
Elementary Linear Programming with
Applications
by Bernard Kolman, Robert E. Beck

• Textbook Hardcover - REV

• ISBN: 012417910X; ISBN-13: 9780124179103

• Format: Textbook Hardcover, 449pp

• Publisher: Elsevier Science & Technology Books

• Pub. Date: June 1995

Preface

Classical optimization techniques have been widely used in engineering
and the physical sciences for a long time. They arose from attempts to
determine the "best" or "most desirable" solution to a problem. Toward
the end of World War II, models for many problems in the management
sciences were formulated and algorithms for their solutions were devel-
oped. In particular, the new areas of linear, integer, and nonlinear pro-
gramming and network flows were developed. These new areas of applied
mathematics have succeeded in saving billions of dollars by enabling the
model builder to find optimal solutions to large and complex applied
problems. Of course, the success of these modem optimization techniques
for real problems is due primarily to the rapid development of computer
capabilities in the past 40 years. Computational power has doubled every
12 months since 1964 (Moore's Law, Joy's Law) allowing the routine
solution today of problems whose complexity was overwhelming even a few
years ago.

With the increasing emphasis in mathematics on relevance to real-world
problems, some of the areas of modem optimization mentioned above

xi

xii Preface

have rapidly become part of the undergraduate curriculum for business,
engineering, computer science, and mathematics students.

This book presents a survey of the basic ideas in linear programming
and related areas and is designed for a one-semester or one-quarter course
that can be taken by business, engineering, computer science, or mathe-
matics majors. In their professional careers many of these students will
work with real applied problems; they will have to formulate models for
these problems and obtain understandable numerical answers. Our pur-
pose is to provide such students with an impressive illustration of how
simple mathematics can be used to solve difficult problems that arise in
real situations and to give them some tools that will prove useful in their
professional work.

A significant change that has taken place in the general teaching of this
course has been the introduction of the personal computer. This edition
takes due cognizance of this new development.

WHAT IS NEW IN THE SECOND EDITION

We have been very pleased by the widespread acceptance of the first
edition of this book since its publication 15 years ago. Although many
changes have been made in this edition, our objectives remain the same as
in the first edition: to provide a textbook that is readable by the student,
presents the basic notions of linear programming, and illustrates how this
material is used to solve, some very important problems that arise in our
daily lives. To achieve these objectives we have made use of many faculty
and student suggestions and have developed the following features for this
edition.

FEATURES

�9 Some more review material on linear algebra has been added in
Chapter 0.

�9 Chapters 1 and 2 of the first edition have been modified. In the
revised Chapters 1 and 2, the material on the Extreme Point Theo-
rem, basic solutions, and the Duality Theorem are now presented in
separate sections. Moreover, the important elementary aspects of
linear programming and its applications are covered more quickly and
more directly.

�9 In Chapter 3, the presentation of the Duality Theorem has been
rewritten, and now appears as Section 3.2.

�9 In Chapter 5, the presentations of the transportation problem, assign-
ment problem, and maximal flow problem have been rewritten for
greater clarity.

Preface xiii

�9 New exercises have been added.
�9 New figures have been added.
�9 Throughout the book, the material on computer aspects has been

updated.
�9 A computer disk containing the student-oriented linear programming

code SMPX, written by Professor Evar D. Nering, Arizona State
University, to be used for experimentation and discovery, is included
with the book. Its use is described in Appendix C.

�9 Appendix A, new to this edition, provides a very elementary introduc-
tion to the basic ideas of the Karmarkar algorithm for solving linear
programming problems.

�9 Appendix B has been added to this edition to provide a guide to some
of the inexpensive linear programming software available for personal
computers.

PRESENTATION

The Prologue gives a brief survey of operations research and discusses
the different steps in solving an operations research problem. Although we
assume that most readers have already had some exposure to linear
algebra, Chapter 0 provides a quick review of the necessary linear algebra.
The linear algebra requirements for this book are kept to a minimum.
Chapter 1 introduces the linear programming problem, provides examples
of such a problem, introduces matrix notation for this problem, and
discusses the geometry of linear programming problems. Chapter 2 pre-
sents the simplex method for solving the linear programming problem.
Chapter 3 covers further topics in linear programming, including duality
theory and sensitivity analysis. Chapter 4 presents an introduction to
integer programming, and Chapter 5 discusses a few of the more important
topics in network flows.

The approach in this book is not a rigorous one, and proofs have been
kept to a minimum. Each idea is motivated, discussed, and carefully
illustrated with examples. The first edition of this book is based on a
course developed by one of us (Bernard Kolman) under a College Science
Improvement Program grant from the National Science Foundation.

EXERCISES

The exercises in this book are of three types. First, we give routine
exercises designed to reinforce the mechanical aspects of the material
under study. Second, we present realistic problems requiring the student to
formulate a model and obtain solutions to it. Third, we offer projects,

xiv Preface

some of which ask the student to familiarize himself or herself with those
journals that publish papers in the subject under study. Most of the
projects are realistic problems, and they will often have some vagueness in
their statement; this vagueness must be resolved by the student as he or
she formulates a model.

COMPUTERS

The majority of students taking this course will find that after having
solved a few linear programming problems by hand, they will very much
appreciate being able to use a computer program to solve such problems.
The computer will reduce the computational effort required to solve linear
programming problems and will make it possible to solve larger and more
realistic problems. In this regard, the situation is different from when the
first edition of this book appeared. Nowadays, there are inexpensive
programs that will run on modest personal computers. A guide to some of
these is provided in Appendix B. Moreover, bound with this book is a disk
containing the program SMPX, developed by Evar D. Nering, Arizona
State University, as courseware for a typical course in linear programming.
This courseware allows the student to experiment with the simplex method
and to discover the significance of algorithm choices.

Complementing SMPX courseware is LINDO, an inexpensive and pow-
erful software package designed to solve linear programming problems. It
was first developed in 1983 and is now available in both PC and Macintosh
versions.

The final sections in each of Chapters 3, 4 and 5 discuss computer
aspects of the material in the chapter. These sections provide an introduc-
tion to some of the features available in the linear programming codes
used to solve large real problems and an introduction to the considerations
that enter into the selection of a particular code.

Acknowledgments

We gratefully acknowledge the contributions of the following people
whose incisive comments greatly helped to improve the manuscript for the
second edition.

Wolfgang Bein~University of New Mexico
Gerald Bergum~South Dakota State University
Joseph Creegan~Ketron Management Science
Igor Faynberg~AT & T Bell Laboratories
Fritz Hartmann~Villanova University
Betty Hickman~University of Nebraska at Omaha
Ralph Kallman~Ball State University
Moshe Kam~Drexel University
Andr6 K6zdy~University of Louisville
David Levine~Drexel University
Michael Levitan~Villanova University
Anany Levitin~Villanova University
Douglas McLeod~Philadelphia Board of Education and Drexel University

7131[Acknowledgments

Jeffrey PopyackmDrexel University
Lev Slutsman--AT & T Bell Laboratories
Kurt Spielberg--IBM Corporation
Walter StromquistmWagner Associates
Avi VardimDrexel University
Ron WatrowMitre Corporation
Mark Wiley~Lindo Systems

We thank the students in N655 at Drexel University who, working in
teams, found the solutions to all the problems, and the many students
throughout North America and Europe who used the first edition of the
text in their class and provided feedback to their instructors about the
quality of the explanations, examples, and exercises. We thank professor
Evar D. Nering who graciously tailored the SMPX system to our require-
ments. We also thank Beth Kayros, Villanova University, who checked the
answers to all odd-numbered exercises, and Stephen M. Kolman, Univer-
sity of Wisconsin, who carefully prepared the extensive index. Finally,
thanks are also due to Peter Renz and Craig Panner of Academic Press for
their interest, encouragement, and cooperation.

Table of Contents

 Preface

 Acknowledgments

 Prologue

0 Review of Linear Algebra (Optional)

1 Introduction to Linear Programming

2 The Simplex Method

3 Further Topics in Linear Programming

4 Integer Programming

5 Special Types of Linear Programming Problems

 Appendix A: Karmarkar's Algorithm

 Appendix B: Microcomputer Software

 Appendix C: SMPX

 Answers to Odd-Numbered Exercises

 Index

Prologue

Introduction to

Operations

Research

WHAT IS OPERATIONS RESEARCH?

Many definitions of operations research (frequently called OR) have
been given. A common thread in these definitions is that OR is a scientific
method for providing a quantitative basis for decision making that can be
used in almost any field of endeavor. The techniques of OR give a logical
and systematic way of formulating a problem so that the tools of mathe-
matics can be applied to find a solution. However, OR differs from
mathematics in the following sense. Most often mathematics problems can
be clearly stated and have a specific answer. OR problems are frequently
poorly posed: they arise when someone has the vague feeling that the
established way of doing things can be improved. Engineering, which is
also engaged in solving problems, frequently uses the methods of OR. A
central problem in OR is the optimal allocation of scarce resources. In this
context, scarce resources include raw materials, labor, capital, energy, and
processing time. For example, a manufacturer could consult an operations
research analyst to determine which combination of production techniques

o ,

XVll

xviii Prologue

should be used to meet market demands and minimize costs. In fact, the
1975 Nobel Prize in Economics was awarded to T. C. Koopmans and L. V.
Kantorovich for their contributions to the theory of optimum allocation of
resources.

DEVELOPMENT OF OPERATIONS RESEARCH

The use of scientific methods as an aid in decision making goes back a
long time, but the discipline that is now called operations research had its
birth during World War II. Great Britain, which was struggling for its very
existence, gathered a number of its top scientists and mathematicians to
study the problem of allocating the country's dwindling resources. The
United States Air Force became interested in applying this new approach
to the analysis of military operations and organized a research group. In
1947 George B. Dantzig, a member of this group, developed the simplex
algorithm for solving linear programming problems. At approximately the
same time the programmable digital computer was developed, giving a
means of solving large-scale linear programming problems. The first solu-
tion of a linear programming problem on a computer occurred in 1952 on
the National Bureau of Standards SEAC machine. The rapid development
of mathematical programming techniques has paralleled the rapid growth
of computing power. The ability to analyze large and complicated prob-
lems with operations research techniques has resulted in savings of billions
of dollars to industry and government. It is remarkable that a newly
developed discipline such as operations research has had such an impact
on the science of decision making in such a short time.

PHASES OF AN OPERATIONS RESEARCH STUDY

We now look at the steps an operations analyst uses in determining
information for decision making. In most cases the analyst is employed as
a consultant, so that management has to first recognize the need for the
study to be carried out. The consultant can now begin work using the
following sequence of steps.

Step 1: Problem definition and formulation. In this phase the goal of
the study is defined. The consultant's role at this point is one of
helping management to clarify its objectives in undertaking the
study. Once an acceptable statement of the goals has been
made, the consultant must identify the decision alternatives. It
is likely that there are some options that management will
refuse to pursue; thus, the consultant will consider only the

Prologue xix

Step 2:

Step 3:

Step 4."

Step 5."

Step 6."

alternatives acceptable to management. Attention must also be
paid to the limitations, restrictions, and requirements of the
various alternatives. For example, management might have to
abide by fair employment laws or antipollution laws. Some
alternatives may be limited by the available capital, labor, or
technology.
Model construction. The consultant now develops the appropri-
ate mathematical description of the problem. The limitations,
restrictions, and requirements must be translated into mathe-
matical terms, which then give rise to the constraints of the
problem. In many cases the goal of the study can be quantified
as an expression that is to be maximized or minimized. The
decision alternatives are represented by the variables in the
problem. Often the mathematical model developed is one that
has a familiar form and for which methods of solution are
available.
Solution of the model. The mathematical model developed in
Step 2 must now be solved. The method of solution may be as
simple as providing the input data for an available computer
program or it may call for an investigation of an area of
mathematics that so far has not been studied. There may be no
method of finding a solution to the mathematical model. In this
case the consultant may use heuristic methods or approximate
methods, or it may be necessary to go back to Step 2 and modify
the model. It should be noted that the solution to the model
need not be the solution to the original problem. This will be
further discussed below.
Sensitivity analysis. Frequently the numbers that are given to
the consultant are approximate. Obviously, the solution depends
on the values that are specified for the model, and, because
these are subject to variation, it is important to know how the
solution will vary with the variation in the input data. For
standard types of models these questions have been investi-
gated, and techniques for determining the sensitivity of the
solution to changes in the input data are available.
Model evaluation. At this point the consultant has obtained a
solution to the model, and often this solution will represent a
solution to the given problem. The consultant must determine
whether the answers produced by the model are realistic, ac-
ceptable to management, and capable of implementation by
management. As in Step 1, the consultant now needs a thorough
understanding of the nature of the client's business.
Implementation of the study. Management must now decide
how to implement the recommendations of the consultant.

~I~ Prologue

Sometimes the choice is to ignore all recommendations and do
something that is politically expedient instead.

THE STRUCTURE OF MATHEMATICAL MODELS

When a technical person discusses a model of a situation that is being
studied, he or she is referring to some idealized representation of a
real-life system. The model may simply involve a change in scale, such as
the hobbyist's HO railroad or the architect's display of a newly planned
community.

Engineers often use analogue models in which electrical properties
substitute for mechanical properties. Usually the electrical analogues are
much easier to deal with than the real objects. For example, resetting a
dial will change the analogue of the mass of an object. Without the
analogue one might have to saw off part of the object.

Mathematical models represent objects by symbols. The variables in the
model represent the decision alternatives or items that can be varied in the
real-life situation. There are two types of mathematical models: determin-
istic and probabilistic. Suppose the process described by the model is
repeated many times. A deterministic model will always yield the same set
of output values for a given set of input values, whereas a probabilistic
model will typically yield many different sets of output values according to
some probability distribution. In this book we will discuss only determinis-
tic models.

The mathematical models that will be considered in this book are
structured to include the following four basic components:

(a)

(b)

(c)

(d)

Decision variables or unknowns. Typically we are seeking values for
these unknowns, which describe an optimal allocation of the scarce
resources represented by the model. For example, decision variables
might represent purchase lot size, number of hours to operate a
machine, or which of several alternatives to choose.
Parameters. These are inputs that may or may not be adjustable by
the analyst, but are known either exactly or approximately. For
example, purchase price, rate of consumption, and amount of
spoilage could all be parameters.
Constraints. These are conditions that limit the values that the
decision variables can assume. For example, a variable measuring
units of output cannot be negative; a variable measuring the amount
to be stored cannot have a value greater than the available capacity.
Objective function. This expression measures the effectiveness of
the system as a function of the decision variables. The decision

Prologue 1~1~[

variables are to be determined so that the objective function will be
optimized. It is sometimes difficult to determine a quantitative
measure of the performance of a system. Consequently, several
objective functions may be tried before choosing one that will
reflect the goals of the client.

MATHEMATICAL TECHNIQUES IN OPERATIONS RESEARCH

The area of mathematicalprogramming plays a prominent role in OR. It
consists of a variety of techniques and algorithms for solving certain kinds
of mathematical models. These models call for finding values of the
decision variables that maximize or minimize the objective function subject
to a system of inequality and equality constraints. Mathematical program-
ming is divided into several areas depending on the nature of the con-
straints, the objective function, and the decision variables. Linear program-
ming deals with those models in which the constraints and the objective
function are linear expressions in the decision variables. Integer program-
ming deals with the special linear programming situation in which the
decision variables are constrained to take nonnegative integer values. In
stochastic programming the parameters do not have fixed values but are
described by probability distributions. In nonlinear programming some or
all of the constraints and the objective function are nonlinear expressions
in the decision variables. Special linear programming problems such as
optimally assigning workers to jobs or optimally choosing routes for
shipments between plants and warehouses have individually tailored algo-
rithms for obtaining their solutions. These algorithms make use of the
techniques of network flow analysis.

Special models, other than mathematical programming techniques, have
been developed to handle several important OR problems. These include
models for inventory analysis to determine how much of each item to keep
on hand, for analysis of waiting-line situations such as checkout counters
and tollbooths, and for competitive situations with conflicting goals such as
those that would arise in a game.

Standard techniques for solving many of the usual models in OR are
available. Some of these methods are iterative, obtaining a better solution
at each successive iteration. Some will produce the optimal solution after a
finite number of steps. Others converge only after an infinite number of
steps and consequently must be truncated. Some models do not lend
themselves to the standard approaches, and thus heuristic techniques--that
is, techniques improvised for the particular problem and without firm
mathematical basis--must be used.

xxii Prologue

Further Reading
Gale, D. The Theory of Linear Economic Models. McGraw-Hill, NY, 1960.
Maki, D. P., and Thompson, M. Mathematical Models and Applications. Prentice-Hall,

Englewood Cliffs, NJ, 1973.
Roberts, F. S. Discrete Mathematical Models, with Applications to Social, Biological, and

Environmental Problems. Prentice-Hall, Englewood Cliffs, NJ, 1976.

Journals
Computer and Information Systems Abstracts Journal
Computer Journal
Decision Sciences
European Journal of Operational Research
IEEE Transactions on Automatic Control
Interfaces
International Abstracts in Operations Research
Journal of Computer and System Sciences
Journal of Research of the National Bureau of Standards
Journal of the ACM
Journal of the Canadian Operational Research Society
Management Science (published by The Institute for Management

SciencemTIMS)
Mathematical Programming
Mathematics in Operations Research
Naval Research Logistics (published by the Office of Naval

Research--ONR)
Operational Research Quarterly
Operations Research (published by the Operations Research Society of

AmericamORSA)
Operations Research Letters
OR/MS Today
ORSA Journal on Computing
SlAM Journal on Computing
Transportation Science
Zeitschrifi ftir Operations Research

Review of

Linear Algebra

(Optional)

W
E ASSUME MOST readers of this book have already had some
exposure to linear algebra. We expect that they have learned
what a matrix is, how to multiply matrices, and how to tell

whether a set of n-tuples is linearly independent. This chapter provides a
quick review of the necessary linear algebra material for those readers who
wish it. The chapter can also serve as a reference for the linear algebra
encountered later in the text. Exercises are included in this chapter to give
the student an opportunity to test his or her comprehension of the
material.

0.1 MATRICES

DEFINITION. A n m x n matrix A is a rectangular array of m n

numbers (usually real numbers for linear programming) arranged in

Chapter 0 Review of Linear Algebra (Optional)

m horizontal rows and n vertical columns:

a l l a12 . . . a ln

a21 a22 . . . a2n
A = (1)

�9 .

aml am2 �9 .. amn

The i th row of A is

[a i l ai2 "'" ain] (1 < i < m) .

The j th column of A is

a l j

a2j (1 < j _< n) .

amj

The number in the ith row and j th column of A is denoted by a u, and is
called the ijth element of A, or the (i, j) entry of A, and we often write (1)
as

A = [a/j].

The matrix A is said to be square of order n if m - n. In this case, the
numbers aaa, a22, . . . , ann form the main diagonal of A.

EXAMPLE 1. If

l i] A - - 3 4 , B = 3 - 2 1 and C = - 1 2
4 2 4 3 5 ' 2 4 '

then A is 3 x 2, B is 2 x 3, and C is square of order 2. Moreover, a21 = 3,

a32 = 2, b23 = 5, and C2a -- - -2 . A

DEFINITION. Two m X n matrices A - [a i j] and B - [bij] are said to
be equal if ai j -b i j for each choice of i and j, where l _ < i _ < m ,
l<_j<_n.

We now turn to the definition of several operat ions on matrices. These
operations will enable us to use matrices as we discuss linear programming
problems.

DEFINITION. If A = [aij] and B = [bij] are m x n matrices, then the
sum of A and B is the matrix C = [c i j], defined by

ci j=ai j+bi j (1 < i < m , 1 < j < n) .

That is, C is obtained by adding corresponding entries of A and B.

0.1 Matrices

EXAMPLE 2. Let

2 - 3
A = 5 1

then

4] and
- 2

.=[3 3 2]
- 2 2 4 "

[2 + 3 - 3 + 3 4 + 2] [5 0 6]
A + B = 5 + (- 2) 1 + 2 - 2 + 4 = 3 3 2 " /x

Properties o f Matrix Addition.

(a) A + B = B + A
(b) A + (B + C) = (A + B) + C
(c) There is a unique m • n matrix 0, called the m x n zero matrix, such

that

A + 0 = A for a n y m •

(d) For each m • n matrix A, there is a unique matrix, denoted by - A ,
such that

A + (- A) = 0 .

The matrix - A is called the negat ive of A. The ijth element of - A is
- a q , where A = [aq].

DEFINITION. If A - [a i j] is an m • p matrix and B - [bij] is a p • n
matrix, then the product of A and B is the m x n matrix C - [cii], defined
by

cq = ailblj + aizb2j + ... +aipbpi (l < i _ < m , l _ < j < n) . (2)

EXAMPLE 3. If

1 3 - 2] and B =
A = 2 4 3

- 2 4]
3 - 3 ,
2 1

then

1 (- 2) + 3 . 3 + (- 2) . 2
A B = 2 (- 2) + 4 3 + 3 . 2

3 - 7
- [1 4 1]"

1 - 4 + 3 (- 3) + (- 2) . 1]
2 4 + 4 (- 3) + 3 1]

A

Matrix multiplication requires more care than matrix addition. The
product All can be formed only if the number of columns of A is the same
as the number of rows of B. Also, unlike multiplication of real numbers,
we may have AB = 0, the zero matrix, with neither A = 0 nor B = 0, and
we may have All = AC without B = C. Also, if both A and B are square of
order n, it is possible that AB 4= BA.

Chapter 0 Review of Linear Algebra (Optional)

We digress for a moment to recall the summation notation. When we
write

we mean

n

~~ ai,
i = 1

a I + a 2 + ... +a n .

The letter i is called the index of summation; any other letter can be used
in place of it. Thus,

(i)

(ii)

(iii)

n n n

E a i = E a j = E a r .
i = 1 j = l r = l

The summation notation satisfies the following properties:

n n n

E (ri + si)ai = E r i a i + E s i a i
i = 1 i = 1 i = 1

n n

E cai = c E ai
i = 1 i = 1

m n n m

E E a i j = E E a i j �9
i = l j = l j=l i=l

Using the summation notation, Equation (2) for the (i, j) entry of the
product All can be written as

p

Cij-- E aikbky
k = l

(1 < i < m , 1 < j < n) .

Properties of Matrix Multiplication.

(a) A(BC) = (AB)C
(b) A (B + C) - A B + A C
(c) (A + B) C = A C + B C

DEFINITION. The n x n matrix I n , all of whose diagonal elements are
1 and the rest of whose entries are zero, is called the identity matrix of
order n.

If A is an m X n matrix, then

ImA = AI n = A.

Sometimes the identity matrix is denoted by I when its size is unimportant
or unknown.

0.1 Matr ices

Linear Systems
The linear system of m equations in n unknowns

a l l x I -]- a12 x 2 -~- " " -~- a l n Xn "- bl
a21 x 1 --I- a22 x 2 -~- " - q- a 2 n x n - - b 2
�9 o ~ ~

~

�9 o ~

a m l X 1 -F a m 2 X 2 -t- "'" + a m n X n - - b m

(3)

can be written in matrix form as follows. Let

a l l a12 . . . a l n x 1

�9 .. X 2 A = a21 a22 a2n x = and b =

a m l a m 2 " " a m n Xn

b l

b2

bm
Then (3)can be written as

A x = b .

The matrix A is called the coefficient matrix of the linear system (3), and
the matrix

[A ' b] =

a l l a12 . . . a l n

a21 a22 . . . a 2 n

a m l a m 2 . ' . a m n

b l

b2

bm

obtained by adjoining b to A, is called the augmented matrix of (3).
Sometimes an augmented matrix may be written without the dashed line
separating A and b.

EXAMPLE 4. Consider the linear system

3 x - 2y + 4z + 5w = 6

2 x + 3 y - 2 z + w = 7

x - 5y + 2z = 8 .

The coefficient matrix of this linear system is

A

3 - 2 4 5 1
2 3 - 2 1 ,
1 - 5 2 0

6 Chapter 0 Review of Linear Algebra (Optional)

and the augmented matrix is

3 - 2 4 5
[A I b] = 2 3 - 2 1

1 - 5 2 0

6]
7 ,
8

where

Letting

b .__

X

[2]
x

Y
z

w

we can write the given linear system in matrix form as

A x = b . A

Conversely, every matrix with more than one column can be considered
as the augmented matrix of a linear system.

EXAMPLE 5. The matrix

3 2 4 1 6]
- 2 5 6 1 4

is the augmented matrix of the linear system

3x + 2y + 4z = 6

2x + 5y + 6z = 4. A

Scalar Multiplication
DEFINITION. If A = [a i j] is an m X n matrix and r is a real number,

then the scalar multiple of A by r, rA, is the m x n matrix B = [bij] ,
where bij = raij (1 < i < m, 1 _< j _< n).

EXAMPLE 6. If r = --2 and

A .__

2 - 3 5]
2 4 3 ,
0 6 - 3

O. 1 Matrices 7

then

~ A [L
- 4 6 - 1 0
- 4 - 8 - 6 .

0 - 1 2 6

Properties of Scalar Multiplication.

(a) r(sA) = (rs)A
(b) (r + s) A = r A + s A
(c) r (A + B) = r A + r B
(d) A(rB) = r(AB)

A

The Transpose of a Matrix

DEFINITION. If A = [a~j] is an m X n matrix, then the n x m matrix
A T = [bq], where

b q - a j i (l <_i <_m,1 <_j <_n),

is called the transpose of A. Thus, the transpose of A is obtained by merely
interchanging the rows and columns of A.

EXAMPLE 7. If

then

1 3 2]
A = - 2 6 5 '

T ~_
1 - 2]
3 6 .
2 5 A

Properties of the Transpose.
then

If r is a scalar and A and B are matrices,

(a) (AT) T = A
(b) (A + B) T = A T + B T
(c) (A1B) T = BTA T (Note that the order changes.)
(d) (rA) T = rA T

If we cross out some rows, or columns, of a given matrix A, we obtain a
submatrix of A.

EXAMPLE 8. Let

A __.

2 3 5 - 1]
3 4 2 7 �9
8 2 6 1

8 Chapter 0 Review of Linear Algebra (Optional)

If we cross out the second row and third column, we obtain the submatrix

2 3 - 1]
8 2 1 " A

We can now view a given matrix A as being partitioned into submatri-
ces. Moreover, the partitioning can be carded out in many different ways.

EXAMPLE 9. The matrix

A

all a12 a13

a21 a22 a23

a31 a32 a33
a41 a42 a43

a14 a15

a24 a25

a34 a35
a44 a45

is partitioned as

A
All

A21

A12

A22
II

Another partitioning of A is

A .__

all a12 Ia13 al, Ia15
i i

a21 a22 Ii a23 a24 Ii a25
1 T - - -

a31 a32 I a33 a34 I a35
a41 a42 I a43 a44 Ii a45

/x

Another example of a partitioned matrix is the augmented matrix
[A i b] of a linear system Ax = b. Partitioned matrices can be multiplied
by multiplying the corresponding submatrices. This idea is illustrated in
the following example.

EXAMPLE 10. Consider the partitioned matrices

A

all a12

a21 a22

a31 a32
a41 a42

a13 a14 Ii a15
i

a23 a24 I a25
. r B m ~

a33 a34 II a35
a43 a44 Ii a45

All A12 A13

A21 A22 A23

0.1 Matrices 9

and

bn

b21

B = b31
b41

b51

b12 Ii b13 b14 i
bEE Ib23 b24 !
b32 tj b33 b34
b42 [b43 b44

b52 [b53 b54

We then find, as the reader should verify, that

I 1
Bll B12
B21 B22 .
B31 B32

A n ---

AllBll + A12B21 + A13B31

A21Bll + A22B21 + A23B31

A11B12 + A12B22 + Al_3_B3_2_.].

A21B12 + A22B22 + A23B32 J A

Addit ion of part i t ioned matrices is carried out in the obvious manner .

0.1 EXERCISES

1. If

find a, b, c, and d.

In Exercises 2-4, let

[~
A - 3 311

1 2 '

[a+~ c+~] [6 8]
c - d a - b 10 2 '

. [3 1]
2 3 '

[20]
B = 3 2 , C =

1 2

E = 0 2 5 ,
1 2 3

Compute, if possible, the following.

2. (a) C + E

(b) AB and BA

(c) AB + DF

(d) A(BD)

(a) A(B + D)

(b) 3 B - 2F
(C) A T
(d) (C + E) T
(a) (An) T

(b) (a T + A)C

(c) AT(D + F)
(d) (2 C - 3E)TB

- 1
2
2

and F __

3]
6 ,
1

2 [4 - 3

1 O Chapter 0 Review of Linear Algebra (Optional)

5. Let

[1
A = 2

Show that All ~ BA.

show that All = O.

6. If

7. If

23] and ~ [32 - 4 ~]

[1 2] and B [2 6J
A = - 1 2 1 3 '

[5 1 1 B [1 1] and c [1 4]
A = 4 - 2 ' - 2 5 ' 2 8 '

show that AC -- BC.

8. Consider the following linear system:

3x + 2 z + 2 w = - 8

2 x + 3 y + 5 z - w = 4

3x + 2y + 4z = 6

x + z + w = - 6 .

(a) Find the coefficient matrix.

(b) Write the linear system in matrix form.

(c) Find the augmented matrix.

9. Write the linear system that has augmented matrix

3 - 2 5 4 1]
4 2 1 0 - 3 .
3 4 - 2 1 5

10. If A is an m • n matrix, show that

AI n = I m A - - A .

11. Show that (- 1)A = - A.

12. Consider the matrices
J

3 1 2 - 1 2 1
3 2 1 2 - 1 2

A = 3 4 2 1 5 and B = 3
2 - 1 2 3 1 - 1
2 - 1 1 4 2 2

- 1 2 3 4 5

Find All by partitioning A and B in two different ways.

- 1
2
3

- 3
2

2
5
2 �9
1
3

0.2 Gauss-Jordan Reduction 11

13. (a) Prove that if A has a row of zeros, then AB has a row of zeros.

(b) Prove that if B has a column of zeros, then All has a column of zeros.

14. Show that the jth column of the matrix product AB is equal to the matrix
product AB i, where Bj is the jth column of B.

15. Show that if Ax = b has more than one solution, then it has infinitely many
solutions. (Hint: If x I and x 2 are solutions, consider x 3 = rx I + sx 2, where
r + s = 1.)

0.2 GAUSS-JORDAN REDUCTION

The reader has undoubtedly solved linear systems of three equations in
three unknowns by the method of elimination of variables. We now discuss
a systematic way of eliminating variables that will allow the reader to solve
larger systems of equations. It is not difficult to see that it is more efficient
to carry out the operat ions on the augmented matrix of the given linear
system instead of performing them on the equations of the linear system.
Thus, we start with the augmented matrix of the given linear system and
transform it to a matrix of a certain special form. This new matrix
represents a linear system that has exactly the same solutions as the given
system. However, this new linear system can be solved very easily. This
method is called Gauss-Jordan reduction.

DEFINITION. An m • n matrix A is said to be in reduced row echelon
form when it satisfies the following properties.

(a) All rows consisting entirely of zeros, if any, are at the bot tom of the
matrix.

(b) The first nonzero entry in each row that does not consist entirely of
zeros is a 1, called the leading entry of its row.

(c) If rows i and i + 1 are two successive rows that do not consist
entirely of zeros, then the leading entry of row i + 1 is to the right of the
leading entry of row i.

(d) If a column contains a leading entry of some row, then all other
entries in that column are zero.

Notice that a matrix in reduced row echelon form might not have any
rows that consist entirely of zeros.

EXAMPLE 1. The following matrices are in reduced echelon form:

[1 oo 2] [100301]
0 1 0 - 5 0 0 1 2 0 2
0 0 1 3 0 0 0 0 1 3

1 0 3 0 4
0 1 2 0 1
0 0 0 1 2 .
0 0 0 0 0
0 0 0 0 0 A

1 ~ Chapter 0 Review of Linear Algebra (Optional)

EXAMPLE 2. The following matrices are not in reduced row echelon

[1303][1 0 2 1]
0 0 0 0 0 4 2 2
0 0 1 2 0 0 1 3

1 0 2 1 1 2 5 - 2
0 1 3 2 0 1 3 2
0 1 2 3 0 0 1 2 "
0 0 0 0 0 0 0 0

form (why not?):

A

We now define three operations on the rows of a matrix that can be used
to transform it to reduced row echelon form.

DEFINITION. All elementary row operation on an m • n matrix A =
[a~j] is any of the following operations.

Type I. Interchange rows r and s of A. That is, the elements
arl , a r 2 , . . . , a r n replace the elements a ~ , a s 2 , . . . , a s n and the elements
a,1, a s 2 , . . . , asn replace the elements arl , ar2, . . . , arn.

Type II. Multiply row r of A by c g: 0. That is, the elements
arl , a r 2 , . . . , arn are replaced by the elements ca , l , c a , 2 , . . . , Car,,.

Type III. Add a multiple d of row r of A to row s of A, writing the result
in row s. That is, the elements a, l + dar l , as2 4r dar2 , a ~ -1-darn re-
place the elements a,1, as2 , . . . , ash.

EXAMPLE 3. Let

A - 3 - 2 1 5 �9
4 2 3 - 4

If we interchange the first and third rows of A, we obtain

4 2 3 - 4]
B = 3 - 2 1 5 �9

1 2 0 3

If we multiply the third row of A by - 2 , we obtain

1 2 0 3]
C = 3 - 2 1 5 .

- 8 - 4 - 6 8

If we add (- 3) times the first row of A to the second row of A, we obtain

D ___ [l 1 2 0 3
0 - 8 1 - 4 �9
4 2 3 - 4 A

0.2 Gauss-Jordan Reduction 1

An m • n matrix A is said to be row e q u i v a l e n t to an m • n matrix B if
B can be obtained from A by applying a finite sequence of elementary row
operations to A.

EXAMPLE 4. Let

A ~ .
,]

1 2 0 3 �9
4 2 3 - 4

Interchanging the first and second rows of A, we obtain

n ~_

1 2 0 3]
3 - 2 2 5 ,
4 2 3 - 4

so B is row equivalent to A. Adding - 3 times row 1 of B to row 2 of B, we
obtain

C .__

o
0 - 8 2 - 4 ,
4 2 3 - 4

1 so C is row equivalent to B and also to A. Multiplying row 2 of C by 8,
we obtain

I 1 2 0 3 1 1 1 D = 0 1 - ~ ~ ,

4 2 3 - 4

so D is row equivalent to C, to B, and to A. A

It can be shown (Exercise 17) that

i. every matrix A is row equivalent to itself;
ii. if A is row equivalent to B, then B is row equivalent to A; and

iii. if A is row equivalent to B and B is row equivalent to C, then A is
row equivalent to C.

In light of ii, the statements "A is row equivalent to B" and "B is row
equivalent to A" can be replaced by "A and B are row equivalent." Thus,
the matrices A, B, C, and D in Example 4 are all row equivalent.

THEOREM 0.1. Every m • n matrix can be transformed to reduced row
echelon form by a finite sequence o f elementary row operations. A

We omit the proof of this theorem and illustrate the method with the
following example.

1 ~ Chapter 0 Review of Linear Algebra (Optional)

EXAMPLE 5. Let

A

0 2 5 - 2 1
0 0 2 1 3
2 - 4 - 7 8 - 7 "
2 0 3 4 - 5

Step 1.
zeros; this column is called the pivotal column.

0 2 5 - 2
A = 0 0 2 1

2 - 4 - 7 8
2 0 3 4

pivotal column
ofn

Find the first column in A that does not consist entirely of

1
3

- 7
- 5

Step 2.
element, called the pivot, is circled.

Find the first nonzero entry in the pivotal column. This

0 2 5 - 2 1

0 0 2 1 3

(~) - 4 - 7 8 - 7

2 0 3 4 - 5

A

Step 3. Interchange, if necessary, the first row of A with the row in
which the pivot is located and call the new matrix A1. Thus, the pivot now
has been moved to position (1, 1) in A l:

2 - 4 - 7 8 - 7
0 0 2 1 3

A1 = 0 2 5 --2 1 "
2 0 3 4 --5

Step 4. Multiply the first row of A 1 by the reciprocal of the entry in
position (1, 1). That is, multiply the first row of A 1 by the reciprocal of the
pivot. The matrix thus obtained is denoted by A2:

7 4 7 1 - 2 2 - - 2

A2 = 0 0 2 1 3 .
0 2 5 - 2 1

2 0 3 4 - 5

Step 5. Add suitable multiples of the first row of A 2 to all its other
rows so that all entires in the pivotal column, except for the entry in which

0.2 Gauss-Jordan Reduction 1~

the pivot was located, become zero. Thus, all entries in the pivotal column
and rows 2, 3 , . . . , m are zero. Call the new matrix A3.

A 3 ---

7 7 1 - 2 ~ 4 - 3

0 0 2 1 3

0 2 5 - 2 1

0 4 10 - 4 2

- 2 t i m e s the f i rs t row of A2 was

a d d e d to its f o u r t h row.

Step 6. Ignore, but do not erase, the first row of A 3 and denote the
resulting (m - 1) • n matrix by B. Now repeat Steps 1-5 on B.

B _ _ I O 0 2 1 31
0 (~) 5 -2 1
0 4 10 - 4 2

pivotal column
of B

1 - 2 7
2

I
0 2 5

B I = 0 0 2

0 4 10

- 2

1

- 4
11 3

2

T h e f i rs t a n d s e c o n d rows o f B w e r e

i n t e r c h a n g e d .

.2 1
- 2 7 ~ m

2

5

2

10

- 1

1

- 4

11 3

2

T h e f i rs t row of B 1 was m u l t i p l i e d by 1 5-

7 - 2 - ~ 7 ~ m

2

I 5 11 0 1 ~ - 1

B 3 = 0 0 2 1 3

0 0 0 0 0

- -4 t i m e s the f i rs t row of B 2 was a d d e d to

its t h i r d row.

1 ~ Chapter 0 Review of Linear Algebra (Optional)

Step 7. Add multiples of the first row of B 3 t o all the rows of A 3 above
the first row of B 3 so that all the entries in the pivotal column, except for
the entry in which the pivot was located, become zero.

3 5
1 0 ~ 2 2

0 1 7 - 1
B 3 - - 0 0 2 1 3 2 t imes the first row of B 3 was added to

the shaded row.

0 0 0 0 0

Step 8. Ignore, but do not erase, the first row of B 3 and denote the
resulting (m - 2) • n matrix by C. Repeat Steps 1-7 on C.

3 5
1 0 ~ 2 2

5 1 0 1 ~ - 1 ~-

0 0 0 0 0

1'
pivotal column

ore

The final matrix

5 19
1 0 0 ~" 4

0 1 0 9 13
4 4
1 3 0 0 1 ~

0 0 0 0 0

is in reduced row echelon form. A

0.2 Gauss-Jordan Reduction 1

We now discuss the use of the reduced row echelon form of a matrix in
solving a linear system of equations. The following theorem provides the
key result. Its proof, although not difficult, is omitted.

THEOREM 0.2. Let Ax = b and Cx = d be two linear systems, each
consisting o f rn equations in n unknowns. I f the augmented matrices [A [b]
and [C ~ d] are row equivalent, then both linear systems have no solutions or
they have exactly the same solutions. /x

The Gauss-Jordan reduction procedure for solving a linear system
Ax = b consists of transforming the augmented matrix to reduced row
echelon form [C ~j d] using elementary row operations. Since [A I b] and
[C ~ d] are row equivalent, it follows from Theorem 0.2 that the given
linear system and the system Cx = d corresponding to the augmented
matrix [C ~ d] have exactly the same solutions or neither has any solu-
tions. It turns out that the linear system Cx = d can be solved very easily
because its augmented matrix is in reduced row echelon form. More
specifically, ignore all rows consisting entirely of zeros, since the corre-
sponding equation is satisfied for any values of the unknowns. For each
nonzero row o f [C tjd], solve the corresponding equation for the un-
known that corresponds to the leading nonzero entry in the row. We
illustrate the method with several examples.

EXAMPLE 6. Consider the linear system

x + 3 y + 2 z = 5

3 x + y - z = - 8

2 x + 2 y + 3 z = 1.

The augmented matrix of this linear system can be transformed to the
following matrix in reduced row echelon form (verify),

1 0 0 - 3]
0 1 0', 2 ,
0 0 11 1

which represents the linear system

= - 3

= 2

z = l .

Thus, the unique solution to the given linear system is

x - - 3
y = 2

z - - 1 . A

1 ~ Chapter 0 Review of Linear Algebra (Optional)

EXAMPLE 7. Consider the linear system

x + y + 2 z + 3 w = 13

x - 2 y + z + w = 8

3 x + y + z - w = l .

The augmented matrix of this linear system can be transformed to the
following matrix in reduced row echelon form (verify),

1 0 0 - 1

0 1 0 0
0 0 1 2
0 0 0 0

which represents the linear system

- w = - 2

y = - 1

- 2
- 1

8 '

0

z + 2 w = 8.

This linear system can be solved, obtaining

x = - 2 + r
y = - I

z = 8 - 2 r
w~--r ,

where r is any real number. This solution may be written in matrix form as

x - 2 1

0 y = 1 + r .
z 8 - 2

w 0 1

The situation in this example is typical of what occurs in linear pro-
gramming problems in that the number of unknowns generally exceeds the
number of equations. As this example shows, there may be infinitely many
solutions to such a problem. In linear programming we study how to
choose a "best" solution from among these. A

EXAMPLE 8. Consider the linear system

x + 2 y - 3z = 2

x + 3 y + z = 7

x + y - 7 z = 3 .

The augmented matrix of this linear system can be transformed to the
following matrix in reduced row echelon form (verify),

0 110]
0 1 4 0 ,
0 0 0 1

0.2 Gauss -Jordan Reduction 1

which represents the linear system

- l l z = 0

y + 4 z = 0

0 = 1 .

Since this last system obviously has no solution, neither does the given
system. A

The last example shows the way in which we recognize that a linear
system has no solution. That is, the matrix in reduced row echelon form
that is row equivalent to the augmented matrix of the linear system has a
row whose first n entries are zero and whose (n + 1)th entry is 1.

Homogeneous Systems
A linear system of the form

a n x 1 + a12 x 2 + " " + a l n x n = 0

a21 x I + a22 x 2 + --- + a 2 n x n = 0

o �9 �9 �9

�9 o

�9 ~ o o

a m l X 1 + a m 2 X 2 + "'" + a m n X n = 0

(1)

is called a h o m o g e n e o u s sys tem. Observe that a homogeneous system
always has the solution

X 1 ~ ' X 2 X n = O,

which is called the trivial so lut ion . A homogeneous system may also have a
solution in which not all the x i are zero. Such a solution is called a
nontr iv ia l so lut ion .

EXAMPLE 9. Consider the homogeneous system

x - y + 2 z = 0

- x + 3 y + 4 z = O

2 x + y + 3 z = O .

The augmented matrix of this system

1 - 1
- 1 3

2 1

210
4 1 0
3',0

20 Chapter 0 Review of Linear Algebra (Optional)

is row equivalent to (verify)

1 0 0
0 1 0
0 0 1

0]
0 ,
0

so the only solution to the given homogeneous system is the trivial solution

EXAMPLE 10.

x = y = z = 0 .

Consider the homogeneous system

x - y + 2 z = 0

- x + 3 y + 4 z = O

x + y + 8 z = 0 .

The augmented matrix of this system

1 - 1
- 1 3

1 1

is row equivalent to (verify)

20]
4 0
8 0

1 0 5 0]
0 1 3 0 ,
0 0 0 0

so a solution to the given homogeneous system is

x = - 5 r
y = - 3 r
z = r ,

where r is any real number.

A

A

0.2 EXERCISES

In Exercises 1-4 transform the given matrix to a matrix in reduced row echelon
form.

I 1
[1 11 1 1 1

1. 2 3 5 2 2. 1 2 - 3 2 2
1 4 1 2 - 1

1 4 2 3 1 5 3 2 - 1

I 0 1 2 - 1 31 [1 0
3 4 1 2 -1 4. 4 - 4

3. 6 9 4 3 1
- 3 - 1 5 - 5 10 - 2 4

2 3 4]
1 1 3
3 5 1

0.2 Gauss-Jordan Reduction ~'1

In Exercises 5-10, find all solutions to the given linear systems.

5. (a) x + y + z = l (b) x + y + 2 z - - 1
2 x - y + 2 z = - 4 2 x - y + 3 z = - 6
3 x + y + z = 3 5 x + 2 y + 9 z - 2

6 . (a) x + y + 2 z = - 3 (b) x + y + 2 z + w = 4
2 x + 2 y - 5 z = 15 2 x - 2 y + 3 z - 2 w = 5
3 x + y - z = l O x + 7 y + 3 z + 5 w = 7
2 x + y + 2 z = 5 .

