x) =∑m

i=1 yi∇gi(x) stipulates the equality of two n-component vectors. The
method of Lagrange multipliers tells us that a maximum of f(x) subject
to g1(x) = g2(x) = · · · = gm(x) = 0 occurs at x satisfying (7.3); that is,
there exists y such that the considered x and this y together fulfill (7.3)
(a special case of this result is derived in Section 8.7). Of course, we need
some conditions on f and the gi. It suffices to require that f and the gi be
defined on a nonempty open subset of Rn and have continuous first partial
derivatives there, and this will be obviously satisfied in our simple applica-
tion.

We apply the method of Lagrange multipliers to maximizing fµ(x) subject
to Ax = b (the nonnegativity constraints are taken care of implicitly, by the
barriers). So we set gi(x) = bi − aix. Then, after a little manipulation, the
system(7.3) becomes

Ax = b, c + µ

(
1

x1
,

1

x2
, . . . ,

1

xn

)
= ATy.

A more convenient form of this system is obtained by introducing an auxiliary

nonnegative vector s = µ ·
(

1
x1

, 1
x2

, . . . , 1
xn

)
∈ Rn. We rewrite the relation of

s and x to (s1x1, s2x2, . . . , snxn) = µ1, with 1 denoting the vector of all 1’s.
Then x∗(µ) is expressed as the x-part of a solution of the following system
with unknowns x, s ∈ Rn and y ∈ Rm:

Ax = b
AT y − s = c

(s1x1, s2x2, . . . , snxn) = µ1
x, s ≥ 0.

(7.4)

All of these equations are linear except for (s1x1, s2x2, . . . , snxn) = µ1.

Although we have derived the system (7.4) assuming µ > 0, let
us make a small digression and look at what (7.4) tells us for µ = 0.
Then, for nonnegative x and s, the equation (s1x1, s2x2, . . . , snxn) = 0
is equivalent to sT x = 0, and since s = AT y − c, we have 0 = sTx =
yT Ax − cT x = yT b − cT x (using Ax = b). This may remind one
of the equality of objective functions for the primal and dual linear
programs. And indeed, if we take (7.2) as a primal linear program, the
dual is

minimize bT y subject to AT y ≥ c, y ∈ Rm. (7.5)
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Then (7.4) for µ = 0 tells us exactly that x is a feasible solution of
the primal linear program (7.2), y is a feasible solution of the dual
linear program (7.5) (here the sj serve as slack variables expressing
the difference AT y − c), and the objective functions are equal! Hence
such x and y are optimal.

So far we have shown that if the problem of maximizing fµ(x) subject
to Ax = b and x > 0 has a maximum at x∗, then there exist s∗ > 0 and
y∗ ∈ Rm such that x∗,y∗, s∗ satisfy (7.4). Next, we formulate conditions for
the existence of the maximum (we prove only their sufficiency, but it can be
shown that they are also necessary), and we show that under these conditions,
the maximum is characterized by (7.4).

7.2.1 Lemma. Let us suppose that the linear program (7.2) has a feasible
solution x̃ > 0 and that the dual linear program (7.5) has a feasible solution
ỹ such that the slack vector s̃ = AT ỹ− c satisfies s̃ > 0. (Less formally, both
the primal and dual linear programs have an interior feasible point.) Then for
every µ > 0 the system (7.4) has a unique solution x∗ = x∗(µ), y∗ = y∗(µ),
s∗ = s∗(µ), and x∗(µ) is the unique maximizer of fµ subject to Ax = b and
x > 0.

Proof. Let µ > 0 be fixed. We begin with the following claim.

Claim. Under the assumptions of the lemma, the set Q = {x ∈ Rn :
Ax = b,x > 0, fµ(x) ≥ fµ(x̃)} is bounded.

Proof of the claim. We have

fµ(x) = cT x + µ

n∑

j=1

lnxj

= cT x + ỹT (b − Ax) + µ

n∑

j=1

lnxj (since Ax = b)

= (cT − ỹT A)x + ỹT b + µ
n∑

j=1

lnxj

= −s̃Tx + ỹT b + µ

n∑

j=1

lnxj (since AT ỹ − s̃ = c)

= ỹT b +

n∑

j=1

(µ lnxj − s̃jxj).

The first term of the last line is a constant, and the rest is a
sum of univariate functions. Each of these univariate functions
is of the form hα(x) = µ lnx − αx with µ, α > 0. Elemen-
tary calculus shows that hα(x) attains a unique maximum at
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x = µ
α , and in particular, it is bounded from above. Moreover,

for every constant C, the set {x ∈ (0,∞) : hα(x) ≥ −C} is
bounded.

Setting K = fµ(x̃) − ỹT b, we have Q ⊆
{
x > 0 :

∑n
j=1 hs̃j

(xj) ≥ K
}

⊆
∏n

j=1

{
x > 0 : hs̃j

(x) ≥ K −
∑

i�=j maxz∈R hs̃i
(z)

}
. The last set is a Cartesian product of

bounded intervals and the claim is proved.

So the set Q is bounded, and it is not hard to check that it is closed.
Hence the continuous function fµ attains a maximum on it, which, as
we know, is unique. This shows that fµ attains a maximum under the
assumptions of the lemma, and by means of Lagrange multipliers we
have shown that this maximum yields a solution of (7.4). It remains
to verify that this is the only solution of (7.4). What we do is to show
that for every solution x,y, s of (7.4), x maximizes fµ (we note that
s and y are uniquely determined by x through the relations sjxj = µ
and AT y − s = c from (7.4), using the assumption that A has full
rank).

Let x,y, s be a solution of (7.4) and let x satisfy Ax = b and x > 0.
Exactly as above we can express fµ(x) = yTb+

∑m
i=1(µ lnxj − sjxj),

and the right-hand side is maximized by setting xj = µ/sj , that is,
for x = x. The lemma is proved. �

The set {(
x∗(µ),y∗(µ), s∗(µ)

)
∈ R2n+m : µ > 0

}

is called the primal–dual central path of the linear program (7.2), and
this is actually what the algorithm will follow (approximately).

The algorithm. The algorithm for solving the linear program (7.2) main-
tains current vectors x, s ∈ Rn and y ∈ Rm, with x > 0 and s > 0, that
satisfy all of the linear equations in (7.4); that is, Ax = b and AT y − s = c.
This makes sense, since it is the quadratic equations sjxj = µ that make the
problem complicated, and moreover, these are the only equations in (7.4) in
which µ enters. (We are still postponing the question of obtaining the initial
x,y, s.)

The current x,y, s will in general fail to satisfy the conditions sjxj = µ,
since we follow the primal–dual central path only approximately. We need to
quantify by how much they fail to satisfy them, and one suitable “centrality”
measure turns out to be

cdistµ(x, s) =
∥∥∥
(
ρ(s1x1, µ), ρ(s2x2, µ), . . . , ρ(snxn, µ)

)∥∥∥ ,

where ‖ · ‖ is the Euclidean norm of a vector and ρ(a, µ) =
√

a/µ −
√

µ/a.
(This may look a little arbitrary, but the important thing is that it works.
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Other variants of algorithms following the central path may use different
distance notions.)

In a typical iteration of the algorithm, we have the current µ and x,y, s
such that cdistµ(x, s) is sufficiently small; concretely, one can take the small-
ness condition to be cdistµ(x, s) <

√
2. Then we decrease µ slightly; in the

considered algorithm we replace µ by (1 − 1
2
√

n
)µ. For this new µ we again

want to approximate the solution (x∗(µ),y∗(µ), s∗(µ)) to (7.4) sufficiently
closely. Since µ changed by only a little, we expect that the x,y, s from the
previous iteration will be good initial guesses; in other words, in order to get
x∗(µ),y∗(µ), s∗(µ), we need to change x,y, s by only a little. Let us denote
the required changes by ∆x, ∆y, and ∆s, respectively. So we look for ∆x,
∆y, ∆s such that (7.4) is satisfied by x + ∆x, y + ∆y, and s + ∆s; that is,

A(x + ∆x) = b
AT (y + ∆y) − (s + ∆s) = c(

(s1 + ∆s1)(x1 + ∆x1), . . . , (sn + ∆sn)(xn + ∆xn)
)

= µ1

x + ∆x > 0, s + ∆s > 0.

Using the fact that x,y, s satisfy the linear equations in (7.4) exactly, that
is, Ax = b and AT y − s = c, the first two lines simplify to A∆x = 0 and
AT ∆y−∆s = 0. So far things were exact, but now we make a heuristic step:
Since ∆x and ∆s are supposedly small compared to s and x, we will neglect
the second-order products ∆xj∆sj in the equation system from the third
line. We will thus approximate the required changes in x, s, y by a solution
to the following system:

A∆x = 0
AT ∆y − ∆s = 0(

s1∆x1 + x1∆s1, . . . , sn∆xn + xn∆sn

)
= µ1−

(
s1x1, . . . , snxn

)
.

(7.6)

The unknowns are ∆x, ∆y, ∆s, while x,y, s are regarded as constant. Hence
this is a system of linear equations, and it is the system whose fast solution
is a computational bottleneck of this interior point method. (For an actual
computation the system can still be simplified by algebraic manipulations,
but this is not our concern here.) In general we also need to worry about
the positivity of x + ∆x and s + ∆s, but in the algorithm considered below,
luckily, it turns out that this is satisfied automatically—we will comment on
this later.

It can be shown that passing from x, s, y to x + ∆x, y + ∆y,
s + ∆s, with ∆x, ∆y, ∆s given by (7.6), can be regarded as a step of
the Newton iterative method for solving the system (7.4).

We are ready to describe the algorithm. The input consists of a real m×n
matrix A of rank m, vectors b ∈ Rm, c ∈ Rn, and a real ε > 0, which is a
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parameter controlling the accuracy of the returned solution. (If we want an
exact solution, the approximate solution found by the algorithm still has to
be “rounded” suitably; we will not discuss this step.)

1. Set µ = 1 and initialize x,y, s so that Ax = b, AT y− s = c, x > 0,
s > 0, and cdistµ(x, s) <

√
2.

2. (Main loop) While µ ≥ ε, repeat Steps 3 and 4. As soon as µ < ε,
return x as an approximately optimal solution and stop.

3. Replace µ with
(
1 − 1

2
√

n

)
µ.

4. (Newton step) Compute ∆x, ∆y, ∆s as the (unique) solution of the
linear system (7.6). Replace x by x + ∆x, y by y + ∆y, and s by
s + ∆s. Go to the next iteration of the main loop.

Step 1 is highly nontrivial—we know that finding a feasible solution of
a general linear program is computationally as hard as finding an optimal
solution—and we will discuss it soon. The rest of the algorithm has been
specified completely, up to the way of solving (7.6) efficiently.

What needs to be done in the analysis. Here we prove neither
correctness of the algorithm nor a bound on its running time. These
things are not really difficult but they are somewhat technical. We
just outline what has to be done.

Let us note that the centrality measure appears only in the first
step of the algorithm (initialization). In the main loop we do not explic-
itly check that the current x and s stay close to the central path—this
has to be established in the analysis, and a similar thing holds for the
conditions x > 0 and s > 0. In other words, one needs to show that
the following invariant holds for the current x and s in each iteration
of the main loop:

Invariant: x > 0, s > 0, and cdistµ(x, s) <
√

2.

The next item is finiteness and convergence. It turns out that the
algorithm always finishes, and moreover, it needs at most O(

√
n log 1

ε )
iterations. Last but not least, there is also the issue of rounding errors
and numerical stability. This concludes our sketch of the analysis.

Variations. The realm of interior point methods is vast, and even the
number of papers on central path methods runs into the thousands.
We mention just several ideas on how the described algorithm can
be varied, with the aim of better practical convergence, numerical
stability, etc.

• (Higher-order methods) We have said that the computation of
∆x, ∆y, ∆s is equivalent to a step of the Newton method. This
method locally approximates the considered functions by linear
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functions, based on their first derivatives. One can also employ
higher-order methods, where the approximation is done by multi-
variate polynomials, based on higher-order derivatives.

• (Truncated Newton steps) In the algorithm described above, luck-
ily, it can be shown that making the full “Newton step,” i.e., going
from x,y, s to x+∆x, y+∆y, s+∆s, cannot leave the feasible re-
gion. For other algorithms this need not be guaranteed, and then
one chooses a parameter α ∈ (0, 1] in each iteration and moves
only to x + α∆x, y + α∆y, s + α∆s, where α is determined so as
to maintain feasibility, or also depending on other considerations.

• (Long-step methods) Decreasing µ by the factor 1− 1
2
√

n
is a care-

ful, “short-step” strategy, designed so that we do not move too
far along the central path and a small change again brings x,y, s
close enough to the new point of the central path. In practice it
seems advantageous to make longer steps, i.e., to decrease µ more
significantly. For example, some algorithms go from µ to 1

10µ or so.
There are even adaptive algorithms (where the new µ is not given
by an explicit formula) that asymptotically achieve quadratic con-
vergence; that is, for µ sufficiently small, a single steps goes from
µ to const · µ2.
After such a large change of µ, it is in general not sufficient to
make a single Newton step. Rather, one iterates Newton steps
with µ fixed until the current x and s get sufficiently close to the
central path.
The theoretical analysis becomes more difficult for long-step meth-
ods, and for some of the practically most successful such algo-
rithms no reasonable theoretical bounds are known.

Initialization. It remains to say how the first step of the algorithm,
finding the initial x,y, s, can be realized. There are several approaches.
Here we discuss one of them, an elegant method called a self-dual
embedding.

The idea is this: Given an input linear program, we set up another,
auxiliary linear program with the following properties:

(P1) The auxiliary linear program is always feasible and bounded and
there is a simple, explicitly specified vector lying on its cen-
tral path, from which the above path-following algorithm can be
started.

(P2) From the optimal solution of the auxiliary linear program found by
the algorithm we can read off an optimal solution of the original
linear program or conclude that the original linear program is
infeasible or unbounded.

We develop the auxiliary linear program in several steps. Here
things come out more nicely if we start with the original linear pro-
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gram in an inequality form:

Maximize cT x subject to Ax ≤ b, x ≥ 0. (7.7)

As we have noted at the end of Section 6.1, the duality theorem implies
that (7.7) is feasible and bounded if and only if the following system
has a solution:

Ax ≤ b, AT y ≥ c, bT y − cT x ≤ 0, x,y ≥ 0

(the first inequality is the feasibility of x, the second inequality is the
feasibility of y for the dual linear program, and the third inequality
forces equality of the primal and dual objective functions). Now comes
a small trick: We introduce a new scalar variable τ ≥ 0 (we will use
Greek letters to denote such “stand-alone” scalar variables) and we
multiply the right-hand sides by it. In this way, we obtain a homoge-
neous system (called the Goldman–Tucker system):

Ax − τb ≤ 0
−AT y + τc ≤ 0

bT y − cTx ≤ 0
x,y ≥ 0, τ ≥ 0.

(GTS)

This system, being homogeneous, always admits the zero solution,
but this is uninteresting. Interesting solutions, which allow us to solve
the original linear program, are those with τ > 0 or ρ > 0, where
ρ = ρ(x,y) = cT x−bT y denotes the slack in the last inequality. This
is because of the following lemma:

7.2.2 Lemma. No solution of (GTS) has both τ and ρ nonzero, and
exactly one of the following possibilities always occurs:

(i) There is a solution (x,y, τ) with τ > 0 (and ρ = 0), in which case
1
τ x is an optimal solution of the primal linear program (7.7) and
1
τ y is an optimal solution of the dual.

(ii) There is a solution (x,y, τ) with ρ > 0 (and τ = 0), in which case
the primal linear program (7.7) is infeasible or unbounded.

Proof (sketch). By weak duality it is immediate that any solution
with τ > 0 has ρ = 0 and yields a pair of optimal solutions. Conversely,
by the (strong) duality theorem, any pair (x∗,y∗) of optimal solutions
provides a solution of (GTS) with τ = 1. Hence ρ > 0 implies τ = 0
and infeasibility or unboundedness of the primal linear program. It
remains to check that infeasibility of the primal linear program or of
the dual linear program gives a solution of (GTS) with ρ > 0.

Let us assume, for example, that the primal linear program is in-
feasible (the dual case is analogous); that is, Ax = b has no nontrivial



7.2 Interior Point Methods 127

nonnegative solution. Then by the Farkas lemma (Proposition 6.4.1)
there is a y with AT y ≥ 0 and bT y < 0, and then x = 0, y = y,
τ = 0 is a solution to (GTS) with ρ = −bTy > 0. �

As a side remark, we note that applying the Farkas lemma to the
Goldman–Tucker system yields an alternative derivation of the duality
theorem from the Farkas lemma.

To boost the moral, we note that we have achieved something like
(P2): By means of solutions to (GTS) of a special kind we can solve
the original linear program, as well as deal with its infeasibility or
unboundedness. But how do we compute a solution with ρ > 0 or
τ > 0, avoiding the trivial zero solution?

Luckily, interior point methods are very suitable for this, since they
converge to a “most generic” optimal solution of the given linear pro-
gram. Roughly speaking, the interior point algorithm described above
converges to the analytic center of the set of all optimal solutions,
and this particular optimal solution does not satisfy any constraint
(inequality or nonnegativity constraint) with equality if this can be
avoided at all. In particular, if we made (GTS) into a linear program
by adding a suitable objective function, a “most generic” optimal so-
lution would have τ > 0 or ρ > 0.

There is still an obstacle to be overcome: We do not have an explicit
feasible interior point for (GTS) to start the algorithm, and what
is worse, no feasible interior point (one with all variables and slacks
strictly positive) exists! This is because we always have τ = 0 or ρ = 0,
as was noted in the lemma.

The next step is to enlarge the system so that the vector of all 1’s
is “forced” as a feasible interior point. Before proceeding we simplify
the notation: We write the system (GTS) in matrix form as M0u ≤ 0,
u ≥ 0, where

M0 =




0 A −b

−AT 0 c

b −c 0



 , u =




y
x
τ



 .

We note that MT
0 = −M0; that is, M0 is a skew-symmetric matrix. If

the original matrix A has size m×n, then M0 is a k×k matrix with
k = n + m + 1.

Now we set up the appropriate linear program with a feasible inte-
rior point, and then we gradually explain how and why it works. We
define a vector r ∈ Rk by r = 1+M01, a (k+1)× (k+1) matrix M by

M =

(
M0 −r

rT 0

)
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(we note that M is skew-symmetric too, which will be useful), and a
vector q ∈ Rk+1 by q = (0, 0, . . . , 0, k+1). We consider the following
linear program with variable vector v = (u, ϑ) (that is, u with a new
variable ϑ appended to the end):

Maximize − qT v subject to Mv ≤ q, v ≥ 0. (SD)

First we explain the abbreviation (SD). It stands for self-dual, and
indeed, if we form the dual linear program to (SD), we obtain

minimize qT w subject to MT w ≥ −q, w ≥ 0.

Using MT = −M and changing signs, which changes minimization
to maximization and flips the direction of the inequality, we arrive
exactly at (SD). So (SD) is equivalent to its own dual linear program.

For a feasible solution v of (SD) we define the slacks by z = z(v) =
q−Mv (“z for zlacks”). Here is a key notion: A feasible solution v of
(SD) is called strictly complementary if for every j = 1, 2, . . . , k+1
we have vj > 0 or zj > 0. The next lemma shows that a strictly
complementary optimal solution is exactly what we need for solving
the original linear program (7.7) (more precisely, we don’t need the
full force of strict complementarity, only a strict complementarity for
a particular j).

7.2.3 Lemma. The linear program (SD) is feasible and bounded, ev-
ery optimal solution has ϑ = 0, and hence its u-part is a solution of
the Goldman–Tucker system (GTS). Moreover, every strictly comple-
mentary optimal solution yields a solution of (GTS) with τ > 0 or
ρ > 0.

Proof. We have 0 as a feasible solution of (SD), and also of its dual.
Thus (SD) is feasible and bounded. For v = w = 0 both the primal
and dual objective functions have value 0, so 0 must be their common
optimal value. It follows that every optimal solution has ϑ = 0. The
rest of the lemma is easily checked. �

Hence for solving the original linear program (7.7) it suffices to
find a strictly complementary optimal solution of (SD). It turns out
that this is exactly what the algorithm described above computes.

We will not prove this in full, but let us see what is going on. In
order to apply the algorithm to (SD), we first need to convert (SD) to
equational form by adding the slack variables:

Maximize − qT v subject to Mv + z = q, v, z ≥ 0.

Now we want to write down the system (7.4) specifying points on
the central path for the considered linear program. So we substitute
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A = (M | Ik+1) (so A is a (k+1)×2(k+1) matrix), b = q, c = (−q,0),
and x = (v, z). We also need to introduce the extra variables y and
s appearing in (7.4): For reasons that will become apparent later, we
write v′ for y and (z′, z′′) for s, where z′ and z′′ are (k+1)-component
vectors. So we have v, z, z′, z′′ nonnegative, while v′ is (so far) arbi-
trary.

The equation Ax = b from (7.4) becomes Mv + z = q. From
AT y− s = c we get two equations: MTv′ − z′ = −q and v′ − z′′ = 0.
The first of these two can be rewritten as Mv′ + z′ = q. The second
just means that v′ = z′′ ≥ 0, and so z′′ can be disregarded if we add
the constraint v′ ≥ 0. Finally, sjxj = µ in (7.4) yields vjz

′
j = µ and

v′jzj = µ for all j = 1, 2, . . . , k+1. The full system is thus

Mv + z = q
Mv′ + z′ = q

vjz
′
j = µ for all j = 1, 2, . . . , k + 1

v′jzj = µ for all j = 1, 2, . . . , k + 1
v, z,v′, z′ ≥ 0.

It is easily verified, using the skew-symmetry of M0, that the sys-
tem Mv + z = q is satisfied by v = z = 1 (M and q were set up
that way). Thus v = z = v′ = z′ = 1 is a solution of the just-derived
system with µ = 1, and we can use it as an initial point on the central
path in Step 1 of the algorithm. To complete the analysis one needs
to show that the algorithm converges to a strictly complementary op-
timal solution, and as we said above, this part is omitted.

As a final remark to the algorithm we note that the system above
can be simplified. We know that (7.4) in general has a unique solution
(provided that the primal and dual linear programs both have a feasi-
ble interior point, which is satisfied in our case). At the same time, we
observe that if v, z,v′, z′ is a solution, then interchanging v with v′

and z with z′ also yields a solution, and so uniqueness implies v = v′

and z = z′. Therefore, it is sufficient to work with the simpler system

Mv + z = q, vjzj = µ for j = 1, 2, . . . , k+1, z,v ≥ 0

and to set up the corresponding linear system for the changes ∆v and
∆z accordingly. This concludes the description and partial analysis of
the considered interior point algorithm.

Let us remark that the self-dual embedding trick is quite universal:
Almost any interior point algorithm can be used for computing an
optimum of the self-dual linear program constructed as above, and
this yields an optimal solution of the original linear program.

Computational complexity of interior point methods. Several interior
point methods for linear programming are known to be (weakly) polynomial
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algorithms, including the one given above (with the self-dual embedding). The
total number of bit operations for the best of these algorithms is bounded by
O(n3L), where L is the maximum bit size of coefficients in the linear program
and n is the number of variables. The maximum number of iterations before
reaching an optimum is O(

√
nL). On the other hand, examples are known

(based on the Klee–Minty cube, again!) for which any algorithm following
the central path must make Ω(

√
n log n) iterations; see

A. Deza, E . Nematollahi, and T.Terlaky: How good are interior point
methods? Klee–Minty cubes tighten iteration-complexity bounds,
Technical Report, McMaster University, 2004.

In practice the number of iterations seems to be bounded by a constant or
by O(log n) in almost all cases. This is somewhat similar to the situation for
the simplex method, where the worst-case behavior is much worse than the
behavior for typical inputs.

Our presentation of interior point methods is inspired mostly by

T. Terlaky: An easy way to teach interior-point methods, Eu-
ropean Journal of Operational Research 130, 1(2001), 1–19,

and full proofs of the results in this section can be found in

C. Roos, T. Terlaky, and J.-P.Vial: Interior Point Methods for
Linear Optimization (2nd edition), Springer, Berlin etc., 2005.

A compact survey is

F. A. Potra, S. J. Wright: Interior-point methods, Journal of
Computational and Applied Mathematics 124(2000), pages
281–302;

at time of writing this text it was accessible at websites of the authors.
Several more books from the late 1990s are cited in these papers, and
an immense amount of material can be found online.
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Here we have collected several applications of linear programming, and in
particular, of the duality theorem. They are slightly more advanced than
those in Chapters 2 and 3, but we have tried to keep everything very con-
crete and as elementary as possible, and we hope that even a mathematically
inexperienced reader will have no problems enjoying these small gems.

8.1 Zero-Sum Games

The Colonel Blotto game. Colonel Blotto and his opponent are preparing
for a battle over three mountain passes. Each of them commands five regi-
ments. The one who sends more regiments to a pass occupies it, but when the
same number of regiments meet, there will be a draw. Finally, the one who
occupies more passes than the other wins the battle, with a draw occurring
if both occupy the same number of passes.

Given that all three passes have very similar characteristics, the strate-
gies independently pursued by both Colonel Blotto and his opponent are
the following: First they partition their five regiments into three groups. For
example, the partition (0, 1, 4) means that one pass will be attacked by 4 reg-
iments, another pass by 1 regiment, and one pass will not be attacked at all.
Then, the groups are assigned to the passes randomly; that is, each of the
3! = 6 possible assignments of groups to passes is equally likely.

The partitions of Colonel Blotto and his opponent determine winning
probabilities for both of them (in general, these do not add up to one because
of possible draws). Both Colonel Blotto and his opponent want to bias the
difference of these probabilities in their direction as much as possible. How
should they choose their partitions?

This is an instance of a finite two-player zero-sum game. In such a
game, each of the two players has a finite set of possible strategies (in our
case, the partitions), and each pair of opposing strategies leads to a payoff
known to both players. In our case, we define the payoff as Colonel Blotto’s
winning probability minus the opponent’s winning probability. Whatever one
of the players wins, the other player loses, and this explains the term zero-
sum game. To some extent, it has become a part of common vocabulary.
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When we number the strategies 1, 2, . . . , m for the first player and
1, 2, . . . , n for the second player, the payoffs can be recorded in the form
of an m × n payoff matrix. In the Colonel Blotto game, the payoff matrix
looks as follows, with the rows corresponding to the strategies of Colonel
Blotto and the columns to the strategies of the opponent.

(0, 0, 5) (0, 1, 4) (0, 2, 3) (1, 1, 3) (1, 2, 2)

(0, 0, 5) 0 − 1
3 − 1

3 −1 −1

(0, 1, 4) 1
3 0 0 − 1

3 − 2
3

(0, 2, 3) 1
3 0 0 0 1

3

(1, 1, 3) 1 1
3 0 0 − 1

3

(1, 2, 2) 1 2
3 − 1

3
1
3 0

For example, when Colonel Blotto chooses (0, 1, 4) and his opponent
chooses (0, 0, 5), then Colonel Blotto wins (actually, without fighting) if and
only if his two nonempty groups arrive at the two passes left unattended by
his opponent. The probability for this to happen is 1

3 . With probability 2
3 ,

there will be a draw, so the difference of the winning probabilities is 1
3−0 = 1

3 .
Not knowing what the opponent is going to do, Colonel Blotto might want

to choose a strategy that guarantees the highest payoff in the worst case. The
only candidate for such a strategy is (0, 2, 3): No matter what the opponent
does, Colonel Blotto will get a payoff of at least 0 with this strategy, while all
other strategies lead to negative payoff in the worst case. (Anticipating that
a spy of the opponent might find out about his plans, he must reckon that
the worst case will actually happen. The whole game is not a particularly
cheerful matter anyway.) In terms of the payoff matrix, Colonel Blotto looks
at the minimum in each row, and he chooses a row where this minimum is
the largest possible.

Similarly, the opponent wants to choose a strategy that guarantees the
lowest payoff (for Colonel Blotto) in the worst case. It turns out that (0, 2, 3)
is also the unique such choice for the opponent, because it guarantees that
Colonel Blotto will receive payoff at most 0, while all other strategies allow
him to achieve a positive payoff if he happens to guess or spy out the op-
ponent’s strategy. In terms of the payoff matrix, the opponent looks at the
maximum in each column, and he chooses a column where this maximum is
the smallest possible.

We note that if both Colonel Blotto and his opponent play the strategies
selected as above, they both see their worst expectations come true, exactly
those on which they pessimistically based their choice of strategy. Seeing the
worst case happen might shatter hopes for a better outcome of the battle,
but on the other hand, it is a relief. After the battle has been fought, neither
Colonel Blotto nor his opponent will have to regret their choice: Even if both



8.1 Zero-Sum Games 133

had known the other’s strategy in advance, neither of them would have had
an incentive to change his own strategy.

This is an interesting feature of this game: The strategy selected by
Colonel Blotto and the strategy selected by his opponent as above are best
responses against one another. In terms of the payoff matrix, the entry 0 in
the row ((0, 2, 3) and column (0, 2, 3)) is a “saddle point”; it is a minimum
in its row and a maximum in its column. A pair of strategies that are best
responses against one another is called a Nash equilibrium of the game.
As we will see next, not every game has a Nash equilibrium in this sense.

The Rock-Paper-Scissors game. Alice and Bob independently choose a
hand gesture indicating either a rock, a piece of paper, or a pair of scissors.
If both players choose the same gesture, the game is a draw, and otherwise,
there is a cyclic pattern: Scissors beats paper (by cutting it), paper beats
rock (by wrapping it up), rock beats scissors (by making it blunt). Assuming
that the payoff to Alice is 1 if she wins, 0 if there is a draw, and −1 if she
loses, the payoff matrix is

rock paper scissors
rock 0 −1 1
paper 1 0 −1
scissors −1 1 0

This game has no Nash equilibrium in the sense explained above. No entry of
the payoff matrix is a minimum in its row and a maximum in its column at
the same time. In more human terms, after every game, the player who lost
may regret not to have played the gesture that would have beaten the gesture
of the winner (and both may regret in the case of a draw). It is impossible for
both players to fix strategies that are best responses each against the other.

But when we generalize the notion of a strategy, there is a way for both
players to avoid regret. Both should decide randomly, selecting each of the
gestures with probability 1/3. Even this strategy may lose, of course, but still
there is no reason for regret, since with the same probability 1/3, it could
have won, and the fact that it didn’t is not a fault of the strategy but just
bad luck. Indeed, in this way both Alice and Bob can guarantee that their
payoff is 0 in expectation, and it is easy to see that neither of them can do
better by unilaterally switching to a different behavior. We say that we have
a mixed Nash equilibrium of the game (formally defined below).

A surprising fact is that every zero-sum game has a mixed Nash equilib-
rium. It turns out that such an equilibrium “solves” the game in the sense
that it tells us (or rather, both of the two players) how to play the game
optimally. As we will see in examples, the random decisions that are involved
in a mixed Nash equilibrium need not give each of the possible strategies
the same probability, as was the case in the very simple Rock-Paper-Scissors
game. However, we will prove that suitable probability distributions always
exist and, moreover, that they can be computed using linear programming.
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Existence and computation of a mixed Nash equilibrium. Let us
repeat the setup of zero-sum games in a more formal manner. We have two
players, and we stick to calling them Alice and Bob. Alice has a set of m
pure strategies at her disposal, while Bob has a set of n pure strategies (we
assume that m, n ≥ 1).

Then there is an m×n payoff matrix M of real numbers such that mij is
Alice’s gain (and Bob’s loss) when Alice’s ith pure strategy is played against
Bob’s jth pure strategy. For concreteness, we may think of Bob having to
pay emij to Alice. Of course, the situation is symmetric in that mij might
be negative, in which case Alice has to pay e−mij to Bob.

A mixed strategy of a player is a probability distribution over his or
her set of pure strategies. We encode a mixed strategy of Alice by an m-
dimensional vector of probabilities

x = (x1, . . . , xm),

m∑

i=1

xi = 1, x ≥ 0,

and a mixed strategy of Bob by an n-dimensional vector of probabilities

y = (y1, . . . , yn),

n∑

j=1

yj = 1, y ≥ 0.

So a mixed strategy is not a particular case of a pure strategy; in the Rock-
Paper-Scissors game, Alice has three possible pure strategies (rock, paper,
and scissors), but infinitely many possible mixed strategies: She can choose
any three nonnegative real numbers x1, x2, x3 with x1 + x2 + x3 = 1, and
play rock with probability x1, paper with probability x2, and scissors with
probability x3. Each such triple (x1, x2, x3) specifies a mixed strategy.

Given mixed strategies x and y of Alice and Bob, the expected payoff
(expected gain of Alice) when x is played against y is

∑

i,j

mij Prob
x,y

[Alice plays i,Bob plays j]

=
∑

i,j mij Probx[Alice plays i] · Proby[Bob plays j]

=
∑

i,j mijxiyj

= xT My.

Now we are going to formalize the tenet of Colonel Blotto: “Prepare for
the worst.” When Alice considers playing some mixed strategy x, she expects
Bob to play a best response against x: a strategy y that minimizes her
expected payoff xT My. Similarly, for given y, Bob expects Alice to play a
strategy x that maximizes xT My.

For a fixed matrix M , these worst-case payoffs are captured by the fol-
lowing two functions:
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β(x) = min
y

xT My, α(y) = max
x

xT My.

So β(x) is the best (smallest) expected payoff that Bob can achieve against
Alice’s mixed strategy x, and similarly, α(y) is the best (largest) expected
payoff that Alice can achieve against Bob’s y. It may also be worth noting
that y0 is Bob’s best response against some x exactly if xT My0 = β(x) (the
symmetric statement for Alice is left to the reader).

Let us note that β and α are well-defined functions, since we are opti-
mizing over compact sets. For β, say, the set of all x representing probability
distributions is an (m−1)-dimensional simplex in Rm, and hence indeed com-
pact.

8.1.1 Definition. A pair (x̃, ỹ) of mixed strategies is a mixed Nash equi-
librium of the game if x̃ is a best response against ỹ and ỹ is a best response
against x̃ (the adjective “mixed” is often omitted); in formulas, this can be
expressed as

β(x̃) = x̃T M ỹ = α(ỹ).

In the Colonel Blotto game, we have even found a (pure) Nash
equilibrium (a pair of pure strategies that are best responses against
each other). However, the strategies themselves involved random de-
cisions. We regard these decisions as “hard-wired” into the strategies
and the payoff matrix.

Alternatively, we can consider each fixed assignment of regiments
to passes as a pure strategy. Then we have a considerably larger payoff
matrix, and there is no pure Nash equilibrium. Rather, we have a
mixed Nash equilibrium. In practical terms it amounts to the same
thing as the strategies described in the previous interpretation of the
game, namely, dividing the regiments in groups of 3, 2, and 0, and
sending one group to each pass at random.

These are two different views (models) of the same game, and we
are free to investigate either one, although one may be more convenient
or more realistic than the other.

Let us say that Alice’s mixed strategy x̃ is worst-case optimal if β(x̃) =
maxx β(x). That is, Alice expects Bob to play his best response against every
mixed strategy of hers, and she chooses a mixed strategy x̃ that maximizes her
expected payoff under this (pessimistic) assumption. Similarly, Bob’s mixed
strategy ỹ is worst-case optimal if α(ỹ) = miny α(y).

The next simple lemma shows, among other things, that in order to attain
a Nash equilibrium, both players must play worst-case optimal strategies.

8.1.2 Lemma.

(i) We have maxx β(x) ≤ miny α(y). Actually, for every two mixed strategies
x and y we have β(x) ≤ xT My ≤ α(y).
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(ii) If the pair (x̃, ỹ) of mixed strategies forms a mixed Nash equilibrium,
then both x̃ and ỹ are worst-case optimal.

(iii) If mixed strategies x̃ and ỹ satisfy β(x̃) = α(ỹ), then they form a mixed
Nash equilibrium.

Proof. It is an amusing mental exercise to try to “see” the claims of the
lemma by thinking informally about players and games. But a formal proof
is routine, which is a nice demonstration of the power of mathematical for-
malism.

The first sentence in (i) follows from the second one, which in turn is an
immediate consequence of the definitions of α and β.

In (ii), for any x we have β(x) ≤ α(ỹ) by (i), and since β(x̃) = α(ỹ), we
obtain β(x) ≤ β(x̃). Thus x̃ is worst-case optimal, and a symmetric argument
shows the worst-case optimality of ỹ. This proves (ii).

As for (iii), if β(x̃) = α(ỹ), then by (i) we have β(x̃) = x̃T M ỹ = α(ỹ),
and hence (x̃, ỹ) is a mixed Nash equilibrium. The lemma is proved. �

Here is the main result of this section:

8.1.3 Theorem (Minimax theorem for zero-sum games). For every
zero-sum game, worst-case optimal mixed strategies for both players exist
and can be efficiently computed by linear programming. If x̃ is a worst-
case optimal mixed strategy of Alice and ỹ is a worst-case optimal mixed
strategy of Bob, then (x̃, ỹ) is a mixed Nash equilibrium, and the number
β(x̃) = x̃T M ỹ = α(ỹ) is the same for all possible worst-case optimal mixed
strategies x̃ and ỹ.

The value x̃T M ỹ, the expected payoff in any Nash equilibrium, is called
the value of the game. Together with Lemma 8.1.2(ii), we get that (x̃, ỹ)
forms a mixed Nash equilibrium if and only if both x̃ and ỹ are worst-case
optimal.

This theorem, in a sense, tells us everything about playing zero-sum
games. In particular, “Prepare for the worst” is indeed the best policy (for
nontrivial reasons!). If Alice plays a worst-case optimal mixed strategy, her
expected payoff is always at least the value of the game, no matter what strat-
egy Bob chooses. Moreover, if Bob is well informed and plays a worst-case
optimal mixed strategy, then Alice cannot secure an expected payoff larger
than the value of the game, no matter what strategy she chooses. So there
are no secrets and no psychology involved; both players can as well declare
their mixed strategies in advance, and nothing changes.

Of course, if there are many rounds of the game and Alice suspects
that Bob hasn’t learned his lesson and doesn’t play optimally, she
can begin to contemplate how she could exploit this. Then psychology



8.1 Zero-Sum Games 137

does come into play. However, by trying strategies that are not worst-
case optimal, she is taking a risk, since she also gives Bob a chance to
exploit her.

It remains to explain the name “minimax theorem.” If we consider the
equality β(x̃) = α(ỹ) and use the definitions of β, α, and of worst-case opti-
mality of x̃ and ỹ, we arrive at

max
x

min
y

xT My = min
y

max
x

xT My,

and this is the explanation we offer.
The relation of Theorem 8.1.3 to Lemma 8.1.2(i) is similar to the relation

of the duality theorem of linear programming to the weak duality theorem.
And indeed, we are going to use the duality theorem in the proof of Theo-
rem 8.1.3 in a substantial way.

Proof of Theorem 8.1.3. We first show how worst-case optimal mixed
strategies x̃ for Alice and ỹ for Bob can be found by linear programming.
Then we prove that the desired equality β(x̃) = α(ỹ) holds.

We begin by noticing that Bob’s best response to a fixed mixed strategy
x of Alice can be found by solving a linear program. That is, β(x), with x
a concrete vector of m numbers, is the optimal value of the following linear
program in the variables y1, . . . , yn:

Minimize xT My
subject to

∑n
j=1 yj = 1

y ≥ 0.
(8.1)

So we can evaluate β(x). But for finding a worst-case optimal strategy of
Alice we need to maximize β. Unfortunately, β(x) is not a linear function, so
we cannot directly formulate the maximization of β(x) as a linear program.
Fortunately, we can circumvent this issue by using linear programming dual-
ity.

Using the dualization recipe from Section 6.2, we write down the dual of
(8.1):

Maximize x0

subject to MT x− 1x0 ≥ 0

(this is a nice exercise in dualization). This dual linear program has only
one variable x0, since x1, . . . , xm are still regarded as fixed numbers. By the
duality theorem, the optimal value of the dual linear program is the same as
that of the primal, namely, β(x).

In order to maximize β(x) over all mixed strategies x of Alice, we set up
a new linear program that optically looks exactly like the previous one, but
in which x1, . . . , xm are regarded as variables (this works only because the
constraints happen to be linear in x0, x1, . . . , xm):
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Maximize x0

subject to MT x− 1x0 ≥ 0∑m
i=1 xi = 1

x ≥ 0.

(8.2)

If (x̃0, x̃) denotes an optimal solution of this linear program, we have by
construction

x̃0 = β(x̃) = max
x

β(x). (8.3)

In a symmetric fashion, we can derive a linear program for solving Bob’s
task of computing a best strategy ỹ. We obtain the problem

minimize y0

subject to My − 1y0 ≤ 0∑n
j=1 yj = 1

y ≥ 0

(8.4)

in the variables y0, y1, . . . , yn. Now an optimal solution (ỹ0, ỹ) satisfies

ỹ0 = α(ỹ) = min
y

α(y). (8.5)

So both x̃ and ỹ are worst-case optimal strategies (and conversely, worst-
case optimal strategies provide optimal solutions of the respective linear pro-
grams).

The punchline is that the two linear programs (8.2) and (8.4) are dual
to each other! Again, the dualization recipe shows this. It follows that both
programs have the same optimum value x̃0 = ỹ0. Hence β(x̃) = α(ỹ) and
(x̃, ỹ) is a Nash equilibrium by Lemma 8.1.2(iii). �

Rock-Paper-Scissors revisited. To kill the time between their rare public
appearances, Santa Claus and the Easter Bunny play the rock-paper-scissors
game against each other. The Easter Bunny, however, cannot indicate a pair
of scissors with his paw and is therefore limited to two pure strategies. The
payoff matrix in this variant is

rock paper
rock 0 −1
paper 1 0
scissors −1 1

We already see that Santa Claus should never play rock: For any possible
gesture of the Easter Bunny, paper is a better strategy.

Let us apply the machinery we have just developed to find optimal mixed
strategies for Santa Claus and the Easter Bunny. Recall that Santa Claus
has to solve the linear program (8.2) to find the probability distribution
x̃ = (x̃1, x̃2, x̃3) that determines his optimal strategy. At the same time, he
will compute the game value x̃0, his expected gain.
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The linear program is

maximize x0

subject to x2 − x3 − x0 ≥ 0
− x1 + x3 − x0 ≥ 0

x1 + x2 + x3 = 1
x1, x2, x3 ≥ 0.

A (unique) optimal solution is (x̃0, x̃1, x̃2, x̃3) = (1
3 , 0, 2

3 , 1
3 ).

The Easter Bunny’s problem (8.4) is

minimize y0

subject to − y2 − y0 ≤ 0
y1 − y0 ≤ 0

− y1 + y2 − y0 ≤ 0
y1 + y2 = 1

y1, y2 ≥ 0.

A (unique) optimal solution is (ỹ0, ỹ1, ỹ2) = (1
3 , 1

3 , 2
3 ).

Let us summarize: If both play optimally, Santa Claus wins 1
3 on average

(this is a scientific explanation of why Santa Claus can afford to bring more
presents!). Both play paper with probability 2

3 . With the remaining proba-
bility 1

3 , Santa Claus plays scissors, while the Easter Bunny plays rock. This
result is a simple but still nontrivial application of zero-sum game theory.

In retrospect, the original rock-paper-scissors game might ap-
pear rather boring, but this is relative: There is a World RPS So-
ciety (http://www.worldrps.com/) that holds an annual rock-paper-
scissors world championship and sells a book on how to play the game.

Choosing numbers. Here is another game, which actually seems fun to play
and in which the optimal mixed strategies are not at all obvious. Each of the
two players independently writes down an integer between 1 and 6. Then the
numbers are compared. If they are equal, the game is a draw. If the numbers
differ by one, the player with the smaller number gets e 2 from the one with
the larger number. If the two numbers differ by two or more, the player with
the larger number gets e 1 from the one with the smaller number. We want
to challenge the reader to compute the optimal mixed strategies for this game
(by symmetry, they are the same for both players).

The Colonel Blotto game was apparently first considered by the
mathematician Émile Borel in 1921 (he also served as a French minis-
ter of the navy, although only for several months). It can be considered
for any number of regiments; for 6 regiments, there is still a Nash equi-
librium defined by a pair of pure strategies, but for 7 regiments (this is
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the case stated in Borel’s original paper) it becomes necessary to mix.
Borel’s paper does not mention the name “Colonel Blotto”; this name
appears in Hubert Phillips’s Week-end Problems Book, a collection of
puzzles from 1933.

In his paper, Borel considers symmetric games in general. A sym-
metric game is defined by a payoff matrix M with MT = −M . Borel
erroneously states that if the number n of strategies is sufficiently
large, one can construct symmetric games in which each player can
secure a positive expected payoff, knowing the other player’s mixed
strategy. He concludes that playing zero-sum games requires psychol-
ogy, on top of mathematics.

It was only in 1926 that John von Neumann, not knowing about
Borel’s work and its pessimistic conclusion, formally established The-
orem 8.1.3.

Bimatrix games. An important generalization of finite zero-sum
games is bimatrix games, in which both Alice and Bob want to max-
imize the payoff with respect to a payoff matrix of their own, A for
Alice, and B for Bob (in the zero-sum case, A = −B). A bimatrix
game also has at least one mixed Nash equilibrium: a pair of strate-
gies x̃, ỹ that are best responses against each other, meaning that
x̃T Aỹ = maxx xT Aỹ and x̃T Bỹ = maxy x̃T By. We encourage the
reader to find a mixed Nash equilibrium in the following variant of
the modified rock-paper-scissors game played by Santa Claus and the
Easter Bunny: As before, the loser pays e 1 to the winner, but in case
of a draw, each player donates e 0.50 to charity.

The problem of finding a Nash equilibrium in a bimatrix game
cannot be formulated as a linear program, and no polynomial-time
algorithm is known for it. On the other hand, a Nash equilibrium can
be computed by a variant of the simplex method, called the Lemke–
Howson algorithm (but possibly with exponentially many pivot steps).

In general, Nash equilibria in bimatrix games are not as satisfactory
as in zero-sum games, and there is no such thing as “the” game value.
We know that in a Nash equilibrium, no player has an incentive to
unilaterally switch to a different behavior. Yet, it may happen that
both can increase their payoff by switching simultaneously, a situation
that obviously cannot occur in a zero-sum game. This means that
the Nash equilibrium was not optimal from the point of view of social
welfare, and no player has a real desire of being in this particular Nash
equilibrium. It may even happen that all Nash equilibria are of this
suboptimal nature. Here is an example.

At each of the two department stores in town, All the Best Deals
and Buyer’s Paradise, the respective owner needs to decide whether to
launch an advertisement campaign for the upcoming Christmas sale. If
one store runs a campaign while the competitor doesn’t, the expected
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extra revenue obtained from customers switching their preferred store
(e 50,000, say) and new customers (e 10,000) easily outweighs the
cost of the campaign (e 20,000). If, on the other hand, both stores
advertise, let us assume that the campaigns more or less neutralize
themselves, with extra revenue coming only from new customers in an
almost saturated market (e 8,000 for each of the stores).

Listing the net revenues aij , bij as pairs, in units of e 1, 000, we
obtain the following matrix, with rows corresponding to the strategies
of All the Best Deals, and columns to Buyer’s Paradise.

advertise don’t advertise
advertise (−12,−12) (40,−50)
don’t advertise (−50, 40) (0, 0)

If the store owners were friends, they might agree on running no
campaign in order to save money (they’d better keep this agreement
private in order to avoid a price-fixing charge). But if they do not
communicate or mistrust each other, rational behavior will force both
of them to waste money on campaigns. To see this, put yourself in the
position of one of the store owners. Assuming that your competitor
will not advertise, you definitely want to advertise in order to profit
from the extra revenue. Assuming that the other store will advertise,
you must advertise as well, in order not to lose customers. This means
that you will advertise in any case. We say that the strategy “adver-
tise” strictly dominates the strategy “don’t advertise,” so it would be
irrational to play the latter.

Because the other store owner reaches the same conclusion, there
will be two almost useless campaigns in the end. In fact, the pair of
strategies (advertise, advertise) is the unique Nash equilibrium of the
game (mixing does not help), but it is suboptimal with respect to
social welfare.

In general bimatrix games, the players might not be able to reach
the social optimum through rational reasoning, even if this optimum
corresponds to an equilibrium of the game. This is probably the most
serious deficiency of bimatrix games as models of real-world situations.
An example is the battle of the sexes. A couple wants to go out at
night. He prefers the boxing match, while she prefers the opera, but
both prefer going together over going alone. If both are to decide
independently where to go, there is no rational way of reaching a
social optimum (namely both going out together, no matter where).

When the advertisement game is played repeatedly (after all, there
is a Christmas sale every year), the situation changes. In the long run,
wasting money every year is such a bad prospect that the following
more cooperative behavior makes sense: In the first year, refrain from
advertising, and in later years just do what the competitor did the
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year before. This strategy is known as TIT FOR TAT. If both stores
adopt this policy, they will never waste money on campaigns; but even
if one store deviates from it, there is no possibility of exploiting the
competitor in the long run. It is easy to see that after a possible first
loss, the one playing TIT FOR TAT can “pay” for any further loss,
due to a previous loss of the competitor.

The Prisoner’s Dilemma. The advertisement game is a variation of
the well-known prisoner’s dilemma, in which two convicts charged
with a crime committed together are independently offered (somewhat
unethical) plea bargains; if both stay silent, a lack of evidence will lead
to only minor punishment. If each testifies against the other, there will
be some bearable punishment. But if—and this is the unethical part—
exactly one of the two testifies against the other, the betrayer will be
rewarded and set free, while the one that remains silent will receive
a heavy penalty. As before, rational behavior will force both convicts
to testify against each other, even if they had nothing to do with the
crime.

A popular introduction to the questions surrounding the prisoner’s
dilemma is

W. Poundstone: Prisoner’s Dilemma: John von Neumann,
Game Theory, and the Puzzle of the Bomb, Doubleday, New
York 1992

(and the 1964 Stanley Kubrick movie Dr. Strangelove or: How I
Learned to Stop Worrying and Love the Bomb might also widen one’s
horizons in this context).

A general introduction to game theory is

J. Bewersdorff: Luck, Logic, and White Lies, AK Peters,
Wellesley 2004.

This book also contains the references to the work by Borel and von
Neumann that we have mentioned above.

8.2 Matchings and Vertex Covers in Bipartite

Graphs

Let us return to the job assignment problem from Section 3.2. There, the
human resources manager of a company was confronted with the problem of
filling seven positions with seven employees, where every employee has a score
(reflecting qualification) for each position he or she is willing to accept. We
found that the manager can use linear programming to find an assignment
of employees to positions (a perfect matching) that maximizes the sum of
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scores. We have also promised to show how the manager can fill the positions
optimally if there are more employees than positions.

Here we will first disregard the scores and ask under what conditions
the task has any solution at all, that is, whether there is any assignment of
positions to employees such that every employee gets a position she or he is
willing to accept and each position is filled. We know that we can decide this
by linear programming (we just invent some arbitrary scores, say all scores
100), but here we ask for a mathematical condition.

For example, let us consider the graph from Section 3.2 but slightly mod-
ified (some of the people changed their minds):

A B C D E F G

q r s t u v w

There is no assignment filling all positions in this situation. This is not imme-
diately obvious, but it becomes obvious once we look at the set {r, s, t, u, w}
of jobs (marked). Indeed, the set of people willing to take any of these 5
jobs is {C, D, E, G}. This is only 4 people, and so they cannot be assigned
to 5 different jobs.

The next theorem, known as Hall’s theorem or the marriage theorem,
states that if no assignment exists, we can always find such a simple “reason”:
a subset of k jobs such that the total number of employees willing to take
any of them is smaller than k.

Before we formally state and prove this theorem, in the language of bi-
partite graphs, we need to recall the notions of maximum matching (Section
3.2) and minimum vertex cover (Section 3.3).