7. (a) x + y + 2z + w = 5 (b)
3x + y - 2z + 2w = 8
- x + y + 6z = 4

x + 2 y + z - w = - 2
2 x + y + z + 2 w = 6
3x + 2y + w = 6

x + 3 y + z + 2 w = - 1
2 x - 5 y + z - 2 w = 1 4

8. (a) x + 3 y + z + w = 4 (b)
2 x + y + 2 z - 2 w = 8

x + 8 y + z + 5 w - 4
3 x - y + 3 z - 5 w - 12

x + 2 y + z = - I
2 x + 3 y - 5 z = - 7
4x + 5y + 7z = 5

9. (a) 2 x + y + 2 z + w - 2 (b)
x + 3 y - 2 z - 3 w - - 4

4x + 2y + z -- 2
- 2 x - 6 y + z + 4 w - 2

x + 2 y - z = 5
4 x - y + 4 z = 8
- x + 7 y - 7 z = 7

10. (a) x - y - z - 2 (b)
2 x + y + 3 z = - 5
3 x + 4 y - z = 14

x + 2 y - 3z = 4
2x + y - 4z = 5

x + 5 y - 5z = 6

l l . (a) x + y + 8 z = O (b) x + y + 8 z + w = O
- x + 3 y + 4 z = O - x + 2 y + 3 z - w - O
2 x + y + 3 z = O 2 x + y - z + 2 w = O

12. (a) x - y + 2 z = O (b) x - y + 2 z + w = O
- x + 3 y + 4 z = O - x + 3 y + 4 z + 2 w = 0
- x + 2 y + z = O 2 x + 3 y - 2 z + 3 w = O

In Exercises 13 and 14 find all values of a for which the resulting linear system has
(i) no solution, (ii) a unique solution, and (iii) infinitely many solutions.

13. x + y = 3
x + (a 2 - 8)y = a

14. x + 2 y - 2 z - - 4
- y + 5 z = 2

x + y + (a 2 - 1 3) z - a + 2

15. Let A be an n • n matrix in reduced row echelon form. Show that if A 4: I,,,
then A has a row of zeros.

16. Consider the linear system Ax - 0. Show that if x i and x 2 are solutions, then
x -- rx 1 + sx 2 is a solution for any real numbers r and s.

22 Chapter 0 Review of Linear Algebra (Optional)

17. Prove the following.
(a) Every matrix is row equivalent to itself.
(b) If A is row equivalent to B, then B is row equivalent to A.
(c) If A is row equivalent to B and B is row equivalent to C, then A is row

equivalent to C.

18. Let

A ._..
a b

[c d]"

Show that A is row equivalent to I 2 if and only if a d - b c 4= O.

0.3 THE INVERSE OF A MATRIX

In this section we restrict our a t ten t ion to square matrices.

DEFINITION. A n n • n matr ix A is called nons ingu la r or invert ible if
there exists an n • n matr ix B such that

A l l = B A = I . .

The matr ix B is called the inverse of A. If no such matr ix B exists, then A is
called s ingula r or noninvert ible. If the inverse of A exists, we shall write it
as A-1. Thus

EXAMPLE 1. Let

AA -1 = A-1A = I , .

Since

[] [2 1]
1 2 and B = 3 1 .

A = 3 4 ~ 2

A B = B A = I2,

it follows that B is the inverse of A or B = A-1 and that A is nonsingular .

A

EXAMPLE 2. Let

1
A = [2 6 "

Does A have an inverse? If it does, let such an inverse be deno ted by

B ___

Then

x y] .
z w

[jig I [10] 1 3 y = i 2 = .
A l l = 2 6 w 0 1

0.3 The Inverse o f a Matrix 23

Thus,

[x + 3 z y + 3 w] = [a 0]
2 x + 6 z 2 y + 6 w 0 1 '

which means that we must have

x + 3 z = l
2x + 6z = 0.

Since this linear system has no solution, we conclude that A has no inverse.
A

In practice, if the matrix B is proposed as the inverse of A, we need only
check that All = I n because it can be shown that if All = In, then also
BA = I n.

THEOREM 0.3 (P R O P E R T I E S O F I N V E R S E) .

(a) If A is nonsingular, then A-1 is nonsingular and

(A- 1) - 1 --" A.

(b) I f A and B are nonsingular, then All is nonsingular and

(All) -1 = B- 1A- 1 (note that the order changes).

(c) I f A is nonsingular, then A T is nonsingular and

(A T) - 1 = (A - l) T . /k

We now develop some results that will yield a practical method for
computing the inverse of a matrix. The method is based on the properties
of elementary matrices, which we discuss next.

DEFINITION. An n • n elementary matrix of type I, type II, or type III
is a matrix obtained from the identity matrix I n by performing a single
elementary row operation of type I, type II, or type III, respectively.

EXAMPLE 3.
matrices.

E 1 =

E 2 =

E 3 =

Matrices El, E2, and E 3 as defined below are elementary

[io o] 0 1
1 0

- 3
0
0 [1
0

- 4

The second and third rows were interchanged.

The first row was mult ipl ied by - 3.

- 4 times the first row was added to the
third row.

A

~ Chapter 0 Review of Linear Algebra (Optional)

THEOREM 0.4. Let A be an m • n matrix, and let the matrix B be
obtained from A by performing an elementary row operation on A. Let E be
the elementary matrix obtained by performing the same elementary row opera-
tion o n I n as that performed on A. Then B = EA. A

EXAMPLE 4. Let

A
1 2 - 1 3]
2 3 5 4 .

- 3 2 4 - 2

If we add - 2 times row 1 to row 2, we obtain

1 2 - 1 3]
B = 0 - 1 7 - 2 .

- 3 2 4 2

Performing the same elementary row operation on I3, we obtain the
elementary matrix

1 0 0]
E = - 2 1 0 .

0 0 1

It is now easy to verify that B = EA. A

The following theorem follows easily from the definition of row equiva-
lence of matrices and Theorem 0.3.

THEOREM 0.5. The m • n matrices A and B are row equivalent i f and
only if

B = EkE k_a "'" E2E1A,

where El, E2 , . . . , E k are elementary matrices. A

THEOREM 0.6. A n elementary matrix is nonsingular and its inverse is an
elementary matrix o f the same type. A

THEOREM 0.7. A n n • n matrix A is nonsingular i f and only i f A is a
product o f elementary matrices. A

COROLLARY 0.1. A n n X n matrix A is nonsingular i f and only i f A is
row equivalent to I n. A

Suppose now that A is nonsingular. Then, by Corollary 0.1 and Theorem
0.5, there exist elementary matrices E~, E2 , . . . , E k such that

I~ = EkE k_ 1 "'" E2 EIA.
Then

A - 1 = E k E k - 1 "'" E 2 E l .

0.3 The Inverse of a Matrix 25

Procedure for Computing A-

We now have an effective algori thm for computing A -1. We use
e lementary row operat ions to t ransform A to In; the product of the
e lementary matrices EkEk_ 1 . . -E2E 1 gives A -1. The algorithm can be
efficiently organized as follows. Form the n x 2n matrix [A i l n] and
perform elementary row operat ions to t ransform this matrix to [I~ i A- l] .
Every e lementary row operat ion that is per formed on a row of A is also
per formed on the corresponding row of I n .

E X A M P L E 5 . L e t

Then

T h u s ,

0
3 [1
0
0

0

0

11 0

0

11 0

0

1
2
2

1
2

- 1

1
1

- 1

1
1
0

1
1
0

1 1 2]
A = 0 2 5 �9

3 2 2

1 1 2
[A ' I 3] = 0 2 5

3 2 2

100]
0 1 0 .
0 0 1

21 1
5 l o
21 o

2 1
5 0

- 4 - 3

2 ' , 1
5 I ~,, o

- 4 ,, - 3

2 1
5 0
3 - ~ - 3

2 1
5 0

1 2

1 - ~ 1
5_ 0
2

1 2

0 0]
1 0 �9
0 1

o o]
1 0 �9
0 1

" ~ 1
1 0 .

0 1

~ ~ 1
1 0 .
1 1

O~ O- 1 0 .
1 2
3 3

1 0
2

! 0 2
1 2
3 - - g

A d d - 3 t imes the first row to the
th i rd row, ob ta in ing

1 Mult iply the second row by ~, ob ta in ing

A d d the second row to the th i rd row,
ob ta in ing

2 Mult iply the th i rd row by - 3, ob ta in ing

A d d - 1 t imes the second row to the
first row, ob ta in ing

A d d - ~ t imes the th i rd row to the
second row, ob ta in ing

~ Chapter 0 Review of Linear Algebra (Optional)

1

0

0

1

0

0

Hence,

1

0

1

0

0

1

1 0 1 2
4 5

- 5 -~ 3 �9
1 2

2 3 g

2 1
2 3

4 5 - 5 ~ ~ .
1 2

2 3 ~

A - - 1 _ _

2 2 1
3 3

4 5 g 7

1 2
2 3 3

1 A d d ~ t imes the third row to the first

row, obtaining

A

It can be shown that if the matrix C in reduced row echelon form
obtained from A has a row of zeros, then A is singular. However, observe
that once a matrix obtained from A by this process has a row of zeros, then
the final matrix C in reduced row echelon form will also have a row of
zeros. Thus, we can stop our calculations as soon as we get a matrix from A
with a row of zeros and conclude that A-1 does not exist.

E X A M P L E 6. L e t [1
A = 2

1

To find A-1 we proceed as above:

[1 2 1 1 0 0]
2 3 - 4 0 1 0 .
1 3 7 0 0 1 1 100]
0 - 1 - 6 - 2 1 0 .
1 3 7 0 0 1

[1 2 1 ' , 1 0 0]
0 - 1 - 6 I - 2 1 0 .
0 1 6 ' , - 1 0 1

[1 2 1 1 0 0]
0 - 1 - 6 - 2 1 0 .
0 0 0 - 3 1 1

21]
3 - 4 .
3 7

Add - 2 t imes the first row to the

second row, obtaining

Add - 1 t imes the first row to the third

row, obta ining

Add the second row to the third row,

obtaining

Since we have a matrix with a row of zeros under A, we stop and conclude
that A is singular. A

0.3 The Inverse of a Matrix 27

The method just presented for calculating A-1 has the nice feature that
we do not have to know, in advance, whether or not A-1 exists. That is, we
set out to find A-1, and we either find it or determine that it does not exist.

Suppose now that A is an n • n matrix, and consider the linear system

A x = b . (1)

If A is nonsingular, then A-1 exists. Multiplying both sides of (1) by A-1 on
the left, we have

A- lAx = A - l b

or

l , x = x = A - l b .

Thus, if A-1 is known, then the solution to (1) can be simply calculated as
A - l b .

0.3 EXERCISES

1. If

A - l = [23 1
4 '

find A.

2. If

,_1__[3 2] and B a [2 3]
1 3 4 1 '

find (AB)- 1.

3. Let A be a 4 x 3 matrix. Find the elementary matrix E that when it multiplies
A on the left, performs the following elementary row operation:
(a) Interchanges the second and fourth rows.
(b) Multiplies the third row by 2.
(c) Adds - 3 times the third row to the fourth row.

4. Find all the values of k for which the matrix

A
1 0 2]
0 1 k

- 1 1 0

is singular.

~ 8 Chapter 0 Review o f Linear Algebra (Optional)

In Exercises 5-10 find the inverses of the given matrices, if possible.

[11 2] [lOl]
~ ~a' 4 ~ ~ ~ 4 ~ ~ ~

2 5] (b)
6. (a) 3 2

1 3] (b)
7. (a) - 2 4

2 - 2] (b)
8. (a) 4 3

2 3 4]
0 1 2

- 2 5 1

1
2

- 1

1
1
1

3]
1
3 1]
- 1

2

2 1 3]
(c) 4 6 2

- 1 - 6 4

1 5 3]
(c) 2 5 1

1 1 3

(c)
1 0 2]
2 1 - 1
0 4 4

3 3] (b)
9. (a) 2 2

2 3] (b)
10. (a) 4 - 3

2
5

- 2

1
2
6

1
8

- 8 3]
0
4

3] [1
3 (c) 2
4 - 4

(c) 2 - 6
5 3

251 4 10
3 - 9

- 2
4

11. Consider the matrix

A-[ac b

Show that if a d - bc 4= 0, then

d - b

a d - bc a d - bc A - l _
- c a

a d - bc a d - bc

1 [~ b]
a d - bc - c a "

12. Prove Theorem 0.4.

13. Prove Theorem 0.5.

14. Prove Theorem 0.6.

15. Let A be an n x n matrix. Show that A is nonsingular if and only if the linear
system Ax = b has a solution for every n x 1 matrix b.

16. Show that two m x n matrices A and B are row equivalent if and only if there
exists a nonsingular matrix P such that B = PA. (Hint: Use Theorems 0.5 and
0.7.)

17. Prove Corollary 0.1.

0.4 Subspaces 29

0.4 SUBSPACES

DEFINITION. A n n - v e c t o r (or n - t u p l e) is an n x 1 matrix

x 1

x 2
X - -

whose entries are real numbers , called the componen t s of x.
The set of all n-vectors is deno ted by R" and is called n-space. W h e n

we do not need to specify the value of n, we merely refer to an n-vector as
a vector. As a space-saving device, at t imes some authors write the vector x
as (x 1, x 2 , . . . , x ,) . However , it is thought of as a column whenever opera-
tions, and especially matrix multiplication, are pe r fo rmed on it. Through-
out this book the vector x will be writ ten as a column or as [x I x 2 --. x ,] T.
Since R ~ is the set of n x 1 matrices, the opera t ions of addit ion and scalar
multiplication, which we discussed in Section 0.1, are defined in this set.

EXAMPLE 1. Consider the vectors

- 4 3

2 and Y = - 2
x = 3 5

4 3

in R 4 and let c = - 3 . Then

and

x + y =

- 4 + 3 - 1

2 + (- 2) = 0

3 + 5 8
4 + 3 7

cx = - 3 x =

- 3 (- 4) 12

- 3 (2) = - 6

- 3 (3) 9 "
- 3 (4) - 1 2 A

The reader will recall that R 3 is the world we live in, and we can thus
visualize vectors in R 3. For example, in Figure 0.1 we show the vectors

[i] I11 [0] 3 and z = 1 x = , Y = - 3 ,

2 0

30 Chapter 0 Review of Linear Algebra (Optional)

E'] 2

f!] 3

v

X

FIGURE 0.1

We now turn our attention to certain subsets of R ' , which are used in
applications.

DEFINmON. A nonempty subset V of R n is called a subspace if the
following properties are satisfied.

(a) If x and y are any vectors in V, then x + y is in V.
(b) If r is any real number and x is any vector in V, then rx is in V.

EXAMPLE 2. The simplest example of a subspace of R n is R n itself. A

Another example is the subset consisting only of the zero vector, which is
called the zero subspace.

EXAMPLE 3. Consider the subset V of R 3 consisting of all vectors of
the form IXl 1 X 2 .

X 1 -'t-X 2

Show that V is a subspace.

Solution. Let r be a real number and let

I xl I y Y l l
x = x2 and y = Y2

Xl ~- X2 1 + Y2

0.4 Subspaces ~1

be vectors in V. Then we must show that x + y and rx are in V. A vector is
in V if its third component is the sum of the first two components. We now
have

x + y = I I 1
I X1 + Yl X1 + Yl

X2 + Y2 = X2 + Y2 ,

(X1 + X2) + (Yl + Y2) (Xl + Yl) + (X2 + Y2)

so that x + y is in V. Also,

I IX 1
r x = I X 2

r(x 1 +/2)

is in V. Hence, V is a subspace.

EXAMPLE 4.
the form

Is V a subspace of R 39.

So lu t ion .

i i = FX 2
FX 1 + rx 2

A

Consider the subset V of R 3 consisting of all vectors of

Ixml
X 2 �9
1

Let r be a real number and let

iill X ' - 2 and y =

be vectors in V. Then

x + y =

Ix yll IXl yal
+ Y2 = x2 + y2 ,

+ 1 2

which is not in V, since its third component is 2, whereas the third
component of every vector in V must be 1. Hence, V is n o t a subspace. ZX

EXAMPLE 5. Let A be an m x n matrix and consider the linear system
Ax = 0. The set V of all solutions to this system is a subset of R n. We now
show that V is a subspace of R n. Thus, let x and y be in V. Then x and y
are solutions, so that

A x = 0 and A y = 0 .

32 Chapter 0 Review of Linear Algebra (Optional)

W e have

A (x + y) = A x + A y = 0 + 0 = 0 ,

which impl ies t ha t x + y is a so lu t i on o r t ha t x + y is in V. Also , if r is any

rea l n u m b e r , t h e n

A (r x) = r (Ax) = r 0 = 0,

so tha t r x is in V. Thus , V is a s u b s p a c e of R n. This subspace is ca l l ed the

nu l l space of A a n d is d e n o t e d by n(A). A

0.4 EXERCISES

1. Verify that {0} is a subspace of R ' .

2. Which of the following subsets of R 3 a r e subspaces? The set of all vectors of
the form

I x'] (a) x2 , where x 3 --" X 1 § 2X 2.

X 3 [x,]
(b) x2 , where x3 :~: 0.

x 3

(c)

[xl]
X 2

X l + l

3. Which of the following subsets of R 4 a r e subspaces? The set of all vectors of
the form

xl

x2 w h e r e x l = 0 a n d x 3 = x 1 + 2 .
(a) x3 ,

X4

X1

x2 where x I -- 0 and x 2 = - 2 x 3. (b) x3 '

X4

X1

x2 where x 1 + x 2 = 0.
(c) x3 '

X4

0.5 Linear Independence and Basis 33

4. Which of the following subsets of R 3 a r e subspaces? The set of all vectors of
the form

(a) - c .

a

(b) b + a .

a - 3

(c) a - c .

b + c

5. Which of the following subsets of R a are subspaces? The set of all vectors of
the form

[ao 1
(a) [a b + 2 a b .

(b) O b .

+ b

- 3 a "

4a + 3b

6. Show that 0x - 0 for any vector x.

7. Show that r0 - 0 for any real number r.

8. Show that - (- x) = x .

9. Show that if r x - 0, then r = 0 or x = 0.

10. Show that (- 1 N - - x .

11. Show that i f x + y - x + z , t h e n y = z .

12. Let x and y be fixed vectors in R". Show that the set of all vectors r x + sy,
where r and s are any real numbers , is a subspace of R".

0.5 LINEAR INDEPENDENCE AND BASIS

I n th i s s e c t i o n w e e x a m i n e t h e s t r u c t u r e o f a s u b s p a c e o f R n.

DEFINITION. A v e c t o r v in R n is sa id to b e a l i n e a r c o m b i n a t i o n o f t h e

v e c t o r s v 1, v 2 , . . . , v k if it c a n b e w r i t t e n as

V ~-- C1u 1 -~- C2V 2 -b " '" - [- C k u k ,

w h e r e Cl, c 2 , . . . , Ck a r e r ea l n u m b e r s .

~ Chapter 0 Review of Linear Algebra (Optional)

EXAMPLE 1. L e t [4][1] [2]
v = 7 , V 1 = 2 , a n d v 2 = 3 �9

2 - 1 4

T h e v e c t o r v is a l i n e a r c o m b i n a t i o n o f v 1 a n d v 2 if w e can f ind c o n s t a n t s c 1

a n d c 2, such t h a t

ClVl + C2V2 - V

o r

[1]
V 1 - - 2 , V 2 - -

1

D e t e r m i n e w h e t h e r S s p a n s R 3.

Solution. Le t

[1] [2} [4]
Cl 2 + c 2 3 = 7 ,

- 1 4 2

w h i c h l e ads to t h e l i n e a r s y s t e m

c I + 2 c e = 4

2 c I + 3 c 2 = 7

- - C 1 + 4 c 2 = 2.

U s i n g G a u s s - J o r d a n r e d u c t i o n , w e o b t a i n t h e s o l u t i o n c 1 - 2 a n d c 2 - 1.

A

DEFINITION. L e t S - {v 1, v 2 , . . . , v k} be a se t o f v e c t o r s in a s u b s p a c e V

o f R n. T h e se t S s p a n s V, o r V is s p a n n e d by S, if eve r y v e c t o r in V is a

l i n e a r c o m b i n a t i o n o f t h e v e c t o r s in S.

EXAMPLE 2. L e t S - {v 1, v 2, v3}, w h e r e [0]
1 , a n d v 3 = 1 .

0 1

Ixal
X = X 2

X 3

b e any v e c t o r in R 3. T h e set S s p a n s R 3 if w e can f ind c o n s t a n t s Cl, Ce,

a n d c 3, such t h a t

ClV 1 + C2V 2 + C3V 3 = X.

W e t h e n h a v e t h e l i n e a r s y s t e m

C 1 + 2C 2 + O c 3 = x 1

2 c I + c 2 + c 3 - - x 2

c I + Oc 2 + c 3 = x 3.

0.5 L i n e a r I n d e p e n d e n c e a n d Bas i s ~1~1

A solut ion to this l inear system can be easily ob t a ine d for any choice of x l,

x 2, and x3:

C1 - - - - X l + 2X 2 -- 2x3, C 2 - - - X l - - X 2 + X 3, C 3 = X 1 - - 2x 2 + 3X 3

Thus, S spans R 3.

EXAMPLE 3. Let S - - {Vl, u w h e r e [1] [1]
u "-- 2 and u = 1 .

1 1

D e t e r m i n e w h e t h e r S spans R 3.

S o l u t i o n . L e t

A

DEFINITION. Let S- -{V1, u Yk} be a set of distinct vectors in a
subspace V of R ~. The set S is said to be l inear ly d e p e n d e n t if we can find
cons tants Cl, c 2 , . - - , Ck, not all zero, such tha t

C1u 1 + C2V 2 + "'" + C k V k -~ O. (1)

Otherwise , S is said to be l inear ly i ndependen t . Tha t is, S is l inearly
i n d e p e n d e n t if E q u a t i o n (1) can be satisfied only with

c 1 = c 2 c k = O.

Of course, (1) always holds w h e n

C 1 - - C 2 C k --" O.

The essential poin t in the above def in i t ion is w h e t h e r the e qua t i on can
hold with no t all of the cons tants c 1, c 2 , . . . , c k being zero. E q u a t i o n (1)

IXll
X - - X 2

X 3

be any vec tor in R 3. W e need to find cons tan t s c 1 and c 2, such tha t

C1u 1 + C2V 2 = X.

If we t r ans fo rm the a u g m e n t e d matr ix of the resul t ing l inear system to
r educed row eche lon form, we obta in

i10 x Xll
0 1 2x 1 - x 2 .

0 0 X 3 - - X 1

Thus, a solut ion exists only w h e n x 3 - x I = 0. Since we mus t find con-
stants for any choice of x 1, x 2, and x 3, we conc lude that S does not span
R 3. / k

~ Chapter 0 Review of Linear Algebra (Optional)

always leads to a homogeneous system. The set S = { v 1 , v 2 , . . . , v k} is
linearly dependent if and only if the resulting homogeneous system has a
nontrivial solution.

EXAMPLE 4. Consider the vectors

1 0
2 1

V1 = 0 ' V2 -- 1 '

1 2

a n d V 3

1

= 1

1

Determine whether S = {v1, v 2 , v 3} is linearly dependent or linearly inde-
pendent.

Solution. From Equat ion (1) we have

C1V 1 + C2V 2 + C3V 3 - - O,

which yields the linear system

C1

2 c I +

+ C 3 - ' 0

C 2 + C 3 = 0

C 2 - - C 3 = 0

C 1 + 2 C 2 + C a = 0 .

Since this linear system has only the trivial solution c 1 - - C 2 = C 3 - - 0, we
conclude that S is linearly independent . /x

EXAMPLE 5. Consider the vectors [1][1] [1]
V l - - 1 , v 2 = 0 , and v 3 = - 2 .

3 - 2 4

Determine whether S - {v 1, v 2, v 3} is linearly dependent or linearly inde-
pendent.

Solution. From Equat ion (1) we have

ClV 1 + C2V 2 + C3V 3 = O,

which yields the linear system

C 1 + C 2 + C 3 - - 0

- - C 1 - - 2 C 3 = 0

- - 3C 1 - - 2 C 2 - - 4 C 3 - - 0 ,

which has among its solutions (verify)

c 1 = 2 , c 2 = - 1 , and c a - - 1 .

Hence, S is linearly dependent . /X

0.5 Linear Independence and Basis ~

THEOREM 0.8. The set S = {Vl,V2,. . . ,Vk} of vectors in R ~ is linearly
dependent if and only if one o f the vectors in S is a linear combination of the
other vectors in S.

Proof. Suppose S is linearly dependent . Then we can write

ClV 1 -~- C2V 2 ~- " '" +CkV k = O,

where not all the constants c l, c2 , . . . , c k are zero. Suppose cj ~ O. Then

C 1 C 2 Cj__ 1 Cj+ 1 Ck
= V 1 - - _ _ V 2 V j_ 1 V j + I U k.

Vj Cj Cj Cj Cj Cj

Conversely, suppose one of the vec to r smsay vj-- is a linear combinat ion of
the other vectors in S"

Then

Vj = a l v I + a 2 v 2 + " " + a j _ l V j _ 1 + aj+lVj+ 1 + .. . + a k V k.

a i r 1 + a 2 v 2 + " " + a j _ l V j _ 1 -- lvj + aj+lVj+ 1 + .. . + a k V k = 0 . (2)

Since at least one of the coefficients in (2) is nonzero, we conclude that S
is linearly dependent . /x

Thus, in Example 5 we found that

2V 1 - - V 2 - - V 3 = 0 ,

so that we could solve for any one vector in terms of the other two.
However, the theorem does not say that in general every vector in S is a
linear combinat ion of the other vectors in S. For suppose we have

5 u 1 + 0V 2 - - 2V 3 + 5 u 4 - - 0 .

Then we cannot solve for v 2 in terms of v 1, v 3, and v 4.

THEOREM 0.9. Let A be an n • n matrix. Then A is nonsingular if and
only if the columns of A (as vectors in R n) form a linearly independent set. /x

EXAMPLE 6. Let

[1
1 2 0

A = - 1 1 1 .
2 3 2

Since A is nonsingular (verify), the columns of A form the linearly indepen-
dent set {[1] [2] [0])

- 1 , 1 , 1
2 3 2

i n R 3. / k

31] Chapter 0 Review of Linear Algebra (Optional)

DEFINITION. A set of vectors S = {v1, v 2 , . . . , Vk} in a subspace V of R n
is called a basis for V if S spans V and S is linearly independent .

EXAMPLE 7. The sets ([1]
S = 0 ,

0

are bases for R 3.

T H E O R E M 0 . 1 0 .

[~ I~ ([i] [~ [1]) 1 , 0 and T = , 1 , 1
0 1 1 0

/x

/ f S --- {v1, v 2 , . . . , Vk} is a basis for a subspace V o f R n

and if T = {w l, w 2 , . . . , Wr} iS a linearly independent set o f vectors in V, then
r < k . A

COROLLARY 0.2. I f S = {v1, v 2 , . . . , v k} and T = {Wl, w 2 , . . . , Wr} are
bases for a subspace V o f R n, then k = r. /x

DEFINITION. The d imens ion of a subspace V of R n is the n u m b e r of
vectors in a basis for V. Thus, the d imens ion of R n is n.

THEOREM 0.11. Let V be a vector space o f dimension k and let S =
{v 1, v 2 , . . . , v k} be a set o f k vectors in V.

(a) I f S is linearly independent, then S is a basis for I~.
(b) I f S spans I~, then S is a basis for IA.

THEOREM 0.12. I f S = {v 1, v 2 , . . . , v k} is a basis for a subspace V o f R ~,
then every vector x in V can be written in one and only one way as a linear
combination o f the vectors in S.

Proof. Suppose

and also

x = a l v 1 d- a 2 v 2 d- --- - F a k v k

X = blV 1 + b 2 v 2 + "'" +bkV k.

Subtract ing the second expression f rom the first, we obta in

0 = x - x = (a l - bl)Vl + (a2 - b2)v2 + "'" +(ak -- bk)Vk. (3)

Since S is a basis, it is a linearly i ndependen t set of vectors. Equa t ion (3) is
the expression that must be tes ted for l inear independence . There fore ,
aj - bj = 0 (1 < j < k) or aj = bj and the expression for x is unique. A

DEFINITION. Suppose that S = {v 1, v 2 , . . . , v k} is a basis for a subspace
V of R ~ and let x be a vector in V. T h e n

X - - C l V 1 + C2V 2 + "'" +CkV k.

0 .5 L i n e a r I n d e p e n d e n c e a n d B a s i s ~ 9

The vector

Cl

[x] s = c2

c~

is called the coordinate vector of x with respect to S.

EXAMPLE 8. Consider the bases

([1] [0] [i]} ([1][0]
S - 0 , 1 , and T - 0 , 1 ,

0 0 1 1

for R 3. Let

[~ x = 5 �9

3

Expressing x in terms of the given bases, we obtain (verify)

[11 [~ [~ x - 0 0 + 5 1 + 3 0
0 0 1

and [1] [0] [1]
x - - 2 0 + 3 1 + 2 1 ,

1 1 1

so that

[x] s = [i] and [x] r = [- i] .

An important result that we will use several times in Chapter 1 is given

THEOREM 0.13. ff S--{Vl,V2,...,u k} is a linearly independent set o f
vectors in a subspace V of R ~ of dimension m, then we may find vectors
Y k + l , u + 2 , . . . , u SO that { V l , V 2 , . . . , u u + l , u + E, . . . , u i s a basis for 111.

A

Theorem 0.13 says that a linearly independent set of vectors in an
m-dimensional subspace V of R n can be extended to a basis for V.

ZX

in the following theorem.

~ 0 Chapter 0 Review of Linear Algebra (Optional)

Consider the matrix equation

a l l a12 . . . a ln

a21 a22 . . . a2n

aml am2 "." amn

X 1 b l

x 2 bE

Xn ;m
Multiplying out the left-hand side, we obtain

a11x1 + a12x 2 + .. . + alnXn

a21x 1 q- a22x 2 q- . . . q_ a2nX n

a m l X 1 -b am2X 2 + "'" + a m n X n

(4)

b 1

b2

bm

(5)

Using the propert ies of matrix addition and scalar multiplication, we may
rewrite (5) as

a l l a12

a21 a22
Xl . + X 2 . + . . . + X n

aml am2

aln b l

a2n b2

amn b m

Thus, if (4) is written in compact form as

A x = b

a n d A1, A 2 , . . . , A n
be written as

are the columns of A, then we have shown that (4) can

x I A 1 + x 2 A 2 + "'" + x n A n -- b . (6)

That is, writing the matrix equation Ax = b is equivalent to writing b as a
linear combination of the columns of A. Fur thermore , if x is a solution to
Ax = b, then the components of x are the coefficients of the columns of A
when b is written as a linear combination of these columns.

An important application of this discussion occurs in the case when A is
nonsingular. In this case, the columns of A form a linearly independent set
of n vectors in R n. Thus, this set is a basis for R n, and b can be uniquely
written as a linear combination of the columns of A. The solution to
Ax = b gives the coordinate vector of b with respect to this basis. That is,
from Equat ion (6), the coordinates of b with respect to the basis
{A1,A2,. . . ,A n} are x 1, x 2 , . . . , Xn. Since A is nonsingular, A -1 exists, and
we may write x = A -1 b. The columns of A -1 also form a basis for R n. In
the same manner as that for b, we can obtain the coordinates of x with
respect to the basis of columns of A-1. These coordinates are the compo-
nents of b.

0.5 Linear Independence and Basis 41

DEFINITION. The r a n k of an m X n matrix A is the number of nonzero
rows in the matrix in reduced row echelon form that is row equivalent to

A.

EXAMPLE 9. Find the rank of the matrix

A .~.

1 2 - 1 1 2
2 3 - 2 5 2
4 7 - 4 7 6 .
3 4 - 3 9 2

- 1 0 1 - 7 2

Solution. Transforming A to reduced row echelon form we find (verify)
that A is row equivalent to

B

Hence , the rank of A is 2.

1 0 - 1 7 - 2
0 1 0 - 3 2
0 0 0 0 0 �9
0 0 0 0 0
0 0 0 0 0

A

0.5 EXERCISES

1. Let

s_ {I-i], I-i], I-i]}.
Which of the following vectors are linear combinations of the vectors in S? [1] [6] [1]
(a) - 1 (b) 2 (c) 2 (d) 1

2 4 - 1 1

2. Let

/1211 I31 I1 311 I~ S = 3 ' 2 ' - 8 ' "
4 2 - 1 0

Which of the following vectors are linear combinations of the vectors in S?

I~ I~ 0 (b) (c) (d) 1
(a) 6 0

6 - 2

~ Chapter 0 Review of Linear Algebra (Optional)

3. Which of the following sets of vectors span R27

(a) {[_~] , [0]} (b){[1], [0], [3]}

4. Which of the following sets of vectors span R37

[F31 1-01 [11/ /[11 [31/

0.5 Linear Independence and Basis ~

([il [i] I il)
{[i] [i] [i])

 b,([il [i] [i]}
12. Let

s([~] [11])
be a basis for R 2. Find the coordinate vector [x] s of the indicated vector x with
respect to S.

3 (a' x- [4]
13. Let

(b) x = [- 2 1 1

s {[i] [i] [il)
be a basis for R 3. Find the coordinate vector [x] s of the indicated vector x with
respect to S.

[i] [1] [3] (a) x = (b) x - - 2 (c) x = 1 (d) x = 2
3 1 1

14. Suppose that S 1 and S 2 are finite sets of vectors in R n and that S 1 is a subset
of S 2. Prove the following.
(a) If S 1 is linearly dependent, so is S 2.
(b) If S 2 is linearly independent, so is S 1.

15. Show that any set of vectors in R" that includes the zero vector must be
linearly dependent.

16. Show that any set of n + 1 vectors in R" must be linearly dependent.

17. Show that R" cannot be spanned by a set containing fewer than n vectors.

18. Find the rank of the matrix

2 3 4 - 1 2]
4 - 1 6 - 7 - 6 .
3 2 - 1 3 4

19. Find the rank of the matrix

- 2
4
2

- 1 0

44 Chapter 0 Review of Linear Algebra (Optional)

20. Let A be an n • n matrix. Show that A is nonsingular if and only if its rank
is n.

Further Reading
Kolman, Bernard. Introductory Linear Algebra with Applications, fifth ed. Macmillan, New

York, 1993.
Kolman, Bernard. Elementary Linear Algebra, sixth ed. Macmillan, New York, 1996.
Strang, Gilbert. Linear Algebra and Its Applications, third ed. Harcourt Brace Jovanovich,

Orlando, FL, 1988.

Introduction

to Linear

Programming

T
HIS CHAPTER AND the next two, which represent the heart of this
book, introduce the basic ideas and techniques of linear program-
ming. This area of applied mathematics was developed in the late

1940s to solve a number of resource allocation problems for the federal
government. It has become an essential tool in operations research and
has been applied to a remarkably varied number of real problems, produc-
ing enormous savings in money and resources. In this chapter we first
introduce the linear programming problem and then discuss a simple
geometric solution for small problems. Finally, we connect the algebraic
and geometric descriptions of the solutions of a linear programming
problem.

1.1 THE LINEAR PROGRAMMING PROBLEM

We start by giving several examples of linear programming problems.

45

~ Chapter 1 Introduction to Linear Programming

EXAMPLE 1 (ACTIVITY ANALYSIS OR PRODUCT MIX). A lumber mill
saws both finish-grade and construction-grade boards from the logs that it
receives. Suppose that it takes 2 hr to rough-saw each 1000 board feet of
the finish-grade boards and 5 hr to plane each 1000 board feet of these
boards. Suppose also that it takes 2 hr to rough-saw each 1000 board feet
of the construction-grade boards, but it takes only 3 hr to plane each 1000
board feet of these boards. The saw is available 8 hr per day, and the plane
is available 15 hr per day. If the profit on each 1000 board feet of
finish-grade boards is $120 and the profit on each 1000 board feet of
construction-grade boards is $100, how many board feet of each type of
lumber should be sawed to maximize the profit?

MATHEMATICAL MODEL. Let x and y denote the amount of finish-
grade and construction-grade lumber, respectively, to be sawed per day.
Let the units of x and y be thousands of board feet. The number of hours
required daily for the saw is

2x + 2y.

Since only 8 hours are available daily, x and y must satisfy the inequality

2x + 2y < 8.

Similarly, the number of hours required for the plane is

5x + 3y,

so x and y must satisfy

5x + 3y < 15.

Of course, we must also have

x > 0 and y > 0 .

The profit (in dollars) to be maximized is given by

z = 120x + 100y.

Thus, our mathematical model is:

Find values of x and y that will

maximize z = 120x + 100y

subject to the restrictions

2x + 2y < 8

5x + 3y < 15

x > 0

y>_0. A

EXAMPLE :2 (THE DIET PROBLEM). A nutritionist is planning a menu
consisting of two main foods A and B. Each ounce of A contains 2 units

1.1 The Linear Programming Problem ~

of fat, 1 unit of carbohydrates, and 4 units of protein. Each ounce of B
contains 3 units of fat, 3 units of carbohydrates, and 3 units of protein. The
nutritionist wants the meal to provide at least 18 units of fat, at least 12
units of carbohydrates, and at least 24 units of protein. If an ounce of A
costs 20 cents and an ounce of B costs 25 cents, how many ounces of each
food should be served to minimize the cost of the meal yet satisfy the
nutritionist's requirements?

MATHEMATICAL MODEL. Let x and y denote the number of ounces of
foods A and B, respectively, that are served. The number of units of fat
contained in the meal is

2x + 3y,

so that x and y have to satisfy the inequality

2x + 3y > 18.

Similarly, to meet the nutritionist's requirements for carbohydrate and
protein, we must have x and y satisfy

x + 3y > 12

and

4x + 3y > 24.

Of course, we also require that

x > 0 and y > 0 .

The cost of the meal, which is to be minimized, is

z = 20x + 25y.

Thus, our mathematical model is:

Find values of x and y that will

minimize z = 20x + 25y

subject to the restrictions

2x + 3y > 18

x + 3y > 12

4x + 3y > 24

x > 0

y > 0 . A

EXAMPLE 3 (THE TRANSPORTATION PROBLEM). A manufacturer of sheet
polyethylene has two plants, one located in Salt Lake City and the other
located in Denver. There are three distributing warehouses, one in Los
Angeles, another in Chicago, and the third in New York City. The Salt

40 Chapter 1 Introduction to Linear Programming

Lake City plant can supply 120 tons of the product per week, whereas the
Denver plant can supply 140 tons per week. The Los Angeles warehouse
needs 100 tons weekly to meet its demand, the Chicago warehouse needs
60 tons weekly, and the New York City warehouse needs 80 tons weekly.
The following tables gives the shipping cost (in dollars) per ton of the
product:

From To

Los Angeles Chicago New York City

Salt Lake City 5 7 9
Denver 6 7 10

How many tons of polyethylene should be shipped from each plant to each
warehouse to minimize the total shipping cost while meeting the demand?

MATHEMATICAL MODEL. Let P1 and P2 denote the plants in Salt Lake
City and in Denver, respectively. Let W 1, W 2, and W 3 denote the ware-
houses in Los Angeles, Chicago, and New York City, respectively. Let

x u = number of tons shipped from Pi to Wj

cq = cost of shipping 1 ton from Pi to

for i = 1, 2 and j = 1, 2, 3. The total amount of polyethylene sent from
P1 is

Xll + X12 + X13.

Since P1 can supply only 120 tons, we must have

Xll + X12 + X13 __< 120.

Similarly, since P2 can supply only 140 tons, we must have

X21 -[-X22 -[--X23 __< 140.

The total amount of polyethylene received at W1 is

Xll -[- X21.

Since the demand at W1 is 100 tons, we would like to have

Xll -[- X21 ~__ 100.

Similarly, since the demands at W E and W 3 are 60 and 80 tons, respec-
tively, we would like to have

X12 + X22 >__ 60

and

X13 "+" X23 ~__ 80.

1.1 The Linear Programming Problem t ~

Of course, we must also have

Xij >__ 0 for i = 1 ,2 and j = 1 , 2 , 3 .

The total transportation cost, which we want to minimize, is

Z = Cl lXl l q- C12X12 d- C13X13 -~- C21X21 d- C22X22 d- C23X23.

Thus, our mathematical model is:

Find values of x11, x12, x13, x21, x22, and x23 that will

2 3

minimize z = E E cijxij
i = l j = l

subject to the restrictions

3

E Xij <-- Si, i = 1, 2
j=l

2
E x i j > dj, j=1,2,3

i=1

Xij >_~ O,

where available supplies are

s 1 - 120 and s 2

and where the required demands are

i = 1 ,2 and j = 1 , 2 , 3

d 1 -- 100, d E = 6 0 , and

EXAMPLE 4 (A BLENDING PROBLEM).

= 140

d 3 -- 80. A

A manufacturer of artificial
sweetener blends 14 kg of saccharin and 18 kg of dextrose to prepare two
new products: SWEET and LO-SUGAR. Each kilogram of SWEET con-
tains 0.4 kg of dextrose and 0.2 kg of saccharin, whereas each kilogram of
LO-SUGAR contains 0.3 kg of dextrose and 0.4 kg of saccharin. If the
profit on each kilogram of SWEET is 20 cents and the profit on each
kilogram of LO-SUGAR is 30 cents, how many kilograms of each product
should be made to maximize the profit?

MATHEMATICAL MODEL. Let x and y denote the number of kilograms
of SWEET and LO-SUGAR, respectively, being made. The number of
kilograms of dextrose being used is

so that we must have

0.4x + 0.3y,

0.4x + 0.3y < 18.

~0 Chapter 1 Introduction to Linear Programming

Similarly, the number of kilograms of saccharin being used is

0.2x + 0.4y,

so that we must have

0.2x + 0.4y < 14.

Of course, we also require that

x > 0 and y > 0 .

The total profit (in cents), which we seek to maximize, is

z = 20x + 30y.

Thus, our mathematical model is:

Find values of x and y that will

maximize z = 20x + 30y

subject to the restrictions

0.4x + 0.3y < 18

0.2x + 0.4y < 14

x > 0

y > _ 0 . A

EXAMPLE 5 (A FINANCIAL PROBLEM). Suppose that the financial advi-
sor of a university's endowment fund must invest exact/y $100,000 in two
types of securities: bond AAA, paying a dividend of 7%, and stock BB,
paying a dividend of 9%. The advisor has been told that no more than
$30,000 can be invested in stock BB, whereas the amount invested in bond
AAA must be at least twice the amount invested in stock BB. How much
should be invested in each security to maximize the university's return?

MATHEMATICAL MODEL. Let x and y denote the amounts invested in
bond AAA and stock BB, respectively. We must then have

x + y = 100,000

x>_2y
y _< 30,000.

Of course, we also require that

x > _ 0 and y > _ 0 .

The return to the university, which we seek to maximize, is

z = 0.07x + 0.09y.

1.1 The Linear Programming Problem ~1

Thus, our mathematical model is:

Find values of x and y that will

maximize z = 0.07x + 0.09y

subject to the restrictions

x + y = 100,000

x - 2 y > O

y < 30,000

x > 0

y > _ 0 . A

Following the form of the previous examples, the general l inear program-
ming problem can be stated as follows:

Find values of x 1, x 2 , . . . , x n that will

maximize or minimize z --- C lX 1 + CEX 2 + "'" + C n X n (1)

subject to the restrictions

a l l X 1 + a l 2 x 2 + . . . + a l n X n <__ (> _ _) (=) b 1

a21x 1 + a 2 2 x 2 + . . . + a 2 n X n <__ (> _ .) (=) b 2
. . . . , (2)
�9 , ~ .

a m l X 1 + a m 2 X 2 + . . . + a m n X n <__ (~) (=) b m

where in each inequality in (2) one and only one of the symbols, < , > ,
= occurs. The linear function in (1) is called the objective function. The
equalities or inequalities in (2) are called constraints. Note that the
left-hand sides of all the inequalities or equalities in (2) are linear
functions of the variables x 1, x 2 , . . . , x~, just as the objective function is. A
problem in which not all the constraints or the objective function are
linear functions of the variables is a nonlinear programming problem. Such
problems are discussed in more advanced texts.