A matching in a graph G = (V, E) is a set E′ ⊆ E of edges with the
property that each vertex is incident to at most one edge in E′. A matching
is maximum if it has the largest number of edges among all matchings in G.

A vertex cover of G = (V, E) is a set V ′ ⊆ V of vertices with the property
that each edge is incident to at least one vertex in V ′. A vertex cover is
minimum if it has the smallest number of vertices among all vertex covers
of G.

Hall’s theorem gives necessary and sufficient conditions for the existence
of a best possible matching in a bipartite graph, namely a matching that
covers all vertices in one class of the vertex bipartition.
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8.2.1 Theorem (Hall’s theorem). Let G = (V, E) be a bipartite graph
with bipartition V = X

.
∪ Y . For a set T ⊆ X , we define the neighborhood

N(T ) ⊆ Y of T as the set

N(T ) = {w ∈ Y : {v, w} ∈ E for some v ∈ T}.

If for every T ⊆ X , |N(T )| ≥ |T | holds, then G has a matching that covers
all vertices in X .

Actually, we derive the following statement, from which Hall’s theorem
easily follows.

8.2.2 Theorem (König’s theorem). Let G = (V, E) be a bipartite graph.
Then the size of a maximum matching in G equals the size of a minimum
vertex cover of G.

We prove this theorem using the duality of linear programming. There
are also combinatorial proofs, and they are actually simpler than the proof
offered here. There are at least two reasons in favor of the proof via duality:
First, it is a simple example illustrating a powerful general technique. And
second, it gives more than just König’s theorem. It shows that a maximum
matching, as well as a minimum vertex cover, in a bipartite graph can be
computed by linear programming. Moreover, the method can be extended to
computing a maximum-weight matching in a bipartite graph with weights on
the edges.

Let us first see how Hall’s theorem follows from König’s theorem.

Proof of Theorem 8.2.1. Let G = (X
.
∪ Y, E) be a bipartite graph with

|N(T )| ≥ |T | for all T ⊆ X . We will show that any minimum vertex cover
of G has size n1 = |X |. König’s theorem then implies that G has a matching
of size n1, and this matching obviously covers X .

For contradiction, suppose that there is a vertex cover C with k vertices
from X and fewer than n1−k vertices from Y , for some k. The set T = X \C
has size n1 − k and satisfies |N(T )| ≥ n1 − k by the assumption. But this
implies that there is a vertex w ∈ N(T ) that is not in C ∩ Y . Since this
vertex has some neighbor v ∈ T , the edge {v, w} is not covered by C, a
contradiction. �

Totally unimodular matrices. A matrix A is called totally unimodular
if every square submatrix of A (obtained from A by deleting some rows and
some columns) has determinant 0, 1, or −1. We note that, in particular, the
entries of A can be only 0, −1, and +1.

Such matrices are interesting since an integer program with a totally uni-
modular constraint matrix is easy to solve—it suffices to solve its LP relax-
ation, as we will show in Lemma 8.2.4 below. Let us start with a preparatory
step.
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8.2.3 Lemma. Let A be a totally unimodular matrix, and consider the ma-
trix Ā obtained from A by appending a unit vector ei as a new last column.
Then Ā is totally unimodular as well.

Proof. Let us fix an � × � submatrix Q of Ā. If Q is a submatrix of A,
then det(Q) ∈ {−1, 0, 1} by total unimodularity of A. Otherwise, we pick
the column � of Q that corresponds to the newly added column in Ā, and
we compute det(Q) according to the Laplace expansion on this column. We
recall that

det(Q) =

�∑

i=1

(−1)i+�qi� det(Qi�),

where Qi� is the matrix resulting from Q by removing row i and column �.
By construction, the �th column may be 0 (and we get det(Q) = 0), or there
is exactly one nonzero entry qk� = 1. In that case,

det(Q) = (−1)k+� det(Qk�) ∈ {−1, 0, 1},

since Qk� is a submatrix of A. �

The following lemma is the basis of using linear programming for solving
integer programs with totally unimodular matrices.

8.2.4 Lemma. Let us consider a linear program with n nonnegative vari-
ables and m inequalities of the form

maximize cT x
subject to Ax ≤ b

x ≥ 0,

where b ∈ Zm. If A is totally unimodular, and if the linear program has an
optimal solution, then it also has an integral optimal solution x∗ ∈ Zn.

Proof. We first transform the linear program into equational form. The
resulting system of equality constraints is Āx = b, with Ā = (A | Im) and
x ∈ Rn+m. Then we solve the problem using the simplex method. Let x∗

be an optimal basic feasible solution, associated with the feasible basis B ⊆
{1, 2, . . . , n + m}. Then we know that the nonzero entries of x∗ are given by

x∗
B = Ā−1

B b;

see Section 5.5.
By Cramer’s rule, the entries of Ā−1

B can be written as rational numbers
with common denominator det(ĀB). The matrix ĀB is a square submatrix
of Ā, where Ā is totally unimodular (by repeated application of Lemma 8.2.3).
Since ĀB is nonsingular, we get det(ĀB) ∈ {−1, 1}, and the integrality of x∗

follows. �
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Incidence matrices of bipartite graphs. Here is the link between total
unimodularity and König’s theorem. Let G = (X

.
∪ Y, E) be a bipartite graph

with n vertices v1, . . . , vn and m edges e1, . . . , em. The incidence matrix
of G is the matrix A ∈ Rn×m defined by

aij =

{
1 if vi ∈ ej

0 otherwise.

8.2.5 Lemma. Let G = (X
.
∪ Y, E) be a bipartite graph. The incidence

matrix A of G is totally unimodular.

Proof. We need to prove that every �×� submatrix Q of A has determinant
0 or ±1, and we proceed by induction on �. The case � = 1 is immediate,
since the entries of an incidence matrix are only 0’s and 1’s.

Now we consider � > 1 and an �×� submatrix Q. Since the columns
of Q correspond to edges, each column of Q has at most two nonzero entries
(which are 1). If there is a column with only zero entries, we get det(Q) = 0,
and if there is a column with only one nonzero entry, we can expand the
determinant on this column (as in the proof of Lemma 8.2.3) and get that
up to sign, det(Q) equals the determinant of an (�−1)×(�−1) submatrix Q′.
By induction, det(Q′) ∈ {−1, 0, 1}, so the same holds for Q.

Finally, if every column of Q contains precisely two 1’s, we claim that
det(Q) = 0. To see this, we observe that the sum of all rows of Q correspond-
ing to vertices in X is the row vector (1, . . . , 1), since for each column of Q,
exactly one of its two 1’s comes from a vertex in X . For the same reason, we
get (1, . . . , 1) by summing up the rows for vertices in Y , and it follows that
the rows of Q are linearly dependent. �

Now we are ready to prove König’s theorem.

Proof of Theorem 8.2.2. We first consider the integer program

maximize
∑m

j=1 xj

subject to Ax ≤ 1
x ≥ 0
x ∈ Zm,

where A is the incidence matrix of G. In this integer program, the row of A
corresponding to vertex vi induces the constraint

∑

j:ej�vi

xj ≤ 1.

This implies that xj ∈ {0, 1} for all j, and that the edges ej with x̃j = 1 in
an optimal solution x̃ form a maximum matching in G.

Next we consider the integer program
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minimize
∑n

i=1 yi

subject to AT y ≥ 1
y ≥ 0
y ∈ Zn,

where A is as before the incidence matrix of G. In this integer program, the
row of AT corresponding to edge ej induces the constraint

∑

i:vi∈ej

yi ≥ 1.

This implies that in any optimal solution ỹ we have ỹi ∈ {0, 1} for all i, since
any larger value could be decreased to 1. But then the vertices vi with ỹi = 1
in an optimal solution ỹ form a minimum vertex cover of G.

To summarize, the optimum value of the first integer program is the size
of a maximum matching in G, and the optimum value of the second integer
program is the size of a minimum vertex cover in G.

In both integer programs, we may now drop the integrality constraints
without affecting the optimum values: A, and therefore also AT , are totally
unimodular by Lemma 8.2.5, and so Lemma 8.2.4 applies. But the resulting
linear programs are dual to each other; the duality theorem thus shows that
their optimal values are equal, and this proves Theorem 8.2.2. �

It remains to explain the algorithmic implications of the proof (namely,
how a maximum matching and a minimum vertex cover can actually be
computed). To get a maximum matching, we simply need to find an integral
optimal solution of the first linear program. When we use the simplex method
to solve the linear program, we get this for free; see the proof of Lemma 8.2.4
and, in particular, the claim toward the end of its proof. Otherwise, we can
apply Theorem 4.2.3(ii) to construct a basic feasible solution from any given
optimal solution, and this basic feasible solution will be integral. A minimum
vertex cover is obtained from the second (dual) linear program in the same
fashion.

The previous arguments show more: Given edge weights w1, . . . , wm, any
optimal solution of the integer program

maximize
∑m

j=1 wjxj

subject to Ax ≤ 1
x ≥ 0
x ∈ Zm

corresponds to a maximum-weight matching in G. Since we can, as before,
relax the integrality constraints without affecting the optimum value, an inte-
gral optimal solution of the relaxation can be found, and it yields a maximum-
weight matching in G. This solves the optimal job assignment problem if there
are more employees than jobs.
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The fact that a linear program with totally unimodular constraint
matrix and integral right-hand side has an integral optimal solution
implies something much stronger: Since every vertex of the feasible
region is optimal for some objective function (see Section 4.4), we
know that all vertices of the feasible region are integral. We say that
the feasible region forms an integral polyhedron.

Such integrality results together with linear programming duality
can yield interesting and powerful minimax theorems. König’s theorem
is one such example. Another classical minimax theorem that can be
proved along these lines is the max-flow-min-cut theorem.

To state this theorem, we consider a network modeled by a directed
graph G = (V, E) with edge capacities we. In Section 2.2, we have
interpreted them as maximum transfer rates of data links. Given two
designated vertices, the source s and the sink t, the maximum flow
value is the maximum rate at which data can flow from s to t through
the network.

The minimum cut value, on the other hand, is the minimum total
capacity of any set of data links whose breakdown disconnects t from s.

The max-flow-min-cut theorem states that the maximum flow
value is equal to the minimum cut value. One of several proofs writes
both values as optimal values of linear programs that are dual to each
other.

When we consider matchings and vertex covers in general (not nec-
essarily bipartite) graphs, the situation changes: Total unimodularity
no longer applies, and the “duality” between the two concepts disap-
pears.

In fact, the problem of finding a minimum vertex cover in a gen-
eral graph is computationally difficult (NP-hard); see Section 3.3.
A maximum-weight matching, on the other hand, can still be com-
puted in polynomial time for general graphs, although this result is
by no means trivial. Behind the scenes, there is again an integrality
result, based on the notion of total dual integrality; see the glossary.

8.3 Machine Scheduling

In the back office of the copy shop Copy & Paste, the operator is confronted
with n copy jobs submitted by customers the night before. For processing
them, she has m photocopying machines with different features at her dis-
posal. For all i, j, the operator quickly estimates how long it would take the
ith machine to process the jth job, and she makes a table of the resulting
running times, like this:
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Single
B&W

Duplex
B&W

Duplex
Color

Master’s thesis, 90 pages
two-sided, 10 B&W copies

— 45 min 60 min

All the Best Deals flyer, 1 page
one-sided, 10,000 B&W copies

2h 45 min 4h 10 min 5h 30 min

Buyer’s Paradise flyer, 1 page
one-sided, 10,000 B&W copies

2h 45 min 4h 10 min 5h 30 min

Obituary, 2 pages
two-sided, 100 B&W copies

— 2 min 3 min

Party platform, 10 pages
two-sided, 5,000 color copies

— — 3h 30 min

Since the operator can go home as soon as all jobs have been processed,
her goal is to find an assignment of jobs to machines (a schedule) such that
the makespan—the time needed to finish all jobs—is minimized. In our
example, this is not hard to figure out: For the party platform, there is no
choice between machines. We can also observe that it is advantageous to
use both B&W machines for processing the two flyers, no matter where the
thesis and the obituary go. Given this, the makespan is at least 4h 55 min if
the thesis is processed on the Duplex B&W machine, so it is better put on
the color machine to achieve the optimum makespan of 4h 30 min (with the
obituary running on the B&W machine).

In general, finding the optimum makespan is computationally difficult
(NP-hard). The obvious approach of trying all possible schedules is of course
not a solution for a larger number n of jobs. What we show in this section is
that the operator can quickly compute a schedule whose makespan is at most
twice as long as the optimum makespan. All she needs for that are some linear
programming skills. (To really appreciate this result, one shouldn’t think of
a problem with 5 jobs but with thousands of jobs.)

We should emphasize that in this scheduling problem the jobs are consid-
ered indivisible, and so each job must be processed on a single machine. This,
in a sense, is what makes the problem difficult. As we will soon see, an opti-
mal “fractional schedule,” where a single job could be divided among several
machines in arbitrary ratios, can be found efficiently by linear programming.

Two integer programs for the scheduling problem. Let us identify
the m machines with the set M := {1, . . . , m} and the n jobs with the set
J := {m + 1, . . . , m + n}.

Let dij denote the running time of job j ∈ J on machine i ∈ M . We
assume dij > 0. To simplify notation, we also assume that any machine
can process any job: An infeasible assignment of job j to machine i can be
modeled by a large running time dij = K. If K is larger than the sum of all
“real” running times, the optimal schedule will avoid infeasible assignments,
given that there is a feasible schedule at all.
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With these notions, the following integer program in the variables t and
xij , i ∈ M, j ∈ J computes an assignment of jobs to machines that minimizes
the makespan:

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij ∈ Z for all i ∈ M, j ∈ J.

Under the integrality constraints, the conditions
∑

i∈M xij = 1 and
xij ≥ 0 imply that xij ∈ {0, 1} for all i, j. With the interpretation that
xij = 1 if job j is assigned to machine i, and xij = 0 otherwise, the first
n equations stipulate that each job is assigned to exactly one machine. The
next m inequalities make sure that no machine needs more time than t to
finish all jobs assigned to it. Minimizing t leads to equality for at least one of
the machines, so the best t is indeed the makespan of an optimal schedule.

As we have already seen in Section 3.3 (the minimum vertex cover prob-
lem), solving the LP relaxation obtained from an integer program by deleting
the integrality constraints can be a very useful step toward an approximate
solution of the original problem. In our case, this approach needs an ad-
ditional twist: We will relax another integer program, obtained by adding
redundant constraints to the program above. After dropping integrality, the
added constraints are no longer redundant and lead to a better LP relaxation.

Let topt be the makespan of an optimal schedule. If dij > topt, then we
know that job j cannot run on machine i in any optimal schedule, so we
may add the constraint xij = 0 to the integer program without affecting its
validity. More generally, if T is any upper bound on topt, we can write down
the following integer program, which has the same optimal solutions as the
original one:

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij = 0 for all i ∈ M, j ∈ J with dij > T
xij ∈ Z for all i ∈ M, j ∈ J.

But we do not know topt, so what is the value of T we use for the relax-
ation? There is no need to specify this right here; for the time being, you can
imagine that we set T = maxij dij , a value that will definitely work, because
it makes our second integer program coincide with the first one.

A good schedule from the LP relaxation. As already indicated, the
first step is to solve the LP relaxation, denoted by LPR(T ), of our second
integer program:



8.3 Machine Scheduling 151

Minimize t
subject to

∑
i∈M xij = 1 for all j ∈ J∑

j∈J dijxij ≤ t for all i ∈ M

xij ≥ 0 for all i ∈ M, j ∈ J
xij = 0 for all i ∈ M, j ∈ J with dij > T.

In contrast to the vertex cover application, we cannot work with any optimal
solution of the relaxation, though: We need a basic feasible optimal solution;
see Section 4.2. To be more precise, we rely on the following property of a
basic feasible solution; see Theorem 4.2.3.

8.3.1 Assumption. The columns of the constraint matrix A corresponding
to the nonzero variables x∗

ij in the optimal solution of LPR(T ) are linearly
independent.

As usual, the nonnegativity constraints xij ≥ 0 do not show up in A. In
case the simplex method is used to solve the relaxation, such a solution comes
for free (the column of A corresponding to t could then actually be added
to the set of columns in the assumption, but this is not needed). Otherwise,
we can easily construct a solution satisfying the assumption from any given
optimal solution, according to the recipe in the proof of Theorem 4.2.3.

At this point the reader may wonder why we would want to use an
algorithm different from the simplex method here, in particular when
we are searching for a basic feasible optimal solution. The reason is of
theoretical nature: We want to prove that a schedule whose makespan
is at most twice the optimum can be found in polynomial time. As we
have pointed out in the introductory part of Chapter 7, the simplex
method is not known to run in polynomial time for any pivot rule,
and for most pivot rules it simply does not run in polynomial time.
For the theoretical result we want, we had therefore better use one
of the polynomial-time methods for solving linear programs, sketched
in Chapter 7. For practical purposes, the simplex method will do, of
course.

In general terms, what we are trying to develop here is a poly-
nomial-time approximation algorithm for an NP-hard problem. Since
complexity theory indicates that we will not be able to solve the prob-
lem exactly within reasonable time bounds, it is quite natural to ask
for an approximate solution that can be obtained in polynomial time.
The quality of an approximate solution is typically measured by the
approximation factor, the ratio between the value of the approximate
solution and the value of an optimal solution. In our approximation
algorithm for the scheduling problem, this factor will be at most 2.

Let us fix the values t∗ and x∗
ij of the variables in some optimal solution

of the LP relaxation. We now consider the bipartite graph G = (M ∪ J, E),
with
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E = {{i, j} ⊆ M ∪ J | x∗
ij > 0}.

For an arbitrary optimal solution, this graph could easily be a (boring) com-
plete bipartite graph, but under Assumption 8.3.1 it becomes more interest-
ing.

8.3.2 Lemma. In any subgraph of G (obtained by deleting edges, or vertices
with their incident edges), the number of edges is at most the number of
vertices.

The graph G for m = 4 machines and n = 6 jobs might look like this, for
example:

M

J

G

Proof. Let A be the constraint matrix of the LP relaxation. It has one row
for each machine, one for each job, and one for each runtime dij exceeding T .
The columns of A corresponding to the nonzero variables x∗

ij (equivalently,
to the edges of G) are linearly independent by our assumption.

Now we consider any subgraph of G, with vertex set M ′∪J ′ ⊆ M ∪J and
edge set E′ ⊆ E. Let A′ be the submatrix obtained from A by restricting to
rows corresponding to M ′ ∪ J ′, and to columns corresponding to E′.
Claim. The columns of A′ are linearly independent.

To see this, we first observe that the columns of A corresponding
to E′ are linearly independent, simply because E′ ⊆ E. Any variable
xij , {i, j} ∈ E′, occurs in the inequality for machine i ∈ M ′ and in
the equation for job j ∈ J ′, but in no other equation, since x∗

ij > 0
implies dij ≤ T . This means that the columns of A corresponding
to E′ have zero entries in all rows except for those corresponding to
machines or jobs in M ′ ∪ J ′. Hence, these columns remain linearly
independent even when we restrict them to the rows corresponding
to M ′ ∪ J ′.

By the claim, we have |E′| ≤ |M ′ ∪ J ′|, and this is the statement of the
lemma. �

This structural result about G allows us to find a good schedule.

8.3.3 Lemma. Let T ≥ 0 be such that the LP relaxation LPR(T ) is feasible,
and suppose that a feasible solution is given that satisfies Assumption 8.3.1
and has value t = t∗. Then we can efficiently construct a schedule of makespan
at most t∗ + T .
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Proof. We need to assign each job to some machine. We begin with the
jobs j that have degree one in the graph G, and we assign each such j to its
unique neighbor i. By the construction of G and the equation

∑
i∈M xij = 1,

we have x∗
ij = 1 in this case. If machine i has been assigned a set Si of jobs

in this way, it can process these jobs in time

∑

j∈Si

dij =
∑

j∈Si

dijx
∗
ij ≤

∑

j∈J

dijx
∗
ij ≤ t∗.

So each machine can handle the jobs assigned by this partial schedule in
time t∗.

Next we remove all assigned jobs and their incident edges from G. This
leaves us with a subgraph G′ = (M ∪ J ′, E′). In G′, all vertices of degree one
are machines. In the example depicted above, two jobs have degree one, and
their deletion results in the following subgraph G′:

M

J ′

G′

We will show that we can find a matching in G′ that covers all the remain-
ing jobs. If we assign the jobs according to this matching, every machine gets
at most one additional job, and this job can be processed in time at most T
by the construction of our second integer program. Therefore, the resulting
full schedule has makespan at most t∗ + T .

It remains to construct the matching. To this end, we use Hall’s theorem
from Section 8.2. According to this theorem, a matching exists if for every
subset J ′′ ⊆ J ′ of jobs, its neighborhood (the set of all machines connected
to at least one job in J ′′) has size at least |J ′′|.

To check this condition, we let J ′′ ⊆ J ′ be such a subset of jobs and N(J ′′)
its neighborhood. If e is the number of edges in the subgraph of G′ induced
by J ′′ ∪N(J ′′), then Lemma 8.3.2 guarantees that e ≤ |J ′′ ∪N(J ′′)|. On the
other hand, since every job has at least two neighbors, we have e ≥ 2|J ′′|,
and this shows that |N(J ′′)| ≥ |J ′′|.

Although this proof is nonconstructive, we can easily find the matching
(once we know that it exists) by linear programming as in Section 8.2, or by
other known polynomial-time methods. �

There is a direct way of constructing the matching in the proof of
Lemma 8.3.3 that relies neither on Halls’s theorem nor on general (bi-
partite) matching algorithms. It goes as follows: Lemma 8.3.2 implies
that each connected component of G′ is either a tree, or a tree with
one extra edge connecting two of its vertices. In the latter case, the
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component has exactly one cycle of even length, because G′ is bipar-
tite. Therefore, we can match all jobs occurring on cycles, and after
removing the vertices of all cycles, we are left with a subgraph G′′, all
of whose connected components are trees, with at most one vertex per
tree being a former neighbor of a cycle vertex. It follows that in every
tree of G′′, at most one vertex can be a job of degree one, since all
other degree-one vertices already had degree one in G′ and are there-
fore machines.

The matching of the remaining jobs is easy. We root any tree in
G′′ at its unique job of degree one (or at any vertex if there is no such
job), and we match every job to one of its children in the rooted tree.
For this, we observe that there cannot be an isolated job in G′′: Since
a job in G′′ was on no cycle in G′, the removal of cycles can affect only
one of the at least two neighbors of the job in G′.

For our running example, here is a complete assignment of jobs to ma-
chines obtained from the described procedure:

M

J

G

Choosing the parameter T . How good is the bound we get from the pre-
vious lemma? We will assume that t∗ is the value of an optimal basic feasible
solution of the LP relaxation with parameter T . Then t∗ is a lower bound
for the optimum makespan topt, so this part of the bound looks promising.
But when we recall that T must be an upper bound for topt in order for our
second integer program to be valid, it seems that we would have to choose
T = topt to get makespan at most 2topt. But this cannot be done, since we
have argued above that it is hard to compute topt (and if it were easy, there
would be no need for an approximate solution anyway).

Luckily, there is a way out. Reading Lemma 8.3.3 carefully, we see that
T only needs to be chosen so that the LP relaxation LPR(T ) is feasible, and
there is no need for the second integer program to be feasible.

If LPR(T ) is feasible, Lemma 8.3.3 allows us to construct a schedule with
makespan at most t∗+T , so the best T is the one that minimizes t∗+T subject
to LPR(T ) being feasible. Since t∗ depends on T , we make this explicit now
by writing t∗ = t∗(T ). If LPR(T ) is infeasible, we set t∗(T ) = ∞.

How to find the best T . We seek a point T ∗ in which the function f(T ) =
t∗(T ) + T attains a minimum.

First we observe that t∗(T ) is a step function as in the following picture:
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T

t̃(T )

t̃(T ) = ∞

here

d35 d24 d27 . . . max dij

Indeed, let us start with the value T = maxij dij , and let us decrease T
continuously. The value of t∗(T ) may change (jump up) only immediately
after moments when a new constraint of the form xij = 0 appears in LPR(T ),
and this happens only for T = dij . Between these values the function t∗(T )
stays constant.

Consequently, the function f(T ) = t∗(T ) + T is linearly increasing on
each interval between two consecutive dij ’s, and the minimum is attained at
some dij . So we can compute the minimum, and the desired best value T ∗,
by solving at most mn linear programs of the form LPR(T ), with T ranging
over all dij . Under our convention that t∗(T ) = ∞ if LPR(T ) is infeasible,
the minimum will be attained at a value T ∗ with LPR(T ∗) feasible.

8.3.4 Theorem. Let T ∗ be the value of T that minimizes t∗(T ) + T . With
T = T ∗, the algorithm in the proof of Lemma 8.3.3 computes a schedule of
makespan at most 2topt.

Proof. We know that for T = topt, the second integer program is feasible and
has optimum value topt. Hence LPR(topt) is feasible as well and its optimum
value can be only smaller: t∗(topt) ≤ topt. We thus have

t∗(T ∗) + T ∗ = minT

(
t∗(T ) + T

)

≤ t∗(topt) + topt

≤ 2topt.

�

The 2-approximation algorithm for the scheduling problem is
adapted from the paper

J. K. Lenstra, D. B. Shmoys, É. Tardos: Approximation algo-
rithms for scheduling unrelated parallel machines, Mathemat-
ical Programming 46(1990), pages 259–271.
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The paper also proves that it is NP-hard to approximate the optimum
makespan with a factor less than 3

2 .
Aiming at simplicity, we have presented a somewhat inefficient

version of the algorithm. A considerably faster version, with the same
approximation guarantee, can be obtained if we do not minimize the
function T �→ t∗(T ) + T , but instead we only look for the smallest T
with t∗(T ) ≤ T . Such a value of T still guarantees t∗(T ) + T ≤ 2topt,
but it can be found by binary search over the sorted sequence of the dij .
In this way, it suffices to solve LPR(T ) for O(log mn) values of T ,
instead of mn values as in our presentation. See the paper quoted
above for details.

8.4 Upper Bounds for Codes

Error-correcting codes. Let us consider a DVD player that has a remote
control unit with 16 keys. Whenever one of the keys is pressed, the unit needs
to communicate this event to the player.

A natural option would be to send a 4-bit sequence: Since there are 24 =
16 different 4-bit sequences (referred to as “words” in this context), a 4-bit
sequence is an economical way of communicating one of 16 possibilities.

However, let us suppose that the transmission of bits from the remote
control to the player is not quite reliable, and that each of the transmitted
bits can be received incorrectly with some small probability, say 0.005. Then
we expect that about 2% of the commands are received incorrectly, which
can be regarded as a rather serious flaw of the device.

One possibility of improvement is to triple each of the four transmitted
bits. That is, instead of a 4-bit word abcd the unit sends the 12-bit word
aaabbbcccddd. Now a transmission error in a single bit can be recognized
and corrected. For example, if the sequence 111001000111 is received, and
if we assume that at most one bit was received erroneously, it is clear that
111000000111 must have been sent. Thus the original 4-bit sequence was
1001. Of course, it might be that actually two or more bits are wrong, and
then the original sequence is not reconstructed correctly, but this has much
lower probability. Namely, if we assume that the errors in different bits are
independent and occur with probability 0.005 (which may or may not be
realistic, depending on the technical specifications), then the probability of
two or more errors in a 12-bit sequence is approximately 0.16%. This is a
significant improvement in reliability. However, the price to pay is transmit-
ting three times as many bits, which presumably exhausts the battery of the
remote control much faster.

A significantly better solution to this problem was discovered by Richard
Hamming in the 1950s (obviously not in the context of DVD players). In
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order to distinguish 16 possibilities, we send one of the following 7-bit words:
0000000, 0001011, 0010101, 0011110, 0100110, 0101101, 0110011, 0111000,
1000111, 1001100, 1010010, 1011001, 1100001, 1101010, 1110100, 1111111. It
can be checked that every two of these words differ in at least 3 bits. (This
fact can be checked by brute force, but it is also a consequence of an elegant
general theory, which we do not treat here.) Therefore, if one error occurs in
the transmission, the sequence that was sent can be reconstructed uniquely.
Hence the capability of correcting any single-bit error is retained, but the
number of transmitted bits is reduced to slightly more than half compared
to the previous approach.

A similar problem can be investigated for other settings of the parameters
as well. In general, we want to communicate one of N possibilities, we do it
by transmitting an n-bit word, and we want that any at most r errors can
be corrected.

This problem has an enormous theoretical and practical significance. Our
example with a DVD player was simple-minded, but error-correcting codes
play a role in any technology involving transmission or storage of information,
from computer disks and cell phones to deep-space probes. We now introduce
some common terminology related to error-correcting codes.

Terminology. The Hamming distance of two words w,w′ ∈ {0, 1}n is the
number of bits in which w differs from w′:

dH(w,w′) := |{j ∈ {1, . . . , n} : wj �= w′
j}|.

The Hamming distance can be interpreted as the number of errors “neces-
sary” to transform w into w′. The weight of w ∈ {0, 1}n is the number of
1’s in w:

|w| := |{j ∈ {1, . . . , n} : wj = 1}|.

Finally, for w,w′ ∈ {0, 1}n, we define their sum modulo 2 as the word

w ⊕ w′ = ((w1 + w′
1)mod 2, . . . , (wn + w′

n)mod 2) ∈ {0, 1}n.

These three notions are interrelated by the formula

dH(w,w′) = |w ⊕ w′|. (8.6)

In the last of the solutions to the DVD-player problem discussed above,
the crucial object was the set C = {0000000, 0001011, 0010101, 0011110,
0100110, 0101101, 0110011, 0111000, 1000111, 1001100, 1010010, 1011001,
1100001, 1101010, 1110100, 1111111} of 7-bit words in which every two dis-
tinct words had Hamming distance at least 3. In coding theory, any subset
C ⊆ {0, 1}n is called a code. (This may sound strange, since under a code one
usually imagines some kind of method or procedure for coding, but in the
theory of error-correcting codes one has to get used to this terminology.) For
correcting errors, the crucial parameter is the distance of the code:
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8.4.1 Definition. A code C ⊆ {0, 1}n has distance d if dH(w,w′) ≥ d
for any two distinct words w,w′ in C. For n, d ≥ 0, let A(n, d) denote the
maximum cardinality of a code C ⊆ {0, 1}n with distance d.

We claim that a code C can correct any at most r errors if and only if it has
distance at least 2r + 1. Indeed, on the one hand, if C contained two distinct
words w′,w′′ that differ in at most 2r bits, we consider any word w resulting
from w′ by flipping exactly half of the bits (rounded down) that distinguish
w′ from w′′. When the word w is received, there is no way to tell which of
the words w′ and w′′ was intended. On the other hand, if any two distinct
code words differ by at least 2r +1 bits, then for any word w ∈ {0, 1}n there
is at most one code word from which w can be obtained through r or fewer
errors, and this must be the word that was sent when w is received.

Given the number n of bits we can afford to transmit and the number
r of errors we need to be able to correct, we want a code C ⊆ {0, 1}n with
distance at least 2r + 1 and with |C| as large as possible, since the number
of words in the code corresponds to the amount of information that we can
transmit. Thus determining or estimating A(n, d), the maximum possible size
of a code C ⊆ {0, 1}n with distance d, is one of the main problems of coding
theory.

The problem of finding the largest codes for given n and r can in principle
be solved by complete enumeration: We can go through all possible subsets of
{0, 1}n and output the largest one that gives a code with distance d. However,
this method becomes practically infeasible already for very small n. It turns
out that the problem, for arbitrary n and d, is computationally difficult (NP-
hard). Starting from very moderate values of n and d, the maximum code
sizes are not exactly known, except for few lucky cases. Tightening the known
upper and lower bounds on maximum sizes of error-correcting codes is the
topic of ongoing research in coding theory.

In this section we present a technique for proving upper bounds based
on linear programming. When this technique was introduced by Philippe
Delsarte in 1973, it provided upper bounds of unprecedented quality.

Special cases. For all n, we have A(n, 1) = 2n, because any code has dis-
tance 1. The case d = 2 is slightly more interesting. By choosing C as the set
of all words of even weight, we see that A(n, 2) ≥ 2n−1. But we actually have
A(n, 2) = 2n−1, since it is easy to show by induction that every code with
more than 2n−1 words contains two words of Hamming distance 1.

Given the simplicity of the cases d = 1, 2, it may come as a surprise that
already for d = 3, little is known. This is the setup for error-correcting codes
with one error allowed. Exact values of A(n, 3) have been determined only
up to n ≤ 16; for n = 17, for example, the known bounds are

5312 ≤ A(17, 3) ≤ 6552.
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The sphere-packing bound. For any n and d, a simple upper bound
on A(n, d) can be obtained by a volume argument. Let us motivate this
with a real-life analogy. The local grocery is exhibiting a large glass box
filled with peas, and the person to make the most accurate estimate
of the number of peas in the box wins a prize. Without any counting,
you can conclude that the number of peas is bounded above by the
volume of the box divided by the volume of a single pea (assuming
that all the peas have the same volume).

The same kind of argument can be used for the number A(n, d),
where we may assume in our application that d = 2r + 1 is odd. Let
us fix any code C of distance d. Now we think of the set {0, 1}n as the
glass box, and of the |C| Hamming balls

B(w, r) := {w′ ∈ {0, 1}n : dH(w,w′) ≤ r}, w ∈ C,

as the peas. Since the code has distance 2r+1, all these Hamming balls
are disjoint and correspond in our analogy to peas. Consequently, their
number cannot be larger than the total number of words (the volume
of the box) divided by the number of words in a single Hamming ball
(the volume of a pea). The number of words at Hamming distance
exactly i from w is

(
n
i

)
. This implies

|B(w, r)| =

r∑

i=0

(
n

i

)
,

and the following upper bound on A(n, 2r + 1) is obtained.

8.4.2 Lemma (Sphere-packing bound).For all n and r,

A(n, 2r + 1) ≤
⌊

2n

∑r
i=0

(
n
i

)
⌋

.

For example, the sphere-packing bound gives A(7, 3) ≤ 16 (and so
the Hamming code in our initial example is optimal), and

A(17, 3) ≤ �131072/18� = 7281.

In the following theorem, which is the main result of this section, an upper
bound on A(n, d) is expressed as an optimum of a certain linear program.

8.4.3 Theorem (The Delsarte bound). For integers n, i, t with 0 ≤ i,
t ≤ n, let us put

Kt(n, i) =

min(i,t)∑

j=0

(−1)j

(
i

j

)(
n − i

t − j

)
.
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Then for every n and d, A(n, d) is bounded above by the optimum value of
the following linear program in variables x0, x1, . . . , xn:

Maximize x0 + x1 + · · · + xn

subject to x0 = 1
xi = 0, i = 1, 2, . . . , d − 1∑n

i=0 Kt(n, i) · xi ≥ 0, t = 1, 2, . . . , n
x0, x1, . . . , xn ≥ 0.

Example. Using the sphere packing bound, we have previously found
A(17, 3) ≤ 7281. To compute the Delsarte bound, we solve the linear program
in the theorem (after eliminating x0, x1, x2, which are actually constants, we
have 15 nonnegative variables and 17 constraints). The optimum value is
6553 3

5 , which implies A(17, 3) ≤ 6553. The current best upper bound is 6552,
an improvement by only 1!

Toward an explanation. The proof of the Delsarte bound will proceed as
follows. With every subset C ⊆ {0, 1}n we associate nonnegative real quan-
tities x̃0, x̃1, . . . , x̃n such that |C| = x̃0 + · · · + x̃n. Then we will show that
whenever C is a code with distance d, the x̃i constitute a feasible solution of
the linear program in the theorem. It follows that the maximum of the linear
program is at least as large as the size of any existing code C with distance d
(but of course, it may be larger, since a feasible solution does not necessarily
corresponds to a code).

Given C ⊆ {0, 1}n, the x̃i are defined by

x̃i =
1

|C| ·
∣∣∣{(w,w′) ∈ C2 : dH(w,w′) = i}

∣∣∣, i = 0, . . . , n.

Thus, x̃i is the number of ordered pairs of code words with Hamming dis-
tance i, divided by the total number of code words. Since any of the |C|2
ordered pairs contributes to exactly one of the x̃i, we have

x̃0 + x̃1 + · · · + x̃n = |C|.

Some of the constraints in the linear program in Theorem 8.4.3 are now
easy to understand. We clearly have x̃0 = 1, since every w ∈ C has distance 0
only to itself. The equations x̃1 = 0 through x̃d−1 = 0 hold by the assumption
that C has distance d; that is, there are no pairs of code words with Hamming
distance between 1 and d−1. Interestingly, this is the only place in the proof
of the Delsarte bound where the assumption of C being a code with distance d
is used.

The remaining set of constraints is considerably harder to derive, and it
lacks a really intuitive explanation. Thus, to prove Theorem 8.4.3, we have
to establish the following.

8.4.4 Proposition. Let C ⊆ {0, 1}n be an arbitrary set, let x̃i = x̃i(C) be
defined as above, and let t ∈ {1, 2, . . . , n}. Then we have the inequality
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n∑

i=0

Kt(n, i) · x̃i ≥ 0.

In the next lemma, I ⊆ {1, 2, . . . , n} is a set of indices, and we write
dI

H(w,w′) for the number of indices i ∈ I with wi �= w′
i (thus, the components

outside I are ignored).

8.4.5 Lemma. Let I ⊆ {1, 2, . . . , n} be a set of indices, and let C ⊆ {0, 1}n.
Then the number of pairs (w,w′) ∈ C2 with dI

H(w,w′) even is at least as large
as the number of pairs (w,w′) ∈ C2 with dI

H(w,w′) odd. (In probabilistic
terms, if we choose w,w′ ∈ C independently at random, then the probability
that they differ in an even number of positions from I is at least as large as
the probability that they differ in an odd number of positions from I.)

Proof. Let us write |w|I = |{i ∈ I : wi = 1}|, and let us set

E = {w ∈ C : |w|I is even}, O = {w ∈ C : |w|I is odd}.

From the equation dI
H(w,w′) = |w ⊕ w′|I , we see that if dI

H(w,w′) is even,
then |w|I and |w′|I have the same parity, and so w and w′ are both in E
or both in O. On the other hand, for dI

H(w,w′) odd, one of w, w′ lies in
E and the other one in O. So the assertion of the lemma is equivalent to
|E|2 + |O|2 ≥ 2 · |E| · |O|, which follows by expanding (|E| − |O|)2 ≥ 0. �

8.4.6 Corollary. For every C ⊆ {0, 1}n and every v ∈ {0, 1}n we have

∑

(w,w′)∈C2

(−1)(w⊕w′)T v ≥ 0.

Proof. This is just another way of writing the statement of Lemma 8.4.5.
Indeed, if we set I = {i : vi = 1}, then (w ⊕ w′)T v = dI

H(w,w′), and
hence the sum in the corollary is exactly the number of pairs (w,w′) with
dI

H(w,w′) even minus the number of pairs with dI
H(w,w′) odd.

The corollary also has a quick algebraic proof, which some readers may
prefer. It suffices to note that (w⊕w′)T v has the same parity as (w+w′)T v
(addition modulo 2 was replaced by ordinary addition of integers), and so

∑

(w,w′)∈C2

(−1)(w⊕w′)T v =
∑

(w,w′)∈C2

(−1)(w+w′)T v

=
∑

(w,w′)∈C2

(−1)w
T v · (−1)w

′T v

=

(∑

w∈C
(−1)w

T v

)2

≥ 0.

�
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Proof of Proposition 8.4.4. To prove the tth inequality in the proposition,
i.e.,

∑n
i=0 Kt(n, i) · x̃i ≥ 0, we sum the inequality in Corollary 8.4.6 over all

v ∈ {0, 1}n of weight t. Interchanging the summation order, we obtain

0 ≤
∑

(w,w′)∈C2

∑

v∈{0,1}n: |v|=t

(−1)(w⊕w′)T v.

To understand this last expression, let us fix u = w ⊕ w′ and write S(u) =∑
v∈{0,1}n: |v|=t(−1)u

T v. In this sum, the v with uT v = j are counted with

sign (−1)j . How many v of weight t and with uT v = j are there? Let i =
|u| = dH(w,w′) be the number of 1’s in u. In order to form such a v, we
need to put j ones in positions where u has 1’s and t − j ones in positions
where u has 0’s. Hence the number of these v is

(
i
j

)(
n−i
t−j

)
, and

S(u) =

min(i,t)∑

j=0

(−1)j

(
i

j

)(
n − i

t − j

)
,

which we recognize as Kt(n, i). So we have

0 ≤
∑

(w,w′)∈C2

Kt(n, dH(w,w′)),

and it remains to note that the number of times Kt(n, i) appears in this
sum is |C| · x̃i. This finishes the proof of Proposition 8.4.4 and thus also of
Theorem 8.4.3. �

A small strengthening of the Delsarte bound. We have seen
that Theorem 8.4.3 yields A(17, 3) ≤ 6553. We show how the inequal-
ities in the theorem can be slightly strengthened using a parity argu-
ment, which leads to the best known upper bound A(17, 3) ≤ 6552.
Similar tricks can improve the Delsarte bound in some other cases as
well, but the improvements are usually minor.

For contradiction let us suppose that n = 17 and there is a code
C ⊆ {0, 1}n of distance 3 with |C| = 6553. The size of C is odd, and we
note that for every code of odd size and every t, the last inequality in
the proof of Corollary 8.4.6 can be strengthened to

(∑

w∈C
(−1)w

T v

)2

≥ 1,

since an odd number of values from {−1, 1} cannot sum to zero. If we
propagate this improvement through the proof of Proposition 8.4.4,
we arrive at the following inequality for the x̃i:
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n∑

i=0

Kt(n, i) · x̃i ≥
(
n
t

)

|C| .

Since in our particular case we suppose |C| = 6553, we can replace
the constraints

∑n
i=0 Kt(n, i) · xi ≥ 0, t = 1, 2, . . . , n, in the linear

program in Theorem 8.4.3 by
∑n

i=0 Kt(n, i) · xi ≥
(
n
t

)
/6553, and the

x̃i defined by our C remain a feasible solution. However, the optimum
of this modified linear program is only 6552 3

5 , which contradicts the
assumption |C| = 6553. This proves A(17, 3) ≤ 6552.

The paper

M. R. Best, A. E.Brouwer, F. J.MacWilliams, A. M. Odlyzko,
and N. J.A. Sloane: Bounds for binary codes of length less
than 25, IEEE Trans. Inform. Theory 24 (1978), pages 81–
93.

describes this particular strengthening of the Delsarte bound and some
similar approaches. A continually updated table of the best known
bounds for A(n, d) for small n and d is maintained by Andries Brouwer
at

http://www.win.tue.nl/~aeb/codes/binary-1.html.

The Delsarte bound explained. The result in Theorem 8.4.3 goes
back to the thesis of Philippe Delsarte:

P. Delsarte: An algebraic approach to the association schemes
of coding theory, Philips Res. Repts. Suppl. 10 (1973).

Here we sketch Delsarte’s original proof. At a comparable level of
detail, his proof is more involved than the ad hoc proof above (from
the paper by Best et al.). On the other hand, Delsarte’s proof is more
systematic, and even more importantly, it can be extended to prove a
stronger result, which we mention below.

For i ∈ {0, . . . , n}, let Mi be the 2n × 2n matrix defined by1

(Mi)v,w =

{
1 if dH(v,w) = i
0 otherwise.

The set of matrices of the form

n∑

i=0

yiMi, y0, . . . , yn ∈ R,

is known to be closed under addition and scalar multiplication (this is
clear), and under matrix multiplication (this has to be shown). A set

1 We assume that rows and columns are indexed by the words from {0, 1}n.
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of matrices closed under these operations is called a matrix algebra.
In our case, one speaks of the Bose–Mesner algebra of the Ham-
ming association scheme. The matrix multiplication turns out to
be commutative on this algebra, and this is known to imply a strong
condition: The Mi have a common diagonalization, meaning that there
is an orthogonal matrix U with UT MiU diagonal for all i.

Once we know this, it is a matter of patience to find such a ma-
trix U . For example, the matrix U defined by

Uv,w =
1

2n/2
(−1)v

T w

will do. First we have to check (this is easy) that this matrix is indeed
orthogonal, meaning that UT U = In.

For the entries of UT MiU , we can derive the formula

(UT MiU)v,w =
1

2n

∑

(u,u′)∈({0,1}n)2

dH(u,u′)=i

(−1)u
T v+u′T w.

We claim that this sum evaluates to 0 whenever v �= w; this will imply
that UT MiU is indeed a diagonal matrix. To prove the claim, we let
j be any index for which vj �= wj . In the sum, we can then pair up the
terms for (u,u′) and (u ⊕ ej ,u

′ ⊕ ej), with ej being the word with a
1 exactly at position j. This pairing covers all terms of the sum, and
paired-up terms are easily seen to cancel each other. (If you didn’t
believe UT U = In, this can be shown with an even simpler pairing
argument along these lines.)

On the diagonal, we get

(UT MiU)w,w =
1

2n

∑

(u,u′)∈({0,1}n)2

dH(u,u′)=i

(−1)(u⊕u′)T w

=
∑

v∈{0,1}n

|v|=i

(−1)v
T w = Ki(n, |w|)

(for the last equality see the proof of Proposition 8.4.4) since any v of
weight i can be written in the form v = u ⊕ u′ in 2n different ways,
one for each u ∈ {0, 1}n.

Next, let us fix a code C and look at a specific matrix in the Bose–
Mesner algebra. For this, we define the values

ỹi =
|{(w,w′) ∈ C2 : dH(w,w′) = i}|

2n
(

n
i

) , i = 0, . . . , n.
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We note that ỹi is the probability that a randomly chosen pair of
words with Hamming distance i is a pair of code words. Moreover,
ỹi is related to our earlier quantity x̃i via

ỹi =
|C|

2n
(

n
i

) x̃i. (8.7)

Here comes Delsarte’s main insight.

8.4.7 Lemma. The matrix M̃ =
∑n

i=0 ỹiMi is positive semidefinite.

Proof. We first observe that

M̃v,w = ỹi, (8.8)

where i = dH(v,w). We will express M̃ as a positive linear combi-
nation of matrices that are obviously positive semidefinite. We start
with the matrix XC defined by

XC
v,w =

{
1 if (v,w) ∈ C2

0 otherwise.

This matrix is positive semidefinite, since it can be written in the form

XC = xC(xC)T ,

where xC is the characteristic vector of C:

xC
w :=

{
1 if w ∈ C
0 otherwise.

Let Π be the automorphism group of {0, 1}n, consisting of the
n!2n bijections that permute indices and swap 0’s with 1’s at selected
positions. With τ chosen uniformly at random from Π, we obtain2

Prob
[
(v,w) ∈ τ(C)2

]
=

1

|Π|
∑

π∈Π

[
(v,w) ∈ π(C)2

]

=
1

|Π|
∑

π∈Π

Xπ(C)
v,w .

On the other hand,

Prob
[
(v,w) ∈ τ(C)2

]
= Prob

[
(τ−1(v), τ−1(w)) ∈ C2

]
= ỹi,

since τ−1 is easily shown to map (v,w) to a random pair of words
with Hamming distance i.

2 The indicator variable [P ] of a statement P has value 1 if P holds and 0 otherwise.
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Using (8.8), this shows that

M̃ =
1

|Π|
∑

π∈Π

Xπ(C)

is a positive linear combination of positive semidefinite matrices and
is therefore positive semidefinite itself. The lemma is proved. �

After diagonalization of M̃ by the matrix U , the statement of
Lemma 8.4.7 can equivalently be written as

n∑

i=0

ỹi(U
T MiU)w,w =

n∑

i=0

ỹiKi(n, |w|) ≥ 0, w ∈ {0, 1}n.

This is true since diagonalization preserves the property of being posi-
tive semidefinite, which for diagonal matrices is equivalent to nonneg-
ativity of all diagonal entries.

Taking into account the relation (8.7) between the ỹi and our orig-
inal x̃i, this implies the following inequalities for any code C.

n∑

i=0

x̃i
Ki(n, t)(

n
i

) ≥ 0, t = 1, . . . , n. (8.9)

Observing that (
t
j

)(
n−t
i−j

)
(
n
i

) =

(
i
j

)(
n−i
t−j

)
(
n
t

) ,

we get (cf. the definition of Kt in Theorem 8.4.3)

Ki(n, t)(
n
i

) =
Kt(n, i)(

n
t

) .

Under this equation, the inequalities in (8.9) are equivalent to those
in Proposition 8.4.4 and we recover the Delsarte bound.

Beyond the Delsarte bound. Alexander Schrijver generalized Del-
sarte’s approach and improved the upper bounds on A(n, d) signifi-
cantly in many cases:

A. Schrijver: New code upper bounds from the Terwilliger al-
gebra and semidefinite programming, IEEE Trans. Inform.
Theory 51 (2005), pages 2859–2866.

His work uses semidefinite programming instead of linear program-
ming.
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8.5 Sparse Solutions of Linear Systems

A coding problem. We begin with discussing error-correcting codes again,
but this time we want to send a sequence w ∈ Rk of k real numbers. Or
rather not we, but a deep-space probe which needs to transmit its priceless
measurements represented by w back to Earth. We want to make sure that
all components of w can be recovered correctly even if some fraction, say 8%,
of the transmitted numbers are corrupted, due to random errors or even
maliciously (imagine that the secret Brotherhood for Promoting the Only
Truth can somehow tamper with the signal slightly in order to document the
presence of supernatural phenomena in outer space). We admit gross errors;
that is, if the number 3.1415 is sent and it gets corrupted, it can be received
as 2152.66, or 3.1425, or −1011, or any other real number.

Here is a way of encoding w: We choose a suitable number n > k and a
suitable n×k encoding matrix Q of rank k, and we send the vector z = Qw ∈
Rn. Because of the errors, the received vector is not z but z̃ = z + x, where
x ∈ Rn is a vector with at most r = �0.08n� nonzero components. We ask,
under what conditions on Q can z be recovered from z̃?

Somewhat counterintuitively, we will concentrate on the task of finding
the “error vector” x. Indeed, once we know x, we can compute w by solving
the system of linear equations Qw = z = z̃−x. The solution, if one exists, is
unique, since we assume that Q has rank k and hence the mapping w �→ Qw
is injective.

Sparse solutions of underdetermined linear systems. In order to
compute x, we first reformulate the recovery problem. Let m = n−k and let A
be an m×n matrix such that AQ = 0. That is, considering the k-dimensional
linear subspace of Rn generated by the columns of Q, the rows of A form
a basis of its orthogonal complement. The following picture illustrates the
dimensions of the matrices:

Qn

k

AT

AQ = 0

m

︸ ︷︷ ︸
n

In the recovery problem we have z̃ = Qw + x. Multiplying both sides by A
from the left, we obtain Az̃ = AQw+Ax = Ax. Setting b = Az̃, we thus get
that the unknown x has to satisfy the system of linear equations Ax = b.
We have m = n − k equations and n > m unknowns; the system is under-
determined and it has infinitely many solutions. In general, not all of these
solutions can appear as an error vector in the decoding problem (we note that
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the multiplication by A above is not necessarily an equivalent transformation
and so it may give rise to spurious solutions). However, we seek a solution x
with the extra property |supp(x)| ≤ r, where we introduce the notation

supp(x) = {i ∈ {1, 2, . . . , n} : xi �= 0}.

As we will see, under suitable conditions relating n, m, r and A, such a sparse
solution of Ax = b turns out to be unique (and thus it has to be the desired
error vector), and it can be computed efficiently by linear programming!

Let us summarize the resulting problem once again:

Sparse solution of underdetermined system of linear equations

Given an m×n matrix A with m < n, a vector b ∈ Rm, and an integer r,
find an x ∈ Rn such that

Ax = b and |supp(x)| ≤ r (8.10)

if one exists.

The coding problem above is only one among several important practical
problems leading to the computation of sparse solutions of underdetermined
systems. We will mention other applications at the end of this section. From
now on, we call any x satisfying (8.10) a sparse solution to Ax = b. (Warn-
ing: This shouldn’t be confused with solutions of sparse systems of equations,
which is an even more popular topic in numerical mathematics and scientific
computing.)