We shall say that a linear programming problem is in s tandard form if
it is in the following form:

Find values of x 1, x 2 , . . . , x~ that will

maximize z ~- ClX 1 + C2X 2 + "'" + C n X n (3)

subject to the constraints

a l l X 1 + a12x2 + . . . + a l n X n <--b 1

a21x I + a 2 2 x 2 + . . . + a 2 n X n < b 2
. . . . (4)

a m l X 1 + a m 2 X 2 -t-- "" + a m n X n ~ b m

x j > 0 , j = 1 , 2 , . . . , n . (5)

Examples 1 and 4 are in standard form. The other examples are not. Why?

~ Chapter 1 Introduct ion to L inear Programming

EXAMPLE 6.
form:

We shall say that a linear programming problem is in canonical form if
it is in the following form:

Find values of Xl, x2 , . - . , xs that will

maximize z- -ClX 1 -{-C2X 2 -Jr" "'" "+'CsX s

subject to the constraints

a l l X 1 + a l 2 x 2 + " " + a~sX s = b~

a 2 1 x 1 + a 2 2 x 2 + . . . + a 2 s X s = b 2

�9 ~ �9 .

a m l X 1 + a m 2 X 2 + . . . + a m s X s = b m

x j > O , j = 1 , 2 , . . . , s .

The following linear programming problem is in canonical

Maximize z = 3 x + 2 y + 3 u - 4 v

subject to the constraints

2 x + y + 2 u - v = 4

5 x + 3 y - 2 v = 15

x>_0, y>_0, u>_0, v>_0. ZX

Some other authors use different names for what we call standard and
canonical linear programming problems. Some also require that all the
variables be nonnegative in a linear programming problem. The reader
should carefully check the definitions when referring to other books or
papers.

EXAMPLE 7. The following linear programming problems are neither
in standard form nor in canonical form. Why?

(a) Minimize z - 3x + 2y

subject to the constraints

2 x + y < 4

3 x - 2y < 6

x>_0, y>_0.

(b) Maximize z = 2 x I + 3 x 2 + 4 x 3

subject to the constraints

3x 1 + 2 x 2 - 3 x 3 < 4

2 X 1 + 3 x 2 + 2 x 3 < 6

3X 1 -- x 2 + 2 x 3 > - - 8

x 1 >__ 0 , x 2 >_~ 0 , X 3 >_~ 0 .

1.1 The Linear Programming Problem 53

(c) Maximize z = 3x + 2y + 3v - 2w

subject to the constraints

2x + 6y + 2v - 4w = 7

3 x + 2 y - 5 v + w = 8

6 x + 7 y + 2 v + 5 w < 4

x > O , y > O , v > O , w>_O.

(d) M i n i m i z e z = 2 x + 5 y + u + v + 4 w

subject to the constraints

3 x + 2 y - u + 2 w = 4

4 x + 5 y + 3 u + 2 v = 7

x>_0 , y > _ 0 , u > _ 0 , v>_0 , w>_0.

(e) Maximize z = 2x + 5y

subject to the constraints

3x + 2y < 6

2 x + 9 y < 8

x>_0 .

(f) Minimize z = 2 xa + 3x2 + x3

subject to the constraints

2x I + x 2 - x 3 = 4

3x I + 2x 2 + X 3 - - 8

x I - x 2 = 6

X 1 >__ O, X 2 ~_~ O. /~

We shall now show that every linear programming problem that has
unconstrained variables can be solved by solving a corresponding linear
programming problem in which all the variables are constrained to be
nonnegative. Moreover, we show that every linear programming problem
can be formulated as a corresponding standard linear programming prob-
lem or as a corresponding canonical linear programming problem. That is,
we can show that there is a standard linear programming problem (or
canonical linear program problem)whose solution determines a solution
to the given arbitrary linear programming problem.

Minimization Problem as a Maximization Problem

Every minimization problem can be viewed as a maximization problem
and conversely. This can be seen from the observation that

min cixi i1

54 Chapter 1 Introduction to Linear Programming

That is, to minimize the objective function we could maximize its negative
instead and then change the sign of the answer.

Reversing an Inequality

If we multiply the inequality

k l X 1 + k 2 x 2 + "'" + k ~ x , >_ b

by - 1 , we obtain the inequality

- k l X 1 - kEX 2 knx n <_ - b .

EXAMPLE 8. Consider the linear programming problem given in
Example 7b. If we multiply the third constant,

3 x 1 - - X 2 + 2X 3 > - - 8 ,

by - 1 , we obtain the equivalent linear programming problem:

Maximize z = 2X 1 + 3X 2 + 4X 3

subject to

3 x I + 2 x 2 -- 3X 3 < 4

2 x 1 + 3 x 2 + 2 x 3 < 6

- - 3 x 1 + x 2 - - 2 x 3 < 8

X 1 >__ 0, X 2 >__ 0 , X 3 >__ 0 ,

which is in standard form. A

Changing an Equality to an Inequality

Observe that we can write the equation x = 6 as the pair of inequalities
x < 6 and x > 6 and hence as the pair x < 6 and - x < - 6 . In the
general case the equation

n

E a i j x j = bi
j = l

can be written as the pair of inequalities
n

E a i j x j <-- bi
j = l

tl

~ - a i j x j <_ - bi .
]=1

EXAMPLE 9. Consider the linear programming problem given
Example 7c. It contains the two equality constraints

2x + 6y + 2v - 4 w = 7

3 x + 2 y - 5 v + w = 8 .

in

1.1 The Linear Programming Problem 55

These may be written as the equivalent four inequalities

2 x + 6 y + 2 v - 4 w < 7

2x + 6y + 2v - 4w > 7

3 x + 2 y - 5 v + w < 8

3 x + 2 y - 5 v + w > 8 .

Thus, we obtain the equivalent linear programming problem:

Maximize z = 3 x + 2 y + 3 v - 2 w

subject to

2 x + 6 y + 2 v - 4 w < 7

- 2 x - 6 y - 2 v + 4 w < - 7
3 x + 2 y - 5 v + w < 8

- 3 x - 2 y + 5 v - w < - 8

6x + 7y + 2v + 5w < 4

y > O , v>_O, w>_O, x > 0 ,

which is in standard form. A

Unconstrained Variables

The problems in Examples 7e and 7f have variables that are not
constrained to be nonnegative. Suppose that xj is not constrained to be
nonnegative. We replace xj with two new variables, x~ and x}-, letting

xj = x ; - x; ,

where x~ > 0 and x]-> 0. That is, any number is the difference of two
nonnegative numbers. In this manner we may introduce constraints on
unconstrained variables.

EXAMPLE 10. Consider the problem in Example 7e. Letting y =
y + - y- , our problem becomes the following linear programming problem:

Maximize z = 2x + 5y § 5y-

subject to

3x + 2y § 2 y - < 6

2x + 9y § 9 y - < 8

x > 0 , y + > 0 , y - > 0 ,

which is in standard form. Z~

EXAMPLE 11. The problem in Example 7f can be converted to a
maximization problem. We also let x 3 = x ~ - x 3. With these changes we

56 Chapter 1 Introduction to Linear Programming

obtain the following problem:

Maximize z -- - 2x 1 - 3x 2 - x~ + x 3

subject to

2x 1 + x 2 - x ~ + x 3 = 4

3x 1 + 2 x 2 q - x ~ - - x 3 = 8

Xl - x2 - 6

Xl >_~ 0 , X2 >_~ 0 , X~->_~ O, X3>_~ 0 ,
which is in canonical form.

We have thus shown that every linear programming problem that is not
in standard form can be transformed into an equivalent linear program-
ming problem that is in standard form.

Scaling
It is not difficult to see that if both sides of one or more constraints of a

linear programming problem are multiplied by constants, then the optimal
solution to the new problem is identical to the optical solution to the given
problem. This technique can be used to make all coefficients in a linear
programming problem approximately the same size. This method, called
scaling, will be discussed further in Section 3.6.

A diagrammatic representation of the various types of linear program-
ming problems is given in Figure 1.1.

In Section 1.2 we will show how to convert a linear programming
problem in standard form to one in canonical form. Thus, any linear
programming problem can be put in either standard form or canonical
form.

1.1 The Linear Programming Problem 57

1.1 EXERCISES

In Exercises 1-11 set up a linear programming model of the situation described.
Determine if the model is in standard form. If it is not, state what must be changed
to put the model into standard form.

1. Blending problem. A new rose dust is being prepared by using two available
products: PEST and BUG. Each kilogram of PEST contains 30 g of carbaryl
and 40 g of Malathion, whereas each kilogram of BUG contains 40 g of
carbaryl and 20 g of Malathion. The final blend must contain at least 120 g of
carbaryl and at most 80 g of Malathion. If each kilogram of PEST costs $3.00
and each kilogram of BUG costs $2.50, how many kilograms of each pesticide
should be used to minimize the cost?

2. Equipment purchasing problem. A container manufacturer is considering the
purchase of two different types of cardboard-folding machines: model A and
model B. Model A can fold 30 boxes per minute and requires 1 attendant,
whereas model B can fold 50 boxes per minute and requires 2 attendants.
Suppose the manufacturer must fold at least 320 boxes per minute and cannot
afford more than 12 employees for the folding operation. If a model A
machine costs $15,000 and a model B machine costs $20,000, how many
machines of each type should be bought to minimize the cost?

3. Disease treatment problem. Dr. R. C. McGonigal treats cases of tactutis with a
combination of the brand-name compounds Palium and Timade. The Palium
costs $0.40/pill and the Timade costs $0.30/pi11. Each compound contains
SND plus an activator. The typical dosage requires at least 10 mg of SND per
day. Palium contains 4 mg of SND and Timade contains 2 mg of SND. In
excessive amounts the activators can be harmful. Consequently Dr. McGonigal
limits the total amount of activator to no more than 2 mg per day. Palium and
Timade each contain 0.5 mg of activator per pill. How many of each pill per
day should Dr. McGonigal prescribe to minimize the cost of the medication,
provide enough SND, and yet not exceed the maximum permissible limit of
activator?

4. Agricultural problem. A farmer owns a farm that produces corn, soybeans, and
oats. There are 12 acres of land available for cultivation. Each crop that is
planted has certain requirements for labor and capital. These data along with
the net profit figures are given in the accompanying table.

, , , , , , ,

Labor (hr) Capital ($) Net profit ($)

Corn (per acre) 6 36 40
Soybeans (per acre) 6 24 30
Oats (per acre) 2 18 20

The farmer has $360 available for capital and knows that there are 48 hr
available for working these crops. How much of each crop should be planted to
maximize profit?

58 Chapter 1 Introduction to Linear Programming

5. Blending problem. A coffee packer blends Brazilian coffee and Colombian
coffee to prepare two products: Super and Deluxe brands. Each kilogram of
Super coffee contains 0.5 kg of Brazilian coffee and 0.5 kg of Colombian
coffee, whereas each kilogram of Deluxe coffee contains 0.25 kg of Brazilian
coffee and 0.75 kg of Colombian coffee. The packer has 120 kg of Brazilian
coffee and 160 kg of Colombian coffee on hand. If the profit on each kilogram
of Super coffee is 20 cents and the profit on each kilogram of Deluxe coffee is
30 cents, how many kilograms of each type of coffee should be blended to
maximize profit?

6. Air pollution problem. Consider an airshed in which there is one major
contributor to air pollution--a cement-manufacturing plant whose annual
production capacity is 2.500,000 barrels of cement. Figures are not available to
determine whether the plant has been operating at capacity. Although the kilns
are equipped with mechanical collectors for air pollution control, the plant still
emits 2.0 lb of dust per barrel of cement produced. There are two types of
electrostatic precipitators that can be installed to control dust emission. The
four-field type would reduce emissions by 1.5 lb of dust/barrel and would cost
$0.14/barrel to operate. The five-field type would reduce emissions by 1.8 lb of
dust/barrel and would cost $0.18/barrel to operate. The EPA requires that
particulate emissions be reduced by at least 84%. How many barrels of cement
should be produced using each new control process to minimize the cost of
controls and still meet the EPA requirements1?

7. Mixing problem. The R. H. Lawn Products Co. has available 80 metric tons of
nitrate and 50 metric tons of phosphate to use in producing its three types of
fertilizer during the coming week. The mixture ratios and profit figures are
given in the accompanying table. Determine how the current inventory should
be used to maximize the profit.

Metric tons / 1000 bags Profit

Nitrate Phosphate ($/1000 bags)

Regular lawn 4 2 300
Super lawn 4 3 500
Garden 2 2 400

8. Investment problem. The administrator of a $200,000 t rus t fund set up by Mr.
Smith's will must adhere to certain guidelines. The total amount of $200,000
need not be fully invested at any one time. The money may be invested in three
different types of securities: a utilities stock paying a 9% dividend, an electron-
ics stock paying a 4% dividend, and a bond paying 5% interest. Suppose that
the amount invested in the stocks cannot be more than half the total amount
invested; the amount invested in the utilities stock cannot exceed $40,000; and
the amount invested in the bond must be at least $70,000. What investment
policy should be pursued to maximize the return?

1Kohn, Robert E. "A Mathematical Programming Model for Air Pollution Control."
School Sci. Math. (June 1969).

1.1 The Linear Programming Problem ~

9. A book publisher is planning to bind the latest potential bestseller in three
different bindings: paperback, book club, and library. Each book goes through
a sewing and gluing process. The time required for each process is given in the
accompanying table.

Paperback Book club Library

Sewing (min) 2 2 3
Gluing (min) 4 6 10

Suppose the sewing process is available 7 hr per day and the gluing process 10
hr per day. Assume that the profits are $0.50 on a paperback edition, $0.80 on
a book club edition, and $1.20 on a library edition. How many books will be
manufactured in each binding when the profit is maximized?

10. Major oil companies use linear programming to model many phases of their
operations. Consider the following simplified version of part of a refinery
operation. Two kinds of aviation gasoline, high octane and low octane, are
made by blending four components from the refinery output. For the low-
octane gasoline the components are augmented with a small amount of
tetraethyllead (TEL) to give the low-octane ratings shown in the accompanying
table. The high-octane gasoline is made from the same components when these
have been augmented with a larger amount of TEL, giving the high-octane
ratings in the table. Assume that the octane rating (OR) of the mixture is the
volumetric average of the octane ratings of the components. That is, letting V
denote volume, we have

ORmi x -
O R compl X Vcompl + O R comp2 X Vcomp 2 + "'"

Vcompl + Vcomp2 + ..-

The vapor pressure (a measure of the tendency of the gasoline to evaporate) of
both gasolines must be 7. Assume that the vapor pressure of a mixture is the
volumetric average of the vapor pressures of the components. Vapor pressure
and octane rating are the only two physical properties for which there are
constraints. Data for the components and desired mixtures are given in the
accompanying table.

Vapor
pressure

OR

High Low Demand Supply Revenue Cost

Component
Alkylate 5
Catalytic cracked 6.5
Straight run 4
Isopentane 18

Mixture
High octane 7
Low octane 7

108 98
94 87
87 80

108 100

100
90

1300
800

700 7.20
600 4.35
900 3.80
500 4.30

6.50
7.50

60 Chapter 1 Introduction to Linear Programming

Assume that the demands must be met exactly. Measure the profit by using
revenue less cost. Set up a model of this situation that maximizes this measure
of profit.

11. A local health food store packages three types of snack foodsmChewy,
Crunchy, and Nuttymby mixing sunflower seeds, raisins, and peanuts. The
specifications for each mixture are given in the accompanying table.

Selling price
Mixture Sunflower seeds Raisins Peanuts per kilogram ($)

Chewy At least 60% At most 20% 2.00
Crunchy At least 60% 1.60
Nutty At most 20% At least 60% 1.20

The suppliers of the ingredients can deliver each week at most 100 kg of
sunflower seeds at $1.00/kg, 80 kg of raisins at $1.50/kg, and 60 kg of peanuts
at $0.80/kg. Determine a mixing scheme that will maximize the store's profit.

1.1 PROJECTS

1. Feed problem. A laboratory needs to supply its research dogs a mixture of
commercially available dog foods that meet the National Research Council
(NRC) nutrient requirements (Table 1.1). The nutritional composition of each
of the eight available foods is given in Table 1.2. Note that these data are given
in terms of percentages.

(a) Set up a constraint for each of the food constituents listed in Table 1.1
based on the NRC requirements.

(b) An additional constraint must be provided, because the requirements are
given in terms of percentages. It must say that the sum of the amounts used
is 1. That is, each variable represents a fraction of the total amount to be
blended. Write this constraint.

TABLE 1.1 National Research Council Nutrient
Requirements

Food must have at least (%) Food must have at most (%)

Protein 20
Fat 5
Linoleic acid 1.4
Calcium 1
Phosphorus 0.8
Potassium 0.5
Salt 1
Magnesium 0.4
NFE 25

Fiber 8
Moisture 5

1.1 The Linear Programming Problem ~1

TABLE 1.2 Dog Food Constituents (Percentage by Weight)

Wayne Purina Purina Purina Agway
Wayne T W Meal Chow HP Gaines Burgerbits 2000

Protein 25.0 24.0 27.0 23.8 26.0 21.0 23.0 25.5
Fat 8.0 9.0 10.5 9.4 10.0 8.0 7.0 10.5
Linoleic acid 2.1 1.6 1.6 1.6 1.6 0.9 1.5 1.5
Calcium 2.15 1.20 2.50 1.75 1.60 1.0 1.50 1.50
Phosphorus 1.43 1.00 1.40 1.03 1.20 0.80 0.80 1.70
Potassium 0.73 0.98 0.80 0.71 0.90 0.50 0.50 0.69
Salt 1.15 1.15 0.78 0.64 1.10 1.00 1.50 1.00
Magnesium 0.170 0 . 2 2 0 0 . 2 9 0 0 . 2 7 0 0 . 1 5 0 0.036 0.050 0.230
Fiber 3.5 4.7 4.3 3.7 4.0 5.0 5.0 2.9
NFE 45.77 4 6 . 1 5 4 1 . 8 3 4 8 . 1 0 4 1 . 4 5 51.76 47.15 45.28
Moisture 10.0 10.0 9.0 9.0 12.0 10.0 12.0 9.2

Cost ($/kg) 0.17 0.17 0.17 0.16 0.21 0.20 0.17 0.16

(c) Set up the objective function using the cost data given in Table 1.2.

(d) Consider an arbitrary constraint,

a l x 1 + a 2 x 2 + .." +a8x 8 > b. (1)

Using the constraint in b, show that the constraint in (1) is automatically
satisfied if, for all i, a i > b. Similarly, show that (1) is impossible to satisfy if,
for all i, a i < b. Formulate and prove similar results if the inequality in (1)
is reversed.

(e) Using the results in d, identify the redundant constraints and the impossible
constraints in a. Rewrite the model, eliminating impossible and redundant
constraints.

(f) Discuss why Xl = x2 x 7 = 0, x 8 = 1, is an optimal solution.

2. Advertising. The advertising programs of major companies are designed to
achieve certain goals in the hope of stimulating sales. There are many media
that accept advertising, and the company must decide how to allocate its
advertising budget among the different media to achieve the greatest possible
benefit. To aid in making this type of decision, there are a number of research
firms that collect data concerning the audience of each medium. Suppose a car
manufacturer, who requires a four-color one-page unit in a weekly magazine, is
presented by the research firm with the accompanying table representing
readership characteristics and advertising limitations of three different weekly
magazines.

TV Guide Newsweek Time

Cost per four-color one-page unit ($)
Total male readers per unit
Men 50 years or older per unit
Men who are college graduates per unit

55,000 35,335 49,480
19,089,000 11,075,000 10,813,000
4,312,000 2,808,000 2,714,000
2,729,000 3,387,000 3,767,000

~ Chapter 1 Introduction to Linear Programming

The advertising manager has a monthly budget limitation of $200,000 and must
decide what amount to spend for each magazine. Because she is worried about
the possible duplication of TV Guide with her television advertising schedule,
she decides to limit TV Guide to a maximum of two advertising units. She can
use as many as four advertising units per month in each of Newsweek and Time.
Each time a person reads a magazine, it is counted as an exposure to the
advertising in the magazine. The advertising manager wants to obtain at least
12,000,000 exposures to men who are college graduates, and, because men 50
years and older are not good prospects for her products, she wants to limit the
number of exposures to no more than 16,000,000 such men. Set up a linear
programming model to determine how many advertising units the advertising
manager should buy in each magazine if she wants to keep within her budget
and wants to maximize the total number of male readers.

3. Construction problem. A private contractor has five machines that are capable
of doing excavation work available at certain times during the day for a period
of one week. He wants to determine which combination of machines he should
use in order to get the job done the cheapest way. The size of the excavation is
1000 cubic yards of material, and the material has to be removed in one week's
time. His machine operators will work at most an 8-hr day, 5 days per week. In
the accompanying table is the capacity of each machine, the cycle time for each
machine (the time it takes the machine to dig to its capacity and move the
excavated material to a truck), the availability, and the cost (which includes
wages for the operator).

Time needed to
Capacity Rate Availability excavate I unit of

Machine (cubic yard) ($/hr) (hr/day) capacity (rain)

Shovel dozer 2 17.50 6.0 4.25
Large backhoe 2.5 40.00 6.0 1.00
Backhoe A 1.5 27.50 6.0 1.00
Backhoe B 1 22.00 8.0 1.00
Crane with clamshell 1.5 47.00 5.5 2.25

Set up a linear programming problem to determine what combination of
machines to use to complete the job at minimum cost. From the data given you
will have to compute the number of cubic yards each machine can excavate in 1
hr. Remember to include a constraint that says that the job must be finished.
(What would the solution be if this last constraint were not included?)

4. Literature search. Among the many journals that deal with linear programming
problems are Operations Research, Management Science, Naval Logistics Re-
search Quarterly, Mathematics in Operations Research, Operational Research Quar-
terly, and the Journal of the Canadian Operational Research Society. Write a short
report on a paper that appears in one of these journals and describes a real
situation. The report should include a description of the situation and a
discussion of the assumptions that were made in constructing the model.

1.2 Matrix Notation 63

1.2 MATRIX NOTATION

It is convenient to write linear programming problems in matrix nota-
tion. Consider the standard linear programming problem:

Maximize z = ClX 1 + c2x 2 + ... +c~x~ (1)

subject to

a l l X 1 + a 1 2 x 2 + - . . + a l n X n <_ b 1

a 2 1 x I + a 2 2 x 2 + . . . + a 2 n X n <_ b 2
. . . . (2)
�9 �9 ~ .

�9 �9 . �9

a m l X 1 -Jr- a m 2 X 2 + "'" -Jr a m n X n ~__ b m

xj > O, j - 1 , 2 , . . . , n . (3)

Letting

a l l a12 . . . a l n

a21 a22 � 9 a2n
A - - . . . , x -

a m l am2 � 9 a mn

b l c 1

b2 C 2
b = . , a n d c = . ,

b m C n

X 1

X2
�9 9

xn

we can write our given linear programming problem as:

Find a vector x ~ R n that will

maximize z = cTx (4)

subject to

Ax _< b (5)

x > 0. (6)

Here, writing v < w for two vectors v and w means that each entry of v is
less than or equal to the corresponding entry of w. Specifically, x > 0
means that each entry of x is nonnegative.

EXAMPLE 1. The linear programming problem in Example 1 of Section
1.1 can be written in matrix form as follows:

Find a vector x in R 2 that will

maximize z = [120 100] y]

~ Chapter 1 Introduction to Linear Programming

subject to

2 2Ix
3 Y

ly]
8

>_0.
A

DEFINITION. A vector x ~ R n satisfying the constraints of a linear
programming problem is called a feasible solution to the problem. A
feasible solution that maximizes or minimizes the objective function of a
linear programming problem is called an optimal solution. A

Consider the linear programming problem in Example 1.

1 2] and Ii 3
' X 2 = 1 '

EXAMPLE 2.
The vectors

X l

are feasible solutions. For example,

2 2 6 8 1]-

1

and [2] > 0 " 1 -

Therefore, x 2 is a feasible solution. The vectors x 1 and x 3 can be checked
in the same manner. Also, the same technique can be used to show that

[1 [2] 3 and x = x 4 - 1 s 2

are not feasible solutions. Moreover,

- 2
x 6 = I 3]

is not a feasible solution because one of its entries is negative. Later we
will show that

X0 - -

is an optimal solution to the problem.

[3]
5

A

We now describe the method for converting a standard linear program-
ming problem into a problem in canonical form. To do this we must be
able to change the inequality constraints into equality constraints. In
canonical form the constraints form a system of linear equations, and we
can use the methods of linear algebra to solve such systems. In particular,
we shall be able to employ the steps used in Gauss-Jordan reduction.

1.2 Matrix Nota t ion 65

Changing an Inequality to an Equality

Consider the constraint

a i l x 1 -Jr- a i 2 x 2 -k- . . . + a i n X n ~ b i . (7)

We may convert (7) into an equation by introducing a new variable, u~, and
writing

a i l X l -I- a i 2 x 2 -Jr- " " + a i n X n -I- U i ~-- b i . (8)

The variable u i is nonnegative and is called a slack variable because it
"takes up the slack" between the left side of constraint (7) and its right
side.

We now convert the linear programming problem in standard form
given by (1), (2), and (3) to a problem in canonical form by introducing a
slack variable in each of the constraints. Note that each constraint will get
a different slack variable. In the ith constraint

a i l x I -4- a i 2 x 2 + . . . q - a i n X n ~ b i ,

we introduce the slack variable x~ § i and write

a i l x 1 Jr- a i 2 x 2 q- . . . - I - a i n X n + X n + i = b i.

Because of the direction of the inequality, we know that Xn§ ~ > O. There-
fore, the canonical form of the problem is:

Maximize z = ClX 1 + c 2 x 2 + . . . + c , x , (9)

subject to

a l l X 1 -k- a l 2 x 2 -k- --" q - a l n X n -k -Xn+ 1 = b 1

a 2 1 x I -+- a 2 2 x 2 d- " - q- a 2 n X n -Jr-Xn+ 2 "-" b 2
. . . . (~0)
�9 o o o

a m l X 1 ~ a m 2 X 2 -[- . . . -+-amnX n -[-Xn+ m - - b m

x 1>_0, x 2 > _ 0 , . . . , x~ >_0, x,+ 1 > _ 0 , . . . , x , + m >_0. (11)

The new problem has m equations in m + n unknowns in addition to the
nonnegativity restrictions on the variables x 1, x 2 , . . . , x~, x,+ 1,-- . , Xn+m.

If y - [Yl Y2 "'" y~]T is a feasible solution to the problem given by
(1), (2), and (3), then we define Yn+i, i - 1 , 2 , . . . , m , by

Y n + i = bi - a i l Y l - a i 2 Y 2 a i . Y n ,

That is, Yn+i is the difference between the right side of the ith constraint
in (2) and the value of the left side of this constraint at the feasible
solution y. Since each constraint in (2) is of the < form, we conclude that

Y n + i >-- 0 , i = 1 , 2 , . . . , m .

~ Chapter I Introduction to Linear Programming

Thus, [Yl Y2 "'" Yn Yn+l "'" Yn+m] T satisfies (10) and (11), and the
...]T is a feasible solution to the problem in (9), vector~ = [Yl Y2 Yn+m

(10), and (11).
...]T is a feasible solution to Conversely, suppose ~ = [yl Y2 Yn + m

the linear programming problem in canonical form given by (9), (10), and
(11). Then clearly y~ > O, Y2 >- O , . . . , y n > O. Since Yn+i > O, i =

1, 2 , . . . , m, we see that

aiaY 1 + a i lY 2 + ... + a i n Y n <_ b~ for i = 1 , 2 , . . . , m .

Hence, y = [Yl Y2 "'" y,]T is a feasible solution to the linear program-
ming problem in standard form given by (1), (2), and (3).

The discussion above has shown that a feasible solution to a standard
linear programming problem yields a feasible solution to a canonical linear
programming problem by adjoining the values of the slack variables.
Conversely, a feasible solution to a canonical linear programming problem
yields a feasible solution to the corresponding standard linear program-
ming problem by truncating the slack variables.

EXAMPLE 3. Consider Example 1 again. Introducing the slack variables
u and v, our problem becomes:

Maximize z = 120x + 100y

subject to

2x + 2y + u = 8

5x + 3y +v = 15

x > 0 , y>_0 , u > 0 , v > O .

In terms of the model, the slack variable u is the difference between the
total amount of time that the saw is available, 8 hr, and the amount of time
that it is actually used, 2x + 2y (in hours). Similarly, the slack variable v is
the difference between the total amount of time that the plane is available,
15 hr, and the amount of time that it is actually used, 5x + 3y (in hours).

We showed in Example 2 of this section that x = 2, y = 1 is a feasible
solution to the problem in standard form. For this feasible solution we
have

u = 8 - 2 - 2 - 2 . 1 = 2
v = 1 5 - 5 . 2 - 3 - 1 = 2 .

Thus,
x = 2 , y = l , u = 2 , v = 2

is a feasible solution to the new form of the problem.
Consider now the values

x = l , y = 1, u = 4 , v = 7 .

These values are a feasible solution to the new problem, since

2 . 1 + 2 . 1 + 4 = 8

1.2 Matrix Notation ~

and
5 - 1 + 3 . 1 + 7 = 15.

Consequently,
x = l , y = l

is a feasible solution to the given problem.
We will show in Example 3 of Section 1.3 that an optimal solution to

this problem is
3 5

x = 2 ' Y 2

In canonical form this feasible solution gives the following values for u and
U.

3 5 u = 8 - 2 . ~ - 2 . ~ = 0
3 5 v = 1 5 - 5 . ~ - 3 . ~ = 0 .

That is, an optimal feasible solution to the canonical form of the problem
is

3 5 x = ~ , y = ~ , u = 0 , v = O . /x

The linear programming problem given by (9), (10), and (11) can also be
written in matrix form as follows. We now let

all a12 . . . a l n 1 0 "'" 0

A = a21 a22 "'" a z n 0 1 "'" 0
�9 ~ ~ ~ ~ ~ '

�9 ~ ~ �9 ~

am1 am2 .. . amn 0 0 "'" 1

I X l 7 !- -
C l

bl x2 c2
�9 .

b2
b = . , x = x n , c = cn .

b Xn+l 0
m ~ ~

Xn+ m 0
_ -

_ -

Then this problem can be written as:

Maximize z = e T

subject to

A x = b

x > _ O .

(12)

(13)
(14)

Note that this problem is in canonical form.

68 Chapter 1 Introduction to Linear Programming

EXAMPLE 4. The linear programming problem that was formulated in
Example 3 can be written in matrix form as:

x

Maximize z = [120 100 0 0] y
u

�9

2 2 1 0
5 3 0 1

subject to

x

Y
u

V

Note that this problem is in canonical form.

x

8]yu ;[1 1
u

0
0

>-- 0 "
0

A

1.2 EXERCISES

In Exercises 1-4, write the indicated linear programming problem from Section
1.1 in matrix form.

1. Example 4

2. Example 8

3. Example 9

4. Exercise 4

In Exercises 5-10, convert the indicated linear programming problem from Section
1.1 to canonical form and express this form in matrix notation.

5. Example 7a

6. Example 7e

7. Example 7c

8. Exercise 1

9. Exercise 5

10. Exercise 7

11. (a) For the linear programming problem in Example 1, show that

[1] and x = [1]
x l = 2 3 3

are feasible solutions. Also computethe values of the objective function for
these feasible solutions.

1.2 Matrix Notation ~

(b) Show that

X 4 = 1 ' X5-- 2 ' X 6 = 3

are not feasible solutions.

12. Write the following linear programming problem in canonical form. [Xl]
Maximize z - [2 3 5] x2

X3

subject to

3 2 1
1 1 - 2
2 5 4

][Xl] [5]
X2 ---< 8
X 3 10 [Xl]
x2 > O.
X3

13. Consider the linear programming problem

Maximize z = x + 4 y

subject to

3x + 4y < 21

x + 2 y < 1 2

x > 0 , y > 0 .

Let u and v be the slack variables in the first and second inequalities,
respectively.
(a) Determine, if possible, a feasible solution to the canonical form problem

in which u = 3 a n d v = 4 .
(b) Determine, if possible, a feasible solution to the canonical form problem

in which u = 1 8 a n d v = 10.

14. Consider the linear programming problem

Maximize z -- 2x + 5y

subject to

2x + 3y < 10

5x + y < 12

x + 5y < 15

x>_O, y>_O.

[1] is a feasible solution. (a) Verify that x = 2

(b) For the feasible solution in a, find the corresponding values of the slack
variables.

70 Chapter 1 Introduction to Linear Programming

15. Consider the linear programming problem

Maximize z = cTx
subject to

A x < b
x>_O.

If x~ and x z are feasible solutions, show that
1 2

X - - ~ X 1 - I - ~ X 2

is a feasible solution.

16. Generalize the previous exercise to show that

x ---- r x 1 -I- SX 2

is a feasible solution if r + s = 1.

1.3 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

In this section we consider the geometry of linear programming prob-
lems by first looking at the geometric interpretation of a single constraint,
then at a set of constraints, and finally at the objective function. These
ideas give rise to a geometric method for solving a linear programming
problem that is successful only for problems with two or three variables.
However, the geometric concepts that we discuss can be built into an
algebraic algorithm that can effectively solve very large problems. After
casting the geometric ideas in a linear algebra setting, we will present this
a lgor i thmmthe simplex me thodmin Section 2.1.

Geometry of a Constraint

A single constraint of a linear programming problem in standard form,
say the ith one,

a i l x I -t- a i 2 x 2 -t- "" + a i n X n < bi ,

can be written as

where

aTx < b i,

a T - - [a i l ai2 . . . a in] .

The set of points x = (x 1, x 2 , . . . , x ,) in R ~ that satisfy this constraint is
called a closed half-space. If the inequality is reversed, the set of points
x = (Xl, x 2 , . . . , Xn) in R n satisfying

aTx > b i

is also called a closed half-space.

1.3 Geometry of Linear Programming Problems 71

EXAMPLE 1.
space

Consider the constraint 2x + 3y < 6 and the closed half-

- ([y] 3 [y] 6 /
which consists of the points satisfying the constraint. Note that the points
(3, 0) and (1, 1) satisfy the inequality and therefore are in H. Also, the
points (3, 4) and (- 1 , 3) do not satisfy the inequality and therefore are not
in H. Every point on the line 2x + 3y = 6 satisfies the constraint and thus
lies in H. A

We can graph a closed half-space in R E by graphing the line and then
using a test point to decide which side of the line is included in the
half-space. A simple way to graph the line is to find its x- and y-intercepts.
By setting y - 0 in the equation of the line and solving for x, we obtain
the x-intercept and plot it on the x-axis. Similarly, by setting x = 0 in the
equation of the line and solving for y, we obtain the y-intercept and plot it
on the y-axis. We now connect the two points to sketch the graph of the
line. To choose a test point, we check whether the origin is on the line. If it
is not, we use it as a test point, checking whether the origin satisfies the
inequality. If it does, the side of the line containing the origin (our test
point) is the closed half-space H. If it does not, then the other side of the
line is the closed half-space. If the origin is on the line, some other point
not on the line must be selected as the test point. Some possible choices
are (1, 0), (0, 1), or (1, 1).

EXAMPLE 1 (continued). We compute the x-intercept to be x = 3
and the y-intercept to be y = 2. These points have been plotted and the
line connecting them has been drawn in Figure 1.2a. Since the origin does
not lie on the line 2x + 3y = 6, we use the origin as the test point. The
coordinates of the origin satisfy the inequality, so that H lies below the
line and contains the origin as shown in Figure 1.2b. A

FIGURE 1.2 Closed half-space in two dimensions.

72 Chapter 1 Introduction to Linear Programming

T
z

~(0 ,0 ,4) 20

(5,0,

FIGURE 1.3 Closed half-space in three dimensions.

EXAMPLE 2. The constraint in three variables, 4x + 2y + 5z < 20,
defines the closed half-space H in R 3, where

H = [4 2 5] < 20 .

We can graph H in R 3 by graphing the plane 4x + 2y + 5z = 20 and
checking a test point. To graph the plane, we graph the intersection of the
plane with each of the coordinate planes. These intersections are lines in
the coordinate planes. Thus, letting z = 0 yields the line 4x + 2y = 20 in
the xy plane, which can be graphed as described in Example 1. Similarly,
letting y = 0 yields the line 4x + 5z = 20 in the xz plane. Finally, setting
x = 0 yields the line 2y + 5z = 20 in the y z plane. The graph of the plane
containing these lines is shown in Figure 1.3. The origin does not lie on the
plane and thus can be used as a test point. It satisfies the inequality so that
the closed half-space contains the origin as shown in Figure 1.3. A

In more than three dimensions, it is impossible to sketch a closed
half-space. However, we can think about the geometry of closed half-spaces
in any dimension and use the lower dimension examples as models for our
computations.

A typical constraint of a linear programming problem in canonical form
has the equation

aTx = b. (1)

1.3 Geometry of Linear Programming Problems ~

Its graph in R n is a hyperplane. If this equation were an inequality,
namely,

aTx _< b,

then the set of points satisfying the inequality would be a closed half-space.
Thus, a hyperplane is the boundary of a closed half-space. Intuitively, it
consists of the points that are in the half-space, but on its edge.

EXAMPLE 3. The equation 4x + 2y + 5z = 20 defines a hyperplane
in R 3. The graph of this hyperplane, which is really a plane in this case, is
shown in Figure 1.3. The hyperplane H is the boundary of the closed
half-space H 1 defined by the inequality 4x + 2y + 5z < 20, considered in

^

Example 2. The half-space H 1 extends below the hyperplane H and lies
behind the page. We also see that H is the boundary of the closed
half-space H 2 defined by the inequality 4x + 2y + 5z > 20. The half-space
H 2 extends above the hyperplane and reaches out of the page. /x

The hyperplane H defined by (1) divides R ~ into the two closed
half-spaces

H i = {x ~ R" la T _<b}

and

H2= { x ~ R n l a T >b}.

We also see that H 1 n H 2 = H, the original hyperplane. In other words, a
hyperplane is the intersection of two closed half-spaces.

Recall from Section 1.2 that a feasible solution to a linear programming
problem is a point in R n that satisfies all the constraints of the problem. It
then follows that this set of feasible solutions is the intersection of all the
closed half-spaces determined by the constraints. Specifically, the set of
solutions to an inequality (< or >) constraint is a single closed half-space,
whereas the set of solutions to an equality constraint is the intersection of
two closed half-spaces.

Sketch the set of all feasible solutions satisfying the set of EXAMPLE 4.
inequalities

2x + 3y < 6

- x + 2 y < 4

x > 0

y > 0 .

Solution. The set of solutions to the first inequality, 2x + 3y _< 6, is
shown as the shaded region in Figure 1.4a and the set of solutions to the

~ Chapter 1 Introduction to Linear Programming

second inequality, - x + 2y < 4, form the shaded region in Figure 1.4b. In
determining these regions, we have used the origin as a test point. The
regions satisfying the third and fourth constraints are shown in Figures
1.4c and 1.4d, respectively. The point (1, 1) was used as a test point to
determine these regions. The intersection of the regions in Figures
1.4a-l.4d is shown in Figure 1.4e; it is the set of all feasible solutions to
the given set of constraints. /x

1.3 Geometry of Linear Programming Problems 75

3

)"

FIGURE 1.5 Set of all feasible solutions (three dimensions).

EXAMPLE 5. Using the same technique as in the previous example, we
find the sketch of the region in R 3 defined by the inequalities

x > 0
y > 0

z > 0
5 x + 3 y + 5 z < 15

10x + 4y + 5z < 20.

The first three inequalities limit us to the first octant of R 3. The other two
inequalities define certain closed half-spaces. The region, which is
the intersection of these two half-spaces in the first octant, is shown in
Figure 1.5.

Geometry of the Objective Function

The objective function of any linear programming problem can be
written as

cTx.

If k is a constant, then the graph of the equation

cXx = k

is a hyperplane. Assume that we have a linear programming problem that
asks for a maximum value of the objective function. In solving this
problem, we are searching for points x in the set of feasible solutions for
which the value of k is as large as possible. Geometrically we are looking

7~ Chapter 1 Introduction to Linear Programming

for a hyperplane that intersects the set of feasible solutions and for which
k is a maximum. The value of k measures the distance from the origin to
the hyperplane. We can think of starting with very large values of k and
then decreasing them until we find a hyperplane that just touches the set
of feasible solutions.

EXAMPLE 6. Consider the linear programming problem

Maximize z = 4 x + 3 y

subject to

x + y < 4

5x + 3y < 15

x > 0 , y > 0

The set of feasible solutions (the shaded region) and the hyperplanes

z = 9 , z = 12, z = ~ , and z = 15

are shown in Figure 1.6. Note that it appears that the maximum value of
5 the objective function is -~, which is obtained when x = 3, y = 3- This

conjecture will be verified in a later section. A

A linear programming problem may not have a solution if the set of
feasible solutions is unbounded. In the following example, we are asked to
maximize the value of the objective function, but we discover that no such
maximum exists.

FIfURE 1.6 Objective function hyperplanes (two dimensions).

1.3 Geometry of Linear Programming Problems ~

EXAMPLE 7. Consider the linear programming problem

Maximize z = 2 x + 5 y

subject to

- 3 x + 2y < 6

x + 2 y > 2

x > 0 , y > 0

The graph of the set of feasible solutions is shown as the shaded region in
Figure 1.7. We have also drawn the graphs of the hyperplanes

z = 6 , z = 14, and z = 2 0 .

We see that in each case there are points that lie to the right of the
hyperplane and that are still in the set of feasible solutions. Evidently the
value of the objective function can be made arbitrarily large. A

EXAMPLE 8. Consider a linear programming problem that has the
same set of constraints as in Example 7. However, assume that it is a
minimization problem with objective function

z = 3x + 5y.

We have drawn the graph of the set of feasible solutions in Figure 1.8 (the
shaded region) and the hyperplanes

z = 6 , z = 9 , and z = 15.

It appears that the optimum value of the objective function is z = 5 which
is obtained when x = 0, y = 1. Smaller values of the objective function,
such as z = 3, yield graphs of hyperplanes that do not intersect the set of

78 Chapter 1 Introduction to Linear Programming

FIGURE 1.8 Minimization (two dimensions).

feasible solutions. You may want to sketch the hyperplanes corresponding
to z = 3 and z = 5. A

Geometry of the Set of Feasible Solutions

We now explore the question of where in the set of feasible solutions
we are likely to find a point at which the objective function takes on its
optimal value. We first show that if x 1 and x 2 are two feasible solutions,
then any point on the line segment joining these two points is also a
feasible solution. The line segment joining x I and x 2 is defined as

{x ~ R n Ix = ,~x I q- (1 - / ~) x 2 , 0 __< A __< 1}.

Observe that, if A = 0, we get x 2 and, if A = 1, we get x 1. The points of
the line segment at which 0 < A < 1 are called the inter ior points of the
line segment, and x 1 and x 2 and called its end points.

Now suppose that x 1 and x 2 are feasible solutions of a linear program-
ming problem. If

aTx < b i

is a constraint of the problem, then we have

8TXl _~ b i and aTx2 __< b i.

1.3 Geometry o f Linear Programming Problems ~

For any point x = Ax 1 + (1 -)k)x2 , 0 _~< ,~ _~< 1, on the line segment joining
X 1 and x 2 , w e have

aTx = aT(AXl + (1 - A)x 2)

= AaTXl + (1 - A)aTx2

<_ Ab i + (1 - A) b i

--- bi .

Hence, x also satisfies the constraint. This result also holds if the inequal-
ity in the constraint is reversed or if the constraint is an equality. Thus, the
line segment joining any two feasible solutions to a linear programming
problem is contained in the set of feasible solutions.

Consider now two feasible solutions x I and x 2 to a linear programming
problem in standard form with objective function cTx. If the objective
function has the same value k at x I and x 2, then proceeding as above we
can easily show that it has the value k at any point on the line segment
joining x I and x 2 (Exercise 32). Suppose that the value of the objective
function is different at x~ and x 2 and say

cTx 1 < cTX 2"

If x = Ax I + (1 - A)x 2, 0 < A < 1, is any interior point of the line seg-
ment joining xl and x2, then

cTx--" cT(,~Xl + (1 -- X)X 2)

= XcTxl + (1 -- A)cTx2

< AcTx2 + (1 -- A)cTx2

= cTx2 .

That is, the value of the objective function at any interior point of the line
segment is less than its value at one end point. In the same manner we
may show that the value of the objective function at any interior point of
the line segment is greater than its value at the other end point (verify).
Summarizing, we conclude that, on a given line segment joining two
feasible solutions to a linear programming problem, the objective function
either is a constant or attains a maximum at one end point and a minimum
at the other. Thus, the property that a set contains the line segment joining
any two points in it has strong implications for linear programming. The
following definition gives a name to this property.