A linear algebra view. There is a simple necessary and sufficient condition
guaranteeing that there is at most one sparse solution of Ax = b.

8.5.1 Observation. With n, m, r fixed, the following two conditions on an
m×n matrix A are equivalent:

(i) The system Ax = b has at most one sparse solution x for every b.
(ii) Every 2r or fewer columns of A are linearly independent.

Proof. To prove the (more interesting) implication (ii)⇒(i), let us assume
that x′ and x′′ are two different sparse solutions of Ax = b. Then y = x′ −
x′′ �= 0 has at most 2r nonzero components and satisfies Ay = Ax′−Ax′′ = 0,
and hence it defines a linear dependence of at most 2r columns of A.

To prove (i)⇒(ii), we essentially reverse the above argument. Supposing
that there exists nonzero y ∈ Rn with Ay = 0 and |supp(y)| ≤ 2r, we write
y = x′ − x′′, where both x′ and x′′ have at most r nonzero components. For
example, x′ may agree with y in the first �|supp(y)|/2� nonzero components
and have 0’s elsewhere, and x′′ = x′−y has the remaining at most r nonzero
components of y with opposite sign. We set b = Ax′, so that x′ is a sparse
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solution of Ax = b, and we note that x′′ is another sparse solution since
Ax′′ = Ax′ − Ay = Ax′ = b. �

Let us note that (ii) implies that, in particular, m ≥ 2r. On the other
hand, if we choose a “random” 2r×n matrix A, we almost surely have every
2r columns linearly independent.3 So in the coding problem, if we set n so
that n = k + 2r, choose A randomly, and let the columns of Q form a basis
of the orthogonal complement of the row space of A, we seem to be done—a
random A has almost surely every 2r columns linearly independent, and in
such case, assuming that no more than r errors occurred, the sparse error
vector x is always determined uniquely, and so is the original message w.

Efficiency? But a major question remains—how can we find the unknown
sparse solution x? Unfortunately, it turns out that the problem of computing
a sparse solution of Ax = b is difficult (NP-hard) in general, even for A
satisfying the conditions of Observation 8.5.1.

Since the problem of finding a sparse solution of Ax = b is important
and computationally difficult, several heuristic methods have been proposed
for solving it at least approximately and at least in some cases. One of them,
described next, turned out to be considerably more powerful than the others.

Basis pursuit. A sparse solution x is “small” in the sense of having few
nonzero components. The idea is to look for x that is “small” in another
sense that is easier to deal with, namely, with small |x1| + |x2| + · · · + |xn|.
The last quantity is commonly denoted by ‖x‖1 and called the �1-norm of x
(while ‖x‖ = ‖x‖2 =

√
x2

1 + · · · + x2
n is the usual Euclidean norm, which can

also be called the �2-norm).4 We thus arrive at the following optimization
problem (usually called basis pursuit in the literature):

Minimize ‖x‖1 subject to x ∈ Rn and Ax = b. (BP)

3 In this book we don’t want to assume or introduce the knowledge required to
state and prove this claim rigorously. Instead, we offer the following semiformal
argument relying on a famous but nontrivial theorem. The condition of linear
independence of every 2r columns can be reformulated as det(AI) �= 0 for every
2r-element I ⊂ {1, 2, . . . , n}. Now for I fixed, det(AI) is a polynomial of degree
2r in the 2rn entries of A (it really depends only on 4r2 entries but never mind),
and the set of the matrices A with det(AI) = 0 is the zero set of this polynomial in
R2rn. The zero set of any nonzero polynomial is very “thin”; by Sard’s theorem,
it has Lebesgue measure 0. Hence the matrices A with det(AI) = 0 for at least
one I correspond to points in R2nr lying on the union of

`
n
2r

´
zero sets, each of

measure 0, and altogether they have measure 0. Therefore, such matrices appear
with zero probability in any “reasonable” continuous distribution on matrices,
for example, if the entries of A are chosen independently and uniformly from the
interval [−1, 1].

4 The letter � here can be traced back to the surname of Henri Lebesgue, the
founder of modern integration theory. A certain space of integrable functions on
[0, 1] is denoted by L1(0, 1) in his honor, and �1 is a “pocket version” of this
space consisting of countable sequences instead of functions.
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By a trick we have learned in Section 2.4, this problem can be reformulated
as a linear program:

Minimize u1 + u2 + · · · + un

subject to Ax = b
−u ≤ x ≤ u
x,u ∈ Rn, u ≥ 0.

(BP′)

To check the equivalence of (BP) and (BP′), we just note that in an optimal
solution of (BP′) we have ui = |xi| for every i.

The basis pursuit approach to finding a sparse solution of Ax = b thus
consists in computing an optimal solution x∗ of (BP) by linear programming,
and hoping that, with some luck, this x∗ might also be the sparse solution
or at least close to it.

At first sight it is not clear why basis pursuit should have any chance of
finding a sparse solution. After all, the desired sparse solution might have a
few huge components, while x∗, a minimizer of the �1-norm, might have all
components nonzero but tiny.

Surprisingly, experiments have revealed that basis pursuit actually per-
forms excellently, and it usually finds the sparse solution exactly even in con-
ditions that don’t look very favorable. Later these findings were confirmed
by rather precise theoretical results. Here we state the following particular
case of such results:

8.5.2 Theorem (Guaranteed success of basis pursuit). Let

m = �0.75n�,

and let A be a random m×n matrix, where each entry is drawn from the
standard normal distribution N(0, 1) and the entries are mutually indepen-
dent.5 Then with probability at least 1 − e−cm, where c > 0 is a positive
constant, the matrix A has the following property:

If b ∈ Rm is such that the system Ax = b has a solution x̃ with at
most r = �0.08n� nonzero components, then x̃ is a unique optimal
solution of (BP).

For brevity, we call a matrix A with the property as in the theorem BP-
exact (more precisely, we should say “BP-exact for r,” where r specifies the
maximum number of nonzero components). For a BP-exact matrix A we can

5 We recall that the distribution N(0, 1) has density given by the Gaussian “bell

curve” 1√
2π

e−x2/2. How can we generate a random number with this distribution?

This is implemented in many software packages, and methods for doing it can
be found, for instance, in

D. Knuth: The Art of Computer Programming, Vol. 2: Seminumerical Al-
gorithms, Addison-Wesley, Reading, Massachusetts, 1973.
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thus find a sparse solution of Ax = b exactly and efficiently, by solving the
linear program (BP′).

Returning to the coding problem from the beginning of the section, we
immediately obtain the following statement:

8.5.3 Corollary. Let k be a sufficiently large integer, let us set n = 4k,
m = 3k, let a random m×n matrix A be generated as in Theorem 8.5.2,
and let Q be an n×k matrix of rank k with AQ = 0 (in other words, the
column space of Q is the orthogonal complement of the row space of A).
Then the following holds with probability overwhelmingly close to 1: If Q is
used as a coding matrix to transmit a vector w ∈ Rk, by sending the vector
z = Qw ∈ Rn, then even if any at most 8% of the entries of z are corrupted,
we can still reconstruct w exactly and efficiently, by solving the appropriate
instance of (BP′).

Drawing the elements of A from the standard normal distribution
is not the only known way of generating a BP-exact matrix. Results
similar to Theorem 8.5.2, perhaps with worse constants, can be proved
by known techniques for random matrices with other distributions.
The perhaps simplest such distribution is obtained by choosing each
entry to be +1 or −1, each with probability 1

2 (and again with all
entries mutually independent).

A somewhat unpleasant feature of Theorem 8.5.2 and of similar
results is that they provide a BP-exact matrix only with high proba-
bility. No efficient method for verifying that a given matrix is BP-exact
is known at present, and so we cannot be absolutely sure. In practice
this is not really a problem, since the probability of failure (i.e., of
generating a matrix that is not BP-exact) can be made very small by
choosing the parameters appropriately, much smaller than the proba-
bility of sudden death of all people in the team that wants to compute
the sparse solution, for instance. Still, it would be nice to have explicit
constructions of BP-exact matrices with good parameters.

Random errors. In our coding problem, we allow for completely
arbitrary (even malicious) errors; all we need is that there aren’t too
many errors. However, in practice one may often assume that the er-
rors occur at random positions, and we want to be able to decode
correctly only with high probability, that is, for most (say 99.999%)
of the

(
n
r

)
possible locations of the r errors. It turns out that consid-

erably stronger numerical bounds can be obtained in this setting: For
example, Theorem 8.5.2 tells us that for m = �0.75n� and k = n−m,
we are guaranteed to fix any 0.08n errors with high probability, but it
turns out that we can also fix most of the possible r-tuples of errors for
r as large as 0.36n! For a precise statement see the paper of Donoho
quoted near the end of the section.
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Geometric meaning of BP-exactness. Known proofs of Theorem 8.5.2 or
similar results use a good deal of geometric probability and high-dimensional
geometry, knowledge which we want neither to assume nor to introduce in
this book. We thus have to omit a proof. Instead, we present an appealing
geometric characterization of BP-exact matrices, which is a starting point of
existing proofs.

For its statement we need to recall the crosspolytope, a convex polytope
already mentioned in Section 4.3. We will denote the n-dimensional crosspoly-
tope by Bn

1 , which should suggest that it is the unit ball of the �1-norm:

Bn
1 = {x ∈ Rn : ‖x‖1 ≤ 1}.

8.5.4 Lemma (Reformulation of BP-exactness). Let A be an m×n ma-
trix, m < n, let r ≤ m, and let L = {x ∈ Rn : Ax = 0} be the kernel (null
space) of A. Then A is BP-exact for r if and only if the following holds: For
every z ∈ Rn with ‖z‖1 = 1 (i. e., z is a boundary point of the crosspolytope)
and |supp(z)| ≤ r, the affine subspace L+z intersects the crosspolytope only
at z; that is, (L + z) ∩ Bn

1 = {z}.

Let us discuss an example with n = 3, m = 2, and r = 1, about the
only sensible setting for which one can draw a picture. If the considered
2×3 matrix A has full rank, which we may assume, then the kernel L is a
one-dimensional linear subspace of R3, that is, a line passing through the
origin. The points z coming into consideration have at most r = 1 nonzero
coordinate, and they lie on the boundary of the regular octahedron B3

1 , and
hence they are precisely the 6 vertices of B3

1 :

x1

x2

x3

L

The line L through the origin is drawn thick, and the condition in the lemma
says that each of the 6 translates of L to the vertices should only touch the
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crosspolytope. Another way of visualizing this is to look at the projection of
B3

1 to the plane orthogonal to L. Each of the translates of L is projected to a
point, and the crosspolytope is projected to a convex polygon. The condition
then means that all the 6 vertices should appear on the boundary in the
projection, as in the left picture below,

while the right picture corresponds to a bad L (the condition is violated at
the two vertices marked by dots that lie inside the projection). In general,
of course, L is not a line but a k-dimensional linear subspace of Rn, and the
considered points z are not only vertices of Bn

1 , but they can lie in all (r−1)-
dimensional faces of Bn

1 . Indeed, we note that the points z on the surface of
Bn

1 with at most r nonzero components are exactly the points of the union
of all (r−1)-dimensional faces, omitting the easy proof of this fact (but look
at least at the case n = 3, r = 2).

Proof of Lemma 8.5.4. First we assume that A is BP-exact, we consider
a point z with ‖z‖1 = 1 and |supp(z)| ≤ r, and we set b = Az. Then the
system Ax = b has a sparse solution, namely z, and hence z has to be the
unique point among all solutions of Ax = b that minimize the �1-norm.
Noting that the set of all solutions of Ax = b is exactly the affine subspace
L + z, we get that z is the only point in L + z with �1-norm at most 1. That
is, (L + z) ∩ Bn

1 = {z} as claimed.
Conversely, we assume that L satisfies the condition in the lemma and we

consider b ∈ Rm. Let us suppose that the system Ax = b has a solution x̃
with at most r nonzero components. If x̃ = 0, then b = 0, and clearly, 0 is
also the only optimum of (BP). For x̃ �= 0, we set z = x̃

‖x̃‖1

. Then ‖z‖1 = 1

and |supp(z)| ≤ r, and so by the assumption, z is the only point in L + z of
�1-norm at most 1. By rescaling we get that x̃ is the only point in L + x̃ of
�1-norm at most ‖x̃‖1, and since L + x̃ is the set of all solutions of Ax = b,
we get that A is BP-exact. �

Intuition for BP-exactness. We don’t have means for proving
Theorem 8.5.2, but now, using the lemma just proved, we can at least
try to convey some intuition as to why a claim like Theorem 8.5.2 is
plausible, and what kind of calculations are needed to prove it.

The kernel L of a random matrix A defines a random k-dimensional
subspace6 of Rn, where k = n−m. For proving Theorem 8.5.2, we need

6 The question, “What is a random k-dimensional subspace?” is a subtle one. For
us, the simplest way out is to define a random k-dimensional subspace as the
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to verify that L is good for every boundary point z of the crosspolytope
with |supp(z)| ≤ r, where we say that L is good for z if (L+z)∩Bn

1 =
{z}.

For z as above, let us define a convex cone Cz = {t(x − z) : t ≥
0, x ∈ Bn

1 }. Geometrically, we take the cone generated by all rays
emanating from z and intersecting the crosspolytope in a point other
than z, and we translate the cone so that z is moved to the origin.
Then L good for z means exactly that L ∩ Cz = {0}.

The points z on the boundary with at most r nonzero coordi-
nates fill out exactly the union of all (r−1)-dimensional faces of the
crosspolytope. Let F be one of these faces. It can be checked that the
cone Cz is the same for all z in the relative interior of F , so we can
define the cone CF associated with the face F (the reader may want
to consider some examples for the 3-dimensional regular octahedron).
Moreover, if y is a boundary point of F , then Cy ⊆ CF , and so if L
is good for some point in the relative interior of F , then it is good for
all points of F including the boundary.

Let pF denote the probability that a random L is bad (i.e., not
good) for some z ∈ F . Then the probability that L is bad for any
z at all is no more than

∑
F pF , where the sum is over all (r−1)-

dimensional faces of the crosspolytope.
It is not too difficult to see that the number of (r−1)-dimensional

faces is
(
n
r

)
2r, and that the cones CF of all of these faces are congruent

(they differ only by rotation around the origin). Therefore, all pF equal
the same number p = p(n, k, r), and the probability of L bad for at
least one z is at most

(
n
r

)
2rp. If we manage to show, for some values

of n, k, and r, that the expression
(
n
r

)
2rp is much smaller than 1,

then we can conclude that a random matrix A is BP-exact with high
probability.

Estimating p(n, k, r) is a nontrivial task; its difficulty heavily de-
pends on the accuracy we want to attain. Getting an estimate that is
more or less accurate including numerical constants, such as is needed
to prove Theorem 8.5.2, is quite challenging. On the other hand, if we
don’t care about numerical constants so much and want just a rough
asymptotic result, standard methods from high-dimensional convexity
theory lead to the goal much faster.

kernel of a random m×n matrix with independent normal entries as in Theo-
rem 8.5.2. Fortunately, this turns out to be equivalent to the usual (and “right”)
definition, which is as follows. One fixes a particular k-dimensional subspace R0,
say the span of the first k vectors of the standard basis, and defines a random
subspace as a random rotation of R0. This may not sound like great progress,
since we have just used the equally problematic-looking notion of random rota-
tion. But the group SO(n) of all rotations in Rn around the origin is a compact
group and hence it has a unique invariant probability measure (Haar measure),
which defines “random rotation” satisfactorily and uniquely.
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Here we conclude this very rough outline of the argument with
a few words on why one should expect p(n, k, r) to be very small
for k and r much smaller than n. Roughly speaking, this is because
for n large, the n-dimensional crosspolytope is a very lean and spiky
body, and the cones CF are very narrow for low-dimensional faces F .
Hence a random subspace L of not too large dimension is very likely to
avoid CF . As a very simplified example of this phenomenon, we may
consider k = r = 1. Then F is a vertex and CF is easily described. As
a manageable exercise, the reader may try to estimate the fraction of
the unit sphere centered at 0 that is covered by CF ; this quantity is
exactly half of the probability p(n, 1, 1) that a random line through 0
intersects CF nontrivially.

References. Basis pursuit was introduced in

S. Chen, D. L. Donoho, and M. A. Saunders: Atomic decom-
position by basis pursuit, SIAM J. Scientific Computing 20,
1(1999) 33–61.

A classical approach to finding a “good” solution of an underdeter-
mined system Ax = b would be to minimize ‖x‖2, rather than ‖x‖1

(a “least squares” or “generalized inverse” method), which typically
yields a solution with many nonzero components and is much less suc-
cessful in applications such as the decoding problem. Basis pursuit,
by minimizing the �1-norm instead, yields a basic solution with only
a few nonzero components.

Interestingly, several groups of researchers independently arrived
at the concept of BP-exactness and obtained the following general
version of Theorem 8.5.2: For every constant α ∈ (0, 1) there exists
β = β(α) > 0 such that a random �αn�×n matrix A is BP-exact for
r = �βn� with probability exponentially close to 1. Combined results
of two of these groups can be found in

E. J.Candès, M. Rudelson, T. Tao, and R. Vershynin: Error
correction via linear programming, Proc. 46th IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2005,
pages 295–308.

A third independent proof was given by Donoho. Later, and by yet an-
other method, he obtained the strongest known quantitative bounds,
including those in Theorem 8.5.2 (the previously mentioned proofs
yield a much smaller constant for α = 0.75 than 0.08). Among his
several papers on the subject we cite

D. Donoho: High-dimensional centrally symmetric polytopes
with neighborliness proportional to dimension, Discrete and
Computational Geometry 35(2006), 617–652,
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where he establishes a connection to the classical theory of convex
polytopes using a result in the spirit of Lemma 8.5.4 and the remarks
following it (but more elaborate). Through this connection he obtained
an interesting upper bound on β(α). For example, in the setting of
Theorem 8.5.2, there exists no �0.75n�×n BP-exact matrix at all with
r > 0.25n (assuming n large). Additional upper bounds, essentially
showing the existence results for BP-matrices in the above papers to
be asymptotically optimal, were proved by

N. Linial and I. Novik: How neighborly can a centrally sym-
metric polytope be?, Discr. Comput. Geom., in press.

We remark that our notation is a compromise among the notations
of the papers quoted above and doesn’t follow any of them exactly,
and that the term “BP-exact” is ours.

More applications of sparse solutions of underdetermined
systems. The problem of computing a sparse solution of a system of
linear equations arises in signal processing. The signal considered may
be a recording of a sound, a measurement of seismic waves, a picture
taken by a digital camera, or any of a number of other things. A clas-
sical method of analyzing signals is Fourier analysis, which from a
linear-algebraic point of view means expressing a given periodic func-
tion in a basis consisting of the functions 1, cosx, sinx, cos 2x, sin 2x,
cos 3x, sin 3x,. . . (the closely related cosine transform is used in the
JPEG encoding of digital pictures). These functions are linearly inde-
pendent, and so the expression (Fourier series) is unique. In the more
recent wavelet analysis7 one typically has a larger collection of basic
functions, the wavelets, which can be of various kinds, depending on
the particular application. They are no longer linearly independent,
and hence there are many different ways of representing a given signal
as a linear combination of wavelets. So one looks for a representa-
tion satisfying some additional criteria, and sparsity (small number of
nonzero coefficients) is a very natural criterion: It leads to an economic
(compressed) representation, and sometimes it may also help in ana-
lyzing or filtering the signal. For example, let us imagine that there is
a smooth signal that has a nice representation by sine and cosine func-
tions, and then an impulsive noise made of “spike” functions is added
to it. We let the basic functions be sines and cosines and suitable spike
functions, and by computing a sparse representation in such a basis
we can often isolate the noise component very well, something that
the classical Fourier analysis cannot do. Thus, we naturally arrive at
computing sparse solutions of underdetermined linear systems.

Another source is computer tomography (CT), where one has an
unknown vector x (each xi is the density of some small area of tissue,

7 Indeed, the newer picture encoding standard JPEG 2000 employs wavelets.
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say), and the CT scanner measures various linear combinations of
the xi, corresponding to rays through the tissue in various directions.
Sometimes there are reasons to expect that only a small number of
the pixels will have values xi different from the background level, and
when we want to reconstruct x from the scan, we again ask for a
sparse solution of a linear system. (More realistically, although less
intuitively, we don’t expect a small number of nonzero pixels, but
rather a small number of significantly nonzero coefficients in a suitable
wavelet representation.)

8.6 Transversals of d-Intervals

This section describes an application of the duality theorem in discrete geom-
etry and combinatorics. We begin with a particular geometric result. Then
we discuss concepts appearing in the proof in a more general context.

Helly’s and Gallai’s theorems. First let I = {I1, I2, . . . , In} be a family of
closed intervals on the real line such that every two of the intervals intersect.
It is easily seen that there exists a point common to all of the intervals in I:
Indeed, the rightmost among the left endpoints of the Ii is such a point.
In more detail, writing Ii = [ai, bi] and setting a = max{a1, . . . , an}, we
necessarily have ai ≤ a ≤ bi for all i, since ai ≤ a is immediate from the
definition of a, and if we had a > bi for some i, then Ii = [ai, bi] would be
disjoint from the interval beginning with a.

The statement just proved is a special (one-dimensional) case of a beau-
tiful and important theorem of Helly: If C1, C2, . . . , Cn are convex sets in Rd

such that any at most d + 1 of them have a point in common, then there is a
point common to all of the Ci. We will not prove this result; it is mentioned
as a background against which the forthcoming results can be better appre-
ciated.

It is easily seen that in general we cannot replace d + 1 by any smaller
number in Helly’s theorem. For example, in the plane, the assumption of
Helly’s theorem requires every three of the sets to have a common point,
and pairwise intersections are not enough. To see this, we consider n lines in
general position. They are convex sets, every two of them intersect, but no
three have a common point.

Let us now consider planar convex sets of a special kind, namely, cir-
cular disks. One can easily draw three disks such that every two inter-
sect, but no point is common to all three. However, there is a theorem
(Gallai’s) for pairwise intersecting disks in the spirit of Helly’s theorem: If
D = {D1, D2, . . . , Dn} is a family of disks in the plane in which every two
disks intersect, then there exist 4 points such that each Di contains at least
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one of them. With the (best possible) constant 4 this is a quite difficult the-
orem, but it is not too hard to prove a similar theorem with 4 replaced by
some large constant. The reader is invited to solve this as a puzzle.

A set of points as in the theorem that intersects every member of D is
called a transversal of D (sometimes one also speaks of piercing or stab-
bing D by a small number of points). Thus pairwise intersecting disks in
the plane always have a 4-point transversal, and Helly’s theorem asserts that
(d + 1)-wise intersecting convex sets in Rd have a one-point transversal.

What conditions on a family of sets guarantee that it has a small
transversal? This fairly general question subsumes many interesting particu-
lar problems and it has been the subject of much research. Here we consider
a one-dimensional situation. At the beginning of the section we dealt with a
family of intervals, and now we admit intervals with some bounded number
of “holes.”

Transversals for pairwise intersecting d-intervals. For an integer
d ≥ 1, a d-interval is defined as the union of d closed intervals on the
real line. The following picture shows three pairwise intersecting 2-intervals
(drawn solid, dashed, and dash-dotted, respectively) with no point common
to all three:

Thus, we cannot expect a one-point transversal for pairwise intersecting d-
intervals. But the following theorem shows the existence of a transversal
whose size depends only on d:

8.6.1 Theorem. Let J be a finite family of d-intervals such that J1∩J2 �= ∅
for every J1, J2 ∈ J . Then J has a transversal of size 2d2; that is, there exist
2d2 points such that each d-interval of J contains at least one of them.

At first sight it is not obvious that there is any bound at all for the
size of the transversal that depends only on d. This was first proved
in 1970, with a bound exponential in d, in

A. Gyárfás, J. Lehel: A Helly-type problem in trees, in Combi-
natorial Theory and its Applications, P. Erdős, A. Rényi, and
V.T. Sós, editors, North-Holland, Amsterdam, 1970, pages
571–584.

The best bound known at present is d2, and it has been established
using algebraic topology in

T. Kaiser: Transversals of d-intervals, Discrete Comput.
Geom. 18(1997) 195–203.

We are going to prove a bound that is worse by a factor of 2, but the
proof presented here is much simpler. It comes from
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N. Alon: Piercing d-intervals, Discrete Comput. Geom.
19(1998) 333–334,

following a general method developed in

N. Alon, D. Kleitman: Piercing convex sets and the Hadwiger–
Debrunner (p, q)-problem, Adv. Math. 96(1992) 103–112.

It is also known that the bound cannot be improved below a constant

multiple of d2

log d ; see

J. Matoušek: Lower bounds on the transversal numbers of d-
intervals, Discrete Comput. Geom. 26(2001) 283–287.

Working toward a proof of the theorem, we first show that in a family of
pairwise intersecting d-intervals, some point has to be contained in “many”
members of the family. For reasons that will become apparent later, we for-
mulate it for a finite sequence of d-intervals, so that repetitions are allowed.

8.6.2 Lemma. Let J1, J2, . . . , Jn be d-intervals such that Ji ∩ Jj �= ∅ for all
i, j ∈ {1, 2, . . . , n}. Then there is an endpoint of some Ji that is contained in
at least n/2d of the d-intervals.

Proof. Let T be the set of all ordered triples (p, i, j) such that p is one of
the at most d left endpoints of Ji, and p ∈ Jj . We want to bound the size
of T from below. Let us fix i ≤ j for a moment. Let p be the leftmost point of
the (nonempty) intersection Ji ∩ Jj . Clearly, p is a left endpoint of Ji or Jj ,
and thus T contains one of the triples (p, i, j) or (p, j, i). So every pair i, j,
i ≤ j, contributes at least one member of T , and thus |T | ≥

(
n
2

)
+ n ≥ n2/2.

Since there are at most dn possible values for the pair (p, i), it follows that
there exist p0 and i0 such that (p0, i0, j) ∈ T for at least (n2/2)/dn = n/2d
values of j. This means that p0 is contained in at least n/2d of the Jj . �

Next, we show that for every family of pairwise intersecting d-intervals
we can distribute weights on the endpoints such that every d-interval has
relatively large weight (compared to the total weight of all points).

8.6.3 Lemma. Let J be a finite family of pairwise intersecting d-intervals,
and let P denote the set of endpoints of the d-intervals in J . Then there are
nonnegative real numbers xp, p ∈ P , such that

∑

p∈J∩P

xp ≥ 1 for every J ∈ J , and

∑

p∈P

xp ≤ 2d.
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Before proving the lemma, let us see how it implies Theorem 8.6.1. Given
J and the weights as in the lemma, we will choose a set X ⊆ P such that
|X | ≤ 2d2, and each of the |X | + 1 open intervals into which X divides the
real axis contains points of P of total weight less than 1/d. Such an X can
be selected from P by a simple left-to-right scan: Let p1 < p2 < · · · < pm be
the points of P . We consider them one by one in this order, and we include
pi into X whenever

∑
j: p�<pj≤pi

xpj
≥ 1

d , where p� is the last point already

included in X (and we formally put p� = −∞ if no point has yet been included
in X). It is clear that none of the open intervals determined by X contains
weight 1/d or larger, and the bound on the size of X follows easily, using that
the total weight of all points of P is at most 2d.

We claim that X is a transversal of J . Indeed, considering a J ∈ J , at
least one of the d components of J is an interval containing points of P of
total weight at least 1/d, and so it contains a point of X .

Proof of Lemma 8.6.3 by duality. We formulate the problem of choosing
the weights xp as a linear program with variables xp, p ∈ P :

Minimize
∑

p∈P xp

subject to
∑

p∈J∩P xp ≥ 1 for every J ∈ J ,

x ≥ 0.

The linear program is certainly feasible; for instance, xp = 1 for all p is a
feasible solution. We would like to show that the optimum is at most 2d.

Using the dualization recipe from Section 6.2, we find that the dual linear
program has variables yJ , J ∈ J , and it looks as follows:

Maximize
∑

J∈J yJ

subject to
∑

J: p∈J∩P yJ ≤ 1 for every p ∈ P ,

y ≥ 0.

The dual linear program is feasible, too, since y = 0 is feasible. Then by the
duality theorem both the primal and the dual linear programs have optimal
solutions, x∗ and y∗, respectively, that yield the same value of the objective
functions.

We may assume that y∗ is rational: Indeed, we may take it to be a basic
feasible solution, and all basic feasible solutions are rational since all coeffi-
cients of the linear program are rational.

We now have some rational weight y∗
J for every J ∈ J such that no point

of P is contained in d-intervals of total weight exceeding 1, and we want to
show that the total weight of all J ∈ J cannot be larger than 2d.

Lemma 8.6.2 tells us that if all the d-intervals had the same weight, then
there would be a point contained in d-intervals of weight at least W/2d, where
W is the total weight of all d-intervals. Our weights need not all be equal,
but we will pass to the case of equal weights by replicating each d-interval a
suitable number of times.
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Let D be a common denominator of all the rational numbers y∗
J , J ∈ J ,

and let y∗
J = rJ

D , with rJ integral. Let (J1, J2, . . . , Jn) be a sequence that
includes each d-interval J ∈ J exactly rJ times (thus n =

∑
J∈J rJ ). By

Lemma 8.6.2 there is a point p ∈ P contained in at least n/2d members of
the sequence, which means that

∑

J∈J : p∈J

rJ ≥ n

2d
=

1

2d

∑

J∈J
rJ .

Dividing both sides by the common denominator D and multiplying by 2d
gives

2d ·
∑

J∈J : p∈J

y∗
J ≥

∑

J∈J
y∗

J .

Since y∗ is a feasible solution of the dual linear program, the left-hand side is
at most 2d, and so

∑
J∈J y∗

J ≤ 2d. This concludes the proof of Lemma 8.6.3
as well as of Theorem 8.6.1. �

Transversal number and matching number. Let us now look
at some of the concepts appearing in the proof of Theorem 8.6.1 in
a general context. Let V be an arbitrary finite set, and let F be a
system of subsets of V .

A set X ⊆ V is called a transversal of F if F ∩ X �= ∅ for every
F ∈ F . The transversal number τ(F) is the minimum possible
number of elements of a transversal of F .

Determining or estimating the transversal number of a given set
system is an important basic problem in combinatorics and combina-
torial optimization, including many other problems as special cases.
For example, if we consider a graph G = (V, E), and view the edges
as two-element subsets of V , then a transversal of E is exactly what
was called a vertex cover in Section 3.3.

Another useful notion is the matching number of F , denoted
by ν(F) and defined as the maximum number of sets in a subsystem
M ⊆ F such that no two distinct sets F1, F2 ∈ M intersect (such an
M is called a matching).

It is easily seen that ν(F) ≤ τ(F) for every F : If F has matching
number k, then F contains k pairwise disjoint sets; thus, we need at
least k points to get a transversal of F .

For the graph example, ν(E) is exactly the number of edges in a
maximum matching. This is also where the name “matching number”
comes from.

The condition in Theorem 8.6.1 that every two d-intervals in J
intersect can be rephrased as ν(J ) = 1. More generally, ν(F) ≤ k
means that among every k + 1 members of F we can find two that
intersect. There is a more general version of Theorem 8.6.1 stating
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that τ(J ) ≤ 2d2ν(J ) for every finite family of d-intervals. The proof
is very similar to the one shown for Theorem 8.6.1, except that the
analogue of Lemma 8.6.2 needs the well-known Turán’s theorem from
graph theory.

Fractional transversals and matchings. In the proof of Theo-
rem 8.6.1 we have implicitly used another parameter of a set system,
which always lies between ν(F) and τ(F) and which, unlike τ(F) and
ν(F), is efficiently computable. This new parameter can be introduced
in two seemingly different ways, which turn out to be equivalent by
the duality theorem of linear programming.

A fractional transversal of F is any feasible solution x to the
linear program

minimize
∑

v∈V xv

subject to
∑

v∈F xv ≥ 1 for every F ∈ F ,
x ≥ 0.

So in a fractional transversal one can take, say, one-third of one point
and two-thirds of another, but for each set, the fractions for points
in that set must add up to at least 1, one full point. The fractional
transversal number τ∗(F) is the optimal value of the objective func-
tion, i.e., the minimum possible total weight of a fractional transversal.

Every transversal T corresponds to a fractional transversal, given
by xv = 1 if v ∈ T and xv = 0 otherwise, and thus τ∗(F) ≤ τ(F) for
every F .

A fractional matching for F is any feasible solution y to the
linear program

maximize
∑

yF

subject to
∑

F : v∈F yF ≤ 1 for every v ∈ V ,
y ≥ 0,

and the optimal value of the objective function is the fractional match-
ing number ν∗(F).

Every matching M yields a fractional matching (we put yF = 1
for F ∈ M and yF = 0 otherwise). Thus, ν(F) ≤ ν∗(F).

Since the linear programs for τ∗ and for ν∗ are dual to each other,
we always have ν∗(F) = τ∗(F), and altogether we have the chain of
inequalities

ν(F) ≤ ν∗(F) = τ∗(F) ≤ τ(F).

We remark that if F is the set of edges of a bipartite graph, then
König’s theorem (Theorem 8.2.2) asserts exactly that ν(F) = τ(F).
On the other hand, if F is the edge set of a triangle (that is, F =
{{1, 2}, {1, 3}, {2, 3}}), then ν(F) = 1 < ν∗(F) = 3

2 < τ(F) = 2.
The proof of Theorem 8.6.1 can now be viewed as follows: First one

proves that ν∗(J ) ≤ 2d for every family of d-intervals with ν(J ) = 1,
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and then one shows that τ(J ) ≤ d · τ∗(J ). This proof scheme turned
out to be very powerful and it works in many other cases as well.

Fractional concepts. Besides the fractional matching and transver-
sal numbers, many other “fractional” quantities appear in combina-
torics and combinatorial optimization. The general recipe is to take
some useful integer-valued parameter Q of a graph, say, reformulate
its definition as an integer program, and introduce a “fractional Q” as
the optimum value of a suitable LP relaxation of the integer program.
In many cases such a fractional Q is useful for studying or approxi-
mating the original Q. The book

E. R. Scheinerman and D. H. Ullman: Fractional Graph The-
ory, John Wiley & Sons, New York 1997,

nicely presents such developments. Let us conclude this section by
quoting an example from that book. We consider five committees,
numbered 1,2,. . . ,5, such that 1 and 2 have a common member, and
so have 2 and 3, 3 and 4, 4 and 5, and 5 and 1, while any other pair
of committees is disjoint. A one-hour meeting should be scheduled for
each committee, and meetings of committees with a common member
must not overlap. What is the length of the shortest time interval in
which all the five meetings can be scheduled?

It seems that a 3-hour schedule like the one below should be opti-
mal:

12:00 13:00 14:00 15:00

1 2

3 4

5

However, if one of the committees is willing to break its meeting into
two half-hour parts, then a shorter schedule is possible:

12:00 13:00 14:00 14:30

1

2

3 4

5

3

The first schedule corresponds to a proper coloring of the conflict graph
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1

2

34

5

by three colors, while the second schedule corresponds to a fractional
coloring of the same graph, with value 2.5.

8.7 Smallest Balls and Convex Programming

The smallest ball problem. We are given points p1, . . . ,pn ∈ Rd, and we
want to find a ball of the smallest radius that contains all the points.8

This looks similar to some of the geometric optimization problems that we
have addressed in Chapter 2, such as the problem of placing a largest possible
disk inside a convex polygon. For the smallest ball problem, however, there
is no simple trick that lets us write the problem as a linear program.

We will see that it can be formulated as a convex quadratic program,
which is in many respects the next best thing to a linear program. There
are efficient solvers for convex quadratic programs, based on interior point
methods or on simplex-type methods, and so this formulation can be used
for computing a smallest enclosing ball in practice.

We will also derive from this formulation that the smallest enclosing ball
always exists, and it is determined uniquely. (This is intuitively very plausible;
think of a shrinking rubber ball.) In the course of the proof, we will establish

8 In the plane this is sometimes referred to as the smallest bomb problem, but we
prefer not to elaborate this association into a real-life story.
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a powerful criterion for optimality of a feasible solution of a convex program,
known (in a much more general context) as the Karush–Kuhn–Tucker condi-
tions. These conditions are of outstanding theoretical value, and they are the
basis of efficient solution methods for many classes of optimization problems,
including convex quadratic programming. The reader might still wonder, how
does all of this relate to linear programming? We will use the duality theorem
of linear programming to derive the Karush–Kuhn–Tucker conditions.

We begin by introducing convex programming, and we will return to the
smallest enclosing ball problem later.

A short introduction to convex programming. Let us recall that an
n-variate function f : Rn → R is convex if

f
(
(1 − t)x + ty

)
≤ (1 − t)f(x) + tf(y)

for all x,y ∈ Rn and all t ∈ [0, 1]. Geometrically, the segment connecting the
points (x, f(x)) and (y, f(y)) in Rn+1 never goes below the graph of f .

A convex program is the problem of minimizing a convex function in n
variables subject to linear equality and inequality constraints.9

The following picture illustrates a 2-dimensional convex programming
problem, with a planar feasible region given by four inequality constraints:

minimum

feasible

region

We note that the minimum need not occur at a vertex of the feasible region.
Moreover, an optimal solution need not exist even if the convex function f(x)
is bounded from below; an example is the problem of minimizing e−x subject
to x ≥ 0. We should also remark that, as is possible in linear programming,
we cannot change minimization to maximization, since for f convex, −f is
typically not convex (unless f is linear). Actually, maximizing a convex func-
tion subject to linear constraints is a computationally difficult (NP-hard)
problem.

9 Some sources allow other types of convex constraints in a convex program, but
we don’t need this here.
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Here we will consider convex programs in equational form:

Minimize f(x)
subject to Ax = b

x ≥ 0,
(8.11)

where A ∈ Rm×n, b ∈ Rm, and f : Rn → R is a convex function.
In order to use calculus, we also assume that f is differentiable, with

continuous partial derivatives. In this situation, the inequality

f(x) ≥ f(z) + ∇f(z)(x − z) (8.12)

holds for all x, z ∈ Rn, and this is an alternative characterization of convexity.
We recall that

∇f(z) =

(
∂

∂x1
f(x)|x=z, . . . ,

∂

∂xn
f(x)|x=z

)

is the gradient (vector of partial derivatives) of f at z. Thus ∇f(z)(x − z) is
the scalar product of the row vector ∇f(z) with the column vector x− z.

Geometrically, the inequality says that the epigraph of f lies above all of
its tangential hyperplanes. This has the following easy consequence.

8.7.1 Fact. Let C ⊆ Rn be a convex set and f : Rn → R a differentiable
convex function. A vector x∗ minimizes f(x) over C if and only if

∇f(x∗)(x − x∗) ≥ 0 for all x ∈ C.

Proof. First we prove that the inequality implies optimality of x∗. Using
(8.12), ∇f(x∗)(x − x∗) ≥ 0 implies f(x) ≥ f(x∗), so if the former holds for
all x ∈ C, x∗ is a minimizer of f over C.

For the other direction, let us assume that x∗ is a minimizer and that
x ∈ C. We consider the convex combination

x(t) := x∗ + t(x − x∗) ∈ C, t ∈ [0, 1],

and we observe that

∂

∂t
f(x(t))|t=0 = lim

t→0

f(x(t)) − f(x∗)
t

≥ 0

must hold, for otherwise, f(x(t)) < f(x∗) for some small t. On the other
hand, we have

∂

∂t
f(x(t))|t=0 = ∇f(x∗)(x − x∗),

by the chain rule. This completes the proof. �

Next we formulate and prove the promised optimality criterion for convex
programming.
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8.7.2 Proposition (Karush–Kuhn–Tucker conditions). Let us con-
sider the convex program

minimize f(x)
subject to Ax = b

x ≥ 0

with f convex and differentiable, with continuous partial derivatives. A fea-
sible solution x∗ ∈ Rn is optimal if and only if there is a vector ỹ ∈ Rm such
that for all j ∈ {1, . . . , n},

∇f(x∗)j + ỹT aj

{
= 0 if x∗

j > 0
≥ 0 otherwise.

Here aj is the jth column of A.
The components of ỹ are called the Karush–Kuhn–Tucker multipli-

ers.

Proof. First we assume that there is a vector ỹ with the above properties,
and we let x be any feasible solution to the convex program. Then we get

(
∇f(x∗) + ỹT A

)
x∗ = 0,(

∇f(x∗) + ỹT A
)
x ≥ 0.

Subtracting the first equation from the second, the contributions of ỹT A
cancel (since Ax = b = Ax∗ by the feasibility of x and x∗), and we conclude
that

∇f(x∗)(x − x∗) ≥ 0.

Since this holds for all feasible solutions x, the solution x∗ is optimal by
Fact 8.7.1.

Conversely, let x∗ be optimal, and let us set cT = −∇f(x∗). By Fact 8.7.1
we have cT (x − x∗) ≤ 0 for all feasible solutions x, meaning that x∗ is an
optimal solution of the linear program

maximize cT x
subject to Ax = b

x ≥ 0.

According to the dualization recipe (Section 6.2), its dual is the linear pro-
gram

minimize bTy
subject to ATy ≥ c,

and the duality theorem implies that it has an optimal solution ỹ satisfying

bT ỹ = cT x∗. (8.13)
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Since ỹ is a feasible solution of the dual linear program, we have ỹT aj ≥ cj

for all j, and (8.13) implies

(ỹT A − cT )x∗ = bT ỹ − cT x∗ = 0.

So we have ∇f(x∗)j+ỹT aj = −cj+ỹT aj ≥ 0, with equality whenever x∗
j > 0.

Therefore, we have found the desired multipliers ỹ. �

The fact that there is dualization for everyone implies Karush–Kuhn–
Tucker conditions for everyone. We encourage the reader to work out the
details, and we mention only one special case here: A feasible solution x∗ of
the convex programming problem

minimize f(x)
subject to Ax = b

is optimal if and only if there exists a vector ỹ such that

∇f(x∗) + ỹT A = 0T .

In this special case, the components of ỹ are called Lagrange multipliers
and can be obtained from x∗ through Gaussian elimination (also see Sec-
tion 7.2, where the method of Lagrange multipliers is briefly described in a
more general setting). If, in addition, f is a quadratic function, its gradient
is linear, so the minimization problem itself (finding an optimal x∗ with a
matching y) can be solved through Gaussian elimination. For example, the
problem of fitting a line by the method of least squares, mentioned in Sec-
tion 2.4, is of this easy type, because its bivariate quadratic objective function
(2.1) is convex.

Smallest enclosing ball as a convex program. In order to show that
the smallest enclosing ball of a point set can be extracted from the solution
of a suitable convex quadratic program, we use the Karush–Kuhn–Tucker
conditions and the following geometric fact, which is interesting by itself.

8.7.3 Lemma. Let S = {s1, . . . , sk} ⊆ Rd be a set of points on the boundary
of a ball B with center s∗ ∈ Rd. Then the following two statements are
equivalent.

(i) B is the unique smallest enclosing ball of S.
(ii) For every u ∈ Rd, there is an index j ∈ {1, 2, . . . , k} such that

uT (sj − s∗) ≤ 0.

It is a simple exercise to show that (ii) can be reexpressed as fol-
lows: There is no hyperplane that strictly separates S from s∗. From
the Farkas lemma (Section 6.4), one can in turn derive the follow-
ing equivalent formulation: The point s∗ is in the convex hull of the
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points S. We thus have a simple geometric condition that character-
izes smallest enclosing balls in terms of their boundary points. From
the geometric intuition in the plane, this is quite plausible: If s∗ is in
the convex hull of S, then s∗ cannot be moved without making the
distance to at least one point larger. But if s∗ is separated from S
by a hyperplane, then moving s∗ toward this hyperplane results in an
enclosing ball of smaller radius. The direction u of movement satisfies
uT (sj − s∗) > 0 for all j.

s1

s1

s2
s2

s3

s3

u

s∗s∗
s

Proof. We start by analyzing the distance between a point sj ∈ S and a
potential ball center s �= s∗. Let r be the radius of the ball B. Given s �= s∗,
we can uniquely write it in the form

s = s∗ + tu,

where u is a vector of length 1 and t > 0. For j = 1, 2, . . . , k we get

(sj − s)T (sj − s) = (sj − s∗ − tu)T (sj − s∗ − tu)

= (sj − s∗)T (sj − s∗) + t2uT u− 2tuT (sj − s∗)
= r2 + t2 − 2tuT (sj − s∗).

Given α ∈ R and sufficiently small t > 0, we have t2 − 2tα > 0 if and only if
α ≤ 0. This shows that (for sufficiently small t)

(sj − s)T (sj − s) > r2 ⇔ uT (sj − s∗) ≤ 0, (8.14)

where the implication “⇐” holds for all t > 0.
This equivalence implies the two directions of the lemma. For (i)⇒(ii), we

argue as follows: Since s∗ is the unique point with distance at most r from
all points in S, we know that for every u with ‖u‖ = 1 and for all t > 0,
the point s = s∗ + tu has distance more than r to one of the points in S.
By the implication “⇒” of (8.14), there is some j with uT (sj − s∗) ≤ 0. To
show (ii)⇒(i), let us consider any point s of the form s∗ + tu �= s∗. Since
there is an index j with uT (sj − s∗) ≤ 0, implication “⇐” of (8.14) shows
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that s has distance more than r to some point in S. It follows that B is the
unique smallest enclosing ball of S. �

Now we can state and prove the main result.

8.7.4 Theorem. Let p1, . . . ,pn be points in Rd, and let Q be the d × n
matrix whose jth column is formed by the d coordinates of the point pj . Let
us consider the optimization problem

minimize xT QT Qx −
∑n

j=1 xjp
T
j pj

subject to
∑n

j=1 xj = 1

x ≥ 0

(8.15)

in the variables x1, . . . , xn. Then the objective function f(x) := xT QT Qx −∑n
j=1 xjp

T
j pj is convex, and the following statements hold.

(i) Problem (8.15) has an optimal solution x∗.
(ii) There exists a point p∗ such that p∗ = Qx∗ holds for every optimal

solution x∗. Moreover, the ball with center p∗ and squared radius −f(x∗)
is the unique ball of smallest radius containing P .

Proof. The matrix QT Q is positive semidefinite, and from this the convexity
of f is easy to verify (we leave it as an exercise).

The feasible region of program (8.15) is a compact set (actually, a sim-
plex ), and we are minimizing a continuous function over it. Consequently,
there exists an optimal solution x∗. In order to apply the Karush–Kuhn–
Tucker conditions, we need the gradient of the objective function:

∇f(x) = 2xT QT Q − (pT
1 p1,p

T
2 p2, . . . ,p

T
npn).

The program has only one equality constraint. With p∗ = Qx∗ =
∑n

j=1 x∗
jpj ,

Proposition 8.7.2 tells us that we find a 1-dimensional vector ỹ = (µ) such
that

2pT
j p∗ − pT

j pj + µ

{
= 0 if x∗

j > 0
≥ 0 otherwise.

(8.16)

Subtracting p∗Tp∗ from both sides and multiplying by −1 yields

‖pj − p∗‖2

{
= µ + p∗Tp∗ if x∗

j > 0

≤ µ + p∗Tp∗ otherwise.

This means that p∗ is the center of a ball of radius r =
√

µ + p∗T p∗
that contains all points from P and has the points pj with x∗

j > 0 on the
boundary. From (8.16) and x ≥ 0 we also get

µ =

n∑

j=1

x∗
jµ =

n∑

j=1

x∗
jp

T
j pj − 2

n∑

j=1

x∗
jp

T
j p∗ =

n∑

j=1

x∗
jp

T
j pj − 2p∗Tp∗,
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and r2 =
∑n

j=1 x∗
jp

T
j pj − p∗T p∗ = −f(x∗) follows.

It remains to prove that there can be no other ball of radius at most r
that contains all points from P (this also shows that p∗ does not depend on
the choice of x∗).

We define F = {j ∈ {1, 2, . . . , n} : x∗
j > 0} and apply Lemma 8.7.3 with

s∗ = p∗ and
S = {pj : j ∈ F}.

We already know that these points are on the boundary of a ball B of radius
r around p∗ =

∑
j∈F x∗

jpj . Using
∑

j∈F x∗
j = 1, we get that the following

holds for all vectors u:

∑

j∈F

x∗
ju

T (pj − p∗) = uT

(∑

j∈F

x∗
jpj −

∑

j∈F

x∗
jp

∗
)

= uT (p∗ − p∗) = 0.

It follows that there must be some j ∈ F with uT (pj − p∗) ≤ 0. By Lemma
8.7.3, B is the unique smallest enclosing ball of S ⊆ P , and this implies that
B is the unique smallest enclosing ball of P as well. �

A recent book on the topics of this section is

S. Boyd and L. Vandenberghe: Convex Optimization, Cam-
bridge University Press, Cambridge 2004.



9. Software and Further Reading

LP-solvers. The most famous (and expensive) software package for solv-
ing linear programs and integer programs is called CPLEX. Freely available
codes with similar functionality, although not quite as strong as CPLEX, are
lp solve, GLPK, and CLP. The website

www-neos.mcs.anl.gov/neos

contains a guide to many other optimization software systems, and it also
provides an overview of web solvers, to which one can send an input of an
optimization problem and, with a bit of luck, be returned an optimum.

The computational geometry algorithms library CGAL (www.cgal.org)
contains software for solving linear and convex quadratic programs using
exact rational arithmetic. We refer to the website of this book (http://www.
inf.ethz.ch/personal/gaertner/lpbook) for further information.

Books. The web bookstore Amazon offers more books with “linear pro-
gramming” in the title than with “astrology,” and so it is clear that we can
mention only a very narrow selection from the literature.

A reasonably recent, accessible, and quite comprehensive (but not exactly
cheap) textbook of linear programming is

D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization,
Athena Scientific, Belmont, Massachusetts, 1997.

Both linear and integer programming are treated on an excellent theoretical
level in

A. Schrijver: Theory of Linear and Integer Programming, Wiley-
Interscience, New York 1986.

The book

V. Chvátal: Linear Programming, W. H. Freeman, New York 1983,

was considered one of the best textbooks in its time and it is still used widely.
And those liking classical sources may appreciate

G. B. Dantzig: Linear Programming and Extensions, Princeton Uni-
versity Press, Princeton 1963.



Appendix: Linear Algebra

Here we summarize facts and concepts from linear algebra used in this book.
This part is not meant to be a textbook introduction to the subject. It is
mainly intended for the reader who has some knowledge of the area but may
have forgotten the exact definitions or may know them in a slightly different
form. The number of introductory textbooks is vast; in order to cite at least
one, we mention

G. Strang: Introduction to Linear Algebra, 3rd edition, Wellesley-
Cambridge Press, Wellesley, Massachusetts, 2003.

Vectors. We work exclusively with vectors in Rn, and so for us, a vector
is an ordered n-tuple v = (v1, v2, . . . , vn) ∈ Rn of real numbers. We denote
vectors by boldface letters, and vi denotes the ith component of v. For u,v ∈
Rn we define the sum componentwise:

u + v = (u1 + v1, u2 + v2, . . . , un + vn).

The multiplication of v ∈ Rn by a real number t is also given componentwise,
by

tv = (tv1, tv2, . . . , tvn).

We use the notation 0 for the zero vector, with all components 0, and 1 de-
notes a vector with all components equal to 1.

A linear subspace (or a vector subspace) of Rn is a set V ⊆ Rn that
contains 0 and is closed under addition and multiplication by a real number;
that is, if u,v ∈ V and t ∈ R, we have u + v ∈ V and tv ∈ V . For example,
the linear subspaces of R3 are {0}, lines passing through 0, planes passing
through 0, and R3 itself. An affine subspace is any set of the form u+V =
{u + v : v ∈ V } ⊆ Rn, where V is a linear subspace of Rn and u ∈ Rn.
Geometrically, it is a linear subspace translated by some fixed vector. The
affine subspaces of R3 are all the one-point subsets, all the lines, all the planes,
and R3.