DEFINITION. A subset S of R n is called convex if for any two distinct
points x I and x 2 in S the line segment joining x I and x2 lies in S. That is,

8 0 Chapter 1 Introduction to Linear Programming

S is convex if, w h e n e v e r x I and x 2 ~ S, so does

x - - AX 1 + (1 - A) x 2 for 0 < A < 1. A

EXAMPLE 9. The sets in R E in Figures 1.9 and 1.10 are convex. T h e
sets in R E in Figure 1.11 are not convex. /x

The following results help to identify convex sets.

THEOREM 1.1. A closed half-space is a convex set.

Proof. Let the half-space H 1 be def ined by cTx _< k. Let x 1 and
X 2 ~ H i and cons ider x = Ax 1 + (1 - A) x 2 , (0 < A < 1).

T h e n

c T x = c T [, ~ X 1 "J- (1 - , ~) x 2]

- - A c T x 1 + (1 - A) c T x 2 .

1.3 Geometry of Linear Programming Problems 81

Since h >_ 0 and 1 - h >_ O, we obtain

Thus,

c T x < A k + (1 - A) k = k .

cTx _< k,

so that x ~ H 1. A

THEOREM 1.2. A hyperplane is a convex set.

Proof Exercise. A

THEOREM 1.3. The intersection o f a finite collection o f convex sets is
c o n o e x .

Proof. Exercise. A

THEOREM 1.4. Let A be an m • n matrix, and let b be a vector in R m.

The set o f solutions to the system o f linear equations Ax = b, i f it is not empty,
is a convex set.

Proof. Exercise. A

Convex sets are of two types: bounded and unbounded . To define a
bounded convex set, we first need the concept of a rectangle. A rectangle
in R ~ i s a s e t ,

R = {x ~ Rnlai < X i <_~ bi} ,

where a i < b i, i = 1, 2 , . . . , n, are real numbers . A bounded convex set is
one that can be enclosed in a rectangle in R n. An unbounded convex set
cannot be so enclosed. The convex sets illustrated in Figure 1.9 are
bounded; those in Figure 1.10 are unbounded .

1.3 EXERCISES

In Exercises 1-6 sketch the convex set formed by the intersections of the
half-space determined by the given inequalities. Also indicate whether the convex
set is bounded.

1. 2.
x + y < 5 x - y < - 2

2x + y < 8 2x - y < O
x > 0 , y > 0 3 x + y < 6

x>_O, y>_O

3. 4.
4 x + y > 8 3 x + y < 6
3x + 2y > 6 2x + 3y > 4

x > 0 , y > 0 x > 0 , y > 0

8~ Chapter 1 Introduction to Linear Programming

2 x + 5 y + 5 z < 2 0 4 x + 5 y + 4 z < 2 0
4 x + 2 y + z < 8 2 0 x + 1 2 y + 1 5 z < 6 0

x > 0 , y > 0 , z > 0 x > 0 , y > 0 , z > 0

In Exercises 7-12 sketch the set of feasible solutions to the given set of inequali-
ties.

11.

7. 8.
- x + y < 2 x + y < 3
2x + y < 4 2x + y < 4

x > 0 , y > 0 x > 0 , y > 0

10.
x + y > 3 - x + y < 2

- 3 x + 2y < 6 2x + y < 2
x > 0 , y > 0 y < l

x > 0

12.
6 x + 4 y + 9 z < 3 6 1 2 x + 6 y + 1 6 z < 8 4
2 x + 5 y + 4 z < 2 0 8 x + 5 y + 1 2 z < 6 0

x > 0 , y > 0 , z > 0 x > 0 , y > 0 , z > 0

In Exercises 13-16 (a) sketch the set of feasible solutions to the given linear
programming problem, (b) draw the objective function z = cTx = k, for the indi-
cated values of k, and (c) conjecture the optimal value of z.

13. Maximize z = 3x + 4y
subject to

k = 6, 8, 10, and 12.

14. Maximize z = 2x + 3y
subject to

k = 4, 6, 8, and 10.

15. Maximize z = 3x + y
subject to

k -- 2, 6, 8, and 12.

x + 3 y < 6

4x + 3y < 12

x > 0 , y > 0

x + y < 4

3 x + y < 6

x + 3 y < 6

x > 0 , y > 0

- 2 x + 3y < 6

x + y < 4

3 x + y < 6

x > 0 , y > 0

1.3 Geometry of Linear Programming Problems 8~

16. Max imize z = 4x 1 + 8x 2 + x 3
subject to

8X 1 -~- 2 x 2 + 5x 3 < 68

5x 1 + 9x z + 7x 3 < 120

13x 1 + l l x 2 + 43x 3 < 250

x 1 > 0 , x 2 > 0 , x 3 > 0

k = 80, 90, 100, and 110.

In Exerc ises 1 7 - 2 4 d e t e r m i n e w h e t h e r the given set is convex.

84 Chapter 1 Introduction to Linear Programming

25. Prove that R " is a convex set.

26. Prove that a subspace of R n is a convex set.

27. Show that a rectangle in R" is a convex set.

28. Let H 2 be the half-space in R" defined by cXx > k. Show that H 2 is convex.

29. Show that a hyperplane H in R" is convex (Theorem 1.2).

30. Show that the intersection of a finite collection of convex sets is convex
(Theorem 1.3).

31. Give two proofs of T h e o r e m 1.4. One proof should use the definition of convex
sets and the o ther should use T h e o r e m 1.3.

32. Consider the l inear p rogramming problem
Maximize z - - c T x

subject to
A x _ < b

x>_O.
Let x~ and x 2 be feasible solutions to the problem. Show that, if the objective
function has the value k at both x 1 and x 2, then it has the value k at any point
on the line segment joining x I and x 2.

33. Show that the set of all solutions to Ax < b, if it is nonempty , is a convex set.

34. Show that the set of solutions to Ax > b, if it is nonempty , is a convex set.

35. A function mapping R" into R m is called a l inear t r ans fo rma t ion if f (u + v)
= f (u) + f(v), for any u and v in R n, and f (r u) = rf(u), for any u in R" and r
in R. Prove that if S is a convex set in R n and f is a l inear t ransformat ion
mapping R" into R m, then f (S) = {f(v)Iv ~ S} is a convex set. A function f
defined on a convex set S in R" is called a convex funct ion if

f (Ax 1 + (1 -- A)x 2) < Af(x 1) + (1 -- A)f(x 2)

f o r 0 _ < A _ < l a n d a n y x ~ , x 2 ~ S .

36. Show that a function f defined on a convex set S in R" is convex if the line
segment joining any two points (Xl, f (x l)) and (x e, f (xe)) does not lie below its
graph. (See Figure 1.12.)

37. Show that the objective function z = cXx of a l inear p rogramming problem is a
convex function.

f (x 2)

f (x l)

t I
x 1 x2

FIGURE 1.12

1.4 The E x t r e m e P o i n t T h e o r e m 85

1.4 THE EXTREME POINT THEOREM

We continue in this section toward our goal of understanding the
geometry of a linear programming problem. We first combine the results
of the last section to describe the geometry of a general linear program-
ming problem and then introduce the concept of an extreme point, or
comer point. These become candidates for solutions to the problem.

We now consider a general linear programming problem. The graph of
each constraint defined by an inequality is a closed half-space. The graph
of each constraint defined by an equality is a hyperplane, or intersection of
two closed half-spaces. Thus, the set of all points that satisfy all the
constraints of the linear programming problem is exactly the intersection
of the closed half-spaces determined by the constraints. From the previous
results we see that this set of points, if it is nonempty, is a convex set,
because it is the intersection of a finite number of convex sets. In general,
the intersection of a finite set of closed half-spaces is called a c o n v e x

polyhedron, and thus, if it is not empty, the set of feasible solutions to a
general linear programming problem is a convex polyhedron.

We now turn to describing the points at which an optimal solution to a
general linear programming problem can occur. We first make the follow-
ing definition.

DEFINITION. A point x ~ R" is a c o n v e x c o m b i n a t i o n of the points
Xl, X2,. . . ,x r in R" if for some real numbers c 1, c 2 , . . . , c r which satisfy

~ C i - - 1 and C i > 0, 1 < i < r ,
i = l

we have

4.
X - - 2__, C i X i .

i = 1

THEOREM 1.5. The set o f all convex combinations o f a finite set o f points
in R n is a convex set.

Proof Exercise. /x

DEFINITION. A point u in a convex set S is called an extreme point of
S if it is not an interior point of any line segment in S. That is, u is an
extreme point of S if there are no distinct points x I and x 2 in S such that

U--" ,~X 1 d- (1 - A) x 2 , 0 < A < 1.

EXAMPLE 1. The only extreme points of the convex set in Figure 1.13
are A, B, C, D, and E (verify). A

86 Chapter 1 Introduction to Linear Programming

l
c

x

FIGURE 1.13

EXAMPLE 2. The extreme points of the convex sets shown in Figures
1.9 and 1.10 are given in the following table:

Figure Extreme points

1.9a A, B, C, D
1.9b A, B, C
1.9c The entire edge of the ellipse
1.9d A, B, C, D
1.10a A
1.10b O
1.10c None
1.10d O

A

THEOREM 1.6. Let S be a convex set in R ' . A point u in S is an extreme
point of S if and only if u is not a convex combination of other points o f S.

Proof. Exercise. A

Since the set of all feasible solutions to a general linear programming
problem is a convex polyhedron, it contains an infinite number of points.
An optimal solution to the problem occurs at one of these points. But how
do we find the right point among an infinite number? The following
theorem, whose proof we do not give, shows that, if a linear programming
problem has an optimal solution, then this solution must occur at an
extreme point. Although an optimal solution can occur at a feasible
solution that is not an extreme point, from the geometry of the situation it
suffices to consider only extreme points. In fact, there are only a finite
number of extreme points, but this number may be very large. In the next

1.4 The Extreme Point Theorem 87

chapter we show how to search through the extreme points in an orderly
manner to find an optimal solution after a relatively small number of steps.

THEOREM 1.7 (EXTREME POINT). Let S be the set of feasible solutions to
a general linear programming problem.

1. I f S is nonempty and bounded, then an optimal solution to the problem
exists and occurs at an extreme point.

2. I f S is nonempty and not bounded and if an optimal solution to the
problem exists, then an optimal solution occurs at an extreme point.

3. I f an optimal solution to the problem does not exist, then either S is
empty or S is unbounded. /x

EXAMPLE 3.
in Section 1.1

Consider the linear programming problem of Example 1

Maximize z = 120x + 100y

subject to

2x + 2y < 8

5x + 3y < 15

x > 0 , y > 0 .

The convex set of all feasible solutions is shown as the shaded region in
Figure 1.14.

The extreme points of the convex set S are (0, 0), (3, 0), (0, 4), and (3, 5).
Since S is nonempty and bounded, the objective function attains its
maximum at an extreme point of S (Theorem 1.7). We can find which
extreme point is the optimal solution by evaluating the objective function
at each extreme point. This evaluation is shown in Table 1.3. The maxi-
mum value of z occurs at the extreme point (3, ~). Thus, an optimal

3 5 solution is x = 5 and y = 5. In terms of the model this means that the
lumber mill should saw 1500 board feet of finish-grade lumber and 2500

FIGURE 1.14

88 Chapter 1 Introduction to Linear Programming

TABLE 1.3

Extreme point Value of objective function
(x, y) z = 120x + l OOy

(0,0) 0
(3, o) 360
(0, 4) 400
(3,5) 430

board feet of construction-grade lumber per day. These amounts will yield
the maximum profit of $430 per day. A

Some linear programming problems have no solution.

EXAMPLE 4. Consider the linear programming problem:

Maximize z = 2 x + 5 y

subject to

2x + 3y >_ 12

3x + 4y _< 12

x > 0 , y > 0 .

The convex set of all feasible solutions consists of the points that lie in all
four half-spaces defined by the constraints. The sketch of these half-spaces
in Figure 1.15 shows that there are no such points. The set of feasible
solutions is empty. This situation will arise when conflicting constraints are
put on a problem. The assumptions for the model must be changed to yield
a nonempty set of feasible solutions. A

1.4 The Extreme Point Theorem 89

y

~ ~ , , II

' ~ / 21- ~ 3x+5y=15
~ . ~] I ~ ~'~ -3x+2y=6 / ~ ~'

Y . . ill
1 2 "~3_ 4 5 ~

x + 2 ~ 2 ~ ~
FIGURE 1.16

~ x

We have already seen in Example 7 in Section 1.3 that a linear
programming problem with an unbounded convex set of feasible solutions
may have no finite optimal value for the objective function. On the other
hand, a linear programming problem with an unbounded convex set of
feasible solutions may have an optimal solution.

EXAMPLE 5. In our previous discussion of this example (Example 8,
Section 1.3), it seemed that the optimum value of the objective function
was z = 5, which occurs when x = 0 and y = 1. We shall now show that
this is the case.

We divide the set of feasible solutions into two regions with the
arbitrarily chosen hyperplane 3x + 5y = 15, as shown in Figure 1.16. All
the points in region II satisfy 15 < 3x + 5y, and all the points in region I
satisfy 15 > 3x + 5y. Thus, we need consider only the points in region I to
solve the minimization problem, since it is only those points at which the
objective function takes on values smaller than 15. Region I is closed and
bounded and has a finite number of extreme points: (0,3), (0, 1), (2, 0),
(5,0). Consequently, Theorem 1.7 applies. By evaluating the objective
function at these four points, we find that the minimum value is z = 5 at
(0,1). Note that other choices for the dividing hyperplane are possible. ZX

EXAMPLE 6. Consider the linear programming problem

Maximize z = 2x + 3y

subject to

x + 3 y < 9

2x + 3y < 12

x>_O, y>_O.

90 Chapter 1 Introduction to Linear Programming

TABLE 1.4

Extreme point Value of z = 2x + 3y

(0,0) 0
(0,3) 9
(6,0) 12
(3,2) 12

The convex set of all feasible solutions is shown in Figure 1.17. The
extreme points and corresponding values of the objective function are
given in Table 1.4. We see that both (6, 0) and (3, 2) are optimal solutions
to the problem. The line segment joining these points is

(x , y) = X(6,0) + (1 - A)(3,2)

= (6A,0) + (3 - 3 A , 2 - 2A)

= (3 + 3 A , 2 - 2 A) for 0 < A < I .

For any point (x, y) on this line segment we have

z = 2 x + 3 y = 2 (3 + 3 A) + 3 (2 - 2 A)

= 6 + 6A + 6 - 6A

= 12.

Any point on this line segment is an optimal solution. A

1.4 EXERCISES

In Exercises 1-12 (a) find the extreme points of the set of feasible solutions for
the given linear programming program and (b) find the optimal solution(s).

1.4 The Extreme Point Theorem ~1

1. Maximize z = x + 2 y
subject to

3 x + y < 6

3x + 4y < 12

x > 0 , y > 0 .

3. Maximize z = 3 x + y
subject to

- 3 x + y > 6

3x + 5y < 15

x > 0 , y > 0 .

5. Minimize z = 3 x + 5 y
subject to the same constraints
as those in Exercise 4.

7. Maximize z = 2 x + 5 y
subject to

2 x + y > 2

x + y < 8

x + y > 3

2x + y < 12

x > _ 0 , y > _ 0 .

9. Maximize z = 2x I + 4x 2 + 3x 3
subject to

x I + x 2 + x 3 < 12

x I + 3x 2 + 3x 3 < 24

3x I + 6x 2 + 4x 3 < 90

X 1 >_~ 0, X 2 ~_~ 0, X 3 >_~ 0.

11. Maximize z = 5X 1 + 2x 2 + 3x 3
subject to

x I + x 2 + x 3 - 1

2x I + 5x 2 + 3x 3 < 4

4x I + x 2 + 3x 3 < 2

X 1 >__ 0, X 2 >__ 0, X 3 >__ 0.

13. Prove T h e o r e m 1.5.

14. Prove T h e o r e m 1.6.

2. Minimize z = 5 x - 3 y
subject to

x + 2 y < 4

x + 3 y > 6

x > 0 , y > 0 .

4. Maximize z = 2 x + 3 y
subject to

3 x + y < 6

x + y < 4

x + 2 y < 6

x>_O, y > 0 .

6. Maximize z--- ix +

subject to

x + 3 y < 6

x + y > 4

x > _ 0 , y > _ 0 .

8. Maximize z = 2X 1 + 4X 2

subject to

5X 1 "4- 3X 2 + 5X 3 < 15

1 0 x I + 8 x 2 -1- 1 5 x 3 < 4 0

x 1 >_. 0, x 2 >_~ 0, X 3 >_~ 0~

10. Minimize z = 2Xl + 3x2 + x3
subject to the same constraints
as those in Exercise 9.

12. Minimize z = 2Xl + x3
subject to

X 1%- X 2 -~- X 3 -- 1

2 x 1 + x 2 + 2 x 3 >__ 3

X 1 >_~ 0, X 2 ~_~ 0, X 3 ~ 0.

15. Show that a set S in R" is convex if and only if every convex combinat ion of a
finite number of points in S is in S.

92 Chapter I Introduction to L inear Programming

16. Show that if the optimal value of the objective function of a linear program-
ming problem is attained at several extreme points, then it is also attained at
any convex combination of these extreme points.

1.5 BASIC SOLUTIONS

In this section we connect the geometric ideas of Section 1.3 and
Section 1.4 with the algebraic notions developed in Section 1.2. We have
already seen the important role played by the extreme points of the set of
feasible solutions in obtaining an optimal solution to a linear programming
problem. However, the extreme points are difficult to compute geometri-
cally when there are more than three variables in the problem. In this
section we give an algebraic description of extreme points that will facili-
tate their computation. This description uses the concept of a basic
solution to a linear programming problem. To lay the foundation for the
definition of a basic solution, we shall now prove two very important
general theorems about linear programming problems in canonical form.

Consider the linear programming problem in canonical form

Maximize z = cTx (1)

subject to

Ax = b (2)

x > 0, (3)

where A is an m • s matrix, c ~ R ~, x ~ R ~, and b ~ R m. Let the columns
of A be denoted by A1,A2, . . . ,A~. We can then write (2) as

x1A 1 + x2A 2 + "'" +xsA s = b. (4)

We make two assumptions about the constraint matrix A. We assume that
m < s and that there are m columns of A that are linearly independent.
That is, the rank of A is m. These assumptions are true for a linear
programming problem in canonical form that arose from a problem in
standard form as given in Equations (4), (5), and (6) in Section 1.2.

This set of m columns, and indeed any set of m linearly independent
columns of A, forms a basis for R m. We can always renumber the columns
of A (by reordering the components of x), so that the last m columns of A
are linearly independent. Let S be the convex set of all feasible solutions
to the problem determined by (1), (2), and (3).

THEOREM 1.8. Suppose that the last m columns of A, which we denote by
t~1, t~2, . . . , t~m, are linearly independent and suppose that

Xtl t~ l "Jr- XP2 t~ 2 "Jr- "'" "[- X m t~ m = b, (5)

1.5 B a s i c S o l u t i o n s 9 3

where x' i > 0 for i = 1, 2 , . . . , m. Then the point

, , ,)
X = (0 , 0 , . . . , 0 , X l , X 2 , . . . , x m

is an extreme point of S.

Proof We assumed x > 0 in the s tatement of the theorem. Equat ion
(5) represents Ax = b, since the first s - m components of x are zero.
Thus, x is a feasible solution to the linear programming problem given by
(1), (2), and (3). Assume that x is not an extreme point of S. Then, x lies in
the interior of a line segment in S. That is, there are points v and w in S
both different from x and a number A, 0 < A < 1, such that

Now

and

x = A v + (1 - A) w .

, , ,)
u - - (V l ~ V 2 , . . . , V s _ m ~ V l , V 2 ~ . . . ~ U m

(6)

? ! !)
W "~ W 1 , W 2 , . . . , W s _ m , W 1 , W 2 , . . . ~ w m ,

where all the components of v and w are nonnegative, since v and w are
feasible solutions. Substituting the expressions for x, v, and w into (6)7 we
have

0 - - AU i a t- (1 - A) w i , 1 < i < s - m
(7)

! t x j = A v ~ + (1 - A) w) , 1 < j < m .

Since all the terms in (7) are nonnegative and A and 1 - A are positive, we
conclude that v i = O and w i = 0 for i = 1 , 2 , . . . , s - r e . Since v is a
feasible solution, we know that Av = b and, because the first s - m
components of v are zero, this equation can be written as

l l l !

u1A~I -1- u2Ar2 "q- "'" q - U m i ~ m -" b. (8)

If we now subtract Equat ion (8) from Equat ion (5), we have

(Xq -- V~)/~ 1 "~ (X2 -- v2)At2 -4- . . . "4"(Xtm - v t m) t ~ m - - O.

Since we assumed that / ~ l , A r 2 , . . . , A r m w e r e linearly independent, we
conclude that

' ' for 1 < i < m X i = V i - - _

and consequently that x = v. But we had assumed x # v. This contradic-
tion implies that our assumption that x is not an extreme point of S is
false. Thus, x is an extreme point of S, as we wanted to show. A

THEOREM 1.9. I f x = (X 1, X2, . . . , X,) is an extreme point of S, then the
columns of A that correspond to positive xj form a linearly independent set of
vectors in R m.

94 Chapter 1 Introduction to Linear Programming

Proof To simplify the notation, renumber the columns of A and the
components of x, if necessary, so that the last k components, denoted by

! p t xi , x 2 , . . . , Xk, are positive. Thus, Equation (4) can be written as

x~A' 1 + x~A' 2 + "- +x~,A' k = b. (9)

We must show that A'I, A'2,... ,/~k are linearly independent. Suppose they
are linearly dependent. This means that there are numbers cj, 1 _< j _< k,
not all of which are zero, such that

C12~ 1 + CEAr2 + "" +-Ck2~ k -- 0. (10)

Say that c t ~ O. Multiply Equation (10) by a positive scalar d, and first add
the resulting equation to Equation (9), getting Equation (11), and second
subtract it from Equation (9), getting Equation (12). We now have

(X~ + dc l)A ' 1 + (x~ + dc2)Ar2 + "'" +(XPk + dCk)t~ k = b (11)

(X~ -- dcl)APl + (x~ - dc2)Ar2 + .. . +(X~k -- dCk)t~ k = b . (12)

Now consider the points in R ~,
! ! p

V - - (0 , 0 , . . . , 0 , X 1 + d C l , X 2 + d c 2 , . . . , x k + dc k)

and

' - d c ' - dc 2 ' - d c k) w - (O,O, . . . ,O , Xl 1,x2 , . . . , X k �9

Since d is any positive scalar, we may choose it so that
!

0 < d < min xj c j~ :0 .
�9 I -~j l '

1

With this choice of d, the last k coordinates of both v and w are positive.
This fact together with Equations (11) and (12) implies that v and w are
feasible solutions. But we also have

1 1
x - ~v + ~w,

contradicting the hypothesis that x is an extreme point of S. Thus our
assumption that the last k columns of A are linearly dependent is false;
they are linearly independent. A

COROLLARY 1.1. I f X is an extreme point and Xi l , . . . ,Xir are the r
positive components o f x, then r < m, and the set o f columns A l l , . . . , Ai, can
be extended to a set o f rn linearly independent vectors in R m by adjoining a
suitably chosen set o f rn - r columns o f A.

Proof. Exercise. A

THEOREM 1.10. A t most m components o f any extreme point o f S can be
positive. The rest must be zero.

1.5 Basic Solutions ~

Proof. Theorem 1.9 says that the columns of A corresponding to the
positive components of an extreme point x of the set S of feasible
solutions are linearly independent vectors in R m. But there can be no
more than m linearly independent vectors in R m. Therefore, at most m of
the components of x are nonzero. A

An important feature of the canonical form of a linear programming
problem is that the constraints Ax = b form a system of m equations in s
unknowns. Our assumption that there are m linearly independent column
vectors means that the rank of A is m, so the rows of A are also linearly
independent. That is, redundant equations do not occur in the system of
constraints. In Theorems 1.8 and 1.9 we showed the relationships between
the extreme points of the set S of feasible solutions and the linearly
independent columns of A. We now use information about solutions to a
system of equations to describe further the points of S. Note that S is just
the set of solutions to Ax = b with nonnegative components (x > 0).

Consider a system of m equations in s unknowns (m < s) and write it
in matrix form as Ax = b. Assume that at least one set of m columns of A
is linearly independent. Choosing any set T of m linearly independent
columns of A (which is choosing a basis for Rm), set the s - m variables
corresponding to the remaining columns equal to zero. The equation
Ax = b may be written as

x 1 A 1 + x 2 A 2 + "'" + X s A s = b, (13)

where Ai is the ith column of A. But we have set s - m of the variables
equal to zero. Let il, i 2 , . . . , i m be the indices of the variables that were
not set to zero. They are also the indices of the columns of A in the set T.
Consequently, (13)reduces to

x i lAi l + xi2Ai2 + ... +XimAim -- b,

which is a system of m equations in m unknowns and has a unique
solution. (Why?) The values of the m variables obtained from solving this
system along with the s - m zeros form a vector x that is called a basic
solution to Ax = b.

EXAMPLE 1. Consider the system of three equations in six unknowns

x1

[I 11 1 0 1 0 1 0 x3
0 - 1 - 1 0 - 1 - 1 - b2 .
1 2 2 1 1 1 x4 b3

x 5

x6
- -

~ Chapter 1 Introduction to Linear Programming

Setting x 2 - - X 3 - - " X 5 = 0, we get the system of three equations in three
unknowns given by

[1 0 0]IXl I ibll
0 0 - 1 x4 " - - b2 �9
1 1 1 x 6 b 3

The columns of this coefficient matrix are linearly independent , and this
system has the solution x I = b~, x 4 = b 2 + b 3 - bl, x 6 - - b 2. Conse-
quently, a basic solution to the original system is

X = (b l , 0 , 0 , b 2 + b 3 - b l , 0 , - b 2) .

On the other hand, if we set x 1 - - X 3 = X 5 "-- 0 , w e obtain the system

[o o o]Ix21 ibll - 1 0 - 1 x4 - - b2 �9
2 1 1 x 6 b 3

Here the columns of the coefficient matrix are not linearly independent . In
fact, column 1 is the sum of columns 2 and 3. This system cannot be solved
if b I ~: 0. Consequently, this choice of variables does not lead to a basic
solution. /x

In any basic solution, the s - m variables that are set equal to zero are
called nonbasic variables, and the m variables solved for are called basic
variables. Although the term basic solution appears in all the l i terature
describing linear programming, it can be misleading. A basic solution is a
solution to the system Ax = b; it does not necessarily satisfy x >_ 0, and
therefore it is not necessarily a feasible solution to the linear programming
problem given by (1), (2), and (3).

DEFINITION. A basic feasible solution to the linear programming prob-
lem given by (1), (2), and (3) is a basic solution that is also feasible.

THEOREM 1.11. For the linear programming problem determined by (1),
(2), and (3), every basic feasible solution is an extreme point, and, conversely,
every extreme point is a basic feasible solution.

Proof. Exercise. A

THEOREM 1.12. The problem determined by (1), (2), and (3) has a finite
number of basic feasible solutions.

Proof The number of basic solutions to the problem is

(s) s, () s
m m!(s - m) ! s - m

1.5 Basic Solutions ~

because s - m variables must be chosen to be set to zero, out of a total of
s variables. The number of basic feasible solutions may be smaller than
the number of basic solutions, since not all basic solutions need to be
feasible. A

We now examine the relationship between the set S of feasible solu-
tions to a standard linear programming problem given in Equations (4),
(5), and (6) in Section 1.2 and the set S' of feasible solutions to the
associated canonical linear programming problem given in Equations (12),
(13), and (14) in Section 1.2. We have already discussed the method of
adding slack variables to go from a point in S to a point in S'. Conversely,
we truncated variables to move from S' to S. More specifically, we have
the following theorem, whose proof we leave as an exercise.

THEOREM 1.13. Every extreme point of S yields an extreme point of S'
when slack variables are added. Conversely, every extreme point of S', when
truncated, yields an extreme point of S.

Proof Exercise. A

THEOREM 1.14. The convex set S of all feasible solutions to a linear
programming problem in standard form has a finite number of extreme points.

Proof Exercise. /x

By combining the Extreme Point Theorem (Theorem 1.7) and Theorem
1.14 we can give a procedure for solving a standard linear programming
problem given by Equations (4), (5), and (6) in Section 1.2. First, set up the
associated canonical form of the problem. Then find all basic solutions and
eliminate those that are not feasible. Find those that are optimal among
the basic feasible solutions. Since the objective function does not change
between the standard and canonical forms of the problem, any optimal
solution to the canonical form, found as described above, is an optimal
solution to the standard problem.

From the situation under consideration, the number of basic solutions
to be examined is no more than

m + n) .
n

Although this number is finite, it is still too large for actual problems. For
example, a moderate-size problem with m = 200 and n = 300 would have
about 10144 basic solutions.

EXAMPLE 2. Consider the linear programming problem given in Exam-
ple 3 in Section 1.2. In this example we can select two of the four variables
x, y, u, v as nonbasic variables by setting them equal to zero and then

98 Chapter 1 Introduction to Linear Programming

solve for the basic variables. If in

we set

then

2 2 1 0
5 3 0 1

x

u

u

8

x = y = 0 (nonbasic variables),

u = 8 and v = 15 (basic variables).

The vector [0 0 8 15] T is a basic feasible solution to the canonical
form of the problem and hence an extreme point of S' . By truncating the
slack variables we get [0 0] T, which is an extreme point of S and a
feasible solution to the standard form of the problem.

If instead we set

then

The vector [0
u is negative.

x = v = 0 (nonbasic variables),

y = 5 and u = - 2 (basic variables).

5 - 2 0] T is a basic solution, but it is not feasible, since

In Table 1.5 we list all the basic solutions, indicate whether they are
feasible, and give the truncated vectors. The student should locate these
truncated vectors on Figure 1.14. Once we discard the basic solutions that
are not feasible, we select a basic feasible solution for which the objective
function is a maximum. Thus, we again obtain the optimal solution

3 5 x = ~, Jv= ~, u = v , v = v

TABLE 1.5

Value o f Truncated
x y u v Type o f solution z = 120x + 100y vector

0 0 8 15 Basic feasible 0 (0, 0)
0 4 0 3 Basic feasible 400 (0, 4)
0 5 - 2 0 Basic, not feasible m (0, 5)
4 0 0 - 5 Basic, not feasible m (4, 0)
3 0 2 0 Basic feasible 360 (3, 0)
3 5 ~ 0 0 Basic feasible 430 (3, 5)

1.5 Basic Solutions 99

1.5 EXERCISES

1. Suppose the canonical form of a liner programming problem is given by the
constraint matrix A and resource vector b, where

A - 2 1 0 0 0 and b = 3 .
4 0 3 0 1 6

Determine which of the following points is

(i) a feasible solution to the linear programming problem.
(ii) an extreme point of the set of feasible solutions.

(iii) a basic solution.
(iv) a basic feasible solution.

For each basic feasible solution x given below, list the basic variables.

3 1 1
0 0 ~ ~ 1
3 3 0 1 1

(a) 0 (b) 5 (c) 0 (d) 1 (e) ~
1 3

5 0 ~ 0
1 6 - 9 0 2

In Exercises 2 and 3, set up a linear programming model for the situation
described. Sketch the set of feasible solutions and find an optimal solution by
examining the extreme points.

2. The Savory Potato Chip Company makes pizza-flavored and chili-flavored
potato chips. These chips must go through three main processes: frying,
flavoring, and packing. Each kilogram of pizza-flavored chips takes 3 min to fry,
5 min to flavor, and 2 min to pack. Each kilogram of chili-flavored chips takes 3
min to fry, 4 min to flavor, and 3 min to pack. The net profit on each kilogram
of pizza chips is $0.12, whereas the net profit on each kilogram of chili chips is
$0.10. The fryer is available 4 hr each day, the flavorer is available 8 hr each
day, and the packer is available 6 hr each day. Maximize the net profit with
your model.

3. Sugary Donut Bakers, Inc., is known for its excellent glazed doughnuts. The
firm also bakes doughnuts, which are then dipped in powdered sugar. It makes
a profit of $0.07 per glazed doughnut and $0.05 per powdered sugar doughnut.
The three main operations are baking, dipping (for the powdered sugar
doughnuts only), and glazing (for the glazed doughnuts only). Each day the
plant has the capacity to bake 1400 doughnuts, dip 1200 doughnuts, and glaze
1000 doughnuts. The manager has instructed that at least 600 glazed dough-
nuts must be made each day. Maximize the total profit with your model.

4. For Exercise 2, write the linear programming problem in canonical form,
compute the values of the slack variables for an optimal solution, and give a
physical interpretation for these values. Also identify the basic variables of the
optimal solution.

1 O0 Chapter 1 Introduction to Linear Programming

5. For Exercise 3, write the linear programming problem in canonical form,
compute the values of the slack variables for an optimal solution, and give a
physical interpretation for these values. Also identify the basic variables of the
optimal solution.

6. Consider the system of equations Ax = b, where

A = [2 3 4 0 4] and b = [2]
1 0 0 - 2 1 0 "

Determine whether each of the following 5-tuples is a basic solution to the
system.

(a) (1, 0, 1, 0, 0) (b) (0, 2, - 1, 0, 0)
(c) (2, - 2, 3, 0, - 2) (d) (0, 0, x ~,0,0)

7. Consider the system of equations Ax - b, where [23100] [1]
A - - 1 1 0 2 1 and b = 1 .

0 6 1 0 3 4

Determine which of the following 5-tuples are basic solutions to the system.
Give reasons.

(a) (1, 0, - 1, 1, 0)
(b) (0 , 2 , - 5 , 0 , - 1)
(c) (0, 0, 1, 0, 1)

8. Consider the linear programming problem

Maximize z = 3 x + 2 y

subject to

2 x - y < 6

2x + y < 10

x>_0, y>_0.

(a) Transform this problem to a problem in canonical form.
(b) For each extreme point of the new problem, identify the basic variables.
(c) Solve the problem geometrically.

9. Consider the linear programming problem

Maximize z = 4 x 1 + 2 X 2 + 7X 3

subject to

2x 1 - x 2 + 4x 3_< 18

4x I + 2x 2 + 5X 3 __< 10

X 1 >_~ 0 , X 2 >_~ 0 , X 3 >_~ 0 .

(a) Transform this problem to a problem in canonical form.
(b) For each extreme point of the new problem, identify the basic variables.
(c) Which of the extreme points are optimal solutions to the problem?

1.5 Basic Solutions 101

10. Consider the linear programming in standard form

Maximize z = cTx

subject to

A x < b

x > 0 .

Show that the constraints Ax < b may be written as

[x]
(i) [A I I] x' = b

or as

(ii) Ax + I x ' = b,
where x' is a vector of slack variables.

11. Prove Corollary 1.1 (Hint: Use Theorem 0.13.)

12. Prove for a linear programming problem in canonical form that a point in the
set of feasible solutions is an extreme point if and only if it is a basic feasible
solution (Theorem 1.11). (Hint: Use Theorem 0.13.)

13. Prove that the set of feasible solutions to a linear programming problem in
standard form has a finite number of extreme points (Theorem 1.14).

Further Reading
Chvfital, Va~ek. Linear Programming. Freeman, New York, 1980.
Griinbaum, B. Convex Polytopes. Wiley-Interscience, New York, 1967.
Hadley, G. Linear Algebra. Addison-Wesley, Reading, MA, 1961.
Murty, Katta G. Linear Programming. Wiley, New York, 1983.
Taha, Hamdy A. Operations Research: An Introduction, third ed., Macmillan, New York, 1982.

The Simplex

Method

I
N THIS CHAPTER we describe an elementary version of the method
that can be used to solve a linear programming problem systemati-
cally. In Chapter 1 we developed the algebraic and geometric

notions that allowed us to characterize the solutions to a linear program-
ming problem. However, for problems of more than three variables, the
characterization did not lead to a practical method for actually finding the
solutions. We know that the solutions are extreme points of the set of
feasible solutions. The method that we present determines the extreme
points in the set of feasible solutions in a particular order that allows us to
find an optimal solution in a small number of trials. We first consider
problems in standard form because when applying the method to these
problems it is easy to find a starting point. The second section discusses a
potential pitfall with the method. However, the difficulty rarely arises and
has almost never been found when solving practical problems. In the third
section, we extend the method to arbitrary linear programming problems
by developing a way of constructing a starting point.

103

104 Chapter 2 The S implex M e t h o d

2.1 THE SIMPLEX METHOD FOR PROBLEMS IN STANDARD FORM

We already know from Section 1.5 that a linear programming problem
in canonical form can be solved by finding all the basic solutions, discard-
ing those that are not feasible, and finding an optimal solution among the
remaining. Since this procedure can still be a lengthy one, we seek a more
efficient method for solving linear programming problems. The simplex
algorithm is such a method; in this section we shall describe and carefully
illustrate it. Even though the method is an algebraic one, it is helpful to
examine it geometrically.

Consider a linear programming problem in standard form

Maximize z = cTx (1)

subject to

A x < b

x > _ O ,

where A = [a/y] is an m • n matrix and

bl c 1 x 1

b2 c 2 x 2
b = . , c = . , and x = . .

Cn X n m

(2)
(3)

In this section we shall make the additional assumption that b > 0. In
Section 2.3 we will describe a procedure for handling problems in which b
is not nonnegative.

We now transform each of the constraints in (2) into an equation by
introducing a slack variable. We obtain the canonical form of the problem,
namely

Maximize z = cTx (4)

subject to

A x = b

x > _ O ,

where in this case A is the m • (n + m) matrix

(5)
(6)

A __.

a l l a12 . . . a l n 1 0 " "

a21 a22 . . . a 2 n 0 1 . . .
�9 : �9 ; �9

�9 o . o

a m l a m 2 "'" a m n 0 0 "'"

2.1 The Simplex Method for Problems in Standard Form 1 ~

C 1

r

Cn X ~- C - -

0
0

~

0

X 1

X 2

Xn

Xn+ 1

Xn+m

and b is as before.
Recall from Section 1.5 that a basic feasible solution to the canonical

form of the problem (4), (5), (6) is an extreme point of the convex set S' of
all feasible solutions to the problem.

DEFINITION�9 Two distinct extreme points in S' are said to be adjacent
if as basic feasible solutions they have all but one basic variable in
common. A

EXAMPLE 1. Consider Example 2 of Section 1.5 and especially Table
1.5 in that example. The extreme points (0, 0,8, 15) and (0,4, 0,3) are
adjacent, since the basic variables in the first extreme point are u and v
and the basic variables in the second extreme point are y and v. In fact,
the only extreme point that is not adjacent to (0, 0, 8, 15) is (3, 5, 0, 0). A

The simplex method developed by George B. Dantzig in 1947 is a
method that proceeds from a given extreme point (basic feasible solution)
to an adjacent extreme point in such a way that the value of the objective
function increases or, at worst, remains the same. The method proceeds
until we either obtain an optimal solution or find that the given problem
has no finite optimal solution. The simplex algorithm consists of two steps:
(1) a way of finding out whether a given basic feasible solution is an
optimal solution and (2) a way of obtaining an adjacent basic feasible
solution with the same or larger value for the objective function. In actual
use, the simplex method does not examine every basic feasible solution; it
checks only a relatively small number of them. However, examples have
been given in which a large number of basic feasible solutions have been
examined by the simplex method.

We shall demonstrate parts of our description of the simplex method on
the linear programming problem in Example 1 of Section 1.1. The associ-
ated canonical form of the problem was described in Example 4 of Section

106 Chapter 2 The Simplex Method

1.2. In this form it is:

Maximize z = 120x + 100y

subject to

2 x + 2 y + u = 8}

5x + 3y + v = 15

x>_O, y>_O, u>_O, v>_O.

(7)

(8)

(9)

The Initial Basic Feasible Solution

To start the simplex method, we must find a basic feasible solution. The
assumption that b >__ 0 allows the following procedure to work. If it is not
true that b > 0, another procedure (discussed in Section 2.3) must be used.
We take all the nonslack variables as nonbasic variables; that is, we set all
the nonslack variables in the system Ax = b equal to zero. The basic
variables are then just the slack variables. We have

x I = x 2 x,, = 0 and x,,+l = b 1, X n + 2 -" b 2 , . . . , X n + m --- b m .

This is a feasible solution, since b > 0; and it is a basic solution, since
(n + m) - m = n of the variables are zero.

In our example, we let

x = y = 0 .

Solving for u and v, we obtain

u = 8 , v = 1 5 .

The initial basic feasible solution constructed by this method is (0, 0, 8, 15).
The basic feasible solution yields the extreme point (0, 0) in Figure 1.14
(Section 1.4).

It is useful to set up our example and its initial basic feasible solution in
tabular form. To do this, we write (7) as

- 1 2 0 x - lOOy+z=O, (10)

where z is now viewed as another variable. The initial tableau is now
formed (Tableau 2.1). At the top we list the variables x, y, u, v, and z as
labels on the corresponding columns. The last row, called the objective
row, is Equat ion (10). The constraints (8) are on the first two rows. Along
the left side of each row we indicate which variable is basic in the
corresponding equation. Thus, in the first equation u is the basic variable,
and v is the basic variable in the second equation.

2.1 The Simplex M e t h o d for Problems in Standard Form 107

Tableau 2.1

x y u v z

u 2 2 1 0 9 8
v 5 3 0 1 0 15

120 100 0 0 1 0

In the tableau, a basic variable has the following properties:

1. It appears in exactly one equation and in that equation it has a
coefficient of + 1.

2. The column that it labels has all zeros (including the objective row
entry) except for the + 1 in the row that is labeled by the basic variable.

3. The value of a basic variable is the entry in the same row in the
rightmost column.

The initial tableau for the general problem (4), (5), (6) is shown in Tableau
2.2. The value of the objective function

Z -- C l X 1 + C2X 2 "+" "'" "+'CnX n "+ O ' X n + l "[- "'" + O ' X n + m

for the initial basic feasible solution is

Z - - C 1 " 0 + C 2 " 0 + "'" + C n " 0 + 0 - b I + 0 " b 2 + - '" + O ' b m = O.

Notice that the entry in the last row and rightmost column is the value of
the objective function for the initial basic feasible solution.

Tableau 2.2

x1 x2 "'" Xn Xn + 1 Xn + 2 "'" Xn + m Z

Xn+ 1 a l l a12 ... aln 1 0 "" 0 0 b 1

Xn+ 2 a21 a22 "" a2n 0 1 "'" 0 0 b 2
�9

X ' n + m a m l a m 2 " " a m n O b " " ' 1 b b m

Cl C2 "'" % 0 0 "'" 0 1 0

In our example we have

z = 1 2 0 . 0 + 1 0 0 - 0 + 0 - 8 + 0 - 1 5 = 0 .

At this point the given linear programming problem has been trans-
formed to the initial tableau. This tableau displays the constraints and
objective function along with an initial basic feasible solution and the
corresponding value of the objective function for this basic feasible solu-
tion. We are now ready to describe the steps in the simplex method that

108 Chapter 2 The Simplex Method

are used repeatedly to create a sequence of tableaux, terminating in a
tableau that yields an optimal solution to the problem.

Checking an Optimality Criterion

We shall now turn to the development of a criterion that will determine
whether the basic feasible solution represented by a tableau is, in fact,
optimal. For our example we can increase the value of z from its value of
0 by increasing any one of the nonbasic variables having a positive
coefficient from its current value of 0 to some positive value. For our
example,

z = 120x + lOOy + O .u + O.v ,

so that z can be increased by increasing either x or y.
For an arbitrary tableau, if we write the objective function so that the

coefficients of the basic variables are zero, we then have

Z -" E djxj ..~ E O 'x i , (11)
nonbasic basic

where the dj's are the negatives of the entries in the objective row of the
tableau. We see that (11) has some terms with positive coefficients if and
only if the objective row has negative entries under some of the columns
labeled by nonbasic variables. Now the value of z can be increased by
increasing the value of any nonbasic variable with a negative entry in the
objective row from its current value of O. If this is done, then some basic
variable must be set to zero since the number of basic variables is to
remain unchanged. Setting this basic variable to zero will not change the
value of the objective function since the coefficient of the basic variable
was zero. We summarize this discussion by stating the following optimality
criterion for testing whether a feasible solution shown in a tableau is an
optimal solution.

Optimality Criterion. If the objective row of a tableau has zero
entries in the columns labeled by basic variables and no
negative entries in the columns labeled by nonbasic variables,
then the solution represented by the tableau is optimal.

As soon as the optimality criterion has been met, we can stop our
computations, for we have found an optimal solution.

2.1 The Simplex Method for Problems in Standard Form 109

Selecting the Entering Variable
Suppose now that the objective row of a tableau has negative entries in

the labeled columns. Then the solution shown in the tableau is not
optimal, and some adjustment of the values of the variables must be made.

The simplex method proceeds from a given extreme point (basic feasible
solution) to an adjacent extreme point in such a way that the objective
function increases in value. From the definition of adjacent extreme point,
it is clear that we reach such a point by increasing a single variable from
zero to a positive value and decreasing a variable with a positive value to
zero. The largest increase in z per unit increase in a variable occurs for
the most negative entry in the objective row. We shall see below that, if
the feasible set is bounded, there is a limit on the amount by which we can
increase a variable. Because of this limit, it may turn out that a larger
increase in z may be achieved by not increasing the variable with the most
negative entry in the objective row. However, this rule is most commonly
followed because of its computational simplicity. Some computer imple-
mentations of the simplex algorithm provide other strategies for choosing
the variable to be increased, including one as simple as choosing the first
negative entry. Another compares increases in the objective function for
several likely candidates for the entering variable. In Tableau 2.1, the most
negative entry, -120 , in the objective row occurs under the x column, so
that x is chosen to be the variable to be increased from zero to a positive
value. The variable to be increased is called the entering variable, since in
the next iteration it will become a basic variable; that is, it will enter the
set of basic variables. If there are several possible entering variables,
choose one. (This situation will occur when the most negative entry in the
objective row occurs in more than one column.) Now an increase in one
variable must be accompanied by a decrease in some of the other variables
to maintain a solution to Ax = b.

Choosing the Departing Variable
Solving (8) for the basic variables u and v, we have

u = 8 - 2 x - 2 y

v = 1 5 - 5 x - 3 y .

We increase only x and keep y at zero. We have

u = 8 - 2 x) (12)
v = 15 - 5x '

which shows that as x increases both u and v decrease. By how much can
we increase x? It can be increased until either u or v becomes negative.

11 ~ Chapter 2 The Simplex Method

That is, from (9) and (12)we have

O _ < u = 8 - 2 x

O _ < v = 1 5 - 5 x .

Solving these inequalities for x, we find

and

2 x < 8 or x < 8 / 2 = 4

5 x < 15 or x < 15/5 = 3 .

We see that we cannot increase x by more than the smaller of the two
ratios 8 / 2 and 15/5. Letting x = 3, we obtain a new feasible solution,

x = 3 , y = O , u = 2 , v = O .

In fact, this is a basic feasible solution, and it was constructed to be
adjacent to the previous basic feasible solution, since only one variable
changed from basic to nonbasic. The new basic variables are x and u; the
nonbasic variables are y and v. The objective function now has the value

z = 120 .3 + 100 .0 + 0 - 2 + 0 . 0 = 360,

which is a considerable improvement over the previous value of zero.
The new basic feasible solution yields the extreme point (3, 0) in Figure

1.14, and it is adjacent to (0, 0). In the new basic feasible solution to our
example, we have the variable v = 0. It is no longer a basic variable
because it is zero, and it is called a departing variable since it has departed
from the set of basic variables. The column of the entering variable is
called the pivotal column; the row that is labeled with the departing
variable is called the pivotal row.

We now examine more carefully the selection of the departing variable.
Recall that the ratios of the rightmost column entries to the corresponding
entries in the pivotal column were determined by how much we could
increase the entering variable (x in our example). These ratios are called
0-ratios. The smallest nonnegative 0-ratio is the largest possible value for
the entering variable. The basic variable labeling the row where the
smallest nonnegative 0-ratio occurs is the departing variable, and the row
is the pivotal row. In our example,

min{8/2, 15/5} = 3,

and the second row in Tableau 2.1 is the pivotal row.
If the smallest nonnegative 0-ratio is not chosen, then the next basic

solution is not feasible. Suppose we had chosen u as the departing variable
by choosing the 0-ratio as 4. Then x = 4, and from (12)we have

u = 8 - 2 . 4 = 0

v = 1 5 - 5 . 4 = - 5 ,

2.1 The Simplex Method for Problems in Standard Form 111

and the next basic solution is

x = 4 , y = 0 , u = 0 , v = - 5 ,

which is not feasible.
In the general case, we have assumed that the rightmost column will

contain only nonnegative entries. However, the entries in the pivotal
column may be positive, negative, or zero. Positive entries lead to non-
negative 0-ratios, which are fine. Negative entries lead to nonpositive
0-ratios. In this case, there is no restriction imposed on how far the
entering variable can be increased. For example, suppose the pivotal
column in our example were

2
[5-2 instead of _]5]

Then we would have, instead of (12),

u = 8 + 2 x
v = 15 - 5x.

Since u must be nonnegative, we find that

8 + 2 x > 0 or x > - 4 ,

which puts no restriction on how far we can increase x. Thus, in calculat-
ing 0-ratios we can ignore any negative entries in the pivotal column.

If an entry in the pivotal column is zero, the corresponding 0-ratio is
undefined. However, checking the equations corresponding to (12), but
with one of the entries in the pivotal column equal to zero, will show that
no restriction is placed on the size of x by the zero entry. Consequently, in
forming the 0-ratios we use only the positive entries in the pivotal column
that are above the objective row.

If all the entries in the pivotal column above the objective row are
either zero or negative, then the entering variable can be made as large as
we wish. Hence, the given problem has no finite optimal solution, and we
can stop.

Forming a New Tableau

Having determined the entering and departing variables, we must
obtain a new tableau showing the new basic variables and the new basic
feasible solution. We illustrate the procedure with our continuing example.
Solving the second equation of (8) (it corresponds to the departing vari-
able) for x, the entering variable, we have

X = 3 3 1 ~y - ~v. (13)

Substituting (13) into the first equation of (8), we get

2(3 - 3 1 ~ y - ~ v) + 2 y + u = 8

112 Chapter 2 The Simplex Method

o r

We also rewrite (13) as

2 4y + u ~v = 2. (14)

3 1 x + ~ y + ~ v = 3 . (15)

Substituting (13) into (7), we have

(- 120)(3 - 3 1 ~ y - ~ v) - 1 0 0 y + z = 0

o r

- 2 8 y + 24v + z = 360. (16)

Since in the new basic feasible solution we have y = v = 0, the value of z
for this solution is 360. This value appears as the entry in the last row and
rightmost column. Equations (14), (15), and (16) yield the new tableau
(Tableau 2.3).

Tableau 2.3

x y u v z

u 0 4 1 2 0 2
5 5

x 1 3 0 1- 0 3
5 5

0 28 0 24 1 360

Observe that the basic variables in Tableau 2.3 are x and u. By
comparing Tableaus 2.1 and 2.3, we see that the steps that were used to
obtain Tableau 2.3 from Tableau 2.1 are as follows.

Step a. Locate and circle the entry at the intersection of the pivotal
row and pivotal column. This entry is called the pivot. Mark the pivotal
column by placing an arrow $ above the entering variable, and mark the
pivotal row by placing an arrow ~ to the left of the departing variable.

Step b. If the pivot is k, multiply the pivotal row by l / k , making the
entry in the pivot position in the new tableau equal to 1.

Step c. Add suitable multiples of the new pivotal row to all other rows
(including the objective row), so that all other elements in the pivotal
column become zero.

Step d. In the new tableau, replace the label on the pivotal row by the
entering variable.

These four steps constitute a process called pivoting. Steps b and c use
elementary row operations (see Section 0.2) and form one iteration of the
procedure used to transform a given matrix to reduced row echelon form.

2.1 The Simplex Method for Problems in Standard Form 113

We now repeat Tableau 2.1 with the arrows placed next to the entering
and departing variables and with the pivot circled (Tableau 2.1a).

Tableau 2.1a
$

x y u v z

u 2 2 1 0 0

v (~) 3 0 1 0

120 100 0 0 1

8

15

0

Tableau 2.3 was obtained from Tableau 2.1 by pivoting. We now repeat
the process with Tableau 2.3. Since the most negative entry in the objective
row of Tableau 2.3, -28 , occurs in the second column, y is the entering
variable of this tableau and the second column is the pivotal column. To
find the departing variable we form the 0-ratios, that is, the ratios of the
entries in the rightmost column (except for the objective row) to the
corresponding entries of the pivotal column for those entries in the pivotal
column that are positive. The 0-ratios are

2 3
5

T = ~ and -3- = 5 .

The minimum of these is s ~, which occurs for the first row. Therefore, the
4 pivotal row is the first row, the pivot is ~, and the departing variable is u.

We now show Tableau 2.3 with the pivot, entering, and departing variables
marked (Tableau 2.3a).

Tableau 2.3a

x y u v z
.,,

G 2 u 0 1 ~ 0 2

3 1 0 3 x 1 3- 0 3-

0 28 0 24 1 360

We obtain Tableau 2.4 from Tableau 2.3 by pivoting. Since the objective
row in Tableau 2.4 has no negative entries, we are finished, by the
optimality criterion. That is, the indicated solution,

3 5 x = ~ , y = ~ , u = O , v = O ,

114 Chapter 2 The Simplex Method

Tableau 2.4

x y u v z

y 0 1 5 1 5 ~ 0 ~-
3 1 0 3 x 1 0 4 ~ ~-

0 0 35 10 1 430

is optimal, and the maximum value of z is 430. Notice from Figure 1.14
that we moved from the extreme point (0, 0) to the adjacent extreme point

3 5 (3, 0) and then to the adjacent extreme point (3, 3). The value of the
objective function started at 0, increased to 360, and then to 430, the entry
in the last row and rightmost column.

Summary of the Simplex Method

We assume that the linear programming problem is in standard form
and that b > 0. In this case the initial basic feasible solution is

01 x - [b �9

In subsequent sections we will show how to extend the simplex method to
other linear programming problems.

Step 1. Set up the initial tableau.
Step 2. Apply the optimality test: If the objective row has no negative

entries in the labeled columns, then the indicated solution is optimal. Stop
computation.

Step 3. Find the pivotal column by determining the column with the
most negative entry in the objective row. If there are several possible
pivotal columns, choose any one.

Step 4. Find the pivotal row. This is done by forming the 0- ra t ios - - the
ratios formed by dividing the entries of the rightmost column (except for
the objective row) by the corresponding entries of the pivotal columns
using only those entries in the pivotal column that are positive. The pivotal
row is the row for which the minimum ratio occurs. If two or more 0-ratios
are the same, choose one of the possible rows. If none of the entries in the
pivotal column above the objective row is positive, the problem has no
finite optimum. We stop our computation in this case.

Step 5. Obtain a new tableau by pivoting. Then return to Step 2.

In Figure 2.1 we give a flowchart and in Figure 2.2, a structure diagram
for the simplex algorithm.

The reader can use the SMPX courseware described in Appendix C to
experiment with different choices of pivot, observing how some choices

2.1 The Simplex Method for Problems in Standard Form 11

Set up
initial tableau

. . . .

~YES

[Ge't pi'vota, column~]

J

[C ,,,ivo,a, J

~ , . "

Compute a new
tableau by pivoting

I

NO_
v

Indicated
solution is
optimal

N O
There is no
finite optimal
solution

O

FIGURE 2.1 Flowchart for s implex algorithm (standard form, b > 0).

lead to infeasible solutions. The courseware will also allow the user to step
through the iterations of the simplex algorithm so that the intermediate
tableaux can be examined.

The reader should note that the z column always appears in the form

z

0
0

6

1

in any simplex tableau. We included it initially to remind the reader that
each row of a tableau including the objective row represents an equation

11 ~ Chapter 2 The Simplex Method

Set up initial tableau

WHILE negative entries in objective row DO
, ,

Get pivotal column

~ ~ Positive entries in pivotal column ~ f ~ "
~ o b j e c t i v e row ~

TRUE ~ J FALSE

Get pivotal row No finite optimal
solution exists

Compute new tableau
by pivoting STOP

Present tableau represents optimal solution

FIGURE 2.2 Structure diagram of simplex algorithm (standard form, la > 0).

in the variables x l, x 2 , . . . , X s , z . From this point on we will not include the
z column in tableaux. The s tudent should r e m e m b e r to read the objective
row of a tableau as an equat ion that involves z with coefficient + 1.

EXAMPLE 2. We solve the following linear p rogramming prob lem in
s tandard form by using the simplex method:

Maximize z -- 8 x 1 + 9 x 2 + 5 x 3

subject to

x I + x 2 + 2x 3 < 2

2X 1 + 3 x 2 + 4X 3 < 3

6 x I + 6x 2 + 2 x 3 < 8

X 1 ~_~ 0, X 2 ~ 0, X 3 >_~ 0.

We first convert the problem to canonical form by adding slack vari-
ables, obtaining:

Maximize z - 8 x 1 + 9 x 2 + 5 x 3

subject to

x 1 + x 2 + 2x 3 + x 4 = 2

2 x 1 + 3X 2 + 4 x 3 + x 5 = 3

6 x I + 6 x 2 + 2 x 3 + x 6 -" 8

x j > 0 , j = 1,2 , 6.

2.1 The Simplex Method for Problems in Standard Form 117

Tableau 2.5

X 4

X5

X6

Tableau 2.6

X1 X2 X 3 X4 X5 X6

1 1 2 1 0 0 2

2 (~) 4 0 1 0 3

6 6 2 0 0 1 8

8 9 5 0 0 0 0

X1 X2 X 3 X4 X 5 X6

1 0 2 1 1 X 4 ~ ~ ~ 0

X2 2 1 4 0 ! 0 3 3 3

x 6 (~) 0 6 0 2 1

Tableau 2.7

2 0 7 0 3 0

X 1 X 2 X 3 X4 X5 X6

X 4 0 0 5 1 0 1 2
1 1 X 2 0 1 ~0 0 1 ~

1 1 X 1 1 0 3 0 1

0 0 1 0 1 1 11

The initial tableau is Tableau 2.5; the succeed ing tableaux are Tableaux
2.6 and 2.7.

H e n c e , an opt imal so lut ion to the standard form of the prob lem is
1

X 1 - - 1 , X2 - - 3 , X 3 - - 0 .

The values of the slack variables are
2

X 4 = -~, X 5 = 0 , X 6 - - 0 .

The opt imal value of z is 11. A

E X A M P L E 3 . Consider the l inear programming prob lem

Maximize z = 2 x I + 3x 2 + X 3 + X 4

subject to

X 1 - - X 2 - - X 3 __< 2

-- 2 x 1 + 5X 2 -- 3X 3 -- 3x 4 < 10

2x 1 - - 5 X 2 -~- 3x 4 < 5

x j > _ 0 , j = 1 , 2 , 3 , 4 .

118 Chapter 2 The Simplex Method

T o so lve th is p r o b l e m by t h e s i m p l e x m e t h o d , w e first c o n v e r t t h e

p r o b l e m to c a n o n i c a l f o r m by a d d i n g s lack v a r i a b l e s o b t a i n i n g

M a x i m i z e z = 2 x I + 3 x 2 + X 3 q- X 4

sub j ec t to

X 1 - - X 2 - - X 3 + X 5 - - 2

- - 2 X 1 + 5 X 2 - - 3 X 3 - - 3 X 4 + X 6 - - 10

2 x I - 5x 2 + 3x 4 + X 7 - - 5

x j > _ O , j = 1 , 2 , . . . , 7 .

T h e ini t ia l t a b l e a u is T a b l e a u 2.8; t h e f o l l o w i n g t a b l e a u x a r e T a b l e a u x 2.9

a n d 2.10.

I n T a b l e a u 2.10, t h e m o s t n e g a t i v e e n t r y in t h e o b j e c t i v e r o w is - -~, so

t h e d e p a r t i n g v a r i a b l e is x3. H o w e v e r , n o n e o f t h e e n t r i e s in t h e p i v o t a l

c o l u m n (t h e t h i r d c o l u m n) is pos i t ive , so w e c o n c l u d e t h a t t h e g iven

p r o b l e m has n o f in i te o p t i m a l s o l u t i o n . /~

Tableau 2.8

Xl X2 X 3 X4 X 5 X 6 X7

X 5 1 1 1 0 1 0 0 2

X 6 2 (~) 3 3 0 1 0 10

X 7 2 5 0 3 0 0 1 5

2 3 1 1 0 0 0 0

Tableau 2.9

X1 X2 X 3 X4 X 5 X6 X7

Xs 3 0 8 3 1 0 4 5 ~ 1
2 1 3 3 0 1 0 2

X2 5 5 5 5

x 7 0 0 3 0 0 1 1 15

~6 o ~ ~ o 5 ~ 0 6

Tableau 2.10

X1 X 2 X 3 X4 X 5 X 6 X7

x 1 1

x 2 0
x 7 0

8 5 1 0 2O 0 ~ 1 ~ ~ 3
5 2 1 0 1 ~ 1 ~ 3

0 3 0 0 1 1 15

5 0 0 343 6 16 x 0 s~

2.1 The Simplex Method for Problems in Standard Form 119

2.1 EXERCISES

In Exercises 1 and 2, set up the initial s implex tab leau .

1. Maximize z = 2x + 5y

subject to

3 x + 5 y < 8

2x + 7y < 12

x > 0 , y > 0 .

2. Maximize z = x 1 -[- 3x 2 + 5 x 3

subject to

2x I - 5x 2 + X 3 _~< 3

X 1 "~- 4x 2 < 5

X 1 >__ O, X 2 >_~ O, X 3 >_~ O.

3. Cons ide r the following s implex tableau .

Xl X 2 X 3 X4 X 5 X6 X7

5 6 X 4 0 0 2 1 X 0 0
x 1 1 0 5 0 3 0 - 2 2_ 7

5 x 6 0 0 3 0 4 1 4 y

X 2 0 1 0 0 2 0 0 • 2 7

D e t e r m i n e the depar t ing var iable if the en te r ing var iable is (a) x5; (b) x3;

(c) x7.

In Exercises 4 - 7 use one i te ra t ion of the s implex a lgor i thm to obta in the next
t ab leau f rom the given tableau.

X1 X 2 X 3 X4

4 0 2 0 12

X4 3 0 5 7 3 1 6
X2 2 1 2 0 8 3

"1 ~ 0 Chapter 2 The Simplex Method

X1 X 2 X3 X4

x 1 1 2 0 1
1 1 - 1 x 3 0

0 4 0 4

X 3

X2

X5

X 1 X2 X 3 X 4 X 5

2 3 3 -~ 0 1 ~ 0 -~

3 1 0 1 0 ! 2 2
2 2 5 0 0 -~ 1 g

7 4 0 0 5 0

X1 X2 X3 X4

x 2 1 1 5 0 4
x 4 1 0 2 1 6

3 0 - 2 0 7

8. (a) The following tableau arose in the course of using the simplex algorithm to
solve a linear programming problem. What basic feasible solution does this
tableau represent?

X1 X2 X3 X4 X 5 X 6 X 7

4 2 1 0 ~ ~ 0 1 0
1 2 1 0 ~ ~ 1 0 1
1 1 1 1 1 ~ ~ ~- 0 0

0 5 4 1 0 0 5
3 3]"

4
10
4

12

(b) Perform one operation of the simplex algorithm on the tableau. What basic
feasible solution does this new tableau represent?

9. Consider the following tableau, which arose in solving a linear programming
problem by the simplex method.

2.1 The Simplex Method for Problems in Standard Form 1 ~1

X 1 X 2 X 3 U U W

1 5 2 0 0 3
0 2 4 1 0 4
0 2 1 0 1 3

.

0 5 3 0 0 3

20
6

12

12

(a) Identify the basic feasible solution and basic variables in this tableau.
(b) Compute the next tableau using the simplex method.
(c) Identify the basic feasible solution and basic variables in the tableau in (b).

In Exercises 10-23 solve the indicated linear programming problem using the
simplex method.

10. Example 4, Section 1.1.

11. Example 7a, Section 1.1.

12. Example 7b, Section 1.1.

13. Example 10, Section 1.1.

14. Exercise 4, Section 1.1.

15. Exercise 5, Section 1.1.

16. Exercise 7, Section 1.1.

17. Exercise 9, Section 1.1.

18. Exercise 2, Section 1.5.

19. Maximize z = 2x 1 + 3x 2 - x 3
subject to

x I + 2x 2 - x 3 < 6

X 1 - - 3X 2 - - 3X 3 < 10

xj>_O, j - 1 ,2 ,3 .

20. Maximize z = x I + 2x 2 + X 3 "q-X 4

subject to

2 x I + x 2 + 3 x 3 + x 4 __~ 8

2 x 1 4- 3 x 2 4- 4 x 4 < 1 2

3x I + x 2 + 2x 3 < 18

x j > 0 , j = 1 , 2 , 3 , 4 .

21. Maximize z = 5 x 1 + 2 x 2 + x 3 d - x 4

subject to

2x I + X 2 - t -X 3 -~- 2x 4 < 6

3x I + X 3 __< 15

5X 1 -'1- 4 X 2 4- X 4 < 24

x j > 0 , j = 1 , 2 , 3 , 4 .

122 Chapter 2 The Simplex Method

22. Maximize z = - x I + 3x z + X 3

subject to
- - X 1 4;- 2 x 2 - 7 x 3 _<< 6

x 1 + x 2 -- 3 x 3 < 15

x j > O, j = 1,2,3.

23. Maximize z = 3x 1 + 3x 2 - x 3 + X 4
subject to

2 x I - - X 2 - - x 3 + x 4 _< 2

X 1 - - X 2 + X 3 - - X 4 __< 5

3xa + X 2 + 5X 4 __< 12

xj>_ O, j - 1,2,3,4.

24. Suppose a linear programming problem has a constraint of the form

3 x I + 2 x 2 + 5 x 3 - - 2 x 4 >__ 12.

Why can we not solve this problem using the simplex method as described up
to this point? (In Section 2.3 we develop techniques for handling this situation.)

2.2 DEGENERACY AND CYCLING (OPTIONAL)

In choosing the departing variable, we computed the minimum 0-ratio.
If the minimum 0-ratio occurs, say, in the r th row of a tableau, we drop
the variable that labels that row. Now suppose that there is a tie for
minimum 0-ratio, so that several variables are candidates for depart ing
variable. We choose one of the candidates by using an arbitrary rule such
as dropping the variable with the smallest subscript. However, there are
potential difficulties any time such an arbitrary choice must be made. We
now examine these difficulties.

Suppose that the 0-ratios for the r th and sth rows of a tableau are the
same and their value is the minimum value of all the 0-ratios. These two
rows of the tableau are shown in Tableau 2.11 with the label on the r th
row marked as the depart ing variable. The 0-ratios of these two rows are

b r / a r j = b ~ / a s j .

Tableau 2.11
,1,

X 1 X 2 " '" X j " '" X n + m

X i r a r 1 a r 2 " '" ~ " '" a r , n + m br

X i s asl as2 "'" asj "'" a s , n + m b s

�9

2.2 Degeneracy a n d Cycling (Optional) 123

Tableau 2.12

X 1 X 2 "'" X j " " X n + m

xj a , l l a r j a ,21arj . " i ... ar, n + m l a r j

Xis * * """ 6 �9 "" *

"br/arj

"b s asj . br /ar j

When we pivot in Tableau 2.11, we obtain Tableau 2.12, where �9
indicates an entry whose value we are not concerned about. Setting the
nonbasic variables in Tableau 2.12 equal to zero, we find that

and

Xj = b r / / a r j

X i s - - b s - a s j ' b r / a r j = a s j (b s / a s j - b r / a r j) = O.

Consequently, the tie among the 0-ratios has produced a basic variable
whose value is 0.

DEFINmON. A basic feasible solution in which some basic variables
are zero is called degenerate.

EXAMPLE 1 (DEGENERACY). Consider the linear programming problem
in standard form

M a x i m i z e z - - 5 x I ~- 3 x 3

subject to

x 1 - x 2 < 2

2 x 1 -t- x 2 < 4

- - 3 x 1 -i- 2 x 2 < 6

X 1 ~_~ O, X 2 >" O.

The region of all feasible solutions is shown in Figure 2.3. The extreme
points and corresponding values of the objective function are given in
Table 2.1. The simplex method leads to the following tableaux. In Tableau
2.13 we have two candidates for the departing variable: x 3 and x 4 since
the 0-ratios are equal. Choosing x 3 gives Tableaux 2.13, 2.14, 2.15, and
2.16. Choosing x 4 gives Tableaux 2.13a, 21.4a, and 2.15a. Note that
Tableaux 2.15a and 2.16 are the same except for the order of the con-
straint rows.

124 Chapter 2 The Simplex Method

TABLE 2.1

Extreme point Value ofz = 5x 1 + 3x 2

(0,0) 0
(2,0) 10
(0,3) 9
(~ , ~) ~ -7

Tableau 2.13

Xl X 2 X3 X4 X5

x3 C) 1 1 0 0 2
x 4 2 1 0 1 0 4
x 5 3 2 0 0 1 6

5 3 0 0 0

Tableau 2.14

X1

X4

X5

Xl X 2 X 3 X4 X5

1 1 1 0 0

o | 2 1 o
0 1 3 0 1

0 8 5 0 0

2

0

12

10

2.2 Degeneracy and Cycling (Optional) 1 2 5

Tableau 2.15

X1

X2

X5

Tableau 2.16

X1

X2

X3

Tableau 2.13a

X1 X2 X 3 X4 X5

1 1 0 2 1 0 ~

0 1 2 1 0 0 3 3

1 12 0 0 31

1 8 0 10 0 0 3

X1 X 2 X3 X4 X 5

2 1 2 1 0 0 y ~
3 2 0 1 0 y y 2~
1 3 36

0 0 1 y y 7

0 0 0 19 1 82
7 7 7

Xl X2 X 3 X4 X 5

X 3 1 1 1 0 0 2

X 4 Q 1 0 1 0 4

X 5 3 2 0 0 1 6

5 3 0 0 0 0

Tableau 2.14a

X1

X 3 0

x I 1

x 5 0

0

Tableau 2.15a

X2 X3 X4 X 5

3 1 1 2 ~ 0 0

0 ~ 0 2 2 2

3 Q 0 ~ 1 12

1 5 0 y 0 10

1 3 36
x 3 0 0 1 ~ ~- 7

2 1 2
x~ 1 0 0 ~- 7 y

3 2 24
X 2 0 1 0 y v 7

1 82 0 0 0 19 ~- 7

X1 X 2 X3 X4 X5

126 Chapter 2 The Simplex Method

The optimal solution is
2 24

X1 = 7 , X 2 " - --q-,

with the optimal value of the objective function being
82

Z = --q-.

The slack variables have values

__ 36 = 0 X 5 = 0 . X 3 - - --q-, X 4

What is happening geometrically? We start with the initial basic feasible
solution as the origin (0, 0), where z = 0. If we choose to replace x 3 with
x 1, we move to the adjacent extreme point (2, 0), where z = 10 (Tableau
2.14). Now we replace x 4 with x 2 and remain at (2, 0) (Tableau 2.15).

2 Finally we replace x 5 with x 3 and move to (7,-~), where z = -~. This is
our optimal solution (Tableau 2.16).

Alternatively, because the 0-ratios are equal we could replace x4 with
x 1. The pivot step with this choice again moves us from (0, 0) to (2, 0),
where z = 10 (Tableau 2.14a). However, at the next stage, x 3, which has
value 0 and is the degenerate variable, is not a departing variable. Instead,
x5 is the departing variable, and we move immediately to the optimal

2 solution (Tableau 2.15a) at (7, ~) . A

In general, in the case of degeneracy, an extreme point is the intersec-
tion of too many hyperplanes. For example, degeneracy occurs in R 2 when
three or more lines intersect at a point, degeneracy occurs in R 3 when
four or more planes intersect at a point, and so on.

Cycling
If no degenerate solution occurs in the course of the simplex method,

then the value of z increases as we go from one basic feasible solution to
an adjacent basic feasible solution. Since the number of basic feasible
solutions is finite, the simplex method eventually stops. However, if we
have a degenerate basic feasible solution and if a basic variable whose
value is zero departs, then the value of z does not change. To see this,
observe that z increases by a multiple of the value in the rightmost column
of the pivotal row. But this value is zero, so that z does not increase.
Therefore, after several steps of the simplex method we may return to a
basic feasible solution that we already have encountered. In this case the
simplex method is said to be cycling and will never terminate by finding an
optimal solution or concluding that no bounded optimal solution exists.
Cycling can only occur in the presence of degeneracy, but many linear
programming problems that are degenerate do not cycle (see Example 1).

Examples of problems that cycle are difficult to construct and rarely
occur in practice. However, Kotiah and Steinberg (see Further Reading)

2.2 Degeneracy and Cycling (Optional) 1 2 7

have d i s c o v e r e d a l i nea r p r o g r a m m i n g p r o b l e m ar i s ing in t he s o l u t i o n o f a

p rac t i ca l q u e u i n g m o d e l t ha t d o e s cycle. A l so , B e a l e (see F u r t h e r R e a d i n g)

has c o n s t r u c t e d t he fo l lowing e x a m p l e of a s m a l l e r p r o b l e m t h a t cycles

a f t e r a few steps.

EXAMPLE 2 (CYCLING). C o n s i d e r t h e fo l lowing l i n e a r p r o g r a m m i n g

p r o b l e m in c a n o n i c a l fo rm.

M a x i m i z e z = lOx I -- 57x 2 -- 9x 3 -- 24X 4

subjec t to

1 m _~X 2 5 ~-X 1 - - ~ X 3 -[-9X 4 + X 5 = 0
1 3 1
~X 1 - - ~X 2 - - ~ X 3 + X 4 -~- X 6 - - 0

Xl + x 7 = 1

Xy>_O, j = 1 , . . . , 7 .

U s i n g the s implex m e t h o d we o b t a i n t he fo l lowing s e q u e n c e of t ab l eaux .

Tableau 2.17

X 1 X 2 X3 X4 X5 X6 X7

5 x 5 @ �89 ~ 9 1 0 0
1 3 1 X6 2 2 ~ 1 0 1 0

x 7 1 0 0 0 0 0 1

10 57 9 24 0 0 0

Tableau 2.18

X1 X2 X 3 X4 X5 X6 X7

X 1 1 11 5 18 2 0 0

X 6 0 @ 2 8 1 1 0

X 7 0 11 5 18 2 0 1

0 53 41 204 20 0 0

Tableau 2.19

X 1 X2 X 3 X4 X5 X 6 X7

X 1 1

x 2 0
x 7 0

3 o @ o o

1 2 1 1 0 0 1 ~ ~
1 3 ~ 1 1 0 ~ 4

0 29 98 27 53 0 0
2 4 4

128 Chapter 2 The Simplex Method

Tableau 2.20

X1

X 3 2

X 2 1

X 7 1

29

X 2 X 3 X 4 X 5 X 6 X 7

0 1 8 3 11 0 0
2

1 5 0 0 1 0 @ ~" 2
0 0 0 0 0 1 1

0 0 18 15 93 0 0

Tableau 2.21
$

X 1 X2 X3 X4 X 5 X 6 X 7

x 3 2
1

X4

x 7 1

20

9 4 1 0 ~ 0 0
! 0 1 1 5 0 0 2 4 4

0 0 0 0 0 1 1

9 0 0 2~ 141 0

Tableau 2.22

X1

x 5 - 4
1

X 4 ~"

x 7 1

-22

$

X 2 X3 X4 X5 X6

8 2 0 1 9
3 1
2 2 1 0 (~)
0 0 0 0 0

93 21 0 0 24

X7

0 0

0 0
1 1

0 0

Tableau 2.23

X 1 X2 X3 X4 X5 X6

1 ~ 5 9 1 0 X5 2 2
1 3 1

X6 2" 2 ~ 1 0 1
x 7 1 0 0 0 0 0

10 57 9 24 0 0

X7

0 0
0 0
1 1

0 0

Obse rve tha t T a b l e a u 2.23 is ident ical to T a b l e a u 2.17, and, thus, the

s implex m e t h o d has cycled. A

C o m p u t e r p r o g r a m s des igned for large l inear p r o g r a m m i n g p r o b l e m s

prov ide several op t ions for dea l ing wi th d e g e n e r a c y and cycling. O n e
op t ion is to ignore d e g e n e r a c y and to a s sume tha t cycling will no t occur.

A n o t h e r op t ion is to use Bland ' s R u l e for choos ing e n t e r i n g and d e p a r t i n g
var iables to avoid cycling. This ru le modif ies S tep 3 and 4 of the S implex

M e t h o d .

2.2 Degeneracy and Cycling (Optional) 129

Bland's Rule

1. Select ing the pivotal column. Choose the co lumn with the smallest
subscript f rom among those co lumns with negat ive entr ies in the objective
row instead of choosing the co lumn with the mos t negat ive entry in the
objective row.

2. Select ing the pivotal row. If two or m o r e rows have equal 0-ratios,
choose the row labeled by the basic variable with the smallest subscript,
instead of making an arbi trary choice.

Bland showed that if these rules are used, then, in the event of degeneracy,
cycling will not occur and the simplex m e t h o d will t e rmina te .

EXAMPLE 3. Refe r r ing to the tableaux f rom Example 2, no te that
Bland's rule affects only the choice of en te r ing variable in Tab leau 2.22.
Applying the rule and rewrit ing Tab leau 2.22 with the new choice of
en ter ing and depar t ing variables, we obta in Tab leau 2.23a.

Tableau 2.22

Xl X2 X 3 X4 X 5 X 6

x 5 4 8 2 0 1 9
@ 3 1 X4 2 ~ 1 0 1

X 7 1 0 0 0 0 0

22 93 21 0 0 24

X7

0 0

0 0

1 1

0 0

Tableau 2.23a

X1 X2 X 3 X4 X 5 X 6 X7

x 5 0 4 - 2 8 1 1 0 0
x I 1 - 3 -1 2 0 2 0 0

x 7 0 3 C) - 2 0 2 1 1

0 27 1 44 0 20 0 0

We pe r fo rm the pivot step to obtain Tab leau 2.24a, which represen t s an
opt imal solution. The cycling has been broken.

Tableau 2.24a

X1 X2 X 3 X4 X 5 X6 X7

x 5 0 2 0 4 1 5 2 2
x 1 1 0 0 0 0 0 1 1
x 3 0 3 1 - 2 0 - 2 1 1

0 30 0 42 0 18 1 1
A

130 Chapter 2 The Simplex Method

2.2 EXERCISES

In Exercises 1 -6 solve the indicated linear programming problem, noting where
degeneracies occur. Sketch the set of feasible solutions, indicating the order in
which the extreme points are examined by the simplex algorithm.

1. Maximize z = 6 x 1 + 5 x 2

subject to

2. Maximize z = 5x i + 4x2
subject to

3 x I -- 2 x 2 < 0

3 x I + 2 x 2 < 15

x I >_~ O, x 2 >_~ O.

x 1 + 2 x 2 < 8

x I - - 2 x e < 4

3 x I + 2 x 2 < 12

x I >_~ O, x 2 >_~ O.

3. Maximize z = 3 x I -t- 2 x 2 + 5 x 3

subject to

2 x 1 -- x 2 -I- 4X 3 < 12

4 x 1 -t- 3 x 2 q- 6X 3 < 18

X 1 >_~ O, X 2 >__ O, X 3 >_~ O.

4. Maximize z = 5 x I d- 8 x 2 q - x 3

subject to

X 1 -~- X 2 -~- X 3 _< 7

2 x 1 -I- 3 x 2 + 3 x 3 < 12

3 x 1 q- 6X 2 -I- 5 x 3 __< 2 4

X 1 >_~ O, X 2 >__ O, X 3 >_~ O.

5. Maximize z = 6 x I + 5 x 2

subject to

4 x I -t- 3 x 2 < 19

X 1 -- X 2 _<_3

X 1 -- 2 X 2 < 2

3 x 1 d- 4 x 2 < 18

x 1 >_~ O, x 2 >_~ O.

2.3 Artificial Variables 131

6. Maximize z = 5 x I -I- 3 x 2

subject to

2X 1 d-X 2 __~ 6

2X 1 - - x 2 >__ 0

X 1 - - X 2 ~__0

xj>_0, j = 1,2.

7. If a degeneracy arose in any of the exercises above, use all choices of the
departing variable.

In Exercises 8 and 9,
(a) Show that cycling occurs when solving the problem using the simplex

method.
(b) Use Brand's Rule to terminate cycling and obtain an optimal solution, if one

exists.

8. Minimize z = - x I + 7x 2 + x 3 + 2 x 4

subject to

X 1 + X 2 + X 3 + X 4 + x 5 = 1

1 _ _ ~ X 2 5 ~x I -- 7 x 3 + 9 x 4 + x 6 = 0

1 3 1
~X 1 - - ~X 2 - - ~X 3 + X 4 + X 7 = 0

x j ~ 0 , j = 1 7

(due to K. T. Marshall and J. W. Suurballe).

9. Minimize z = - 2x I - 2x 2 + 9x3
subject to

3 - - - ~ X 2 -k- -~ X 3 - t -X 4 ~x1

1 9 3
~X 1 - - ~X 2 -q- ~X 3

2 8 1
~X 1 - - ~X 2 -q- ~X 3

X 2

xj>_0,

(due to K. T. Marshall and J. W. Suurballe).

= 0

+ x 5 = 0

+ x 6 = 0

+ X T = l

j = 1 , . . . , 7

2.3 ARTIFICIAL VARIABLES

In the previous two sections we discussed the simplex a lgor i thm as a
m e t h o d of solving cer ta in types of l inear p r o g r a m m i n g problems. Recal l
that we res t r ic ted our discussion to those l inear p r o g r a m m i n g prob lems
that could be put in s tandard form, and we cons idered only those prob-
lems in that form that had a nonnegative right-hand side. Tha t is, we have

1 ~ Chapter 2 The Simplex Method

assumed that all our constraints were of the form

n

E aijxj ~ bi, i = 1 , 2 , . . . , m ,
j = l

where

bi>_O.

(1)

X = (0 , 0 , . . . , 0 , b l , b 2 , . . . , b m).

Furthermore, this solution was feasible since b i >_ 0 for i = 1, 2 , . . . , m.
Unfortunately, there are many linear programming problems in which

not all the constraints can be transformed to the form of (1). For example,
the constraint

can be changed to

2x + 3y > 4 (2)

- 2 x - 3 y < - 4 ,

but then the right-hand side is negative. By adding a slack variable, we
obtain

- 2 x - 3 y + u = - 4 . (3)

Setting the nonslack variables equal to zero gives us u = - 4 , which will
not yield a feasible solution.

When we examine the procedure described above for finding an initial
basic feasible solution, we see that it was not important that the procedure
was applied to a problem in canonical form coming from a problem in
standard form. It was important that the problem was in canonical form,
that the right-hand side of Ax = b was nonnegative, and that in each
equation of the system of constraints there was a variable with coefficient
+ 1 that appeared in no other equation. Then setting all but these
"special" variables equal to zero, we again would have an initial basic
feasible solution.

However, there may be equations in the canonical form of a problem in
which no such "special" variable exists. In Equation (3)we can make the
right-hand side positive so that the equation reads

2 x + 3 y - u = 4 .

But now no coefficient is + 1, and presumably x and y appear in other
equations of the system of constraints, so that they cannot be chosen as
"special "variables.

The assumption that b > 0 enabled us to easily find an initial basic feasible
solution. For, when we introduced slack variables, we found that we could
set the nonslack variables equal to zero and obtain the basic solution

2.3 Artificial Variables 133

We now develop a procedure for introducing a variable that can serve
as a basic variable for an initial basic feasible solution. We start with the
general linear programming problem

Maximize z = cTx (4)

subject to

a l l X 1 + a12x2 + . . . + a l n X n (<) (=) (<) b 1

a21x 1 -+-a22x2 -+-. . . + a 2 n X n (_ <) (- -) (>__) b 2
(5) �9 , �9 �9

�9 �9 �9 �9

�9 �9 �9

a m l X 1 -k- a m 2 X 2 -4r . . . - k - a m n X n (~) (' -) (> _ _) b m

x j > 0 , j = 1 , 2 , . . . , n . (6)

Note that we have assumed that the problem is a maximization problem.
Any minimization problem can be converted to a maximization problem by
multiplying the objective function by - 1 .

We now write each constraint in (5) so that its right-hand side is
nonnegative. This can be done by multiplying those constraints with
negative right-hand sides by - 1 . The constraints in (5) can now be
rearranged and renumbered so that the < constraints come first, then the
> constraints, and finally the = constraints. Assume that there are r 1 <
constraints, r 2 > constraints and r 3 --- constraints. Then we can assume
that (5) is in the following form.

a l l X 1 d- a12x 2 d- . . . d- a l n X n ~ b 1,

a21x1 + a22x 2 d- --- -I- a2nX n <_~ b2,
�9 ~ ~ ~

�9 ~ �9

a r l l X 1 + arl2X 2 -t- "'" -t- ar lnX n ~ brl ,

! !

a l l X l d - a'12x 2d- . . . d- a l n X n>__ b ' 1 ,
! !

a21x l + a'22x 2 -f- "" + a'z,,X,, > b 2 ,
~ �9 �9 �9

o �9 ~ ~

a' ' a' [~'
rE1X1 ~ arE2X 2 4;- "'" "t- rEnXn ~_~ rE ~

P! P! f PP

a l l X l d - a l 2 x 2d- " - d- d l n X n = b l ,
~ l X t tt ~_ n 1 -~- at22x2 -1- "'" -~- aZnXn b 2 ,

�9 ~ ~ ~

�9 ~ ~

' ' " = b" anr31Xl-~-at~r32X 2 + --. + ar3nX n r 3,

b 1 >__0

b 2 > 0

j brl >___0

b' l>_O

b ' _ 2 > 0

b' > 0 r 2 - -

b Pp 1~__0

b" 2>_0

b" > 0
r 3 - -

(7a)

(Tb)

(7c)

Next we make each inequality in (7a) and (7b) into an equality by
introducing a slack variable. Each slack variable must be nonnegative so

1 ~ Chapter 2 The Simplex Method

that in (7a) it is introduced with a + sign and in (7b) it is introduced with a
- sign. We now write (7a) and (7b) as

~ ai jx] -t- x n+i -- bi, bi > 0, i = 1 , 2 , . . . , r I (8a)
j = l

a i j x j -- Xn +r 1 +i " - - bi, b i >_ 0, i - 1 , 2 , . . . , r 2. (8b)
j = l

EXAMPLE 1. Consider the linear programming problem

Maximize z = 2 x 1 + 5 x 2

subject to

2x I + 3x 2 < 6

- 2 x 1 + x 2 < - 2

x I - 6x 2 = - 2

X 1 ~ 0 , X 2 >_~ 0 .

We first rewrite the constraints so that the right-hand sides are non-
negative. The problem becomes

Maximize z = 2 x 1 + 5 x 2

subject to

2 x 1 + 3 x 2 < 6

2 X 1 -- X 2 >_ 2

- x 1 -~- 6 x 2 = 2

x 1 >_~ 0 , x 2 >_~ 0 .

We now insert slack variables in each of the inequalities, obtaining an
associated canonical form problem:

Maximize z = 2 x 1 + 5X 2

subject to

2Xl + 3x2 + x3

2x I - x 2

- -X 1 d- 6x 2

:6 /
- - X 4 2

2

(9)

x j > O , j = 1 , 2 , 3 , 4 .

However, we do not have a variable in each equat ion that can act as a
basic variable for an initial basic feasible solution. In fact, in (9) both the
second and third equations do not have such a variable. A

2.3 Artificial Variables 135

As Example 1 shows, we can convert the general linear programming
problem in (4), (5), and (6) to an associated problem in canonical form with
b > 0. Thus, we may now assume that we have a problem in the following
form:

s

Maximize z "-- E cjxj (10)
j = l

subject to

~ aijx j -- bi,
j = l

i = 1 , 2 , . . . , m (11)

x j > 0 , j = 1,2 , s (12)

with b~ > 0, i = 1 , 2 , . . . , m. The following method of finding an initial
basic feasible solution is widely used in modem computer codes.

Two-Phase Method

To enable us to obtain an initial basic feasible solution, we introduce
another variable into each equation in (11). We denote the variable for the
ith equation by Yi. The variables yi, i = 1 , 2 , . . . , m, are called artificial
variables and have no physical significance. Assuming the profit associated
with each y~ to be zero, we obtain the problem

Maximize z = ~ CjXy (13)
j = l

subject to

~ aijx j Jr- Yi -- bi,
j = l

x j > 0 , j = 1 , 2 , . . . , s ;

with b i > O, i = 1 , 2 , . . . , m .

i = 1 , 2 , . . . , m (14)

Yi > 0 , i = 1 , 2 , . . . , m (15)

It is easy to see (Exercise 24) that the vector x in R s is a feasible
solution to the problem given by (10), (11), and (12) if and only if the
vector

[;1
in R s+m is a feasible solution to the problem given by (13), (14), and (15).
Note that it is easy to find an initial basic feasible solution to the latter
problem, namely, x = 0, y = b. We now develop a way to use the simplex
algorithm to change this initial basic feasible solution into a basic feasible
solution to the same problem in which y = 0. Thus, we will have found a

136 Chapter 2 The Simplex Method

basic feasible solution to the problem given by (10), (11), and (12). This
procedure is Phase 1 of the two-phase method.