A linear combination of vectors v1,v2, . . . ,vm ∈ Rn is any vector of
the form t1v1 + t2v2 + · · ·+ tmvm, where t1, . . . , tm are real numbers. Vectors
v1,v2, . . . ,vm ∈ Rn are linearly independent if the only linear combina-
tion of v1,v2, . . . ,vm equal to 0 has t1 = t2 = · · · = tm = 0. Equivalently,



196 Appendix: Linear Algebra

linear independence means that none of the vi can be expressed as a linear
combination of the remaining ones.

The linear span of a set X ⊆ Rn is the smallest (with respect to in-
clusion) linear subspace of Rn that contains X . Explicitly, it is the set of all
linear combinations of finitely many vectors from X . The linear span of any
set, even the empty one, always contains 0, which is formally considered as
a linear combination of the empty set of vectors.

A basis of a linear subspace V ⊆ Rn is a linearly independent set of
vectors from V whose linear span is V . The standard basis of Rn consists
of the vectors e1, e2, . . . , en, where ei is the vector with 1 at the ith position
and 0’s elsewhere.

All bases of a given linear subspace V have the same number of vectors,
and this number dim(V ) is the dimension of V . In particular, each basis of
Rn has n vectors.

Matrices. A matrix is a rectangular table of numbers (real numbers, in our
case). An m×n matrix has m rows and n columns. If a matrix is called A,
then its entry in the ith row and jth column is usually denoted by aij . So,
for example, a 3 × 4 matrix A has the general form




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



 .

A matrix is denoted by writing large parentheses to enclose the table of
elements. A submatrix of a matrix A is any matrix that can be obtained
from A by deleting some rows and some columns (including A itself, where
we delete nothing).

A matrix is multiplied by a number t by multiplying each entry by t.
Two m×n matrices A and B are added by adding the corresponding entries.
That is, if we set C = A + B, we have cij = aij + bij for i = 1, 2, . . . , m and
j = 1, 2, . . . , n.

Matrix multiplication is more complicated. A product AB, where A
and B are matrices, is defined only if the number of columns of A is the same
as the number of rows of B. If A is an m×n matrix and B is an n×p matrix,
then the product C = AB is an m × p matrix given by

cij = ai1b1j + ai2b2j + · · · + ainbnj.

Pictorially,

n

m
n

p

row i
column
j· =

A
B

C

cij
m

p
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Matrix multiplication is associative, meaning that A(BC) = (AB)C when-
ever at least one of the two sides is defined, and this is quite often used in
proofs. We also recall the well-known fact that in general, matrix multiplica-
tion is not commutative; i.e., typically AB �= BA.

We also multiply matrices and vectors. In such context, a vector x ∈ Rn

is usually considered as an n×1 matrix; thus, in the matrix form, a vector
x = (x1, x2, . . . , xn) should be written as a column:





x1

x2

...
xn



 .

So if A is an m×n matrix and x ∈ Rn is a vector, then the product Ax is a
vector in Rm.

This is used in the matrix notation Ax = b for a system of linear
equations. Here A is a given m×n matrix, b ∈ Rm is a given vector, and
x = (x1, x2, . . . , xn) is a vector of n unknowns. So Ax = b is a shorthand for
the system of m equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

If A is an m×n matrix, then AT denotes the n×m matrix having the
element aji in the ith row and jth column. The matrix AT is called the
transpose of the matrix A. For transposing the matrix product, we have the
formula (AB)T = BT AT .

A square matrix is an n×n matrix, i.e., one with the same number of
rows and columns. A diagonal matrix is a square matrix D with dij = 0
for all i �= j; that is, it may have nonzero elements only on the diagonal. The
n×n identity matrix In has 1’s on the diagonal and 0’s elsewhere. For any
m×n matrix A we have ImA = AIn = A.

Rank, inverse, and linear systems. Each row of an m×n matrix A
can also be regarded as a vector in Rn. The linear span of all rows of A is
a subspace of Rn called the row space of A, and similarly, we define the
column space of A as the linear subspace of Rm spanned by the columns
of A. An important result of linear algebra tells us that for every matrix
A the row space and the column space have the same dimension, and this
dimension is called the rank of A. In particular, an m×n matrix A has rank
m if and only if the rows of A are linearly independent (which can happen
only if m ≤ n). An n×n matrix is called nonsingular if it has rank n;
otherwise, it is singular.
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Let A be a square matrix. A matrix B is called an inverse of A if AB =
In. An inverse to A exists if and only if A is nonsingular. In this case it
is determined uniquely, it is denoted by A−1, and it is inverse from both
sides; that is, AA−1 = A−1A = In. For the inverse of a product we have
(AB)−1 = B−1A−1.

Let us again consider a system Ax = b of m linear equations with n
unknowns. For b = 0, the set of all solutions is easily seen to be a linear
subspace of Rn. Its dimension equals n minus the rank of A. In particular,
for m = n (i.e., A is a square matrix), the system Ax = 0 has x = 0 as the
only solution if and only if A is nonsingular.

For b �= 0, the system Ax = b may or may not have a solution. If it has
at least one solution, then the solution set is an affine subspace of Rn, again
of dimension n minus the rank of A. If m = n and A is nonsingular, then
Ax = b always has exactly one solution.

Row operations and Gaussian elimination. By an elementary row
operation we mean one of the following two operations on a given matrix A:

(a) Multiplying all entries in some row of A by a nonzero real number t.
(b) Replacing the ith row of A by the sum of the ith row and jth row for

some i �= j.

Gaussian elimination is a systematic procedure that, given an input ma-
trix A, performs a sequence of elementary row operations on it so that it is
converted to a row echelon form. This means that the resulting matrix looks
as in the following picture:

1

r

m

1 n

0
•

•
•

•
•

•

(the dots denote nonzero elements and the white region contains only 0’s). In
words, there exists an integer r such that the rows 1 through r are nonzero,
the remaining rows are all zero, and if j(i) = min{j : aij �= 0}, then j(1) <
j(2) < · · · < j(r).

The rank of a matrix in this form is clearly r, and since elementary row
operations preserve rank, this procedure can be used to compute the rank.
It is also commonly used for finding all solutions to the system Ax = b:
In this case, the matrix (A |b) (the matrix A with b appended as the last
column) is converted to row echelon form, and from this, the solution set
can be computed easily. A variant of Gaussian elimination can also be used
to compute the inverse matrix, essentially by solving the n linear systems
Ax = ei, i = 1, 2, . . . , n.
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Determinants. Every square matrix A is assigned a number det(A) called
the determinant of A. The determinant of A is defined by the formula

det(A) =
∑

π∈Sn

sgn(π)

n∏

i=1

ai,π(i),

where the sum is over all permutations π of the set {1, 2, . . . , n} and where
sgn(π) denotes the sign of a permutation π. The sign of any permutation is
either +1 or −1, and it can be compactly defined as the sign of the expression

∏

1≤i<j≤n

(
π(j) − π(i)

)
.

For example, the determinant of a 2 × 2 matrix A equals a11a22 − a12a21.
We have det(A) �= 0 if and only if A is nonsingular. Cramer’s rule is a

formula describing the (unique) solution of the linear system Ax = b with
A square and nonsingular. It asserts that

xj =
det(Aj→b)

det(A)
,

where Aj→b denotes the matrix A with the jth column replaced by the
vector b.

For any column index j, we have the following formula (the Laplace
expansion of the determinant according to a column):

det(A) =

n∑

i=1

(−1)i+jaij det(Aij),

where Aij denotes the matrix arising from A by deleting the ith row and the
jth column.

Scalar product, Euclidean norm, orthogonality. The (standard)
scalar product of two vectors x,y ∈ Rn is the number x1y1 + x2y2 +
· · · + xnyn. We often write the scalar product as xT y, although formally,
xT y is a 1×1 matrix whose single entry is the scalar product. The Eu-
clidean norm of a vector x ∈ Rn is denoted by ‖x‖ and defined by

‖x‖ =
√

xT x =
√

x2
1 + · · · + x2

n. The Euclidean distance of two vectors
x and y is ‖x− y‖.

Two vectors x,y ∈ Rn are called orthogonal if xTy = 0. More generally,
the angle of nonzero vectors x,y ∈ Rn is defined as the angle between 0 and

π whose cosine equals xT y

‖x‖·‖y‖ .

A square matrix A is called orthogonal if each column has Euclidean
norm 1 and every two distinct columns are orthogonal. Equivalently, we have
A−1 = AT . From this one can also see that A is orthogonal if and only if
AT is.



200 Appendix: Linear Algebra

The orthogonal complement of a set X ⊆ Rn is the set X⊥ = {y ∈
Rn : xT y = 0 for all x ∈ X}. It is always a linear subspace of Rn. If V is a
linear subspace of Rn, then dim(V ) + dim(V ⊥) = n.

If V is a linear subspace of Rn, the orthogonal projection on V is a
mapping Rn → V that assigns to each x ∈ Rn a vector y ∈ V such that x−y
is orthogonal to all vectors in V . It can be shown that for every x such a y
is unique and it is also the point of V that minimizes the Euclidean distance
x − y among all points of V .



Glossary or: What Was Neglected

The theory of linear programming is huge, and many interesting things were
not addressed in this book. In the glossary we briefly explain some of the
common terms found elsewhere. This should help the reader in reading more
advanced sources, say research papers, or in a conversation at a linear pro-
gramming banquet. Our coverage is by no means complete, and to some
extent, it is also guided by personal taste.

Bounds for the variables. Linear programs occurring in practice often
prescribe upper and lower bounds for (some of) the variables. For sim-
plicity, let us assume that we are dealing with a linear program of the
form

maximize cT x
subject to Ax = b

0 ≤ x ≤ u,

where uj ∈ R ∪ {∞} for j = 1, 2, . . . , n.
We have seen in Section 4.1 how to convert this linear program into equa-
tional form, and after this conversion, we can solve it using the simplex
method. The problem here is that the conversion generates many new
variables and constraints, making the problem substantially larger and
the computations within a single pivot step more expensive.
A better way is to handle the constraints x ≤ u implicitly in the simplex
method. This is easy: During the selection of the leaving variable we
also have to consider the possibility that the entering variable reaches its
upper bound before any basic variable reaches one of its bounds. In this
situation, the entering variable is simply set to its upper bound, and the
basis B does not change at all. In general, every nonbasic variable attains
one of its bounds, and “entering it” means to let its value change in the
direction of the other bound. As before, if x∗

�j
= 0 in the current basic

feasible solution, then x�j
is a candidate for the entering variable if and

only if the corresponding coefficient rj is positive. On the other hand, if
x∗

�j
= uj , then x�j

is a candidate if and only if rj < 0.
This scheme easily generalizes to bounds of the form � ≤ x ≤ u.

Branch and bound is a general method for solving optimization problems
by a clever enumeration of possible solutions. Here we describe how it



202 Glossary

works for integer programs (Chapter 3). We suppose that the integer
program is

maximize cT x subject to Ax ≤ b, x ∈ Zn, (ILP)

and, for simplicity, that the polyhedron P = {x ∈ Rn : Ax ≤ b} is
bounded. As a first step, we solve the LP relaxation obtained by dropping
the integrality constraints x ∈ Zn. If the LP relaxation is infeasible, then
(ILP) is infeasible as well and we stop. Otherwise, the LP relaxation has
an optimal solution x∗. If x∗ ∈ Zn, we have already solved the program
(ILP), and if x∗ /∈ Zn, we chose some nonintegral component x∗

j and
“split” the integer program into two integer programs: The first one,
(ILP≤), is obtained from (ILP) by adding the constraint xj ≤ �x∗

j�,
while the second one, (ILP≥), arises from (ILP) by adding the constraint
xj ≥ �x∗

j � + 1. This is the branching step.
Since every feasible solution of (ILP) is feasible for exactly one of the
programs (ILP≤) and (ILP≥), we have only to solve the latter two inte-
ger programs to find an optimal solution of (ILP), if it exists. The “only”
refers to the fact that both of these programs have strictly smaller fea-
sible regions than the original one. To solve (ILP≤), say, we proceed in
the same fashion (solve the LP relaxation, split into two subproblems if
necessary).
In this way, we explore an implicitly given binary tree whose nodes cor-
respond to subproblems of the original integer program. The exploration
stops at a node when the LP relaxation becomes infeasible or has an in-
tegral optimal solution. From the assumption that P is bounded it is not
hard to show that this eventually happens along every exploration path.
Therefore, the process terminates and computes an optimal solution of
the “root program” (ILP), if there is one.
So far this approach is missing the advertised cleverness, but here it
comes: Whenever an integral solution of a subproblem has been discov-
ered, its value (of the objective function) is a lower bound for the optimal
value of (ILP). During exploration, we maintain the highest such lower
bound z∗. If at some subsequent node the optimal solution of the LP
relaxation has objective function value at most z∗, we can conclude that
the subtree below that node need not be explored: No integral solution
obtained from it can beat our current best solution with value z∗. This
is the bounding step.
In the worst case the bounding step may not prune any subtree, but
in many practical applications it results in enormous savings and allows
for solving large integer programs. The effectiveness of branch and bound
also depends on the choice of the nonintegral components x∗

j at the nodes,
and on the order in which nodes are explored. More generally, the “axis-
parallel” split according to the constraints xj ≤ �x∗

j� and xj ≥ �x∗
j � + 1

may be replaced by a split along an arbitrary direction (branching on
hyperplanes).



Glossary 203

Branch and cut. This method combines the branch and bound technique
with cutting planes. In many cases, branch and bound does not work
well since the plain LP relaxation does not provide a useful upper bound
for the optimal solution of an integer program (we have seen a simple
example for that in Section 3.4). Before branching, one therefore tries to
get a better upper bound by adding cutting planes to the LP relaxation.
Sometimes, these are tailor-made for the problem at hand and cut off
many more fractional solutions than general-purpose cutting planes like
Gomory cuts. The branching starts only after all cutting planes from
a predetermined set of candidate inequalities have been added. In the
subproblems one proceeds similarly.

Chvátal rank. We consider a polyhedron P ⊆ Rn. If aT x ≤ b, with a ∈ Zn

and b ∈ Q, is some inequality satisfied by all x ∈ P , then the inequality

aT x ≤ �b�

is satisfied by all integral points in P . This inequality is a Chvátal–
Gomory cut of P .
Let us define P ′ as the set of points that satisfy all Chvátal–Gomory cuts
of P . It follows that P ′ ⊇ PI , where PI is the convex hull of all integral
points in P , the integer hull of P .
Let us now assume that P is a rational polyhedron, i.e., one that can
be described by an inequality system Ax ≤ b with all components of A
and b rational. In this case, one can show that P ′ is again a polyhedron.
Moreover, it is easy to see that P ′ ⊆ P . We thus have

P = P (0) ⊇ P (1) ⊇ P (2) ⊇ · · · ⊇ PI ,

where P (k) = (P (k−1))′ for k > 0.
It is known that there is a finite number t such that P (t) = PI ; the
smallest such t is the Chvátal rank of the rational polyhedron P . It is
a measure of “nonintegrality” of P . Such a number t even exists if P is
nonrational but bounded.

Column generation. We have pointed out in Section 7.1 that even linear
programs with a very large (possibly infinite) number of constraints can
efficiently be solved, by the ellipsoid method or interior point methods,
if a separation oracle is available. Given a candidate solution s, such an
oracle either certifies that s is feasible, or it returns a violated constraint.
Let us consider the dual scenario—a linear program with a very large
number of variables. Even if this linear program is too large to be ex-
plicitly stored, we may be able to solve it using the simplex method.
The crucial observation is that in every pivot step, the simplex method
needs just one entering variable (and the tableau column associated with
it) to proceed; see Section 5.6. If we have an improvement oracle that
returns such a variable (or certifies that the current basic feasible solu-
tion is optimal), we can still use the simplex method to solve the linear
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program. This method is called (delayed) column generation. It can be
used in applications as in Section 2.7 (paper cutting), for example, where
the number of variables can quickly become very large. In fact, since an
improvement oracle can be interpreted as a separation oracle for the dual
linear program, we can also use the ellipsoid method to solve the linear
program, using only a polynomial number of calls to the improvement
oracle.

Complementary slackness. The following corollary of the duality theo-
rem is known as the theorem of complementary slackness.

Let x∗ = (x∗
1, . . . , x

∗
n) be a feasible solution of the linear pro-

gram

maximize cT x subject to Ax ≤ b and x ≥ 0, (P)

and let y∗ = (y∗
1 , . . . , y∗

m) be a feasible solution of the dual linear
program

minimize bT y subject to AT y ≥ c and y ≥ 0. (D)

Then the following two statements are equivalent:
(i) x∗ is optimal for (P) and y∗ is optimal for (D).
(ii) For all i = 1, 2, . . . , m, x∗ satisfies the ith constraint of (P)

with equality or y∗
i = 0; similarly, for all j = 1, 2, . . . , n, y∗

satisfies the jth constraint of (D) with equality or x∗
j = 0.

In words, statement (ii) means the following: If we pair up each (primal
or dual) nonnegativity constraint with its corresponding (dual or primal)
inequality, then at least one of the constraints in each pair is satisfied
with equality (“has no slack”) at x∗ or y∗.
Complementary slackness is often encountered as a “combinatorial” proof
of optimality, as opposed to the “numerical” proof obtained by comparing
the values of the objective functions. We have come across complemen-
tary slackness at various places, without calling it so: in the physical in-
terpretation of duality (Section 6.2), in connection with the primal–dual
central path (Section 7.2), and in the Karush–Kuhn–Tucker conditions
(Section 8.7).

Criss–cross method. This is yet another method for solving linear pro-
grams in equational form. Like the simplex method and the dual simplex
method, it goes through a sequence of simplex tableaus

xB = p + QxN

z = z0 + rTxN

The criss–cross method only requires the set B to be a basis, meaning
that the submatrix AB is regular. This property allows us to form the
tableau, but it guarantees neither p ≥ 0 (as in the simplex method) nor
r ≤ 0 (as in the dual simplex method).
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The criss–cross method has two types of pivot steps. A primal pivot step
starts by choosing β ∈ {1, 2, . . . , n− m} and α ∈ {1, 2, . . . , m} such that
rβ > 0 and qαβ < 0. This is as in the simplex method, except that α
does not have to satisfy a minimum ratio condition as in equation (5.3)
of Section 5.6. The absence of this condition is explained by the fact that
the criss–cross method does not have to maintain feasibility (p ≥ 0).
In a dual pivot step, α ∈ {1, 2, . . . , m} and β ∈ {1, 2, . . . , n − m} are
chosen such that pα < 0 and qαβ > 0. This is as in the dual simplex
method, again without any minimum-ratio condition, since the criss–
cross method does not maintain dual feasibility (r ≤ 0) either.
In both situations, B′ = (B\{kα})∪{�β} is the next basis, where qαβ �= 0
guarantees that B′ is indeed a basis (see the proof of Lemma 5.6.1).
If the linear program has an optimal solution, it can be shown that a
basis either induces an optimal basic feasible solution (p ≥ 0, r ≤ 0) or
allows for a primal or a dual pivot step. This means that the criss–cross
method cannot get stuck. It can cycle, though, even if the linear program
is not degenerate.
However, there is a pivot rule for the criss–cross method that does not
cycle. This rule is reminiscent of Bland’s rule for the simplex method
and goes as follows. We let α∗ be the smallest value of α in any possible
primal pivot step and β∗ the smallest value of β in any possible dual
pivot step. If α∗ ≤ β∗, then we perform a primal pivot step with α = α∗

and β as small as possible, and otherwise, we perform a dual pivot step
with β = β∗ and α as small as possible.
Despite its simplicity and the fact that the computations can start from
any basis (there is no need for an auxiliary problem), the criss–cross
method is not used in practice, since it is slow. The feature that makes
it theoretically appealing is that the computations depend only on the
signs of the involved numbers, but not on their magnitudes. This allows
the method to be generalized to situations beyond linear programming,
where no concept of magnitude exists, such as “linear programming” over
oriented matroids.

Cutting plane. Given a system S of linear inequalities, another linear in-
equality is called a cutting plane for S if it is satisfied by all integral
solutions of S, but it is violated by some non-integral solution of S.
A cutting plane for S exists if and only if the polyhedron corresponding
to the S is nonintegral. The cutting plane “cuts off” a part of this poly-
hedron that is free of integer points.

Dantzig–Wolfe decomposition. Often the constraint matrix A of a lin-
ear program has a special structure that can be exploited in order to
solve the problem faster. The Dantzig–Wolfe decomposition is a particu-
lar technique to do this within the framework of the simplex method.
Given a linear program

maximize cT x subject to Ax = b and x ≥ 0
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in equational form, we partition the m equations into a system A′x = b′

of “difficult” equations and a system A′′x = b′′ of “easy” equations. How
this is done depends on the concrete problem, but as a general guideline,
the system A′x = b′ should contain the equations that involve many
variables (“global constraints”), while the equations of A′′x = b′′ are the
ones with few variables (“local constraints”). Often there are only few
global constraints and the local constraints consist of independent blocks
in the sense that constraints in different blocks do not share variables.
Let us assume for simplicity that the polyhedron P = {x ∈ Rn : A′′x =
b′′,x ≥ 0} is bounded. Then we know that every x ∈ P is a convex
combination of the vertices v1,v2, . . . ,vK of P (Section 4.4). If we as-
sume that we explicitly know these vertices, our linear program can be
rewritten as a problem in K variables t1, t2, . . . , tK as follows:

Maximize
∑K

j=1 tjc
T vj

subject to
∑K

j=1 tjA
′vj = b′

∑K
j=1 tj = 1

tj ≥ 0 for all j = 1, 2, . . . , K.

This linear program typically has many fewer constraints than the one
we started with, but many more variables. The smaller number of con-
straints is an advantage, since then the linear equation systems that have
to be solved during the pivot steps of the simplex method are smaller as
well. However, the resulting savings usually do not justify the large num-
ber of new variables. The trick that makes the approach efficient is to
apply column generation: We can find an entering variable (and its as-
sociated tableau column) without precomputing the vertices vj . Indeed,
a vertex of P that yields an entering variable can be obtained as a basic
feasible optimal solution of a suitable linear program with the “easy” set
of constraints A′′x = b′′ and x ≥ 0.

Devex is a pivot rule that efficiently approximates the steepest edge

pivot rule (Section 5.7), which in itself is somewhat costly to implement.
Let us first recall steepest edge: We want to choose the entering vari-
able in such a way that the expression

cT (xnew − xold)

‖xnew − xold‖
is maximized, where xold and xnew are the current basic feasible solu-
tion and the next one, respectively. As usual, we let p, Q, r, z0 be the
parameters of the simplex tableau corresponding to the current feasible
basis B, and we write B = {k1, k2, . . . , km} and N = {1, 2 . . . , n} \ B =
{�1, �2, . . . , �n−m}, where k1 < k2 < · · · < km and �1 < �2 < · · · < �n−m

(see Section 5.5).
Let us assume that the entering variable is xv, and that v = �β. Moreover,
let us suppose that xv has value t ≥ 0 in xnew.
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With x̃ = xold, we then have

cT (xnew − xold) = rT (x̃N + teβ − x̃N ) = trβ ≥ 0,

since rβ > 0. We also get

‖xnew − xold‖ =

∥∥∥∥x̃ + t

(
ev +

m∑

i=1

qiβeki

)
− x̃

∥∥∥∥ = t

(
1 +

m∑

i=1

q2
iβ

)1/2

.

This implies

cT (xnew − xold)

‖xnew − xold‖
= rβ

/(
1 +

m∑

i=1

q2
iβ

)1/2

.

In order to find the entering variable that maximizes this ratio, we have
to know the entries of Q in all columns corresponding to indices β with
rβ > 0. This requires a large number of extra computations in the usual
implementation of the simplex method that does not explicitly maintain
the tableau (see Section 5.6). According to Lemma 5.5.1, the computation
of a single column of Q requires O(m2) arithmetic operations, and we may
have to look at many of the n − m columns.
The number of arithmetic operations can be brought down to O(m) per
column, by maintaining and updating the values

Tj = 1 +

m∑

i=1

q2
ij , j = 1, . . . , n − m,

in every pivot step. If xkα
is the leaving variable, the corresponding value

in the next iteration is

Tj +

(
qαj

qαβ

)2

Tβ − 2
qαj

qαβ

m∑

i=1

qijqiβ , (G.1)

and this value can be computed with O(m) arithmetic operations for a
single j, after a preprocessing that involves O(m2) arithmetic operations.
The Devex pivot rule differs from this procedure as follows. First, it main-
tains a reference framework of only n−m variables. For Tj, a value q2

ij is
taken into account only if the variable xki

is in the reference framework.
This has the effect that steepness of edges is measured only in the sub-
space spanned by the n−m variables in the reference framework, and not
in the space of all n variables. The major advantage of this approxima-
tion is that it is easy to set up: We have Tj = 1 for all j if the reference
framework is initially chosen as the current set of nonbasic variables.
Second, Devex maintains only an approximation T̃j of Tj, which is up-

dated as follows: After each pivot step, T̃j is set to
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max

(
T̃j,

(
qαj

qαβ

)2

T̃β

)
.

This avoids the expensive computation of the sum in (G.1) and replaces
the sum of the first two terms by their maximum. That way, the T̃j

steadily grow and at some point they become bad approximations. This
makes it necessary to reset the reference framework to the current set of
nonbasic variables from time to time, meaning that all T̃j are reset to 1.
Details and heuristic justifications for the simplified update formula are
given in

P.M. J. Harris: Pivot selection methods of the Devex LP code,
Math. Prog. 5(1973) 1–28.