Phase 1

Since each Yi is constrainted to be nonnegative, one way of guarantee-
ing that each Yi is zero is to make the sum of the yi's zero. Thus, we set up
an auxiliary problem in which we minimize the sum of the yi's subject to
the constraints (14) and (15) and hope that this minimum value is zero. If
this minimum value is not zero, then it must be positive, and at least one
of the yi's must be positive. Furthermore, the yi's will never all be zero,
since we have found the minimum value of their sum. Thus, in this case
the original problem has no feasible solution.

We convert the canonical linear programming given by (10), (11), and
(12) to the form involving artificial variables and introduce the new
objective function. The resulting problem is

m

Minimize z' --- ~'~ Yi (16)
i = 1

subject to
s

ai. ix j -F Yi -- b i ,
j = l

i = 1 , 2 , . . . , m (17)

with b / > 0, i = 1, 2 , . . . , m .
This problem has the initial basic feasible solution

[0 0 " '" 0 b 1 b 2 bm] T

obtained by setting

X 1 "- O, X 2 - - O , . . . , X s -~ 0

as nonbasic variables and solving (17) for

Yl = bl, Y2 = b2,--- , Ym -- bm.

Writing the problem given by (16), (17), and (18) in matrix form, we find
that the columns corresponding to Y l, Y2 , - - - , Ym are the columns of an
rn x m identity matrix and, thus, are linearly independent. Therefore, this
procedure yields a basic solution for the given problem.

To use the simplex method as it was developed earlier, we must multiply
(16) by - 1 to convert to a maximization problem and then write the result
a s

m

z + ~ y / = 0, (19)
i = 1

where z = - z ' . Recall that when the simplex method was first described,
the initial basic variables were the slack variables, and these had zero

xj > 0, j = 1 , 2 , . . . , s ; Yi > 0, i = 1 , 2 , . . . , m (18)

2.3 Artificial Variables 1 3 7

objective function coefficients. Consequently, the entries in the objective
row in the columns labeled by the basic variables were zero initially and
remained so after each pivoting step. This was necessary for the use of the
optimality criterion. Therefore, we must eliminate y/, i = 1, 2 , . . . , m, from
(19). We can do this by solving (17) for Yi.

Now
s

Yi = bi - E a i j x j ,
j = l

and, substituting into (19), we obtain

Z + ~ b i - a~jxj = O.
i=l j = l

Rearranging, we can write the objective equation as

Z -- aij x j = -- E bi. (2 0)
j = l i=l i=1

We can now solve the problem as given by (20), (17), and (18) using the
simplex method.

The reader can experiment with problems that are not in s tandard form
using the SMPX courseware described in Appendix C. One must include
artificial variables when entering the problem and must indicate to SMPX
that these variables are artificial.

EXAMPLE 2. Consider the linear programming problem in canonical
form

Maximize z = x 1 - 2 x 2 - 3 x 3 - x 4 - x 5 + 2 x 6

subject to

x I + 2x 2 + 2x 3 + x 4 + x 5 = 12

X 1 + 2x 2 + x 3 -I--X 4 -t- 2x 5 + X 6 = 18

3x I + 6x 2 + 2x 3 + x 4 + 3x 5 = 24

x j > O , j = 1 , 2 , . . . , 6 .

Introducing the artificial variables Yl, Y2, and Y3, we can write the
auxiliary problem as

Minimize

subject to

x I + 2x 2 + 2x 3 + x 4 + x 5

X 1 "-]- 2x 2 + X 3 -'1-X 4 -+- 2x 5 + X 6

3X 1 + 6X 2 + 2 X 3 + X 4 + 3x 5

z ' = Yl + Y2 + Y3 (21)

+Yl 12 /
+ Y2 18 (22)

+ Y3 24

x j > O , j = 1 , 2 , . . . , 6 ; y / > 0 , i = 1 ,2 ,3 (23)

138 Chapter 2 The Simplex Method

After conversion to a maximization problem, the objective function (21)
can be writ ten as

z ' + Yl + Y2 + Y3 = 0. (24)

To eliminate Yl, Y2, and Y3 from (24) we add - 1 times each of the
constraints in (22) to (24), obtaining

z ' - 5x 1 - 10x 2 - - 5 X 3 - - 3X 4 -- 6X 5 --X 6 = - 5 4 . (25)

The initial basic feasible solution is

X1 - - X 2 - - X 3 - - X 4 - - X 5 - - X 6 - - 0

Yl = 12, Y2 -- 18, Y3 = 24

(nonbasic variables)

(basic variables).

Using (25), (22), and (23), we can write the initial tableau (Tableau 2.25).

Tableau 2.25

X1 X2 X3 X4 X5 X6 Yl Y2 Y3

Yl 1 2 2 1 1 0 1 0 0
Y2 1 2 1 1 2 1 0 1 0

Y3 3 (~) 2 1 3 0 0 0 1

-5 10 5 3 6 1 0 0 0

12
18

24

54

The most negative entry in the objective row is - 1 0 , so that x 2 is the
entering variable and the second column is the pivotal column. The
depart ing variable is de termined by computing the min imum of the 0-ratios.
We have

min{ ,2 18 2~ } = 24
2, 2 , -6 - = 4 ,

so that the row labeled by Y3 is the pivotal row and Y3 is the depart ing
variable. The pivot is 6.

We obtain Tableau 2.26 from Tableau 2.25 by pivoting (verify). In
Tableau 2.26 we choose x 3 as the entering variable and Y l as the depart ing
variable. We form Tableau 2.27 by pivoting.

There is a tie in determining the entering variable in Tableau 2.27. We
choose x 6 as the entering variable and obtain Tableau 2.28.

2.3 Artificial Variables 139

Tableau 2.26

x1

Yl 0

Y2 0
1

x 2 ~-

0

x2 x3 x4 x5 x6 Yl Y2 Y3

2 1
0 x 0 0 1 0 ~ 4

1 2 1 0 ~ ~ 1 1 0 1 ~ 10

1 1 1 0 0 0 1 4 1 ~ ~ ~

0 5 4 5 3 ~ 1 1 0 0 14

Tableau 2.27

X1 X2 X3 X4 X5 X6 Yl Y2 Y3

1 0 0 3 1 X 3 O O 1 y ~ O

1 1 1 1 (~) ~ 1 Y2 0 0 0 ~ 4

1 1 O 0 1 O 1 1 X2 ~ ~ a 0

1 5 0 5 O O O ~ 1 1 ~

Tableau 2.28

X1 X2 X3 X4 X5 X6 Yl Y2 Y3

1 0 0 3 0 1 X 3 O O 1 ~- r ~ 3
1 1 1 1 1 x 6 0 0 0 ~- a 1 a 9

1 1 0 0 1 0 1 1 3 x 2 ~ ~ ~ 0 ~

0 0 0 0 0 0 1 1 1 0

At this point all the artificial variables are nonbasic variables and have
value zero. Tableau 2.28 gives the basic feasible solution

x 2 = 3 , x 3 = 3 , x 6 = 9

Xl - - X4 - - X5 = Yl = Y2 = Y3 = 0

with objective function value z - 0.
The reader can verify t h a t x = [0 3 3 0 0 9] T is a basic feasible

solution to the original problem without artificial variables. The introduc-
tion of the artificial variables gave a systematic way of finding such a basic
feasible solution. A

If the solution to Phase 1 is a set of values for the variables that makes
the objective function of the auxiliary problem equal to zero, then we may
start Phase 2. There are two possibilities: (1) every artificial variable is a
nonbasic variable in the final tableau of Phase 1, or (2) some artificial
variables are still basic variables, with value 0, in the final tableau (see

1 4 0 Chapter 2 The Simplex Method

Example 5). At this time we shall discuss only the first case. The second
case is discussed in Section 3.3.

Phase 2

We assume that no artificial variable is a basic variable at the end of
Phase 1 and the value of the objective function of the auxiliary problem is
zero. The optimal solution obtained in Phase 1 is used to obtain an initial
basic feasible solution for the original problem (10), (11), (12). By deleting
the yi's from the optimal solution, we obtain a basic feasible solution to
the original problem because we have assumed that no artificial variables
appear in the optimal solution. The initial tableau for Phase 2 is the final
tableau of Phase 1, with the following modifications.

(a) Delete the columns labeled with artificial variables.
(b) Calculate a new objective row as follows. Start with the objective

function of the original problem (10). For each of the basic variables in the
final tableau of Phase 1, make the entry in the objective row in the column
labeled by that basic variable equal to zero by adding a suitable multiple of
the row labeled by that basic variable.

These two steps construct an initial tableau for Phase 2. We can now
apply the simplex algorithm to this tableau.

EXAMPLE 2 (CONTINUED). We now form the initial tableau for Phase 2
from Tableau 2.28. We delete the columns labeled with Y l, Y2, and Y3 and
then use the original objective function,

Z - " X 1 - - 2x 2 - 3x 3 - - x 4 - - x 5 -I- 2x 6.

The objective row would be

- 1 2 3 1 1 - 2 0 (2 6)

But the entries in the second, third, and sixth columns must be zeroed for
the optimality criterion to hold, since x 2, x 3, and x 6 are basic variables.
We do this by adding - 2 times the x 2 row to (26); also, we add - 3 times
the x 3 row and 2 times the x 6 row to (26). This calculation yields

- 1 2 3 1 1 - 2 0 [Equation (26)]
- 1 - 2 0 0 - 1 0 - 6 (- 2 t i m e s x 2row)

0 0 - 3 3 0 0 - 9 (- 3 times x3 r o w) 2

0 0 0 1 2 2 18 (2 times x 6 row)
1 - 2 0 0 ~ 2 0 3 (objective row for Phase 2).

We then have the initial tableau for Phase 2 (Tableau 2.29), in which, as
usual, we have not included the z column.

We now continue with the simplex algorithm to find an optimal solu-
tion. The next tableau is Tableau 2.30 (verify).

2.3 Artificial Variables 141

Since the object ive row in T a b l e a u 2.30 has no negat ive entr ies , we have
found an op t imal solution,

X 1 -- 6, X 2 -- O, X 3 = 3, X 4 -~ O, X 5 -" O, X 6 = 9,

which gives z = 15 as the value of the object ive funct ion. /x

Tableau 2.29

x1

x 3 0

x 6 0

x~ (~
2

X2 X 3 X4 X5 X6

1 0 0 3 0 1

1 1 1 9 0 0

0 3 1 0 0

1 2 0 3 0 0

Tableau 2.30

X1 X2 X 3 X4 X 5 X6

X 3 0

X 6 0

X 1 1

1 0 0 3 0 1

1 1 1 9 0 0

2 0 0 1 0 6

4 0 15 0 4 0

W e had originally put an artificial var iable in every equa t ion . This
m e t h o d requi res no decision steps but may cause m o r e tab leaux to be
computed . If some of the equa t ions have a var iable that can be used as a
basic variable, then it is not necessary to in t roduce an artificial var iable
into each of those equat ions .

EXAMPLE 3. In the p r o b l e m discussed in E xa mple 2, we see that x 6
can be used as a basic variable. T h a t is, it appea r s in only one equa t ion
and, in that equa t ion , has a coefficient of + 1. Consequen t ly , we need to
in t roduce artificial variables only into the first and third equat ions . Do ing
this, we obta in the auxiliary p r o b l e m

Minimize z ' = y 1 + Y2

subject to

x 1 + 2x 2 + 2x 3 + X 4 ~- X 5 -k-Yl = 12

X 1 -~- 2x 2 + X 3 -~-X 4 -~- 2x 5 + X 6 - - 1 8

3Xl -+-6x2 + 2x3 + X4 +" 3x5 + Ye = 12

x j > 0 , j = 1 , 2 , . . . , 6 ; Yl > 0 , Y2 > 0 .

142 Chapter 2 The Simplex Method

As before, we must e l iminate the basic variables f rom the objective
function, rewri t ten as in (24) by adding - 1 t imes each of the constraints
that includes an artificial variable to the rewri t ten objective function. W e

obtain

z -- 4X 1 - - 8 x 2 - - 4X 3 -- 2X 4 -- 4X 5 = --36.

This now leads to the sequence of Tableaux 2.31, 2.32, and 2.33.
In Tab leau 2.33 we have an opt imal solut ion to the auxiliary p rob lem in

which all the artificial variables have value zero and are nonbasic variables.

Thus, a basic feasible solution to the original p rob lem is

[0 3 3 0 0 9] T,

as we ob ta ined in Example 2. A

The system of equat ions (11) that gives the constraints for the canonical

form of a l inear p rog ramming p rob lem always must have a solut ion

Tableau 2.31

X1

Yl 1
x 6 1

Y2 3

4

X2 X3 X4 X5 X6 Yl Y2

2 2 1 1 0 1 0

2 1 1 2 1 0 0

(~) 2 1 3 0 0 1

8 4 2 4 0 0 0

12

18

24

36

Tableau 2.32

Xl

Yl 0

x 6 0
1

X2

0

,L

X2 X3 X4 X5 X6 Yl Y2

(~ 2 1 1 0 ~ 0 0
1 2 1 1 0 1 0 ~ ~
1 1 1 0 0 1 1 ~- ~ ~

4 2 0 0 0 4 0 3 3

4
10
4

Tableau 2.33

X1

x 3 0

x 6 0
1

X2

0

X2 X3 X4 X5 X6 Yl Y2

1 3 1 0 1 ~ 0 0 ~ ~ 3
1 1 1 1 1 9 0 0 ~ ~ 4

1 0 1 ! 3 1 0 0 ~ ~

0 0 0 0 0 1 1 0

2.3 Artificial Variables 143

if m < s and if there are m linearly independent columns in the coeffi-
cient matrix. But it is possible that none of the solutions satisfies the
nonnegative criterion (12). When the artificial variables are added to the
system of constraints (14), there is always a solution,

[0 0 "'" 0 b 1 b 2 "'" bm] T ,

that satisfies the nonnegativity conditions (15). A solution to the system in
(14) is a solution to the system in (11) if all the artificial variables have
values equal to zero. We use the simplex algorithm to try to find a solution
to (14) in which all the artificial variables are zero. The simplex algorithm
is designed to find only solutions that satisfy the nonnegativity require-
ments. Thus, if one of the y/ is positive when the simplex algorithm
reaches an optimal solution to the auxiliary problem, this indicates that
there are no solutions to (11) that satisfy the nonnegativity constraints (12).
In this case, the original problem (10), (11), (12) has no feasible solutions.
The following example illustrates this situation.

EXAMPLE 4. Consider the general linear programming problem

Maximize z = 2 Xl + 5X2

subject to

2x I + 3x 2 < 6

X 1 + X 2 > _ 4

X 1 >_~ O, X 2 ~_~ O~

By inserting slack variables x 3 and x4, we can write the problem in
canonical form as

M a x i m i z e z = 2 x I + 5 x 2

subject to

2 X 1 -I- 3X 2 + X 3 - - 6

X 1 -~- X 2 - - X 4 - - 4

xj>_O, j = 1 ,2 ,3 ,4 .

We insert an artificial variable y into the second equation; x 3 can serve as
the basic variable in the first equation. The auxiliary problem then has the
form

Minimize z ' = y

subject to

2x I + 3x z + x 3 = 6

x I + x 2 - x 4 + y = 4

x j > 0 , j = 1 ,2 ,3 ,4 ; y > 0 .

144 Chapter 2 The Simplex Method

After adding - 1 times the second constraint to the rewritten objective
function, we obtain

Z ' - - X 1 - - X 2 + X 4 - - - 4 .

We then calculate the sequence of Tableaux 2.34, 2.35, and 2.36.

Tableau 2.34

Xl X2 X 3 X4 Y

X 3 2 (~) 1 0 0

y 1 1 0 1 1

1 1 0 1 0 - 4

Tableau 2.35

X 1 X 2 X 3 X 4 Y

0 0 2 X 2 1 ~1
1 1 y ~ 0 ~ 1 1 2

1 1 1 0 2 0

Tableau 2.36

X1 X2 X 3 X4 Y

3 1 0 0 3 x I 1 ~
1 1 y 0 ~ ~ 1 1 1

1 1 1 0 1 0 ~ ~-

Tableau 2.36 represents an optimal solution to Phase 1 in which the
artificial variable y has the value 1. This means that the given problem has
no feasible solution. When we look at the graphs of the constraints (Figure
2.4), we see that there is no intersection between the two half-spaces. The
set of feasible solutions is empty. A

We have already pointed out that an artificial variable can appear in an
optimal solution to the auxiliary problem with a value of zero. In this case
the given problem has a feasible solution. The following example illus-
trates these ideas. We can complete Phase 1 in this section; in Section 3.3
we will develop tools for handling Phase 2.

2.3 Artificial Variables 145

E X A M P L E 5.

form

Consider the linear programming problem in canonical

Maximize z - - x I -~- 2 x 2 + x 3

subject to

3x~ + X 2 - - X 3 - - 15

8x 1 + 4x 2 - x 3 - - 5 0

2x 1 + 2x 2 + X 3 " - - 2 0

X 1 >_~ 0 , X 2 ~__ 0 , X 3 >__ 0 .

In this problem we must introduce an artificial variable in each of the
constraint equations. We obtain the auxiliary problem

Maximize z ' = YI + Y2 + Y3

subject to

3 X l + X2 - - X3 ~- Yl = 15

8 X l -t- 4 x 2 - x3 -~-Y2 = 50

2x 1 + 2x 2 + X 3 -'1- Y3 = 20

Xj>_0, j - - 1 ,2 ,3 ; y~>_0, i - - 1 ,2 ,3

Rewriting the objective function in the same manner as before, we obtain
the initial tableau (Tableau 2.37) for the auxiliary problem. At the end of
Phase 1 we obtain Tableau 2.38 which represents an optimal solution to
the auxiliary problem with Y2 -- 0 as a basic variable. A

146 Chapter 2 The Simplex M e t h o d

Tableau 2.37
,1,

X1

Yl
Y2
Y3

x2 x3 Yl Y2 Y3

(~) 1 1 1 0 0 15
8 4 1 0 1 0 50
2 2 1 0 0 1 20

13 7 1 0 0 0 85

Tableau 2.38

Xl X2 X3 Yl Y2 Y3

3 1 0 1 7 X 1 1 3. O 3. 3.

Y2 0 0 0 2 1 1 0
4 1 2 0 3 6 X 3 O 3" 5 3.

O O O 3 O 2 O

Figure 2.5 gives a flowchart and Figure 2.6, a structure diagram that
summarizes the two-phase method.

Phase 1

Set up initial tableau [
for auxiliary problem

J z = -Y l - Y 2 Yk
_

1
Solve auxiliary
problem using
simplex algorithm

NO

~ YES

This path will be
completed in
Section 3.2

FIGURE 2.5

No feasible
solutions to
original
problem

CALL
Phase 2
algorithm

Phase 2

Input is final tableau from Phase 1

1
Replace objective row]
with original objective I function

1
Make entries in objective
row labeled by basic
variables zero by adding
suitable multiples of
other rows of tableau

1
Solve problem using
simplex algorithm

Flowchart of the two-phase algorithm.

2.3 Artificial Variables

Set up initial tableau for auxiliary problem with
z = -Yl -Y2 -Yk

....
CALL SIMPLEX

147

Artificial variables have value 0 ~ "

~ S o m e artificial
vari.ables.are ~ No feasible solution

to original problem

This part of the
diagram will be
completed in
Section 3.2

Replace objective
row with original
objective function

Make entries in
objective row
labeled by basic
variables zero

CALL SIMPLEX

STOP

FIGUdE 2.6 Structure diagram of the two-phase algorithm.

Big M Method (Optional)
The following method of solving linear programming problems that

require artificial variables is attributed to Charnes. Historically it precedes
the two-phase method; it has been replaced by the latter in computer
codes due to the greater efficiency of the two-phase method. It is still of
interest for theoretical computations.

Instead of introducing an auxiliary problem, the big M method ensures
that the artificial variables are zero in the final solution by assigning to
each Yi a penalty cost, - M , where M is a very large positive number. This
means that we use an objective function of the form

~ m

Z = CjXj -- ~_, M y i.
j= l i=1

If any Yi is positive, the - M serves to decrease z drastically.
We convert the canonical linear programming problem given by (10),

(11), and (12) to the form involving artificial variables. We obtain
rn

Maximize z = c j x j - E MYi (27)
j = l i=1

subject to
s

~-~ a i j x j + Yi -- b i ,
j = l

x / > 0 , j = 1 , 2 , . . . , s ;

with b i > 0, i = 1 , 2 , . . . , m .

i = 1 , 2 , . . . , m (28)

Yi > 0, i = 1 , 2 , . . . , m (29)

1 ~ Chapter 2 The Simplex Method

This problem has an initial basic feasible solution,

[0 0 ..- 0 bl b2 "'"

obtained by setting

X 1 = 0 , X 2 = 0 , . . . , X s -- 0

bm]

as nonbasic variables and solving (28) for

Yl = b l , Y2 = b 2 , ' " , Y,, = bm.

To use the simplex method as it was developed earlier, we must write (27)
a s

k m
z - c j x j + M ~_, Yi = 0 (30)

j = l i = 1

and eliminate the Yi from this equation. This is done by adding - M times
each of the constraints in (28) to (30). We obtain

Z -- CjXj + M Y] b i - a i j x j = O.
j = l i = 1 j = l

Rearranging, we can write the previous equation as

z - cj + M ~_. aij x j = - M Y'~ b i. (31)
j = l i = 1 i = 1

We can now solve the problem as given by (31), (28), and (29) using the
simplex method.

EXAMPLE 6. Consider the linear programming problem in Example 2.
Since x 6 appears in only one constraint, and there with a coefficient of
+ 1, we may use x 6 as a basic variable. Thus, we introduce artificial
variables into only the first and third equations, obtaining the problem

Maximize z = X 1 - - 2 X 2 - - 3X 3 -- X 4 - - X 5 + 2 X 6 - - M y I - M y 2

subject to

Xl + 2X2 + 2X3 + X4 + X5 + Yl = 12

X 1 -+- 2 X 2 + X 3 -'[-X 4 + 2x 5 + x 6 - - 18

3 X l + 6 x 2 + 2 x 3 + x4 + 3 x 5 + Y2 = 24

x j > 0 , j = 1,2 ,6; Yl > 0 , Y2 > 0 -

We rewrite the objective function as

Z - X 1 + 2 X 2 + 2x 6 + M y 1 + M y 2

2 .3 A r t i f i c i a l Var iab le s 149

and e l imina te the basic var iables x6, Yl, and Y2 f rom this equa t ion . This is
done by adding

(- M) • first cons t ra in t
2 • second cons t ra in t

(- M) x third constraint .

These ope ra t ions lead to the equa t ions

Z - -

m
X 1 + 2 x 2 + 3 x 3 -]- X 4 + x 5 - - 2 x 6 + M y 1 -Jr-My 2 - - 0

M x I - 2 M x 2 - 2 M x 3 - M x 4 - M x 5 - M y 1 = - 1 2 M
2x a + 4x 2 + 2x 3 + 2x 4 + 4x 5 + 2x 6 = 3 6

3 M x 1 - 6 M x 2 - 2 M x 3 - M x 4 - 3 M x 5 - M y 2 = - 2 4 M .

The result of adding these equa t ions is

z + (1 - 4 M) x I + (6 - 8 M) x 2 + (5 - 4 M) x 3 + (3 - 2 M) x 4

+ (5 - 4 M) x 5 = 3 6 - 3 6 M ,

f rom which we obta in the initial t ab leau (Tab leau 2.39).

Tableau 2.39

X1 X2 X3 X4 X5 X6 YZ Y2

Yl 1 2 2 1 1 0 1 0

x 6 1 2 1 1 2 1 0 0

Y2 3 (~) 2 1 3 0 0 1

1

12

18

24

4M 6 8 M 5 4M 3 2 M 5 4M 0 0 0 36 36MI

Since M is a large posit ive number , the mos t negat ive entry in the
object ive row is 6 - 8M, so that x 2 is the en te r ing variable. T he depar t ing
variable, ob ta ined as usual, is Y2. Pivoting, we obta in T a b l e a u 2.40. Us ing
the s ame reasoning, we obta in Tab leaux 2.41 and 2.42.

Since the object ive row has no negat ive entr ies, we have found an
opt imal solution:

x I = 6, x 2 = 0, x 3 = 3, x 4 = 0 , X 5 "- 0 , X 6 = 9

Ya = 0 , Y2 - - 0 ,

which gives z = 15 as the value of the object ive funct ion. This solut ion
coincides with the one ob ta ined in Example 2. A

1 5 0 Chapter 2 The Simplex Method

Tableau 2.40

X1 X2 X3 X4 X5 X6 Yl Y2

*- Yl 0

x 6 0
1

X2

- 2

2 1
0 x 0 0 1 3

1 2 1 1 0 1 0 ~ ~
1 1 1 0 0 1 1 ~ ~ ~

4 2 4 0 3 gM 2 gM 2 0 0 1 + gM 12

4

10

4

4M

Tableau 2.41
,1,

X]

x 3 0

x 6 0

x~ (~
2

X2 X3 X4 X5 X6 Yl Y2

1 0 0 3 1 0 1 ~ z

1 1 1 1 1 0 0 ~ ~

1 0 1 1 1 0 0 ~ ~

1 2 0 9 1 0 0 y ~ + M ~ + M

Tableau 2.42

X1

x 3 0

X 6 0

X 1 1

2.3 EXERCISES

X2 X3 X4 X5 X6 Yt Y2

1 0 0 3 1 0 1 ~ ~ x 3
1 1 1 1 1 0 0 ~ ~ ~ 9

z 1 6 2 0 0 1 0 ~

1 4 0 ~ + M 3 0 4 0 ~ ~ + M 15

In Exerc i se s 1 - 4 set u p the ini t ial s implex t a b l e a u (a) for solving the p r o b l e m us ing

t he t w o - p h a s e m e t h o d a n d (b) for solving t h e p r o b l e m us ing t he big M m e t h o d .

1. M a x i m i z e z = x 1 + 3x 3

sub jec t to

X 1 -4- 2 x 2 + 7 x 3 - - 4

X 1 -~- 3 x 2 + X 3 "- 5

X 1 >_~ O, X 2 >__ O, X 3 >_~ O.

2. M a x i m i z e z = x 1 + 2 x2 + x4

sub jec t to

x 1 + 3x 2 - x 3 + X 4 __~ 5

x I + 7x 2 + x 3 > 4

4x 1 + 2 x 2 + x 4 = 3

x j > 0 , j = 1 , 2 , 3 , 4 .

2.3 Artificial Variables 151

3. Min imize z = 3x l

subject to
-- 2x 2

X 1 4- X 2 + 2 x 3 >__ 7

2 x I + x 2 4- x 3 >_ 4

X 1 >__ O, X 2 >__ O, X 3 >__ O.

4. M i n i m i z e z = x l + 2 x 2 4- 7 x 3 - x4

subject to

3x I 4- X 2 - - 2x 3 - - x 4 - - 2

2x I 4- 4x 2 4- 7x 3 >_ 3

x j > _ O , j - 1 , 2 , 3 , 4 .

In Exerc ises 5 and 6 car ry ou t Phase 1 for the given p rob lems .

-- 4x 3 5. Max imize z = 3Xl

subject to

2x I 4- X 2 4- 3X 3 >_ 5

X 1 -- X 2 4- X 3 >_ 1

X 1 >__ O, X 2 ~ O, X 3 >__ O.

6. Maximize z = x I 4 - X 2 4- 2x 4

subject to

3x I + x 2 + 3x 3 + 2x 4 = 10

x 1 - 3x 2 + 2x 3 <_ 7

x 1 + 2x 2 + 3x 3 + X 4 >__ 4

xj>O, j = 1 , 2 , 3 , 4 .

In Exerc ises 7 - 9 we give the final t a b l e a u for Phase 1 of the two-phase m e t h o d

a long wi th the or iginal object ive funct ion . In these t ab leaux we use Y l, Y2 to
d e n o t e artificial var iables . (a) F o r m the initial t a b l e a u for Phase 2 us ing the given

i n f o r m a t i o n and (b) apply the s implex m e t h o d to the t a b l e a u in (a) to find an

op t ima l so lu t ion to the given p r o b l e m .

7. Max imize z = 2 x i + x2 + x 3

X 1 X2 X 3 X4 X5

1 3 3 0 ~ x 2 - 1 1 10
7 1 1 1 11-0 10 X 4 ~- 0

0 0 0 0 0 0

1 ~ Chapter 2 The Simplex Method

8. Maximize z = x 2 + 3X 3 4 -x 4

X1 X2 X 3 X4 X 5 X6 X 7

3 3 X 7 ~ 0 2 1 0 Z 1 0

1 0 2 X 2 0 1 1 3 0
1 x 5 1 0 3 0 1 ~ 0 4

0 0 0 0 0 0 0 0

9. Maximize z = 2x I + x 2 4- X 4

X1 X2 X3 X4 X5 X6 YI Y2

x 2 3- 1 1 0 0 3 0 0 1 8 4

5 0 1 1 1 7 0 0 2 X5 8 u

Yl 1 0 0 --2 0 5 1 0 3 4
1 1 Y2 0 0 ~ 1 0 ~ 0 1 0

1 3 3
1 0 ~ 1 0 ~ 0 0 2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

In Exercises 10 -23 solve the indica ted l inear p r o g r a m m i n g p r o b l e m using

ei ther the two-phase m e t h o d or the big M me thod .

Example 2, Sect ion 1.1.

E x a m p l e 5, Sect ion 1.1.

Example 6, Sect ion 1.1.

Example 7(c), Sect ion 1.1.

Example 7(d), Sect ion 1.1.

Exercise 1, Sect ion 1.1.

Exercise 11, Sect ion 1.1.

Exercise 12, Sect ion 1.4.

Exercise 3, Sect ion 1.5.

Exercise 8, Sect ion 1.1.

Maximize z = 2x 1 + 5 x 2 - X 3
subject to

- 4 x I + 2x 2 + 6x 3 = 4

6x 1 + 9 x 2 + 12x 3 = 3

x 1 > 0 , x 2 > 0 , x 3 > 0 .

2.3 Artificial Variables 153

21. Maximize z = 3x I - x 2 + 2x 3 + 4x 4
subject to

X 2 + 7X 3 + 2x 4 > 3

x 1 + 2x 2 + X 3 = 9

2x 1 + 3x 2 + X 3 - - 4x 4 < 7

Xj>_O, j = 1 , 2 , 3 , 4 .

22. Maximize z = 2 x I - x 2 + x 3 - x 4 + x 5

subject to

X 1 + X 2 - - X 3 + X 4 + x 5 = 3

2x 1 - x 2 + X 3 - - 2x 4 = 2

3x 1 - - x 3 + 3x 4 >__ 2

x j > O , j - - 1 , 2 , 3 , 4 .

23. Maximize z = 3x l + x 2 - - X 3 + 2x 4 - - x 5 + 2x 6
subject to

2 x I + x 2 - - x 3 + x 6 = 3

3x 1 + 2x 3 + X 4 + 2x 5 = 4

x 2 - - 3x 3 + x 5 = 2

xj>_O, j = 1 ,2 6.

24. Show that the vec tor x in R s is a feasible solut ion to the p r o b l e m in canonica l

fo rm given by (10), (11), and (12) if and only if the vec tor

in R s § is a feasible solut ion to the auxiliary p r o b l e m given by (13), (14), and

(15).
25. Expla in why the coefficients of M in the object ive row of T a b l e a u 2.40 are the

s ame as the nonze ro entr ies in the object ive row of Tab l eau 2.32.

Further Reading
Beale, E. M. L. "Cycling in the Dual Simplex Algorithm." Naval Res. Logistics Q. 2 (1955),

269-276.
Kotiah, Thoddi C. T., and Steinberg, D. I. "Occurrences in Cycling and Other Phenomena

Arising in a Class of Linear Programming Models." Commun. ACM 20 (1977), 107-112.
Kotiah, Thoddi C. T., and Steinberg, D. I. "On the Possibility of Cycling with the Simplex

Method." Operations Res. 26 (1978), 374-375.
Marshall, K. T., and Suurballe, J. W. "A Note on Cycling in the Simplex Method." Naval Res.

Logistics Q. 16 (1969), 121-137.

Further Topics

in Linear

Programming

T
HIS CHAPTER COVERS several topics in linear programming that
have important computational consequences. The idea of duality,
which is introduced in the second section, is particularly useful in

modeling, because it provides economic interpretations of the solution to a
linear programming problem. We present a brief discussion of sensitivity
analysis, another tool that is useful in interpreting the solution to a linear
programming problem. We discuss several variants of the simplex algo-
rithm, including the one that is used in most computer codes. Finally, we
deal with computational considerations from the viewpoint of the user of a
packaged linear programming system.

3.1 DUALITY

In this section we shall show how to associate a minimization problem
with each linear programming problem in standard form. There are some
very interesting interpretations of the associated problem that we will

155

1 ~ Chapter 3 Further Topics in Linear Programming

discuss. Generally, a problem in standard form can be thought of as a
manufacturing problem, one in which scarce resources are allocated in a
way that maximizes profit. The associated minimization problem is one
that seeks to minimize cost.

Consider the pair of linear programming problems

Maximize z = cTx
subject to (1)

A x < b
x > 0

and

Minimize z' --,bTw
subject to (2)

ATw>_c

w > O

where A is an m x n matrix, c and x are n • 1 column vectors, and b and
w are m • 1 column vectors.

These problems are called dual problems. The problem given by (1) is
called the primal problem; the problem given by (2) is called the dual
problem.

EXAMPLE 1. If the primal problem is

then the dual problem is

Minimize

Ix1] Maximize z = [2 3] X2

subject to

subject to

3 - 1
2 2

[3 2]ix11 [215 - 1 2 x2 __
4 1 1

X 1 ~ O, X 2 ~_~ O,

z' -- [2 5 1]

IWll
W2

W 3

IWll []
4} w2 2
1 >- 3

W 3

W 1 >_~ O, W 2 ~ O, W 3 >_~ O. A

3.1 Duality 157

Observe that, in forming the dual problem, the coefficients of the ith
constraint of the primal problem became the coefficients of the variable w i
in the constraints of the dual problem. Conversely, the coefficients of xj
became the coefficients of the jth constraint in the dual problem. Also, the
coefficients of the objective function of the primal problem became the
right-hand sides of the constraints of the dual problem, and conversely.

THEOREM 3.1. Given a primal problem as in (1), the dual of its dual
problem is again the primal problem.

Proof The dual problem as given by (2) is

We can rewrite (3) as

Minimize z' = bTw
subject to

A T w ~ c

w~_O.

M a x i m i z e z ' - - - b T w

subject to

--ATw < --c

w > O .

Now the dual problem to (4) is

Minimize
subject to

(--AT) T

This problem can be rewritten as

Maximize
subject to

Z - - - - c T x

x > - b

x > 0 .

Z - - cTx

A x < b
x > 0 ,

which is the primal problem.

THEOREM 3.2.
given by

(3)

(4)

A

The linear programming problem in canonical form

Maximize z = cTx
subject to

A x = b
x > 0

1 ~ Chapter 3 Further Topics in Linear Programming

has for its dual the linear programming problem

Minimize z' = bTw

subject to

ATw>__C

W unrestricted.

Proof. The primal problem can be written as

Maximize z "- c T x

subject to

A x < b

- A x < - b

x > 0

by using the method of converting equalities that we described in Section
1.1. In matrix form the primal problem is

Maximize z --" c T x

subject to

A ~]
x > O .

The dual problem is then

Minimize z ' = [b T

subject to

--bTJ[U 1

-A l[ul > c v -
u>_O, v > O .

When we multiply out the matrices, we have

Minimize z ' = bTu -- bTv -- bT(u -- V)

subject to

AT u -- AT v -- AT (u -- V) >_ C

u>_O, v>_O.

3.1 Duality 159

If we let w = u - v, then the dual problem has the form

Minimize z ' = bWw
subject to (5)

ATw>_c
w unrestricted

because any vector may be written as the difference of two nonnegative
vectors. A

THEOREM 3.3. The linear programming problem

Maximize z = cTx
/

subject to ~ (6)

A x < b /
x unrestricted,)

has as its dual problem,

Minimize z ' = brw
subject to

A T w _--- C

w > 0 .

Proof. We can rewrite the given problem as

Minimize z = - c r x
subject to

- A x > - b
x unrestricted.

Comparing this statement of the problem with (5), we see that it is the
dual of

Maximize z ' -- --bXw

subject to

- - A T w "- - -C

w > 0 .

This last problem statement can be written as

Minimize z ' = brw
subject to (7)

A T w - - - - C

w > 0 .

We have shown that the dual of problem (7) is problem (6). Therefore, the
dual of the dual of problem (7) is the dual of problem (6). Applying

160 Chapter 3 Further Topics in Linear Programming

TABLE 3.1

Primal problem Dual problem

Maximization
Coefficients of objective function
Coefficients of ith constraint

i th constraint is an inequality <
ith constraint is an equality
j t h variable is unrestricted
j th variable is > 0
Number of variables

Minimization
Right-hand sides of constraints
Coefficients of i th variable, one in

each constraint
i th variable is > 0
i th variable is unrestricted
j th constraint is an equality
j t h constraint is an inequality >
Number of constraints

Theorem 3.1 it follows that problem (7) is the dual of problem (6), as we
were to show. A

We summarize the relationships between the primal and dual problems
in Table 3.1. Remember that Theorem 3.1 allows us to also read the table
from right to left. That is, if the headings "Primal problem" and "Dual
problem" are interchanged, the resulting table remains valid. For example,
Table 3.1 shows that if the j th constraint in a minimization problem is a
>__ inequality, then the j th variable of the dual problem is > 0. Note that
the table shows how to find the dual of a maximization problem with <
and = constraints and of a minimization problem with > and =
constraints. If we have a maximization problem with a > constraint, this
constraint must be converted to < (by multiplying by - 1) before the dual
problem can be constructed. The same procedure must be used on a
minimization problem with a < constraint.

EXAMPLE 2. If the primal problem is

Maximize z - - 3 x I + 2 x 2 + x 3

subject to

X 1 + 2X 2 - - X 3 _< 4

2 x I - - x 2 -~- X 3 -- 8

x 1 -- x 2 __< 6

x 1 >_ O, x 2 > O, x 3 unrestricted,

then the dual problem is

M i n i m i z e z' = 4 w 1 ~- 8 w 2 --I- 6 w 3

subject to

w I + 2w 2 + w 3 > 3

2w I - w 2 - w 3 > 2

- - W 1 -[- W 2 = 1

Wl >-~ 0, W3 >-~ 0, WE unrestricted. A

3.1 Duality 161

E X A M P L E 3. If the primal problem is

Minimize z = 2Xl

subject to

X 1 -'~ 2x 2 ' i ' -x 3 __< 7

X 1 + 4 x 2 - - x 4 - - 5

x 2 + x 3 + 5x 4 > 3

X 1 ~__ 0 , X 2 ~__ 0 , X 3 ~__ 0 , X 4 ~__ 0 ,

then the dual problem is

Maximize z '

subject to

- - W 1 -Jr- W 2

- - 2 W 1 + 4 W 2 +

- - W 1 -[-

- - 3 x 2 + x 4

w I ~__ 0 ,

= - - 7 w I + 5W 2 -}- 3 w 3

_<2

W 3 _~ - 3

W 3 _ ~ 0

- - W 2 q- 5W 3 __~ 1

W3 ~-~ 0 , W2 unrestricted.

To find this dual problem, we write the first constraint of the primal
problem as

- - X 1 - - 2x 2 - x 3 >__ - 7 .

An alternate method would be to change the primal problem to a maxi-
mization problem and multiply the third constraint by - 1. A

Economic Interpretation of the Dual Problem

The dual problem can have various economic interpretations depending
upon the point of view one takes. We shall describe two possible interpre-
tations here. As we discover more relationships between the primal and
dual problems, we will be able to present some additional interpretations.

In Example 1 of Section 1.1 we have a model of a sawmill. It is

Maximize z = 1 2 0 x 1 + 1 0 0 x 2

subject to

2x~ + 2 x 2 < 8

5x 1 + 3x 2 < 15

X 1 ~_~ 0 , X 2 ~ 0 .

This is a simple example of a typical manufacturing problem that is in
standard form (1). The first constraint in the sawmill problem deals with

1 ~ Chapter 3 Further Topics in Linear Programming

the number of hours for which the saw is available. The second constraint
deals with the number of hours for which the plane is available. In general,
in the ith constraint of (1),

~ aijxj ~ b i,
j=l

we may think of b i as the total supply of the i th resource, or raw material,
or input. For the first constraint of the sawmill problem it was sawing time.
The coefficient a ij in the general problem represents the amount of the
ith input required per unit of the j th product, or output. For example,
a21 = 5 in the sawmill example represents the 5 hr of planing time
required for each 1000 board feet of finish-grade lumber. The variable xj
is the unknown amount of the j th output that is to be produced. The
coefficient cj in the objective function represents the profit, or value,

3 derived from one unit of the j th output. The optimal solution x I = 3,
5 x 2 = ~ maximizes the total value of all outputs

n

Z '- E CjXj.
j=l

The dual problem to the sawmill example is

Minimize z ' = 8w 1 + 15w 2

subject to

2w I + 5w 2 > 120

2w 1 + 3w 2 >_ 100

W l >_~ 0 , W z >_~ 0 .

The coefficients of the first constraint are the amounts of each input that
are needed to make one unit (1000 board feet) of the first output. That is,
to make 1000 board feet of finish-grade lumber we need 2 hr of sawing and
5 hr of planing. The right-hand side of the first constraint is the profit, or
value of one unit of the first output. Likewise, the second constraint of the
dual problem of the sawmill example says that to make 1000 board feet of
construction-grade lumber we need 2 hr of sawing and 3 hr of planing, and
the value of this amount of lumber is $100. Solving the dual problem we
discover (verify)that w I = 35 and w 2 = 10.

The dual problem of the general linear programming problem in
standard form (1) is

Minimize z ' = bTw
subject to

ATw>_c
w>__O.

3.1 Duality 163

The j th constraint of this problem is

m

a ijw i >_ cj.
i = 1

As above, the coefficient a/j represents the amount of input i per unit of
output j, and the fight-hand side is the value per unit of output j. This
means that the units of the dual variable w i are "value per unit of input i."
The dual variables act as prices, or costs, or values of one unit of each of
the inputs. They are called by several names, including accounting prices,
fictitious prices, shadow prices, and imputed values.

At an optimal solution to the primal problem, profit, which is equal to
cTx, is also equal to bTw, as we will show in Section 3.2. Thus, increasing
the ith input b i by one unit increases bTw, and hence profit, by w i units.
Hence, at an optimal solution to the dual problem, w i represents the
contribution to profit of one unit of the ith input. The values of the dual
variables are not directly related to the actual costs of the inputs. Just
because the optimal solution to the dual of the sawmill problem is
w 1 = 35, w 2 = 10 does not mean that the cost of the saw is $35 per hour
and the cost of the plane is $10 per hour. The actual costs are hidden
in whatever computations were done to figure out that the profits were
$120 per 1000 board feet of finish-grade and $100 per board feet of
construction-grade lumber. In the sense that the dual variables do not
represent actual costs, they are fictitious prices.

The left-hand side of the j th constraint of the dual problem gives the
total value of the inputs used in making one unit of the j th output. This
constraint says that this value must be at least as much as the profit of one
unit of the j th output. But at an optimal solution the value of the left-hand
side represents the total contribution to profit of one unit of the j th
output, and it is reasonable to expect to operate when this contribution to
profit is at least as much as the actual profit. If this were not the case, the
manufacturer would be well advised to use the available inputs in a better
way.

We see then that the dual problem seeks shadow prices for each of the
inputs that minimize their total price, subject to the restriction that these
prices, or values, yield a corresponding value for each unit of output that is
at least the profit for a unit of output.

Another description of the dual variables comes from the fact that, as
we will show in Section 3.2, at an optimal solution to the dual problem,

Profit = bTw.

To increase this profit the manufacturer must increase the availability of at
least one of the resources. If b i is increased by one unit, the profit will
increase by w~. Thus, w i represents the marginal value of the ith input. In

1 ~ Chapter 3 Further Topics in Linear Programming

the same way, w i is the loss incurred if one unit of the ith resource is not
used. Thus it can be considered as a replacement value of the ith resource
for insurance purposes. In fact, an insurance company would want to use
the dual problem in case of a claim for lost resources; it wants to pay out
as little as possible to settle the claim.

It is also interesting to look at an interpretat ion of the dual of the diet
problem that was given in Example 2 of Section 1.1. The model of the diet
problem is

Minimize z = 20Xl + 25x2

subject to

2X 1 + 3X 2 >__ 18

x 1 + 3X 2 >_ 12

4 x I + 3 x 2 >__ 24

X 1 ~__ O, X 2 ~" O.

The dual problem is

Maximize z '

subject to

2 w 1 +

= 18w I + 12w 2 + 24w 3

W 2 + 4W 3 _< 20

3 w I + 3 w 2 + 3 w 3 __< 25

W 1 ~_~ O, W 2 ~ O, W 3 ~" O.

To discuss the dual problem we introduce some notation. Let N 1, N 2, and
N3 denote the nutrients fat, carbohydrates, and protein, respectively. It is
also convenient to denote foods A and B by F 1 and F 2, respectively. Now
introduce a manufacturer that makes artificial foods P1, P2, and P3 with
the property that for each i = 1, 2, or 3, one unit of Pi provides one unit
of nutr ient N~. Assume that the manufacturer sets w i as the price of Pi
(i = 1, 2, or 3). Recall that in the original s ta tement of the problem, a~j is
the number of units of nutr ient N~ in 1 oz of food Fj. For example, a12 = 3
is the number of units of fat (N1) in 1 oz of food F 2, and a31 -- 4 is the
number of units of protein (N3) in 1 oz of food F 1. The artificial food
manufacturer will set its prices so that

2 w I + w 2 --b 4 w 3 _< 20

and

3 w 1 + 3 w z + 3w 3 < 25.

That is, it will set the prices on the foods P~ so that when these foods are
taken in the proport ions necessary to give the same nutri t ion as foods F 1
and F 2, the cost of the substitute for F 1 is no greater than the cost of F 1
itself and the cost of the substitute for F 2 is no greater than the cost of F 2

3.1 Duality 165

itself. Thus, the nutritionist will always find it at least as economical to buy
the three artificial foods. Since we require 18 units of fat (from P1), 12
units of carbohydrate (from P2), and 24 units of protein (from P3), the
manufacturer 's revenue is

z ' = 18w I + 12w 2 + 24w 3.

It seeks to maximize this revenue.
Thus, the fictitious prices w 1, w 2, and w 3 of the nutrients are those

prices that the artificial food manufacturer should charge to maximize the
revenue, yet still be able to compete with the producer of foods F 1 and F 2.
Therefore, these fictitious prices represent competitive prices.

3.1 EXERCISES

In Exercises 1-6 find the dual of the given linear programming problem.

1. Minimize
subject to

2. Minimize
subject to

3. Maximize
subject to

4. Maximize
subject to

7. = 3 x 1 + 4 x 2

x 1 -b 4 x 2 >__ 8

2 x I + 3x 2 >_ 12

2xa + x 2 >_ 6

X 1 ~__ O, X 2 >_~ O.

z = 6 x 1 + 6 x 2 + 8 x 3 -+ 9 x 4

x 1 + 2 x 2+ x 3+ x 4 > 3

2 x I + x 2 + 4 x 3 + 9 x 4 >__ 8

X 1 >__ O, X 2 >__ O, X 3 ~_~ O, X 4 ~__ O.

z = 3 x 1 + 2 x 2 + 5 x 3 d- 7 x 4

3 x I + 2 x 2 + x 3 __~ 8

5 x 1 + x 2 + 2 x 3 + 4 x 4 = 7

4 x 1 -t- x 3 -- 2 x 4 < 12

X 1 >__ O, X 2 >__ O, X 3 >__ O, X 4 >_~ O.

z = 2 x 1 + x 2 + 3 x 3 + 4 x 4

4 x 1 + 2 x 2 + 5 x 3 -~- 5 x 4 __~ 10

4 x 1 + 2 x 2 + 5 x 3 -~- 5 x 4 ~__ 5

3 x I + 5 x 2 + 4 x 3 + x 4 >__ 8

3 x 1 + 5 x 2 + 4 x 3 + x 4 < 15

X 1 -'[- X 2 -b X 3 -[- X 4 = 20

X 1 >_~ O, X 2 >_~ O, X 3 >_~ O, X 4 >__ O.

166 Chapter 3 Further Topics in Linear Programming

5. Maximize
subject to

z = 3x I + x 2 + 4 x 3

3x 1 + 3 x 2 + x 3 < 18

2x 1 + 2x 2 + 4 x 3 = 12

x I > 0, x 3 > 0.

6. Minimize
subject to

z = 5x I + 2x 2 + 6 x 3

4x 1 + 2 x 2 + x 3 > 12

3x I + 2x 2 + 3x 3 < 6

x I > 0, x 2 > 0.

7. The text suggested an alternate method for solving Example 3.
(a) Use this method to construct the dual problem.
(b) Verify that the resulting problem is the same as the one given in the text.

(Hint: Use the fact that w 2 is unrestricted.)

In Exercises 8-11 formulate the dual problem for the given linear programming
problem.

8. Exercise 2, Section 1.1

9. Exercise 4, Section 1.1. Give an economic interpretation of the dual problem.

10. Exercise 9, Section 1.1. Give an economic interpretation of the dual problem.

11. Using the definition of the dual of a problem in standard form, find the dual of
the linear programming problem

Maximize z = CTx + d Tx '

subject to

Ax + Bx' < b

x > 0, x' unrestricted

(Hint: Write x ' = u - v, u > 0, v > 0, and express the given problem as a
standard linear programming problem in matrix notation.)

3.2 THE DUALITY THEOREM

In his work on game theory, John von N e u m a n n , one of the mos t
versat i le ma thema t i c i ans of all t ime, p roved a duality t h e o r e m for games.
In Oc tobe r of 1947 G e o r g e Dantzig, one of the p ioneers of l inear pro-
g ramming and the deve loper of the simplex algor i thm, went to see von
N e u m a n n in Pr inceton. Af te r hear ing the basic ideas in l inear p rogram-
ming, von N e u m a n n indicated to Dantz ig his Dual i ty T h e o r e m for games
and also conjec tured and proved an equivalent resul t for l inear p rogram-
ming. However , this p roof was not published, and the first careful p roo f of

3.2 The Duality Theorem 167

the Duality Theorem, now recognized as the fundamental theorem of
linear programming, was published in 1950 by A. W. Tucker and his
students David Gale and Harold W. Kuhn. The Duality Theorem estab-
lishes conditions for a feasible solution to a linear programming problem
to be an optimal solution.

To present and prove the Duality Theorem we first need to develop
some tools for expressing the solution to a linear programming problem in
terms of the entries in any tableau that has been constructed while using
the simplex method to solve the problem.

Suppose that we are given a general linear programming problem and
suppose that we have introduced slack and artificial variables to convert
the problem to canonical form. That is, we take our problem as

Maximize z = cTx
subject to

A x = b
x>_0,

(1)

where A is an m x s matrix that contains an m x m identity submatrix;
b > 0 is an m x 1 matrix; and c is an s x 1 matrix. Remember that if xj is
a slack variable, then cj = 0. Also, we use the two-phase method for the
artificial variables so that, if xj is an artificial variable, then cj = 0.

We now examine a tableau constructed by the simplex algorithm during
the solution of our problem. This tableau represents a basic feasible
solution. Let il be the subscript of the first basic variable in this solution;
let i 2 be the subscript of the second basic variable. Continuing in this
manner, we end with i n being the subscript of the mth basic variable. Let
N denote the set of indices of the nonbasic variables. We also let Aj
denote the j th column of A. Using this notation, we may write the second
equality of (1) as

m

E x i A i r + E xyAy = b. (2)
r-1 j ~ N

Recall that the nonbasic variables are set equal to zero, so that (2) may be
simplified to

XilAil + xi2Ai2 -~- ... + XimAim -- b . (3)

We make an m x m matrix out of the m columns Ail , A i 2 , . . . , Aim of A
corresponding to basic variables and denote this matrix by B. We introduce
notation for the basic feasible solution expressed as a vector and the

1 ~8 Chapter 3 Further Topics in Linear Programming

corresponding cost vector by letting

IXim Ici
XB-- [Xi2 a n d C B = /C/~ .

LXim LCi~

Then (3) may be written as

Ux B -- b. (4)

Using Theorem 0.9, the columns of B are linearly independent, so B must
be a nonsingular matrix. We may write (4) as

X B -- B - l b . (5)

That is, the m-tuple of basic variables has the value B - l b in any tableau.
We also note that the m columns of B considered as m-tuples form a

basis for R m. Thus, the j th column of our initial tableau, Ay, j - 1, 2 , . . . , s,
can be written as a linear combination of the columns Ail, Ai2,. . . ,Aim,
where the indices i l, i 2 , . . . , i m are the indices of the basic variables of our
current tableau in the order of the labels on the left-hand side.

We have

A / = tljAi~ + txjAi2 + ... + tmjAim, j = 1 , 2 , . . . , s. (6)

It can be shown that the vector of coefficients in (6),

t j =

tlj

t2j

tmj

which is the coordinate vector of A /wi th respect to the basis

{ A i l , A i 2 , . . . cAi m}

of R m, is also the j th column of our current tableau. In the same way as in
(4), we may write (6) as

Btj = A/

o r

t / = B-lAy. (7)

3.2 The Duality Theorem 1 ~

Equation (7) says that any column of a tableau can be found from
the corresponding column of the initial tableau by multiplying on the left
b y B -1.

Using the notation that has been developed, we define

zj = c~ty (8)

or, using (7),

z: = c~B-1Aj. (9)

From this definition we see that for the

0

0
Zir ~- [Cil Ci2 " ' ' Cim] 1 ~ r th entry

0

r th basic variable Xir w e have

0

-- Cir.

The objective function for this problem takes on a particularly simple
form when we use the definition of Zy. Recall that

z = cTx = ~ CjXj. (10)
j = l

We separate the sum on the right-hand side of (10) into two parts: one
part contains the basic variables and the other part contains the nonbasic
variables. We write

m

Z --- E CiXir -~- E CjXj. (1 1)

r = l j ~N

In order to apply the optimality criterion to our tableau, we
must modify (11) so that the coefficients of the basic variables are zero. To
make this modification we add (- c i l) x first row of the current
tableau + (- c i 2) x second row + . . . "lt-(--Cim) X mth row to (11). In sym-
bols, the r th row of the current tableau can be expressed as

~ t r j X j =- XBr ,

j=l

where X Br is the r th component of the vector x B.
Adding the appropriate multiples of the rows of the tableau to (11), we

obtain
m m

Z -- E CirXBr-~ E C j X j - E Ci r E trjXj"
r=l j~N r=l j~N

1 ~0 Chapter 3 Further Topics in Linear Programming

Simplifying, we have

or by (8)

Since Zir - -

Z - - C ~ X B = E (C y - - c ~ t y) x y
j~N

(z j - c j) x j + z = c xB.
j~N

c i, = O, we obta in

(z j - c j) x j + z =

j=l

This equa t ion shows that the ent r ies in the object ive row of a t ab leau are
simply

zj - cj = c~t j - cj. (12)

W e may res ta te the opt imal i ty cr i ter ion for the simplex me thod : a t ab leau
represen ts an opt imal solut ion if and only if, for all j, zj - cj > 0.

EXAMPLE 1. Cons ide r the l inear p r o g r a m m i n g p r o b l e m in canonical
form f rom Sect ion 2.1, Example 2.

Maximize z = 8 x 1 + 9 x 2 + 5 x 3

subject to

x I + x 2 + 2x 3 + x 4 = 2

2x I + 3x 2 + 4x 3 + x 5 = 3

6x I + 6x 2 + 2x 3 + x 6 = 8

x j > 0 , j = 1 , 2 , . . . , 6 ,

where

8
- 9

A = 2 3 4 0 1 0 , b = 3 , and c = .
6 6 2 0 0 1 8 0

0
0

Af te r the first i tera t ion of the simplex m e t h o d we ob ta ined T a b l e a u 3.2
as a t ab leau r ep resen t ing the basic feasible solut ion in which i ~ - 4,

i2 = 2, and i 3 -- 6, and thus

IX41 I11 X B = X2 = 1 .

X6 2

3.2 The Duality Theorem 171

Tableau 3.1

X 4

X2

X 6

X 1 X2 X3 X4 X5 X6

! 0 3
2 1
2 o

- 2 0

_ 1 2 1 ~ 0 1 3
4 0 1 0 1
3 3
6 0 2 1 2

7 0 3 0 9

We also have c~ = [c 4 c 2

can be wri t ten as

C6] - " [0 9

A x = b

0]. The p rob lem in matrix form

A I X 1 + A 2 x 2 + " " + A 6 x 6 = b

o r [1] I1] [2]
2 xl + 3 x 2 + " " + x 6 = 3 �9
6 6 8

Since the tableau represents x4, x2, and x 6 as basic variables in this order ,

we may rear range the previous equa t ion as [1] [1] [0] [1] [0]
0 x 4 + 3 x 2 + 0 x6 + 2 Xl + 4 x 3 + 1 x5 = 3 ,
0 6 1 6 2 0 8

the entr ies being the coefficients of the basic variables in the objective

function. Thus, [110]
B = 0 3 0

0 6 1

and

Then

B-1
I~1 31 o- 1

3 0 �9

- 2 1

X B = B - l b = I 1~] 1 3 2 1
1 0 ~ 0 3 = 1

0 - 2 1 8 2

which agrees with the r ight-hand side of the tableau. F u r t h e r m o r e , t 1 =

B-1A1 or

I I I ~]
3 1 3 1
2 1
5 = 0 ~ 0 2 �9

2 0 --2 1 6

172 Chapter 3 Further Topics in Linear Programming

The rest of the columns can be checked in the same manner. Finally, the
entries in the objective row are zj - cj, where zj = c~tj. We have

5
2 - - 6 Z 1 - - [0 9 O] ~ ,

2

and the first entry in the objective row is

z 1 - e l = 6 - 8 = - 2 .

The other entries can be checked in the same manner. A

Relations between the Solutions to the Primal and Dual Problems

We saw in Chapter 2 that there are three possible outcomes when
attempting to solve a linear programming problem.

1. No feasible solutions exist.
2. There is a finite optimal solution.
3. Feasible solutions exist, but the objective function is unbounded.

Since the dual problem is a linear programming problem, attempting to
solve it also leads to these three possible outcomes. Consequently in
considering relationships between solutions to the primal and dual prob-
lems there are nine alternatives for the pair of solutions. We now present
theorems that show which of these alternatives actually can occur.

THEOREM 3.4 (WEAK DUALITY THEOREM).
the primal problem

Maximize z - cTx
subject to

A x < b
x>_O,

and if w o is a feasible solution to the dual problem

Minimize z ' - bTw
subject to

ATw>_c
w>_O,

then

If x 0 is a feasible solution to

(13)

(14)

That is, the value of the objective function of the dual problem is always
greater than or equal to the value of the objective function of the primal
problem.

eTx0 _< bTw0 (15)

3.2 The Duality Theorem 173

Proof. Since x 0 is a feasible solution to (13), we have

Ax 0 _< b. (16)

It follows from (16) that

w~Ax o < woTb = bTWo (17)

since w o >_ 0. The equality in (17) comes from the fact that Wo T b is a 1 • 1
matrix and consequently is equal to its transpose.

Since w o is a feasible solution to (14), we have

ATwo > c

or, taking transposes,

w~A >__ C T.

Again we can multiply by x 0, which is nonnegative, without changing the
inequality. We get

woTAxo > cTx0 . (18)

Combining inequalities (17) and (18) gives the desired result. A

An important application of Theorem 3.4 arises in the case in which the
primal problem has feasible solutions but the objective function is un-
bounded. This means that, given any number N, we can find a feasible
solution to the primal problem for which the value of the objective
function is greater than N. Consequently the objective function of the dual
problem (using Theorem 3.4) is greater than N for any feasible solution w 0
to the dual problem. This means that there are no feasible solutions to the
dual problem. For if w were such a solution, the value of the dual objective
function would be bTw. But N can be chosen greater than this value, and
we have

bXw < N < bXw,

the second inequality coming from the argument above. This impossible
pair of inequalities means that w cannot exist. The discussion above has
proved part (a) of the following theorem.

THEOREM 3.5. (a) If the primal problem has feasible solutions but the
objective function is unbounded, then the dual problem has no feasible
solutions.

(b) If the dual problem has feasible solutions but the objective function is
unbounded, then the primal problem has no feasible solutions.

Proof. (b) Combining Theorem 3.1 and part (a)we obtain the desired
result. A

We now give a condition that a feasible solution to the primal problem
be an optimal solution.

1 ~4 Chapter 3 Further Topics in Linear Programming

THEOREM 3.6. / f x o and w o are feasible solutions to the primal and dual
problems (13) and (14), respectively, and if CTXo = bTwo, then both x o and
w o are optimal solutions to their respective problems.

Proof
from (15),

Suppose x I is any feasible solution to the primal problem. Then,

cTx1 _~< bTw0 -- cTx0"

Hence, x 0 is an optimal solution. Similarly, if w I is any feasible solution to
the dual problem, then, from (15),

bTwo = cTx0 __< bTWl,

and we see that w o is an optimal solution to the dual problem. A

THEOREM 3.7 (DUALITY THEOREM).

(a) If either the primal or dual problem has a feasible solution with a finite
optimal objective value, then the other problem has a feasible solution with the
same objective value.

(b) If the primal (13) and dual (14) problems have feasible solutions, then

(i) the primal problem has an optimal solution--say, x0;
(ii) the dual problem has an optimal solutionmsay, w0; and

(iii) CTXo = bTWo .

Proof. (a) We convert the primal problem given in (13) to canonical
form by introducing the vector of slack variables x' and writing,

Maximize Z=[C~a0]T[x]x'

subject to

[At~I] x]
x' = b

x > 0

x' >_0 .

Let i be an optimal solution to this problem. Then there is a corre-
sponding invertible matrix B that gives the values of the basic variables of
i as i B = B - l b [see Equation (5)]. The objective function value at the
optimal solution is then

z = c ~ n = c ' ~ B - l b .

We let

W (B - l) T = c B

and thus

W T -- c T B - 1 ,

3.2 The Duality Theorem 175

and by substitution we obtain z = wTb. Since z is a number,

z = wTb = (wTb) T = bTw.

Thus, the objective function value for the dual problem, namely, bTw,
agrees with the objective function value for the primal problem. We now
show that w is a feasible solution to the dual problem given by (14).

From (7) we have

and from (8)we have

tj = c~B- 1[AII]y

zj = c~tj = c~B-I [A[I] j .

The optimality criterion of the simplex algorithm implies that

zj-cy>_O,

which can be written in vector form as

i - 1 I z - [cTI0] =c~B [A l l] - [cT,0] >0 .

Multiplying in the previous equation and separating the partitioned matrix,
we hax, e

c~B- 1A > c T

and

c~B -~ >0 .

Using the definition of w, these inequalities can be written as

wXA >_ c x

w > O

or

ATw>__C

w>_0.

Hence, w is a feasible solution to the dual problem given by (14) and yields
the same value for the objective function of the dual problem as does the
optimal solution x for the objective function of the primal problem.

(b) Let x be a feasible solution to (13) and w be a feasible solution to
(14). By Theorem 3.4

cTx < bTw.

Since the objective function of the primal problem is bounded by bTw and
the set of feasible solutions is not empty, there is a finite optimal solution

176 Chapter 3 Further Topics in Linear Programming

x 0. By part (a) there is a feasible solution w 0 to (14) so

bTWo = eTXo ,

Theorem 3.6 then implies that both x o and w o are optimal. A

The optimality criterion for the simplex method tells us that the j th
variable of the primal problem is a candidate for an entering variable if
zj - cj < 0. We have already noted that w i is a value, or cost, attached to
each unit of resource i. Then zj represents the total value assigned to one
unit of the j th product. In economics this value is called an imputed value
because it is not directly determined by the marketplace; it is a value
assigned using some other basis than an exchange of money. The j th
variable is a candidate for an entering variable if zj < cj; that is, xj may
enter if the imputed value zj of the j th product is less than the profit cj
per unit of the j th product.

We summarize the results of the Weak Duality Theorem and the
Duality Theorem in the following table. The column and row labels have
the following meanings: none, no feasible solution; finite, optimal solution
with finite objective function value; and unbounded, feasible solutions with
unbounded objective function value.

TABLE 3.2

Primal

Dual None Finite Unbounded

None Impossible
(Theorem 3.7)

Finite Impossible
(Theorem 3.7)

Unbounded Impossible
(Theorem 3.5)

Impossible
(Theorem 3.5)

Impossible
(Theorem 3.5)

We next present examples to show that the missing entries in Table 3.2 are
all possible.

EXAMPLE 2. Consider the linear programming problem

Maximize z = 2 Xl "+ X2

subject to

3X 1 -- 2X 2 < 6

X 1 -- 2X 2 _< 1

X 1 ~_~ 0 , X 2 ~__ 0~

(19)

The set of feasible solutions is shown in Figure 3.1a. It is evident that this
problem has an unbounded optimal solution. For setting x I = 0 allows x 2
to be as large as we please. In this case z = x 2 is also as large as we please.

3. 2 The Duality Theorem 1 "l'l

The dual p roblem to (19) is

Minimize z ' = 6w i "~- W2

subject to

3w I + w E >_ 2

- - 2 w 1 - - 2 W 2 >__ 1

W 1 ~__ 0 , W 2 ~__ 0 .

The constraints are shown in Figure 3.1b. The re are no feasible solutions
to the problem, since the second constraint can never hold for nonnegat ive

values of w I and w 2. /~

It is also possible, as the next example shows, that ne i ther the primal
problem nor its dual will have a feasible solution.

EXAMPLE 3. Consider the l inear p rogramming prob lem

Its dual p roblem is

Maximize z = 3x I + 2x 2

subject to

2x 1 - 2x 2 < - 1

- - 2 x I + 2 X 2 _< - 4

X 1 >__ 0 , X 2 >__ 0 .

M i n i m i z e z ' --- - w1 -

subject to

2 w 1 - 2 w 2 > 3

- 2Wl + 2w2 > 2

W 1 >" O, W 2 >" O.

4 W 2

1711 Chapter 3 Further Topics in Linear Programming

FIGURE 3.2

The graphs of the constraints of the primal problem are shown in Figure
3.2a, and the graphs for the dual problem are shown in Figure 3.2b.
Neither of these problems has a feasible solution. A

Complementary Slackness
In addition to the relations between an optimal solution to the primal

problem and an optimal solution to the corresponding dual problem, which
we have already discussed, we can obtain information about which con-
straints may be "acting" on the solution to the primal problem. Specifi-
cally, we can show that if an optimal solution to the primal problem makes
a constraint into a strict inequality, then the corresponding dual variable
must be zero.

We consider a linear programming problem in standard form (13) as the
primal problem. Its dual problem is given in (14). For these problems we
state and prove the theorem on complementary slackness.

THEOREM 3.8. For any pair o f optimal solutions to the primal problem
and its dual, we have:

(a) For i = 1, 2 , . . . , m, the product of the ith slack variable for the primal
problem and the ith dual variable is zero. That is, x n + iwi = O, i = 1, 2 , . . . , m,
where x n +i is the i th slack variable for the primal problem.

(b) For j = 1, 2 , . . . , n, the product o f the jth slack variable for the dual
problem and the jth variable for the primal problem is zero.

Another way of stating the theorem is to say that, if the ith slack
variable of the primal problem is not zero, then the i th dual variable must
be zero. Likewise, if the j th slack variable for the dual problem is not zero,
then the j th primal variable must be zero. Note that it is possible for both
the slack variable and its corresponding dual variable to be zero.

3.2 The Duali ty Theorem 1 "i~

Proof

where

We add slack variables to the primal problem and write

Ax + Ix' = b,

X n + l

Xr __ Xn + 2

n + m

is the vector of slack variables. Then for any vector of dual variables

W1

W2
W -'- .

we have

wTAx + w T Ix' = w T b.

This equality is an equality between numbers so that it is preserved when
the transpose of each side is taken. We obtain

x T A T w -k- x ' T w = b T w . (20)

optimal solutions x~X~ and Wo, we have, from the duality theorem, At the

CTxo = bTWo . (21)

Using (20), we may rewrite (21) as

cTx0 = x~ATw0 + x~Tw0 . (22)

In the dual problem, ATwo >__ c; hence, we may write (22) as

c T x 0 >_~ x T c -4- x~)Tw0 . (23)

Now cTx0 is a number, so that CTxo = (cTx0) T = xTc, implying 0 >__ x'Tw0 .
Since x~ >__ 0 and w o >__ 0 imply that x'oTwo > 0, we have equality in (23),
and X~Wo = 0. That is,

X n + 1W1 -~- X n + 2W2 "4- " '" "4- X n +mWm -- O.

and each term is nonnegative. Therefore, for each i = 1, 2 , . . . , m, we have
Xn+ iwi = O. The proof of part (b) is similar. A

180 Chapter 3 Further Topics in Linear Programming

EXAMPLE 4. Consider the linear programming problem

Maximize z = 2Xl + x2

subject to

X 1 + 2x 2 < 8

3x 1 + 4x 2 < 18

X 1 >_~ 0 , X 2 >_~ 0 .

The dual of this problem is

Minimize z ' = 8w~ + 18w2

subject to

W 1 + 3w 2 >_ 2

2wl + 4w 2 >_ 1

W 1 >__ 0 , W 2 ~__ 0 .

The feasible regions for the primal and dual problems are shown in
Figures 3.3a and 3.3b, respectively.

An optimal solution to the primal problem is (verify)

x 1 = 6 , x 2 = 0 , and z = 12.

Since there is slack in the first constraint, the principle of complementary
slackness says that the first dual variable must be zero in an optimal
solution to the dual problem. Thus, without evaluating the objective
function at the extreme points, we see that

2
W 1 - - 0 , W 2 =

must be an optimal solution to the dual problem. Furthermore, the value
of the dual objective function at this extreme point must be 12. If there

FIGURE 3.3

3.2 The Duality Theorem 181

were several points for which w 1 - - 0, a point at which the dual objective
function has value 12 would be an optimal solution to the dual problem by
the Duality Theorem (Theorem 3.7). A

The economic interpretation of complementary slackness is related to
the understanding of the dual variables as marginal costs or shadow prices.
Suppose that in an optimal solution to the primal problem the i th slack
variable is nonzero. This means that there is more of the i th input
available than is needed for this optimal solution. The value of the ith
slack variable is exactly the excess of the ith input. But there is no need
for any of this excess of the i th input; its marginal value is zero. The
theorem on complementary slackness tells us that, if the i th primal slack
variable is positive, then the i th dual variable, which can be thought of as
the marginal value of the i th input, is zero. On the other hand, if in an
optimal solution to the dual problem the i th dual variable is nonzero, its
value can be thought of as the marginal value of the ith input. For in this
case the ith primal slack variable is zero, indicating that all the ith input
has been used and that it is desirable to have more. Its marginal value is
positive.

The dual variables can also be viewed as a measure of the contribution
of each resource to the maximum profit. Recall that at optimal solutions
z = z ' or

bTw = cTx = maximum profit. (24)

The constraints of the primal problem in which there is slack at an optimal
solution correspond to dual variables that have value zero by complemen-
tary slackness. Thus, the corresponding resources do not contribute to the
maximum profit. Considering the constraints of the primal problem in
which there is no slack at an optimal solution, the values of the corre-
sponding dual variables are nonzero and do indeed affect the maximum
profit. We see from Equation (23) that the values of the nonzero dual
variables divide the profit proportionately among the corresponding re-
sources.

For example, in the sawmill problem, the saw may be assigned a value
of $35 per hour (w I = 35) and the plane may be assigned a value of $10
per hour (w 2 = 10). The maximum profit of $430 is attributable to the saw
and the plane at the respective rates of $35 per hour and $10 per hour.
That is, to make this profit, the saw is 31 times more valuable than the
plane. In this sense the dual variables are accounting costs and would be
useful for cost-accounting procedures.

We summarize the discussion and examples of this section by complet-
ing Table 3.3 by citing an example of the possible combinations of results
for the primal and dual problem pairs. This summary appears in Table 3.3.

182 Chapter 3 Further Topics in Linear Programming

TABLE 3.3

Primal

Dual None Finite Unbounded

None Possible Impossible Possible
(Example 3) (Theorem 3 . 7) (Example 2)

Finite Impossible Possible Impossible
(Theorem 3 . 7) (Example 4) (Theorem 3.5)

Unbounded Possible Impossible Impossible
(Example 2) (Theorem 3 . 5) (Theorem 3.5)

3.2 EXERCISES

In Exercises 1-4, properties of solutions to a given linear programming problem
are specified. Describe in as much detail as possible the solutions to the dual of the
given problem. (Hint: You may need to use Theorems 3.5-3.8.)

1. An optimal solution is [0.27 1.83 0.94 0.5 0 0] T with objective function
value 117.81.

2. An optimal solution to the dual problem is [0 3 15 0 5] T with dual
objective function value 125.

3. There are no feasible solutions to the problem.

4. There are solutions to the dual problem with arbitrarily large dual objective
function values.

5. Suppose for the linear programming problem

Maximize z = eTx

subject to

A x < b

x > 0 ,

we know that b = [12 21 8 2 5]T. Assume that w = [0 4 5 0 3] Tis
an optimal solution to the dual of the given problem. Calculate the optimal
value of the objective function for the given problem.

In Exercises 6 and 7, solve the given linear programming problem using the
simplex method. Also, set up and solve the dual of the given problem. Finally,
verify that your solutions satisfy part (b) (iii) of the Duality Theorem.

6. Minimize z = 4 x + 6 y
subject to

x + 3 y > 5

2 x + y > 3

x > 0 , y > 0 .

3.2 The Duality Theorem 1 ~3

7. M a x i m i z e z - - 8 x I -1- 9 x 2 + 5 x 3

subject to

x 1 + x 2 + 2 x 3 < 2

2x 1 + 3 x 2 -t- 4 x 3 < 3

3xl + 3 x 2 + x 3 < 4

x j>O, j = 1 ,2 ,3

8. A health food store packages a nut sampler consisting of walnuts, pecans, and
almonds. Suppose that each ounce of walnuts contains 12 units of protein and
3 units of iron and costs 12 cents, that each ounce of pecans contains 1 unit of
protein and 3 units of iron and costs 9 cents, and that each ounce of almonds
contains 2 units of protein and 1 unit of iron and costs 6 cents. If each package
of the nut sampler is to contain at least 24 units of protein and at least 18 units
of iron, how many ounces of each type of nut should be used to minimize the
cost of the sampler? (Hint: Set up and solve the dual problem. Then use the
principle of complementary slackness to solve the given problem.)

5 5 27 9. Show without using the Simplex Method that x I = ~ , x 2 = ~, x 3 -- ~ is an
optimal solution to the following linear programming problem:

Maximize z = 9x~ + 14x 2 + 7x 3

subject to

2 x I + x 2 + 3 x 3 < 6

5 x 1 + 4 x 2 + x 3 < 12

2 x 2 < 5

x 1, x 2, x 3 unrestricted.

(Hint." Formulate the dual of this problem and then find a feasible solution.)

10. Consider the linear programming problem

Maximize z -- 3 x 1 + 4 x 2

subject to

X 1 -+- 2X 2 < 10

X 1 -[- X 2 _ ~ 8

3 x 1 + 5 x 2 __< 26

X 1 >__ 0 , X 2 >_~ 0 .

By using the principle of complementary slackness, show that w I - 0 in any
optimal solution to the dual problem.

184 Chapter 3 Further Topics in L inear Programming

11. Suppose that x I "~ 2, x 2 = 0 , X 3 = 4 is an optimal solution to the linear
programming problem

Maximize z = 4 x 1 + 2 X 2 -t- 3 x 3

subject to

2x 1 + 3 x 2+ x 3< 12

x I + 4 x 2 + 2 x 3 < 1 0

3x 1 + x 2 -]- x 3 __< 10

X 1 >_~ 0 , X 2 >_~ 0 , X 3 >_~ 0 .

Using the principle of complementary slackness and the duality theorem
(Theorem 3.7), find an optimal solution to the dual problem. What value will
the objective function of the dual problem have at this optimal solution?

3.3 COMPUTATIONAL RELATIONS BETWEEN THE
PRIMAL AND DUAL PROBLEMS

We now modify the form of a tableau and the steps in the pivoting
process to take advantage of the new information we have. We add an
additional row and column to a tableau. The row is written above the
column labels and contains the vector c T = [c I c 2 . . o C s]. The column
is written to the left of the column denoting the basic variables and
contains the vector

Ci 1

Ci 2
CB -- . �9

Ci m

The entries of c a can be determined by copying the values of c / f r o m the
new top row corresponding to the basic variables of the tableau.

The pivoting step can be changed to compute the entries of the
objective row by using (12) of Section 3.2 rather than by using elementary
row operations. Recall that the entries of the objective row are z / - c/. We
now rework an example using these new ideas.

EXAMPLE 1. Consider the linear programming problem from Examples
2 and 3 in Section 2.3.

Maximize z - - x I - 2 X 2 - - 3X 3 - - X 4 - - X 5 d- 2 X 6

subject to

X 1 q- 2x 2 -t- 2x 3 -t-X 4 q- X 5 + X 7 " - 12

x 1 + 2 x 2 + X 3 q - X 4 -I- 2x 5 + x 6 ~- 18

3x I + 6x 2 + 2x 3 + x 4 + 3x 5 + x 8 = 24

x / > 0 , j = 1 , 2 , . . . , 8 .

3.3 Computational Relations between the Primal and Dual Problems 185

We have

1 2 2 1 1 0 1 0]
A = 1 2 1 1 2 1 0 0J ,

3 6 2 1 3 0 0 1

1
- 2

b = 18 , and c = 1 "
24 2

0
0

Note that this problem is in the form of Equation (1) in Section 3.2. The
matrix A contains the identity matrix by taking columns 7, 6, and 8 in this
order. We have denoted the artificial variables by x 7 and x 8 rather than by
Yl and Y2 to be consistent with (1).

The initial tableau for the auxiliary problem of the two-phase method is
shown in Tableau 3.2a, for which the objective row has not been filled in.
Recall from Section 2.3 that we had to eliminate the initial basic variables
x7 and x 8 from the objective function by substitution. This substitution
procedure is replaced by the procedure of computing the objective row as
zj - cj. We have

c ~ = [- 1 0 - 1]

since i z = 7, i 2 = 6, and i 3 -- 8. The entry in column 1 of the objective row
is, by (11), [1]

Z 1 - - C 1 --- [- 1 0 - 1] 1 - 0 = - 4 .
3

Tableau 3.2a

CB

1 X 7

0 X 6

1 x 8

0 0 0 0 0 0 1 - 1

Xl X 2 X3 X4 X5 X6 X 7 X8 X B

1 2 2 1 1 0 1 0 12
1 2 1 1 2 1 0 0 18
3 6 2 1 3 0 0 1 24

In the same way we compute the other entries obtaining the full initial
tableau (Tableau 3.2b). Note that it is the same as Tableau 2.23 (Section
2.3).

186 Chapter 3 Further Topics in Linear Programming

Tableau 3.2b

CB

1 X 7

0 X 6

1 x s

o o o o o o 1 1
Xl X2 X3 X4 X5 X 6 X 7 X 8

1 2 2 1 1 0 1 0

1 2 1 1 2 1 0 0

3 (~) 2 1 3 0 0 1

4 8 4 2 4 0 0 0

x B

12

18

24

36

T h e va lue of the last en t ry in the objec t ive row is c o m p u t e d as

Z "- C T X B ,

w h e r e x a is the last c o l u m n of the t ab leau . F o r this t ab leau ,

n .__

[100] [100]
0 1 0 a n d B - 1 - - 0 l 0

0 0 1 0 0 1

since

il --" 7 and i1] [0] Ail = 0 , i 2 = 6 and Ai2 = 1 ;
0 0

i 3 --- 8 and Ai3

T h e e n t e r i n g and d e p a r t i n g va r iab les a re d e t e r m i n e d as they w e r e
previously . W e find x 2 is the e n t e r i n g va r i ab le and x 8 is the d e p a r t i n g
var iable . In the next t ab l eau (T a b l e a u 3.3), x 7, x 6, and x 2 will be the bas ic
var iables , in this o rde r , so tha t i I = 7, i 2 = 6, and i 3 -- 2. Thus , [_1] [lO2]

c a = 0 , B = 0 1 2 ,

0 0 0 6

and

B - 1

1
1 0 - 5

1 = 0 1 - ~
1 0 0 g

3.3 Computational Relations between the Primal and Dual Problems 187

Tableau 3.3

CB

1 X 7

0 x 6

0 x 2

0 0 0 0 0 0 1 1

Xl X 2 X3 X4 X 5 X6 X7 X8

O 0 0 1 0 0 3"2 "31
1 2 1

0 0 ~ ~ 1 1 0

1 1 1 z 1 0 0 !
2 3 6 2 6

4 2 4 0 0 ~ ~ 0 0 0

X B

4
10
4

We may verify that

x B = B - l b - -

1 1 0 [4]
0 1 - 5 18 = 10 .

1 2 4 4 0 0 ~

We also know that tj
for example,

= B-1A j, j = 1, 2 , . . . , 8, and we may verify that,

t 3 -- B-1A3

1 4 1 0
= 0 1 - 7 1 = 5 �9

1 2 1 0 0 ~ 5

The objective row is computed after the usual procedure for pivoting is
applied to find the other rows. The entries in the objective row are found
by

Zj -- Cj = cTtj - - c j .

For example, the entry in the third column of Tableau 3.3 is

4 5
1 4

z 3 - c 3 = c T t 3 - c 3 = [- 1 0 0] 5 - 0 = - 5 .
1
5

We see that Tableau 3.3 is the same as Tableau 2.32 of Section 2.3. We
continue the simplex algorithm by determining the entering and departing
variables for Tableau 3.3 and pivoting to form Tableau 3.4.

1118 Chapter 3 Further Topics in Linear Programming

Tableau 3.4

CB

0 X 3

0 X 6

0 x 2

0 0 0 0 0 0 - 1 - 1
Xl X2 X3 X4 X5 X6 X7 X 8 X B

1 0 0 3 1 O O 1 ~ ~ ~ 3
1 1 1 1 1 9 0 0 0 ~ ~ 4

' 1 0 0 1 0 1 1 3

0 0 0 0 0 0 1 1 0
.,

Tab leau 3.4 gives an op t imal solut ion to the auxiliary p rob lem. The next
step is to fo rm the initial t ab leau for Phase 2, as descr ibed in Sect ion 2.3.
The co lumns co r re spond ing to the artificial var iables x 7 and x 8 are
de le ted and the entr ies in the object ive row of this t ab leau are c o m p u t e d
as z j - cj. R e m e m b e r to put the coefficients of the original object ive
funct ion at the top of the tableau. Carry ing out these steps, we ob ta in
Tab leau 3.5.

Tableau 3.5

CB

- 3 X 3

2 X 6

2 X 2

1 2 3 1 1 2
X 1 X2 X 3 X4 X 5 X6 X B

1 0 0 3 0 0 1

1 1 9 0 0 0

0 3 1 0 0 ~1

1 2 0 3 2 0 0

Pivoting, we obta in Tab leau 3.6, which yields an op t imal solut ion to the
given p rob lem. The r eade r should check tha t he or she unde r s t ands how
the entr ies were de t e rmined .

Tableau 3.6

CB

3 x 3

2 x 6

1 x 1

2 3 1 1 2
X1 X 2 X3 X4 X 5 X 6 XB

1 0 0 3 0 0 1
1 0 0 0 ~ 1 1 9

1 2 0 0 1 0 6

1 4 0 15 0 4 0

A

3.3 Computational Relations between the Primal and Dual Problems 1119

We have now defined enough tools to complete our discussion of
artificial variables. Recall that we had taken a problem in canonical form

Maximize z = cTx

subject to

A x = b

x > 0 ,

where b > 0. We introduced artificial variables into each of the constraint
equations. For Phase 1 we used a different objective function, namely,

Minimize z = Y l + Y2 + "'" + Ym

where Yi, i = 1 , 2 , . . . , m are the artificial variables. Suppose that at the
end of Phase 1, the minimum of this objective function is zero but that
there are artificial variables which remain basic (at value zero) in the final
optimal tableau. We now proceed as follows.

Phase 2

The initial tableau for Phase 2 is the final tableau of Phase 1 with the
_

following modifications.

(a) Delete the columns from the final tableau of Phase 1 that are
labeled with the nonbasic artificial variables.

(b) Replace the row above the column labels with the coefficients of the
original objective function, assigning 0 as a cost for each of the basic
artificial variables.

(c) Form the vector c B from the new row of objective function coeffi-
cients.

(d) Calculate the entries in the new objective row as zj - cj = c~tj - cj.

As we proceed with the simplex method for Phase 2 we must ensure
that the remaining artificial variables do not take on positive values. This
would happen when one of these variables remained basic and the pivotal
elimination gave a positive entry in x B for the position labeled by the
artificial variable. Suppose that x k is to be the entering variable and that
the rows labeled by artificial variables are il, i 2 , . . . , i p . Denote the kth
column of the current tableau by

t lk

t2k
t k = . �9

tmk

It can be shown (Exercise 18) that if

til k >__ 0 , ti2 k >__ 0 , . . . , tip k >__ 0 ,

1 9 0 Chapter 3 Further Topics in Linear Programming

then none of the artificial variables that are basic will take on a positive
value. If, however, we have

tir k (0

for some r, r = 1, 2 , . . . , p, then the usual simplex procedure could cause
the artificial variable that labels r o w i r t o take on a positive value.
Consequently, we must modify the usual simplex procedure. The new
procedure for selecting a departing variable is as follows. If at least one of
the entries in the entering variable column corresponding to a row labeled
by an artificial variable is negative, choose one of these artificial variables
as the departing variable. Otherwise, use the usual simplex procedure to
obtain a finite optimal solution or to discover that such a solution does not
exist.

EXAMPLE 2. In Section 2.3 we showed that the problem given in
Example 5 ended with an artificial variable in the basis. We rework this
example using the two-phase method. The original problem in canonical
form is

Maximize z - - x 1 + 2 x 2 + x 3

subject to

3 x 1 + X 2 - - X 3 : 15

8 X 1 -~- 4 x 2 - x 3 : - 5 0

2x I + 2x 2 + X 3 - - 20

X 2 >_~ O, X 3 >__ O. X 1 ~___ 0 ,

The new problem for Phase 1 is

Minimize

subject to

3x I + x 2 - x 3 + yl

8 X 1 + 4 X 2 - - X 3

2 X 1 + 2 X 2 + X 3

xj>_O, j = 1 ,2 ,3 ;

We rewrite the objective function as

z =Yl +Y2 +Y3

= 15

+Y2 = 50

+Y3 = 20

Yi >- 0, i = 1 ,2 ,3 .

M a x i m i z e z = - Y l - Y2 - Y3

to have a maximization problem.
We now have the following sequence of tableaux (Tableaux 3.7-3.10)

for Phase 1. The objective row of the initial tableau is computed by using
zj - %. Since the initial basic variables are Yl, Y2, and Y3, we have [1]

CB-- 1
1

3.3 Computational Relations between the Primal and Dual Problems 191

a n d

S imi la r ly ,

a n d

Z 1 - - C 1 = [- 1 - 1
[3]

- 1] 8 - 0 = - 1 3 .

2

Z 2 - - C2 - - [- 1 - 1
[1]

- 1] 4 - 0 = - 7

2

Z 3 - - C 3 - - 1 .

F o r t h e bas ic v a r i a b l e s Yl, Y2, a n d Y3 w e h a v e [1]
Z 4 - - C 4 = [- 1 - 1 - 1] 0 - (- 1) = 0

0

and , s imi la r ly , z 5 - c 5 = 0 a n d z 6 - c 6 = 0.

T h e v a l u e o f t h e o b j e c t i v e f u n c t i o n is

[- 1 - 1 - 1 1 50 = - 8 5 .

20

T h e r e s u l t s o f t h e s e c o m p u t a t i o n s a r e s h o w n in T a b l e a u x 3 . 7 - 3 . 1 0 .