Dual simplex method. This is a method for solving linear programs in
equational form. Like the simplex method, it goes through a sequence of
simplex tableaus

xB = p + QxN

z = z0 + rTxN

until a tableau with p ≥ 0, r ≤ 0 is encountered. Such a tableau proves
that the vector x∗ given by x∗

B = p,x∗
N = 0 is optimal. While the simplex

method maintains the invariant p ≥ 0 (B is a feasible basis), the dual
simplex method maintains the invariant r ≤ 0 (B is a dual feasible basis).
As long as there are indices i such that pi < 0, the dual simplex method
chooses a leaving variable xu = xkα

with pα < 0. Then it searches for
an entering variable xv = x�β

whose increment results in xu = 0. This is
possible only if qαβ > 0. Moreover, in the tableau corresponding to the
next basis B′ = (B \ {u}) ∪ {v}, all coefficients of nonbasic variables in
the last row should still be nonpositive. Rewriting the tableau as usual,
we find that the next basis B′ is dual feasible if and only if β satisfies

qαβ > 0 and
rβ

qαβ
= max

{
rj

qαj
: qαj > 0, j = 1, 2, . . . , n − m

}
.

If the dual simplex method does not cycle, it will eventually reach p ≥ 0
(an optimal solution is found), or it encounters a situation in which all
qαj are nonpositive. But then the linear program under consideration is
infeasible.
The reader might have noticed that the computations involved in a pivot
step of the dual simplex method look very similar to those in the (primal)
simplex method explained in Section 5.6. Indeed, they are the computa-
tions of the primal simplex method applied to the “dual” tableau

yN = −r − QT yB

z = −z0 − pT yB

One can in fact show that the dual simplex method is just the primal
simplex method in disguise, applied to the dual linear program, and so the
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dual simplex method is not really a new tool for solving linear programs.
However, it is useful in practice, since it works with the original linear
program (as opposed to the dual linear program), and most simplex-
based linear programming solvers offer an option of using it. For certain
classes of problems it can be substantially faster than the primal simplex
method.
The dual simplex method is also useful after adding cutting planes, since
the search for the new solution can start from the old one (which remains
dual feasible).

Gomory cut. We consider a linear program

maximize cT x subject to Ax = b, x ≥ 0

in equational form with c ∈ Zn, along with an optimal basic feasible
solution x∗. A Gomory cut is a specific cutting plane for this linear pro-
gram, derived from a feasible basis B associated with x∗. Given B, we
can rewrite the equations Ax = b and z = cT x in tableau form

xB = p + QxN

z = z0 + rT xN

(see Section 5.5). It is easy to show that if for some i ∈ {1, 2, . . . , m}, the
value pi = x∗

i is nonintegral, then the inequality

xi ≤ �pi� + �qi�xN

is a cutting plane, where qi is the ith row of Q. This cutting plane is
called a Gomory cut. A special Gomory cut is obtained if z0 �∈ Z:

z = cT x ≤ �z0� + �rT �xN .

We may now add the Gomory cuts as new inequalities to the linear
program and recompute the optimal solution. Let us call this a round. The
remarkable property of Gomory cuts is that we get an integral optimal
solution after a finite number of rounds (assuming rational data). Since
we never cut off integral solutions of the original linear program, this
final solution is an optimal solution of the integer program

maximize cT x subject to Ax = b, x ≥ 0, x ∈ Zn.

The method of Gomory cuts is a simple but inefficient algorithm for
solving integer programs.

Phases I and II. Traditionally, the computation of the simplex method is
subdivided into phase I and phase II. In phase I, the auxiliary linear
program for finding an initial feasible basis is solved, and phase II solves
the original linear program, starting from this initial feasible basis (Sec-
tion 5.6).
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Phase transition. Even if phase I of the simplex method reveals that the
original problem is feasible, it may happen that some of the auxiliary
variables are still basic (with value 0) in the final feasible basis of the
auxiliary problem. We have indicated in Section 5.6 that it is nevertheless
easy to get a feasible basis for the original problem.
In the simplex method this part can elegantly be implemented by pivot
steps of a special kind, in which the possible leftovers of the auxiliary
variables xn+1 through xn+m are forced to leave the basis. These pivot
steps are said to form the phase transition.
Under our assumption that the matrix A has rank m, the phase transition
is guaranteed to succeed. But even the case in which A has rank smaller
than m can be handled during these special pivot steps, and this is an
important aspect in practice, since it allows the simplex method to work
with any input. If A does not have full rank, the consequence is that
some of the auxiliary variables xn+1 through xn+m cannot be forced to
leave the basis. But any such variable can be shown to correspond to a
redundant constraint, one that may be deleted from the linear program
without changing the set of feasible solutions. Moreover, after deleting all
the redundant constraints discovered in this way, the resulting subsystem
A′x = b′ has a matrix A′ of full rank. A basis of the linear program with
respect to this new system is obtained from the current basis by removing
the auxiliary variables that could not be forced to leave.

Pivot column. The column of the simplex tableau corresponding to the
entering variable is called a pivot column. Depending on the context,
this may or may not include the coefficient of the vector r corresponding
to the entering variable.

Pivot element. This is the element of the simplex tableau in the pivot row
and pivot column.

Pivot row. The row of the simplex tableau corresponding to the leaving
variable is called the pivot row. Depending on the context, this may or
may not include the coefficient of the vector p that holds the value of the
leaving variable.

Pricing. The process of selecting the entering variable during a pivot step
of the simplex method is sometimes referred to as pricing. We say that
a nonbasic variable x�j

is priced when its coefficient rj in the last row of
the simplex tableau is computed (Section 5.6).

Primal–dual method. This is a method for solving a linear program by
iteratively improving a feasible solution of the dual linear program. Let
us start with a linear program in equational form:

Maximize cT x subject to Ax = b and x ≥ 0. (P)

We assume that b ≥ 0 and that (P) is bounded. The dual linear program
is

minimize bT y subject to AT y ≥ c. (D)
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Let us assume that we have a feasible solution ỹ of (D). Then we define

J = {j ∈ {1, 2, . . . , n} : aT
j y = cj},

where aj denotes the jth column of A. It turns out that ỹ is an optimal
solution of (D) if and only if there exists a feasible solution x̃ of (P) such
that

x̃j = 0 for all j ∈ {1, 2, . . . , n} \ J (G.2)

(this can easily be checked directly or seen from the complementary slack-
ness theorem). To check for the existence of such a vector x̃, we solve an
auxiliary linear program, the restricted primal :

Minimize z1 + z2 + · · · + zm

subject to AJxJ + Imz = b
x, z ≥ 0.

(RP)

By our assumption b ≥ 0, (RP) is feasible, and it is also bounded. Let
x∗, z∗ be an optimal solution. If z∗ = 0, then x∗ optimally solves (P),
and ỹ optimally solves (D). Otherwise, we know that ỹ cannot be an
optimal solution of (D), and we want to find a better dual solution. To
this end, we consider the dual of (RP), which can be written as

maximize bTy
subject to (AJ )T y ≤ 0

y ≤ 1.
(RD)

Let y∗ be an optimal solution of (RD). From the duality theorem we
know that bT y∗ =

∑m
i=1 z∗i > 0. Consequently, for every t > 0, the

vector ỹ − ty∗ is an improved dual solution, provided that it is feasible
for (D). We claim that there exists a small t > 0 such that ỹ−ty∗ actually
is feasible for (D). Indeed, for j ∈ J , we have

aT
j (ỹ − ty∗) ≥ cj + t · 0,

and for j ∈ {1, 2, . . . , n} \ J , we get

aT
j (ỹ − ty∗) > cj − taT

j y∗ ≥ cj

for a suitable t. Now we choose t∗ as large as possible such that the last
inequality still holds for all j ∈ {1, 2, . . . , n} \ J , and we replace ỹ by
ỹ− t∗y∗ for the next iteration of the primal–dual method. The set J will
change as well, since at least one inequality that previously had slack has
now become tight. Note that t∗ exists, since otherwise, (D) is unbounded
and (P) is infeasible, in contradiction to our assumption b ≥ 0.
With some care, this method yields an optimal solution of (D), and hence
an optimal solution x∗ to (RP) and (P), after a finite number of iterations.
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This is not a priori clear: Even if the dual objective function strictly
decreases in every iteration, the improvement could become smaller and
smaller; in fact, there are examples in which this happens, and in which
sets J reappear infinitely often. But this can be overcome by choosing
for example the lexicographically largest optimal solution y∗ of (RD).
There are two aspects that make the primal–dual method attractive.
First of all, the restricted primal (RP) and its dual (RD) do not involve
the original objective function vector c. This means that the primal–
dual method reduces an optimization problem to a sequence of decision
problems. These decision problems are in many cases much easier to
solve and do not require linear programming techniques. For instance,
if (P) is the linear program that computes a maximum-weight matching
in a bipartite graph (Section 3.2), then (RP) computes a matching of
maximum cardinality in the subgraph with edges indexed by J . Moreover,
if (RP) has been solved once, its solution in the next iteration is easy
to get through an augmenting path. These insights form the basis of
the Hungarian method for maximum-weight matchings, which can be
interpreted as a sophisticated implementation of the primal–dual method.
A second aspect appears in connection with approximation algorithms
for NP-hard problems. Starting from the LP relaxation (P) of a suitable
integer program, we may search for a vector x̃ that satisfies a condition
weaker than (G.2), but in return it allows us to construct a related inte-
gral feasible solution x∗ to (P). If we cannot find x̃, we know as before
that the dual solution ỹ can be improved. If we find x̃, then ỹ may not
yet be optimal, but we may still be able to argue that x∗ is a reasonably
good solution of the integer program. A number of approximation algo-
rithms based on the primal–dual method are described in

M. X. Goemans and D .P. Williamson: The primal–dual method
for approximation algorithms and its application in network de-
sign problems, in Approximation Algorithms (D. Hochbaum, ed-
itor), PWS Publishing Company, Boston, 1997, pages 144–191.

Ratio test. The process of selecting the leaving variable during a pivot step
of the simplex method is called the ratio test. The leaving variable xkα

is such that it has minimum ratio − pα

qαβ
(Section 5.6).

Reduced costs. The vector r in a simplex tableau; rj is the reduced cost
of variable x�j

(Section 5.5).
Sensitivity analysis. The components of the matrix A and the vectors b

and c that define a linear program are often results of measurements
or estimates. Then an important question is how “stable” the optimal
solution x∗ is. Ideally, if the components vary by small amounts, then x∗

(or at least cT x∗) varies by a small amount as well. In this case small
errors in collecting data can safely be ignored.
It may well be that small changes in some of the components have a
more drastic impact on x∗. Sensitivity analysis tries to assess how the



Glossary 213

solution depends on the input, both by theoretical considerations and by
computer simulations.
The simplex method and the dual simplex method are excellent tools for
the latter task, given that only b and c vary. If c varies, we can start
from the old optimal solution x∗ and reoptimize with respect to the new
objective function vector c. If c changed only a little, chances are good
that this reoptimization requires only few pivot steps.
Similarly, if b changes, the dual simplex method may be used to reop-
timize, since the old optimal solution x∗ is still associated with a dual
feasible basis under the new right-hand-side vector b.
The primal simplex method can also efficiently deal with the addition of
new variables, while the dual simplex method can handle the addition of
constraints. These two operations in particular occur in connection with
column generation and cutting planes.

Total dual integrality. A system Ax ≤ b of linear inequalities is said to
be totally dual integral (TDI) if the linear program

minimize bTy subject to AT y = c, y ≥ 0

has an integral optimal solution ỹ whenever c is an integral vector for
which an optimal solution exists. It can then be shown that the (primal)
problem

maximize cT x subject to Ax ≤ b

has an integral optimal solution for all c, provided that A is rational and
b is integral.
Under total dual integrality of Ax ≤ b, the set P = {x : Ax ≤ b} is
therefore an integral polyhedron (provided A is rational and b is inte-
gral). We first met integral polyhedra in Section 8.2, where we used the
concept of total unimodularity to establish integrality. The TDI notion
is connected to total unimodularity as follows. A matrix A is totally uni-
modular if and only if the system {Ax ≤ b,x ≥ 0} is TDI for all integral
vectors b.
One of the most prominent examples of a TDI system is Edmonds’ de-
scription of the matching polytope by inequalities. For a (not neces-
sarily bipartite) graph G = (V, E), the matching polytope is the convex
hull of all incidence vectors of matchings. As in Section 3.2, the incidence
vector of a matching M ⊆ E is the |E|-dimensional vector x with

xe =

{
1 if e ∈ M ,
0 otherwise.

Any such vector satisfies the inequalities

xe ≥ 0, e ∈ E,∑
e�v xe ≤ 1, v ∈ V.

(G.3)
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If G is a bipartite graph, we have shown that the polytope P defined
by these inequalities is integral (Section 8.2, Lemmas 8.2.5 and 8.2.4). It
follows that every vertex of P is the incidence vector of some matching.
Consequently, P coincides with the matching polytope in the bipartite
case, and the system (G.3) is an explicit description of the matching
polytope by inequalities.
This is no longer true for nonbipartite graphs. Indeed, if we consider the
triangle

then the polytope P defined by (G.3) has the five vertices 0, e1, e2, e3,
and 1

2 (e1 + e2 + e3) and is therefore not integral:

e1

e2

e3

Yet there is a larger inequality system that leads to an integral polytope.
The additional inequalities stem from the observation that every subset
A ⊆ V of odd size 2k+1 supports at most k edges of any fixed matching.
Therefore, every incidence vector of a matching satisfies all inequalities
in the following system (the odd subset inequalities):

∑

e⊆A

xe ≤ |A| − 1

2
, for all A ⊆ E with |A| odd. (G.4)

It can be shown that the system of inequalities in (G.3) and (G.4) is TDI,
and consequently, these inequalities define the matching polytope for a
general graph G.
In the case of a triangle, the only nontrivial inequality in (G.4) is obtained
for A = V : ∑

e∈E

xe ≤ 1.

This inequality cuts off the fractional vertex 1
2 (e1 + e2 + e3) and leaves

the tetrahedron that is the convex hull of 0, e1, e2, and e3. This integral
polytope is the matching polytope of the triangle.
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We now have an exponentially large but explicit inequality description
of the matching polytope of a general graph. Having such a description
for an integral polyhedron is an indication that it might be possible to
optimize a linear function over the polyhedron in polynomial time. In
the case of matchings in general graphs, this can indeed be done. A
maximum-weight matching in a general graph can be found in polynomial
time, but the known algorithms are much more involved than those for
the bipartite case discussed in Section 3.2.
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0 (a vector of all 0’s), 195
1 (a vector of all 1’s), 195
AT (transposed matrix), 197
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Ax ≤ b (a system of linear

inequalities), 3
A(n, d) (minimum code size),

158(8.4.1)
d-interval, 178
dH(·, ·) (Hamming distance), 157
ei (ith vector of the standard

basis), 196
〈i〉 (bit size), 106
In (identity matrix), 197
�1-norm, 169
∇f (gradient), 186(

n
m

)
(binomial coefficient), 46

ν(F) (matching number), 181
τ(F) (transversal number), 181
w ⊕ w′ (componentwise sum mod

2), 157
Z (integers), 30

A(n, d) (minimum code size),
158(8.4.1)

affine map, 108
affine scaling method, 116
affine subspace, 195
algebra
— Bose–Mesner, 164
— matrix, 164
algorithm

— approximation, 151
— greedy, 32, 38
— in the Twentieth century, 8
— Karmakar’s, 115
— polynomial, 107
angle (of vectors), 199
approximation algorithm, 151
auxiliary linear program, 209

ball, smallest enclosing, 184
basic feasible solution, 44,

54(4.4.2)
basic variable, 45
basis, 196
— feasible, 46
basis pursuit, 169, 175
battle of the sexes, 141
best response, 134
bimatrix game, 140
binomial coefficient, 46
Birkhoff polytope, 52
bit size, 106
Bland’s rule, 72
— finiteness, 73(5.8.1)
Blotto, Colonel (game), 131
Borel, Émile, 139
Bose–Mesner algebra, 164
bound
— Delsarte, 159(8.4.3)
— sphere-packing, 159(8.4.2)
bounds for variables, 201
BP-exactness, 170
branch and bound, 31, 201
branch and cut, 31, 203
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central path, 118
central path method, 116
Chvátal rank, 203
Chvátal–Gomory cut, 203
code, error-correcting, 156, 167
Colonel Blotto (game), 131
column generation, 203
column space, 197
combination
— convex, 49
— linear, 195
combinatorics, polyhedral, 31
complement, orthogonal, 200
complementarity, strict, 128
complementary slackness, 204
complexity, smoothed, 78
conditions, Karush–Kuhn–Tucker,

187(8.7.2)
conjecture, Hirsch, 78
constraint, 3
— nonnegativity, 41
convex combination, 49
convex function, 49
convex hull, 49
convex polyhedron, 8, 51
convex polytope, 51
convex program, 185
— quadratic, 184
convex programming, 185
convex set, 48
cover, vertex, 37
Cramer’s rule, 199
criss–cross method, 204
crosspolytope, 52
cube, 51
— Klee–Minty, 76, 130
cut, maximum, 114
cutting planes, 31, 35, 205
cycling, 63, 72

d-interval, 178
dH(·, ·) (Hamming distance), 157
Dantzig, George, 9, 13
degenerate linear program, 62
Delsarte bound, 159(8.4.3)

determinant, 199
Devex pivot rule, 206
diagonal matrix, 197
dietary problem, 12
dilemma, prisoner’s, 142
dimension, 196
dimension, of a convex

polyhedron, 51
distance
— Euclidean, 199
— Hamming, 157
— of a code, 158(8.4.1)
— point from a line, 24
distribution, normal, 170(8.5.2)
dual linear program, 82
dual simplex method, 105, 208
duality theorem, 9, 83
— and physics, 86
— proof, 94, 127
— weak, 83(6.1.1)

ei (ith vector of the standard
basis), 196

Easter Bunny, 138
edge (of a polyhedron), 54
elimination
— Fourier–Motzkin, 100
— Gaussian, 198
— — polynomiality, 107
ellipsoid, 108
ellipsoid method, 106
embedding, self-dual, 125
entering variable, 67
epigraph (of a function), 49
equational form, 41
equilibrium, Nash
— mixed, 135(8.1.1)
— pure, 135
error-correcting code, 156, 167
Euclidean distance, 199
Euclidean norm, 199
expansion of a determinant, 199
extremal point, 55

face (of a polyhedron), 53
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Farkas lemma, 89–104
feasible basis, 46
feasible solution, 3
— basic, 44, 54(4.4.2)
fitting a line, 19
flow, 11, 14
form
— equational, 41
— standard, 41
Fourier–Motzkin elimination, 100
fractional matching, 182
fractional transversal, 182
function
— convex, 49
— objective, 3
— strictly convex, 49

Gallai’s theorem, 178
game
— battle of the sexes, 141
— bimatrix, 140
— Colonel Blotto, 131
— rock-paper-scissors, 133
— — modified, 138
— value, 136
— zero-sum, 131
Gaussian elimination, 198
— polynomiality, 107
Goldman–Tucker system, 126
Gomory cut, 209
greedy algorithm, 32, 38

half-space, 50
Hall’s theorem, 144(8.2.1)
Hamming distance, 157
Hamming, Richard, 156
Helly’s theorem, 177
Hirsch conjecture, 78
hull, convex, 49
hyperplane, 50

In (identity matrix), 197
identity matrix, 197
incidence matrix (of a graph), 146
independence, linear, 195

independent set, 39
infeasible linear program, 4, 63
integer hull, 203
integer programming, 29
— mixed, 31
integral polyhedron, 148
integrality, total dual, 213
interior point method, 115
d-interval, 178
inverse matrix, 198

JPEG (encoding), 176

König’s theorem, 144(8.2.2)
Kantorovich, Leonid, 9
Karmakar’s algorithm, 115
Karush–Kuhn–Tucker conditions,

187(8.7.2)
Khachyian, Leonid, 106
Klee–Minty cube, 76, 130
Koopmans, Tjalling, 9

�1-norm, 169
Lagrange multipliers, 119, 188
Laplace expansion, 199
largest coefficient pivot rule, 71
largest increase pivot rule, 71
leaving variable, 67
Lemke–Howson algorithm, 140
lemma, Farkas, 89–104
lexicographic ordering, 73
lexicographic rule, 72
line fitting, 19
linear combination, 195
linear inequality, system, 7, 101,

109
linear program, 1
— degenerate, 62
— dual, 82
— infeasible, 4, 63
— unbounded, 4, 61
linear programming, meaning, 1
linear span, 196
linear subspace, 195
linearly independent, 195
LP relaxation, 33



220 Index

makespan, 149
map, affine, 108
marriage theorem, 144(8.2.1)
matching
— fractional, 182
— maximum-weight, 31, 147
— perfect, 33
matching number, 181
matching polytope, 213
matrix, 196
— diagonal, 197
— identity, 197
— inverse, 198
— multiplication, 196
— nonsingular, 197
— orthogonal, 199
— payoff, 132
— skew-symmetric, 127
— totally unimodular, 144
— transposed, 197
matrix algebra, 164
matroid, oriented, 205
max-flow-min-cut theorem, 148
maximum cut, 114
maximum-weight matching, 31,

147
method
— affine scaling, 116
— central path, 116
— dual simplex, 208
— ellipsoid, 106
— interior point, 115
— least squares, 20
— potential reduction, 116
— primal–dual, 105, 210
— simplex, 8, 57
— — dual, 105
— — efficiency, 76
— — history, 8, 13
— — revised, 70
minimax theorem, 148
— for zero-sum games, 136(8.1.3)
minimum bounding sphere, 184
minimum vertex cover, 37

mixed integer programming, 31
mixed strategy, 134
multiplier
— Karush–Kuhn–Tucker,

187(8.7.2)
— Lagrange, 119, 188

Nash equilibrium
— mixed, 135(8.1.1)
— pure, 135
network flow, 11, 14
Neumann, John von, 140
nonbasic variable, 45
nonsingular matrix, 197
norm
— Euclidean, 199
— �1, 169
normal distribution, 170(8.5.2)
NP-hard problem, 9
number
— matching, 181
— transversal, 181

objective function, 3
octant, 42
operation, row, 198
optimal solution, 3
— existence, 46
optimum, 3
oracle, separation, 113
ordering, lexicographic, 73
oriented matroid, 205
orthant, 42
orthogonal complement, 200
orthogonal matrix, 199
orthogonal projection, 200
orthogonal vectors, 199

path, central, 118
payoff matrix, 132, 134
perfect matching, 33
phase transition, 210
phases I and II, 209
physics and duality, 86
pivot column, 210
pivot element, 210
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pivot row, 210
pivot rule, 71
— Bland’s, 72
— Devex, 206
— largest coefficient, 71
— largest increase, 71
— randomized, 72, 77
— steepest edge, 71
— — implementation, 206
pivot step, 59, 67
planes, cutting, 35
point, extremal, 55
polyhedral combinatorics, 31
polyhedron
— convex, 51
— integer hull, 203
— integral, 148
— rational, 203
polynomial algorithm, 107
polytope
— Birkhoff, 52
— convex, 51
— matching, 213
potential reduction method, 116
pricing, 210
primal–dual method, 105, 210
prisoner’s dilemma, 142
problem
— dietary, 12
— NP-hard, 9
product, scalar, 199
program
— convex, 185
— — quadratic, 184
— integer, 30
— linear, 1
programming
— convex, 185
— integer, 29
— linear, meaning, 1
— semidefinite, 114
projection, orthogonal, 200
pure strategy, 134

quadrant, 42

randomized pivot rule, 72, 77
rank, 197
ratio test, 212
rational polyhedron, 203
reduced cost, 212
relaxation, LP, 33
revised simplex method, 70
rock-paper-scissors game, 133
— modified, 138
row operation, elementary, 198
rule
— Bland’s, 72
— — finiteness, 73(5.8.1)
— Cramer’s, 199
— Devex, 206
— largest coefficient, 71
— largest increase, 71
— pivot, 71
— randomized, 72, 77
— steepest edge, 71
— — implementation, 206

Santa Claus, 138
scalar product, 199
scheduling, 148
self-dual embedding, 125
semidefinite programming, 114
sensitivity analysis, 212
separation of points, 21
separation oracle, 113
set
— convex, 48
— independent, 39
signal processing, 176
simplex, 52
simplex method, 8, 57
— and a simplex, 52
— dual, 105, 208
— efficiency, 76
— history, 8, 13
— lexicographic rule, 72
— origin of the term, 52
— phase transition, 210
— phases I and II, 209
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— pricing, 210
— ratio test, 212
— reduced costs, 212
— revised, 70
simplex tableau, 58, 65
— pivot column, 210
— pivot element, 210
— pivot row, 210
— reduced cost vector, 212
size, bit, 106
skew-symmetric matrix, 127
slack variable, 42
slackness, complementary, 204
smallest enclosing ball, 184
smoothed complexity, 78
solution
— feasible, 3
— — basic, 44, 54(4.4.2)
— optimal, 3
— — existence, 46
— sparse, 168
space
— column, 197
span, linear, 196
sparse solution, 168
sphere-packing bound, 159(8.4.2)
square matrix, 197
standard basis, 196
standard form, 41
steepest edge pivot rule, 71
— implementation, 206
step, pivot, 59, 67
strategy, mixed, 134
strategy, pure, 134
strict complementarity, 128
strictly convex function, 49
strongly polynomial algorithm,

108
submatrix, 196
subspace
— affine, 195
— linear, 195
symmetric zero-sum game, 140
system
— Goldman–Tucker, 126
— linear, underdetermined, 167

— of linear inequalities, 7, 101,
109

tableau, simplex, 58, 65
theorem
— complementary slackness, 204
— duality, 9, 83
— — proof, 94, 127
— — weak, 83(6.1.1)
— Gallai’s, 178
— Hall’s, 144(8.2.1)
— Helly’s, 177
— König’s, 144(8.2.2)
— marriage, 144(8.2.1)
— minimax, 148
— — for zero-sum games,

136(8.1.3)
TIT FOR TAT, 142
total dual integrality, 213
totally unimodular matrix, 144
transposed matrix, 197
transversal, 178
— fractional, 182
transversal number, 181

unbounded linear program, 4, 61
underdetermined linear system,

167

value, of a game, 136
variable
— basic, 45
— entering, 67
— leaving, 67
— slack, 42
vector, 195
vertex (of a polyhedron), 53
vertex cover, 37
— minimum, 37

weak duality theorem, 83(6.1.1)
weight, 157

Z (integers), 30
zero-sum game, 131
— symmetric, 140
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