Tableau 3.7

CB

1 Yl
1 Y2
1 Y3

0 0 0 1 1 1

x1 x2 x3 Yl Y2 Y3

(~) 1 1 1 0 0 15
8 4 1 0 1 0 50
2 2 1 0 0 1 20

13 7 1 0 0 0 85

Tableau 3.8

CB

X1

Y2

Y3

0 0 0 - 1 1 1

x2 x3 Yl Y2 Y3

X B

x I XB

1 1 1 0 O 5 1 ~ ~

4 (t) 8 o ~ 1 0 10
0 4 5 2 ~ ~ 0 1 10

0 8 lO 13 0 0 20
3 3 3

192 Chapter 3 Further Topics in Linear Programming

Tableau 3.9

CB

0 X 1

0 x 3

1 Y3

0 0 0 1 - 1 - 1

x1 x2 x3 Yl Y2 Y3 XB

3 1 1 0 7 1 3- 0 ~ 3-

0 4 1 s 3 3- 5 3- O 6

0 0 0 (~) - 1 1 0

0 0 0 1 2 0 0

Tableau 3.10

CB

0 X 1

0 x 3

1 Yl

0 0 0 1 1 - 1

x1 x2 x3 Yl Y2 Y3 Xa

3 1
1 3- 0 0 ~ f0 7
0 4 1 0 1 4 6 3- 3

1 1 0 0 0 0 1 2

3 1 0 0 0 0 0 ~

Thus, Phase 1 has an optimal solution with x 1 = 7, x 3 = 6, Y l = 0 and
value 0 for the objective function. The artificial variable Y l appears as a
basic variable in the optimal solution.

The initial tableau for Phase 2 is shown in Tableau 3.11. The columns
corresponding to Y2 and Y3 have been deleted and a cost of 0 has been
assigned to Y l- The objective row has been filled in, using zy - cj.

Tableau 3.11

C B

1 X 1

1 x 3

0 Yl

1 2 1 0

X1 X2 X3 Yl XB

3 1 3- 0 0 7

s (~ 1 0 6 0

0 0 0 1 0
.....

0 3 0 0 13 5

We now apply the simplex method to Tableau 3.11. In selecting the
departing variable we make sure the entry in the row labeled by Y l and the
pivotal column is nonnegative. If it is not, we will choose Y l as the
departing variable. We get Tableau 3.12.

3.3 Computational Relations between the Primal and Dual Problems 193

Tableau 3.12

CB

1 X 1

2 x 2

0 Yl

1 2 1 0

x1 x2 x3 Yl

1 0 3 0 4

0 1 5_ 0 4

0 0 0 1

0 0 3 0 4

XB

An optimal solution to the original problem is therefore

5
X l = ~

15
X 2 - - - ~-

X 3 --" 0 ,

which gives -~ as the optimal value of the objective function. A

Solution to Dual Problem from Final Tableau of Primal Problem

One of our objectives in this section is to describe how to find an
optimal solution to the dual problem from the final tableau for the primal
problem. We discuss the easiest case first, namely, when the primal
problem is in canonical form,

Maximize z - - c T x

subject to

A x = b

x>_O,

where A contains the identity matrix and b > 0. In particular this situation
arises when the primal problem is given in standard form and has been
converted to canonical form by adding slack variables. There are two easily
given descriptions for finding an optimal solution to the dual of the
problem given above. The dual problem is

M i n i m i z e z ' = b T w

subject to

A T w > c

w unrestricted.

1 ~ 4 Chapter 3 Further Topics in Linear Programming

An optimal solution

to it is given by

W "--

w 1

w2
~

Wm

W T = c T B - 1, (1)

where B is the matrix consisting of certain columns of the initial tableau.
The columns that are used in B correspond to the basic variables of the
final tableau of the primal problem. We can find B -1 from the f inal
tableau as follows. From our assumptions about A and b we may infer that
the columns labeled by the initial basic variables in the initial tableau form
the m • m identity matrix when they are properly ordered. It can be
shown that the columns in the final tableau with the same labels as the
initial basic variables and arranged in the same order give B-1.

It can also be shown that an optimal solution to the dual problem is
given by

Wj -- Cij "Jr- (Zij -- Cij), (2)

where the subscript ij ranges over the indices of the initial basic variables.
Of course, c/j is the entry above the label of the ijth column and zij - cij
is the corresponding entry in the objective row. This second description
shows that if an initial basic variable is a slack or artificial variable, the
value of the corresponding dual variable is the entry in the ijth column of
the objective row of the final tableau of the primal problem. This fact
follows, since cij = 0 for any slack or artificial variable.

EXAMPLE 3. Consider as our primal problem the linear programming
problem

Maximize z = 8x 1 + 9x 2 + 4x 3

subject to

X 1 -]- X 2 -~- 2 X 3 _< 2

2x I + 3x 2 + 4x 3 _< 3

7x 1 + 6x 2 + 2x 3 < 8

X 1 >__ O, X 2 >__ O, X 3 >__ O.

3.3 Computational Relations between the Primal and Dual Problems 1 ~

In t roduc ing the slack variables x4, x5, and x6, our pr imal p r o b l e m be-

comes

Maximize

subject to

x I + x 2 + 2x 3 + x 4

2x I + 3x 2 + 4x 3

7x I + 6x 2 + 2x 3

xj >_ O,

z = 8x 1 + 9x 2 + 4x 3

+ X 5

+ X 6

j = 1 , 2 , . . . , 6 .

= 2

= 3

= 8

Solving this p r o b l e m by the s implex m e t h o d we are led to the sequence of

Tab leaux 3.13-3.15.
The dual p r o b l e m in this example is

Minimize z ' = 2 Wl + 3w2 "+ 8W3

subject to

w 1 + 2w 2 + 7w 3 >__ 8

w I + 3w 2 + 6w 3 >__ 9

2w I + 4w 2 + 2w 3 >__ 4

W 1 ~_~ 0 , W 2 ~_~ 0 , W 3 ~__ 0 .

The solut ion to this p r o b l e m is found f rom Tab leau 3.15. In Tab leau 3.15
the basic variables are x4, x2, and x l, in that order . The re fo re , read ing
f rom Tab leau 3.13, we find

and

[1] [1] [1]
A 4 = 0 , A 2 = 3 , A 1 = 2 ,

0 6 7

B .__

1 1 1]
0 3 2 .
0 6 7

Since the initial basic var iables are x4, x5, and x6, in tha t o rder , we find
the co lumns of B -1 u n d e r the labels x 4, x 5, and x 6 in Tab leau 3.15. Thus,

B - 1

1 1
1 9 9

7 2
- - 0 ~ 9

0 2 1
3

196 Chapter 3 Further Topics in Linear Programming

Tableau 3.13

s

X 4

X5

X 6

8 9 4 0 0
Xl X2 X3 X4 X 5

1 1 2 1 0

2 (~) 4 0 1

7 6 2 0 0

8 9 4 0 0

0

x6 XB

0 2

0 3

1 8

0 0

Tableau 3.14

s

0 x 4

9 x 2

0 X 6

8 9 4 0 0 0
X 1 X 2 X 3 X4 X 5 X 6 X B

1 0 2 1 1 ~ ~ 0 1
2 4 0 1 0 1

(~) 0 6 0 - 2 1 2

2 0 8 0 3 0 9

Tableau 3.15

s

0 X 4

9 x 2

8 X 1

8 9 4 0 0 0

X1 X2 X3 X4 X 5 X 6

4 1 1 1 7 0 0 ~ ~ ~
8 7 2 5 0 1 -~ 0 ~ ~

2 1 2 1 0 2 0 3 ~

5 2 31 0 0 4 0 - 3 ~ 3

XB

T h e n an o p t i m a l s o l u t i o n to t h e d u a l p r o b l e m is, by (1),

1 1
1 9 9

w T = c T B - 1 = [0 9 8] 0 7 2 = [0 5 2]
9 3 3 �9

2 1
0 3

I f (2) is u s e d , a n o p t i m a l v a l u e o f W l is

C 4 - - (Z 4 - - C 4) ~- 0 q- 0 - - 0

s ince x 4 was t h e first in i t ia l bas i c v a r i a b l e . L i k e w i s e , a n o p t i m a l v a l u e o f

w 2 c o m e s f r o m t h e s e c o n d in i t ia l bas i c v a r i a b l e x 5 a n d is g iven as

5 5
w 2 = c 5 + (z 5 - c 5) = 0 + 3 = 7 .

3.3 Computational Relations between the Primal and Dual Problems 1 ~7

Finally,

2 2
W 3 -- C 6 -~" (Z 6 -- C 6) "- 0 "~- ~ -- 3"

Thus, this solution to the dual problem yields the value ~ for the dual
objective function, which checks with the value of the primal objective
function. Theorem 3.6 assures us that these solutions are indeed optimal,
since they yield the same value for the objective functions. A

Now let us consider finding a solution to the dual of an arbitrary
general linear programming problem. As we discussed in earlier sections,
such a problem can always be converted to one in the following form:

Maximize z = crx

subject to
A(1)x _< b (1)

A(2)x >__ b (2)

A(3)x - b(3)

x>__0

b (1) ~_ 0, b (2) > 0 , b (3) > 0.

(3)

This conversion does not change the set of feasible solutions but may
change the objective function of the original problem by multiplying it by
-1 . A problem in the form above is ready to be solved by the simplex
method after slack variables and artificial variables are introduced.

After multiplying the second set of constraints of (3) by - 1, we may set
up the dual problem. It is

Minimize z' = [b (1)T -- b (2)T b (3)T]

subject to

I w 1) 1 [A O)T - A (2)T A(3) T] w (2) >_c

w (3)

W (1) ~ O, W (2) > O, w (3) unrestricted.

I w t) 1 w (2)

w (3)

(4)

We seek the solution to (4) using the final tableau from the solution to
(3). If the two-phase method is used, the columns labeled by artificial
variables must not be discarded at the end of Phase 1. They must be kept
throughout Phase 2 and must be modified accordingly by each pivoting
step. However, the entries in the objective row labeled by artificial vari-
ables must n o t be used when checking the optimality criterion. This means

1 ~ 8 Chapter 3 Further Topics in L inear Programming

that there may be negative numbers in the objective row when an optimal
solution is reached, but these numbers will only be in columns labeled by
artificial variables.

Assuming that all the columns labeled by artificial variables are avail-
able, an optimal solution to the dual problem (4) can be obtained from (1)
or (2). If (1) is used, then B -1 is automatically available, as described in
Example 3, in the final tableau of Phase 2 from the columns labeled by the
initial basic variables. We then compute

V~, T - - c T B - 1 ,

but ~ is n o t an optimal solution to the dual problem (4). Because the
second set of constraints in (3)was multiplied by - 1 to find the dual
problem but was not changed to use the simplex algorithm, those entries in
r corresponding to the second set of constraints in (3) must be multiplied
by - 1 . The vector thus formed is w, an optimal solution to the dual
problem (4).

If (2) is used, we must distinguish between the two-phase and the big M
methods. If the two-phase method is used, then the cost of an artificial
variable is 0, so that

1~ i -- 0 if" (Z i - - O) -- Z i.

With the big M method the cost of an artificial variable c/ is - M , and
z i - c i will be of the form k + M, so that

Wi = - M + (k + M) = k.

In either case we must, as above, multiply each of the 1~ i by - 1 , where i
runs through the indices of the second set of constraints in (3). The set of
values W l , W 2 , . . . , W m thus obtained is an optimal solution to the dual
problem.

E X A M P L E 4.

problem
Consider as our primal problem the linear programming

Maximize z = 3 x I d- 2 x 2 + 5 x 3

subject to

X 1 -~- 3X 2 d- 2 X 3 __< 15

2 x 2 - - X 3 >__ 5

2 x 1 d- x 2 - - 5 x 3 = 1 0

x I >_~ 0 , x 2 >_~ 0 , x 3 ~__ 0 .

3.3 Computational Relations between the Primal and Dual Problems 199

After multiplying the second constra int of the primal p rob lem by - 1 , we

find that the dual of the result ing p rob lem is given as

Minimize z ' = 15w I - - 5 w 2 + 10w 3

subject to

W 1 + 2W 3 > 3

3 W l - - 2 W 2 + w 3 >_2

2w 1 + W 2 - - 5 W 3 >__ 5

Wl > 0 , w2 > 0, w3 unres t r ic ted .

In t roducing the slack variables x 4 and x 5 and the artificial variables Yl
and Y2, we can formula te the auxiliary p rob lem to the pr imal p rob lem as

Minimize z = yl + Y2

subject to

x I + 3x 2 + 2x 3 + x 4 = 15

2 x 2 - x3 - x 5 + Y l = 5

2 x 1 + x 2 - 5 x 3 + Y 2 = 10

x i > 0 , i = 1 , 2 , 3 , 4 ; Yl > 0 , Y2 > 0 .

F r o m this s t a tement of the primal p rob lem we can construct our initial

tableau (Tableau 3.16).

The initial basic variables are x 4, Y l, and Y2. At the end of Phase 1 we
have Tab leau 3.17.

Tableau 3.16

CB

0 X 4

1 Yl
1 Y2

0 0 0 0 0 1 1
x1 x2 x3 x4 x5 Yl Y2

1 3 2 1 0 0 0
0 2 1 0 1 1 0
2 1 5 0 0 0 1

XB

15
5

10

2 3 6 0 1 0 0 15

Tableau 3.17

CB

X4

X2

Xl

0 0 0 0 0 1 1
Xl x2 x3 x4 x5 Yl Y2 XB

0 0 0 0 0 1 1 0

0 0 23 1 5 5 1 15
4 4" 4 2 4
1 1 1 0 5 0 1 ~ 0 ~ ~
9 1 1 1 15

1 0 ~ 0 ~ ~ ~ 4

200 Chapter 3 Further Topics in Linear Programming

Converting to Phase 2 but keeping the columns labeled with artificial
variables, we construct Tableau 3.18.

Tableau 3.18

CB

0 X 4

2 x 2

3 x 1

3 2 5 0 0 0 0

Xl x2 x3 x4 x5 Yl Y2

0 0 23 1 5 5 1
4 4" 4 2
1 1 1 0 0 1 ~ 0 ~
9 0 1 1 1

1 0 4 ~ ~

1 1 3 0 0 5.1 0 ~ ~

XB

Now we perform another iteration of the simplex method, including the
results of the pivoting step on the columns labeled by artificial variables
but ignoring these columns when applying the optimality criterion. We
obtain the final tableau (Tableau 3.19). Using (1) to obtain an optimal
solution to the dual problem, we first compute

]~,T __ craB - 1

o r

4 5
23 23

9
f i t = [5 2 31 2--3

9 17
23 23

= ~ 23 2-5 �9

23

7
23

As before,

W 1 - - I ~ 1 , W 2 ~-~ - - 1 ~ , ' 2 , a n d w 3 - - I~ 3 .

Tableau 3.19

CB

5 x 3

2 x 2

3 x I

3 2 5 0 0 0 0

Xl x2 x3, x4 x5 Yl Y2 XB

4 5 5 2 15
0 0 1 ~ 23 23 23 23

2 9 9 ~3 65
0 1 0 ~ 23 23

9 17 17 7 120
1 0 0 ~ 23 23 23

0 0 0 51 58 58 2~ 565
23 23 23 23

Thus, an optimal solution to the dual problem is

wT [51 58 9]
= ~ 2-5 2-5

3.3 Computational Relations between the Primal and Dual Problems 201

and the value of the dual objective function is

z ' - 15 (~) - 5 (~) + 1 0 (9) - 5 6 5
23 "

We see from Tableau 3.18 that an optimal solution to the primal
problem is

120 65 15
X l = 2-'-~'~ X 2 = " ~ X 3 - - 2"3"

and the value of the objective function is 565 -~3-, which is the same as the
value for the dual problem.

We can also solve the primal problem using the big M method,
obtaining the final tableau (Tableau 3.20). Using (2) w e can obtain an
optimal solution to the dual problem from Tableau 3.20 as follows. Since
the first initial basic variable is x4, we then find

W 1 - " 1~ 1 - - C 4 -'[- (Z 4 - - C 4) = 0 "[- - -

The second initial basic variable is Y l, so that

~) w 2 = - M + (M - 58

51 51
23 23 �9

58
2 3 "

But since the second constraint was multiplied by - 1 in forming the dual
problem, we must multiply if2 by - 1 to obtain the value of the dual
variable at the optimum. We have

W 2 m l , ~ 2 58

Proceeding as in the case of the first dual variable, we find

9 w3 = w 3 - M + M + 9 = ~ .

Substituting these values into the objective function, we get

z ' = 15(51 58 9 565 ~) - 5() + 9 0 (~) = 23

which is the same as the value for the primal problem.

Tableau 3.20

3 2 5 0 0 -M - M
C B X1 X2 X3 X4 X5 Yl Y2 X B

4 5 5 2 15
5 X 3 0 0 1 2-3 23 23 2-3 23

2 65 2 x 2 0 1 0 ~3 9 9 2~ 23
9 17 17 120 3 x 1 1 0 0 ~ 23 23 7 23

0 0 0 51 58 M 58 9 565
23 23 ~" M "~" 23

A

202 Chapter 3 Further Topics in Linear Programming

3.3 EXERCISES

In Exerc ises 1 and 2 fill in all the missing en t r ies in the given s implex tableaux.

CB

2 x 2
X6

1 0 0 5

X 1 X 2 X 3 X4 X 5 X 6 X B

3 1 2 2
2 0 1 3
6 7 6 1

CB

4 ~ ~ 3 1 0 2 3 3 3

X 1 X 2 X3 X4 X 5 X6 X 7 X B

0 4 2 0 1 0 1 ~ ~ 4
1 2 1 0 1 1 0 ~ ~ ~ 10
1 1 1 0 0 1 4 1 ~ ~ ~

In Exercises 3 and 4 we give the or iginal objec t ive func t ion of a l inear p r o g r a m -

ming p r o b l e m and the final t ab l eau at the end of P h a s e 1. F ind the initial t ab l eau

for Phase 2 and solve the resul t ing l inear p r o g r a m m i n g p r o b l e m .

3. Max imize z = 2x 1 + 3x 2 + 5 x 3 q - X 4.

CB Xl X2 X3 X4 X5 X6 X7 Yl Y2

0 X 1

0 x 4

0 X 6

1 Yl

1 Y2

1 ~1 1 0 3 0 1 0 0 2"1
1 0 1 ~ 1 2 0 1 0 0 4

0 2 2 0 1 3 3 ~ 1 0 0 0
0 3 2 0 3 0 0 1 0 0 2
0 4 1 0 2 0 2 0 1 0

0 1~ 1 0 1 0 2 0 0 0

XB

3.3 Computational Relations between the Primal and Dual Problems ~0~

4. M a x i m i z e z = 3x 1 + x 2 + 3x 3.

CB X1 X2 X3 X4 X5 X6 Yl

0 x 1

0 x 3

0 x 5

1 Yl

2 0 2 1 1 0 2 0

0 1 1 1 0 1 0 5 2
2 0 2 0 3 1 1 0

3 1 0 ~ 0 5 0 2 1 0

3 1 0 2 0 0 0 ~ 0

X B

5. Ver i fy t he en t r i e s in T a b l e a u x 3.4 a n d 3.5.

In Exe rc i se s 6 - 1 2 solve the g iven l inea r p r o g r a m m i n g p r o b l e m ca lcu la t ing zj

as d e s c r i b e d in this s ec t ion and us ing the n e w f o r m a t for t he t ab leaux .

6. M a x i m i z e z = 2 x 1 + x 2 + 3x 3

sub jec t to

2 x 1 - x 2 + 3x 3 < 6

x 1 + 3x 2 + 5x 3 < 10

2 x 1 + x 3 < 7

X 1 >_~ 0 , X 2 >_~ 0 , X 3 >__ 0 .

- - c j

7. M a x i m i z e z = xl + X 2 -k- X 3 d- X 4

sub jec t to

X 1 d'- 2X 2 - - X 3 -~- 3X 4 < 12

x 1 + 3 x 2 + x 3 + 2 x 4 < 8

2 x 1 -- 3 x 2 - - x 3 d- 2 x 4 < 7

x 1 >_~ 0 , x 2 >_~ 0 , x 3 ~__ 0 , x 4 >__ 0 .

8. M i n i m i z e z = 8x 1 + 6x 2 + l l x 3

sub jec t to

5X 1 + X 2 d- 3X 3 < 4

5 x 1 + x 2 q- 3 x 3 >__ 2

2 x I + 4 x 2 + 7 x 3 < 5

2 x I -I- 4x e + 7x 3 >__ 3

X l + x 2 + x 3 = 1

X 1 >__ 0 , X 2 >_~ 0 , X 3 >__ 0 .

(Exerc i se 14 will r e q u i r e t he use o f t he c o l u m n s c o r r e s p o n d i n g to ar t i f icial

va r iab les .)

~1~ Chapter 3 Further Topics in Linear Programming

13.

14.

15.

16.

17.

18.

9. M i n i m i z e z = 4 x 1 -k-x 2 -k-x 3 -k- 3 x 4

s u b j e c t to

2 x I + x 2 + 3 x 3 + X 4 ~__ 12

3 x I + 2 x 2 -I- 4 x 3 -- 5

2 x 1 - x 2 -k- 2 x 3 + 3 x 4 - - 8

3x I + 4 x 2 + 3 x 3 + x 4 >__ 16

X 1 ~_~ O, X 2 ~__ O, X 3 ~ O, X 4 >__ O.

10. M a x i m i z e z = 2 x I + x 2 + x 3 + x 4

sub j ec t to

x I + 2 x 2 + x 3 + 2 x 4 < 7

x 1 + 2 x 2 + x 3 + 2 x 4 >__ 3

2 x 1 + 3 x 2 - - x 3 - - 4 x 4 < 10

x I + X 2 + x 3 + x 4 = 1

X 1 >' 0, X 2 >" 0, X 3 >_~ 0, X 4 ~_~ 0.

11. M a x i m i z e z = 3Xl + x2 + 3x3 + x4

s u b j e c t to

x I + x 2 + 4 x 3 + x 4 < 6

2 x 1 + 6 x 3 + 2 x 4 >__ 8

2 0 x 1 + 2 x 2 + 47x 3 + l l x 4 < 48

X 1 >_~ 0, X 2 ~_~ 0, X 3 ~ 0, X 4 >__ 0

12. M a x i m i z e z = 2 x 1 + x 2 -k- 3x 4

s u b j e c t to

9x 1 + 14x 2 - 6 x 3 - 6 x 4 < 2

xa + x 2 - x 3 - x 4 > - 1

- 2 0 x 1 - 5 x 2 + 5x 3 + 13x 4 = 11

5x I + 10x 2 - 2 x 3 + 14x 4 = 6

X 1 >_~ 0, X 2 ~__ 0, X 3 ~__ 0, X 4 >_~ 0.

F o r e a c h o f t he l i n e a r p r o g r a m m i n g p r o b l e m s in E x e r c i s e s 6 a n d 9 f ind t h e

m a t r i c e s B a n d B - 1 f r o m e a c h o f t h e t a b l e a u x t h a t a r o s e in t h e s o l u t i o n o f t h e

p r o b l e m .

F o r e a c h o f t h e p r i m a l l i n e a r p r o g r a m m i n g p r o b l e m s in E x e r c i s e s 6 a n d 8 f ind

an o p t i m a l s o l u t i o n to t he d u a l p r o b l e m u s i n g t h e f inal t a b l e a u d e t e r m i n e d in

so lv ing t he p r i m a l p r o b l e m .

So lve E x a m p l e 5 in S e c t i o n 1.1.

So lve P r o j e c t 2 in S e c t i o n 1.1.

So lve P r o j e c t 3 in S e c t i o n 1.1.

V e r i f y t he r e m a r k s p r e c e d i n g E x a m p l e 2 r e g a r d i n g P h a s e 2.

3.4 The Dual Simplex Method 205

3.4 THE DUAL SIMPLEX METHOD

In modeling applied problems as linear programming problems, it
frequently becomes necessary to add more constraints to the model. These
constraints are generally used to make the model more accurately repre-
sent the real problem, and their need becomes evident when the re-
searcher compares the solution to the linear programming problem with
the situation being modeled. However, adding one or more constraints
may cause the existing solution to become infeasible. In this case the dual
simplex method, discussed in this section, can be used to restore feasibility
without having to resolve the entire new problem.

When we use the simplex algorithm on a primal problem we begin with
a feasible but nonoptimal solution. Each iteration of the simplex algorithm
finds a feasible solution that is closer to optimality, and this procedure
continues until an optimal solution is reached. In the meantime, what is
happening to the dual problem? Let us examine the sawmill problem in
this context.

EXAMPLE 1. The primal problem in standard form for the model is

Maximize z = 120x + 100y

subject to

2x + 2y < 8

5x + 3y < 15

x > O , y > O .

The dual problem is

Minimize z' = 8 s + 15t

subject to

2s + 5t > 120
2s + 3t > 100

s > O , t > O .

The initial tableau for the primal problem, after adding the necessary slack
variables, is as follows.

Tableau 3.21

CB

0 U

0 v

120 100 0 0

x y u v x B

2 2 1 0 8

5 0 1 15

120 100 0 0 0

206 Chapter 3 Further Topics in Linear Programming

F r o m this tab leau we see that

[0 and B - l = [1 O]
s 0 0 1 '

and we may compu te f rom the fo rmula w T - cTB - 1 that

o]_io ol ~r [S t] = [0 0] 0 1

Note that this "solu t ion" to the dual p rob lem satisfies the nonnegat ivi ty
condit ions but ne i ther of the constraints.

We now pivot in Tab leau 3.21 and obta in Tab leau 3.22.

Tableau 3.22

s

0 U

120 x

120 100 0 0
x y u v

0 4 1 2
3

3 0 1

0 28 0 24

XB

360

F rom this tableau we see that

s

[2]
0] and B - 1 __ 1 - 51

120 0

and that

[[~ 1
~r [S t] = 120 0 1 = [0 24].

We now have a "so lu t ion" to the dual p rob lem that satisfies the nonnega-
tivity condit ions and also satisfies the first but not the second constra int of
the dual problem. W e pivot again, obtaining Tab leau 3.23.

Tableau 3.23

s

100 y
120 x

120 100 0 0
x y u v x B

5 1 5 0 1 ~ ~
3 1 3 1 0 ~ 7 7

0 0 35 10 430

F rom this tab leau we see that

s
= [100

120]
and B-a

5

3

1]
1 "

3.4 The Dual Simplex Method ~0~

Thus,

w T = [s t] = [35 10].

This is a feasible solution to the dual problem: it satisfies the nonnegativity
conditions and both of the constraints of the problem. The objective
function value for the dual problem using this solution is the same as the
objective function value for the primal problem with the corresponding
solution. From the Duality Theorem, we have found an optimal solution to
the dual problem. A

From this example we have seen that if the primal problem has a
solution that is feasible and nonoptimal, then the solution determined for
the dual problem is infeasible. As the simplex method progresses, the
solutions determined for the dual problem are all infeasible until the
optimal solution is attained for the primal problem. The dual solution
corresponding to the optimal primal solution is both optimal and feasible.
The goal for the primal problem when using the simplex method is to
achieve optimality. The goal for a corresponding method for the dual
problem is to achieve feasibility, that is, to have both nonnegativity
constraints and resource constraints satisfied.

The dual simplex method handles problems for which it is easy to
obtain an initial basic solution that is infeasible but satisfies the optimality
criterion. That is, the initial tableau has nonnegative entries in the objec-
tive row but negative entries in the right-hand column. The following
example will be used as we present our description of the dual simplex
algorithm.

E X A M P L E 2 . Consider the following linear programming problem:

M a x i m i z e z - - - x 1 - 2 x 2

subject to

x I - 2x 2 + x 3 > 4

2x I + x 2 - x 3 > 6

X 1 ~__ 0 , X 2 ~_~ 0 , X 3 ~__ 0 .

We change each constraint to an < inequality and then introduce slack
variables x 4 and x 5. The result is a problem in canonical form:

Maximize z = - - X 1 - - 2 X 2

subject to

- - x 1 + 2 x 2 - x 3 + x 4 = - - 4

- 2 x 1 - x 2 + x 3 + x 5 = - 6

x j > 0 , j = 1 , 2 , . . . , 5 .

The initial tableau for the simplex algorithm is given in Tableau 3.24. It
has x 4 and x 5 as the initial basic variables. The solution that this tableau

208 Chapter 3 Further Topics in Linear Programming

represents is

X 1 - - 0 ,

Tableau 3.24

X 2 - - 0 , X 3 -" 0 , X 4 = -- 4, X 5 = - 6 .

CB

0 X 4

0 x 5

1 2 0 0

X1 X2 X 3 X4

1 2 1 1
2 1 1 0

0

X5 XB

0 - 4

1 6

1 2 0 0 0 0

This solution is not feasible, and here z = 0. The entries in the objective
row show that the optimality criterion is satisfied. A

The dual simplex method consists of two parts: a feasibility criterion
that tells us whether the current solution (which satisfies the optimality
criterion) is feasible, and a procedure for getting a new solution that
removes some of the infeasibilities of the current solution and conse-
quently drives the current solution toward a feasible solution. The dual
simplex method consists of the following steps.

1. Find an initial basic solution such that all entries in the objective row
are nonnegative and at least one basic variable has a negative value.
(Tableau 3.24 represents this step for our example.)

2. Select a departing variable by examining the basic variables and
choosing the most negative one. This is the departing variable and the row
it labels is the pivotal row.

3. Select an entering variable. This selection depends on the ratios of
the objective row entries to the corresponding pivotal row entries. The
ratios are formed only for those entries of the pivotal row that are
negative. If all entries in the pivotal row are nonnegative, the problem has
no feasible solution. Among all the ratios (which must all be nonpositive),
select the maximum ratio. The column for which this ratio occurred is the
pivotal column and the corresponding variable is the entering variable. In
case of ties among the ratios, choose one column arbitrarily.

4. Perform pivoting to obtain a new tableau. The objective row can be
computed as zj - c j = c ~ t j - cj, where tj is the j th column of the new
tableau.

5. The process stops when a basic solution that is feasible (all variables
> 0) is obtained.

A flowchart for the dual simplex method is given in Figure 3.4 and a
structure diagram is given in Figure 3.5.

EXAMPLE 2 (CONTINUED). Continuing with our example, we perform
Step 2 of the dual simplex algorithm. We see that x 5 = - 6 is the most

3.4 The Dual Simplex Method 209

Input is a tableau which satisfies the optimality criterion.

.................... I~E ~
[Get pivotal row ,, 1

.................

............................... 1 ~ ...

1
by pivoting

NO

NO

Indicated
solution
is feasible

There are no]
'~ | feasible

I s~176]

I I I ~

FIGURE 3.4 Flowchart for the dual simplex algorithm.

Input is a tableau which satisfies the optimality criterion.

WHILE negative values for basic variables DO

Get pivotal row

~ " ~ Neg~tivee'ntries in
pivotal row ~

TRUE ~ FALSE
. ~ ~A'~,, ~

Get pivotal column
.

Compute new
tableau by
pivoting

i

No feasible
solutions exist

STOP

Present tableau represents feasible solution
.

FIGURE 3.5 Structure diagram for the dual simplex algorithm.

210 Chapter 3 Further Topics in Linear Programming

negative basic variable, so that x 5 is the departing variable. The ratios of
the entries in the objective row to corresponding negative entries in the
pivotal row are

1 Column 1" 2

Column 2" - 2.

The maximum ratio is - - 2,1 so that Xl i s the entering variable. We repeat
Tableau 3.24 with the entering and departing variables and the pivot
labeled (Tableau 3.24a).

Tableau 3.24a

CB

1 2 0 0 0

x1 x 2 x 3 x 4 x 5

0 x 4 1 2 1 1

0 x5 (-2") 1 1 0

1 2 0 0

x B

0 4

1 6

0 0

We now perform a pivotal elimination to get Tableau 3.25. The basic
solution given by Tableau 3.25 is

X 1 - - 3, X 2 ~-- 0 , X 3 = 0 , X 4 = --1, X 5 = 0.

This solution is still optimal (the objective row has nonnegative entries)
but is infeasible. However, it is less infeasible in that only one variable is
negative.

Tableau 3.25

C B

0 X 4

1 x 1

1 2 0 0 0

X1 X 2 X 3 X 4 X 5 X B

0 5 ~-2) 1 ~ 1 1

1 1 0 1 1 ~- 2 ~ 3

0 3 ! 0 1
2 2 2

For the next iteration of the dual simplex algorithm, X 4 is the departing
variable, since it is the only negative basic variable. Forming the ratios of
the entries in the objective row to the corresponding negative entries of
the pivotal row, we have

1 3 1 Column 3" ~ / 2 = -

Column 5" 1 1 ~ / - ~ = - 1 .

3.4 The Dual Simplex Method 211

1 is the entering variable. Pivoting, we The maximum ratio is - 7, so that x 3
now obtain Tableau 3.26.

Tableau 3.26

CB

0 X 3

1 x 1

1 - 2 0 0 0

X1 X2 X 3 X4 X 5

0 s 1 2 1_
3 3 3
1 1 1

1 ~ 0 i i

0 7 0 ~ !
3 3 3

X B

2

The basic solution represented by Tableau 3.26 is

10 2
X 1 - - -~ - , X 2 - - 0 , X 3 - - ~ , X 4 - - 0 , X 5 - - 0 .

This solution satisfies the optimality criterion, and it is feasible since all
the variables have nonnegative values. A

While using the dual simplex method in Example 2, we were fortunate
in finding an initial basic solution to the given problem that satisfied the
optimality criterion but was not feasible. In general, it is difficult to find
such a starting point for the dual simplex method. However, the principal
use of this method is to restore feasibility when additional constraints are
included in a linear programming problem whose solution is known. The
following example illustrates this situation.

EXAMPLE 3. There are three typical kinds of dog food that Paws eats
each day: dry food, canned wet food, and dog biscuits. The nutritional
analysis of his favorite brands is given in the following table in percent by
weight.

Fat Protein Fiber Moisture Cost (r

Dry food 8.0 14.0 5.5 12.0 4.1
Wet food 6.0 9.0 1.5 78.0 2.5
Biscuit 8.0 21.0 4.5 12.0 7.3

The veterinarian has suggested that Paws get at least 5 oz of protein and at
most 1 oz of fiber each day. His owner has set up the following linear
programming problem to model the dietary requirements and minimize
the cost, where x I is the amount of dry food measured in ounces offered

212 Chapter 3 Further Topics in Linear Programming

to Paws. Similarly x 2 denotes the amount of wet food and x 3 denotes the
amount of biscuits.

Minimize z = 4.1x 1 + 2.5x 2 + 7.3x 3

subject to

0.14x 1 + 0.09x 2 + 0.21x 3 > 5.0

0 . 0 5 5 X 1 '[- 0.015x 2 + 0.045x 3 < 1.0

x j > 0 , j = 1 , 2 , 3

We first t ransform this problem to s tandard form and then to canonical
form introducing the slack variables x 4 and x 5"

Maximize z = - - 4 . 1 x I - - 2 . 5 x 2 - - 7 . 3 x 3

subject to

- 0 . 1 4 x 1 - 0.09x 2 - 0.21x 3 + X 4 = - - 5 . 0

0 . 0 5 5 X 1 "[- 0.015x 2 + 0.045x 3 + x 5 = 1.0

x j > 0 , j = 1 , 2 , . . . , 5 .

Solving this l inear p rogramming prob lem using the dual simplex me thod
we obtain (verify) Tableau 3.27.

Tableau 3.27

CB

2.5 x 2

0 x 5

4.1 2.5 7.3 0 0

x1 x 2 x 3 x4 x 5

1.556 1 2.333 11.111 0

0.032 0 0.010 0.167 1

0.211 0 1.467 27.778 0

x B

55.556

0.167

138.889

From this tableau we see that the minimum-cost diet for Paws consists of
55.556 ounces of wet food per day (no dry food and no biscuits, poor Paws)
at a cost of $1.39 per day.

At the most recent visit to the veterinarian, she also suggested that
Paws' fat intake be limited to 2.5 oz per day. The new constraint,

0 . 0 8 X 1 -[- 0 . 0 6 X 2 + 0 . 0 8 X 3 ~ 2.5,

expresses this limitation. Introducing the slack variable x 6 the new con-
straint becomes

0 . 0 8 X 1 q- 0.06x 2 + 0 . 0 8 x 3 q - x 6 - - 2.5.

We now include this constraint into Tableau 3.27 and form Tableau 3.28.
Observe that the new slack variable x 6 does not appear in the o ther two
constraints nor in the objective function, so that its coefficient in these two
constraints and in the objective row will be zero.

3.4 The Dual Simplex Method 213

Tableau 3.28

CB

- 2.5 x 2

0 x 5

0 x 6

4.1 2.5 7.3 0 0 0

X1 X 2 X3 X4 X 5 X6
.....

1.556 1 2.333 11.111 0 0
0.032 0 0.010 0.167 1 0

0.08 0.06 0.08 0 0 1
.

XB

55.556
0.167
2.5

0.211 0 1.467 27.778 0 0 138.889

Moreover, the new slack variable will be a basic variable. Since x 2 is a
basic variable, all the entries in the column labeled by x 2 must be zero
except for the entry in the row labeled by x 2. Hence, we add (- 0.06) times
the first row to the third row and obtain Tableau 3.29.

Tableau 3.29

CB

2.5 x 2

0 x 5
0 x 6

4.1 - 2.5 7.3 0 0 0

Xl X2 X3 X4 X 5 X 6
....

1.556 1 2.333 11.111 0 0
0.032 0 0.010 0.167 1 0
0.013 0 0.06 0.667 0 1

0.211 0 1.467 27.778 0 0

X B

55.556
0.167

-0 .833

138.889

This tableau represents an infeasible solution that satisfies the optimality
criterion.

Using the dual simplex method, we may restore feasibility. We see that
x 6 is the departing variable and that x 1 is the entering variable for this
step. Completing several iterations of the dual simplex method we obtain
Tableau 3.30 (verify).

Tableau 3.30

CB

2.5 x 2
4.1 x 1

7.3 x 3

4.1 2.5 7.3 0 0 0

X1 X2 X3 X4 X 5 X 6

0 1 0 5.031 35.220 33.019
1 0 0 9.434 33.962 5.660

X B

22.170
0.943

0 0 1 13.208 7.547 17.925 13.679

0 0 0 45.157 3.899 25.094 159.151
_.

We conclude that after his fat intake was restricted, the minimum-cost
diet for Paws is 0.943 oz of dry food, 22.17 oz of wet food, and 13.679 oz of
dog biscuits per day at a total cost of $1.59. A

Much of our discussion of the simplex method centered on finding an
initial basic feasible solution to a linear programming problem in arbitrary

214 Chapter 3 Further Topics in Linear Programming

form. We developed the concept of artificial variables to provide a method
for constructing a starting point for such a problem. The situation with the
dual simplex method is different. In this book we will use the dual simplex
method to restore feasibility in a tableau that represents a solution that is
infeasible but satisfies the optimality criterion. Thus, we will not need any
procedures for finding an initial basic feasible solution when using the dual
simplex method.

3.4 EXERCISES

In Exerc i se s 1 - 5 the g iven tab leau represen t s a s o l u t i o n to a l inear p r o g r a m m i n g

p r o b l e m that satisf ies the opt imal i ty cr i ter ion, but is infeas ible . U s e the dual

s implex m e t h o d to res tore feasibil ity.

CB

5 X 1

6 x 2

0 x 5

5 6 0 0 0

X 1 X2 X3 X4 X5

1 1 1 0 ~ ~ 0
0 1 12 5 0 12

1 7 0 0 ~ g 1

z 15 0 0 0 ~ 8

X B

161

CB

Xl

X2

X3

X 6

5 6 0 0 0 0

X1 X2 X3 X4 X 5 X 6 XB

1 0 0 1 1 0 4
2 0 1 0 1 ~ 0

0 0 1 7 - 8 0 2
1 1 0 0 0 0 ~ 1

0 0 0 1 1 0 40

C B

X3

X5

X2

X7

4 5 3 0 0 0 0
X 1 X2 X3 X4 X5 X 6 X7 X B

3_ 0 1 1 0 0 0 5_
4 4 2

11 0 0 ?6 1 1 16 ~" 0 8
9 1 0 16 0 1 0 19
16 4 8
1 1 1 0 0 ~ 0 0 1

17 0 0 7 0 5 155
16 ~" 0 a

3.5 The Revised Simplex Method 215

C B

X1

X 2

X 3

X 6

5 6 0 0 0 0

X1 X 2 X3 X4 X5 X 6 X B
.....

1 0 0 0 1 0 4
1 2 10 0 1 0 ~ ~ 0 3

0 0 1 1 8 0 2
1 2 1 1 0 0 0 -~ ~

0 0 0 2 1 0 40

,

CB

0 X 3

7 x 1

3 x 2

0 X 6

7 3 0 0 0 0

X1 X 2 X3 X4 X5 X 6 X B
.

1 17 0 19 0 0 1 a 4 2

1 3 1 1 0 0 ~ ~ 0

0 1 0 0 1 0 2
1 3 1 2 3 0 0 0 ~ s 4

.

0 0 0 Z ~ 0 31
8 8 4

6. Use the dual simplex method to verify that Tableau 3.27 is correct,

7. For Example 3, verify using the dual simplex method that the final tableau
(Tableau 3.30) is correct. Note that your answer may differ slightly from the
text due to round-off error.

8. Use the dual simplex method to find a solution to the linear programming
problem formed by adding the constraint

3x I + 5x 3 > 15

to the problem in Example 2.

9. Example 3 showed that adding a constraint may change the solution to a linear
programming problem (i.e., the new solution has different basic variables and
the basic variables have different values). There are two other possibilities that
may occur when a constraint is added. Describe them.

Computing project. Compare the structure diagrams for the simplex
algorithm and the dual simplex algorithm. How is duality exemplified by these
diagrams?

10.

3.5 THE REVISED SIMPLEX METHOD

The revised simplex method makes use of some of the notation and
ideas we developed in Section 3.3 to obtain efficiency in computat ion and
storage of intermediate results. The simplex method, as we described it,

~1 ~ Chapter 3 Further Topics in Linear Programming

performs elementary row operations on an m • (n + m) matrix for a
problem in standard form with m constraints and n variables. The revised
simplex method works with the much smaller m • m matrix. The savings
in computation time and storage of arrays can be considerable for large
problems (n > 1000) typically found in applications. Consequently the
computer programs for solving linear programming problems, called LP
codes, always use the revised simplex method.

We consider a linear programming problem in canonical form

Maximize z = cTx

subject to (1)
A x = b

x ~ _ O .

In this section we confine our attention to the case in which the canonical
form above was obtained using only slack variables, not artificial variables.
A more general procedure for dealing with artificial variables is available,
but will not be discussed in this book.

For each tableau in the simplex algorithm we defined the matrix

B = [A i 1 A i 2 ""Aim] ,

where Ai, is the i r column of the constraint matrix A and i r is the index of
the rth basic variable in the list at the left side of the tableau. The values
of the basic variables xi~, xi2,... , Xim were represented by the vector

Xi

XB --" IXi
and we showed that

x B = B - X b or b = B x B. (2)

We also defined

Ci

CB --- I ci~
LC m

so that

z -e~xB or z - e ~ x B - 0 . (3)

3.5 The Revised Simplex Method ~1

We can combine equations (2) and (3) into one matrix equation by writing

[1 c][z
0 B XB

0] (4)
b "

The coefficient matrix in (4) is (m + 1) x (m + 1), and the vectors are
(m + 1) x 1. We denote the coefficient matrix in (4) by M; that is,

M ___
1 - c ~

0 B

By multiplying the matrices together, the reader may verify that

o1:[10 c B1]B1
Hence, the solution represented by any tableau can be succinctly stated as

Z -1 0]

= 1 r
0 B -1 b

cTB-lb].
B-lb

(5)

The revised simplex method exploits the form of the solution in (5) by
working only with the matrix M-1 instead of the entire tableau. In fact,
because M-1 has a particularly simple form, we need consider only B -1.
Now the initial tableau is constructed so that B = I m, where I m denotes
the m x m identity matrix. Thus, initially, B-1 . _ in" The revised simplex
method uses a procedure to find the B -1 for the next iteration using
information about the entering and departing variables along with the
current B-1. We start by writing

(B -~)new = EB -1, (6)

where E is an m x m matrix that can be obtained as follows.

(a) Start with I m. Suppose Xp is the entering variable and that Xiq is the
departing variable. We have previously shown that tp, the p th column of
the current simplex tableau, which is the pivotal column, is given by

tp = B-lAp,

~18 Chapter 3 Further Topics in Linear Programming

where Ap is the p th column of the original matrix A. Denote the entries of
the pivotal column of the current tableau by

tp

Itlp

= l t2p "

(b) Replace the qth column of I m by the vector

--tlp/tqp
--t2p/tqp

1/tqp

--tmp/tqp

qth entry,

called an e t a v e c t o r .

This modification of the identity matrix that we have constructed is
called an eta matrix and is the matrix E that we wanted. Notice that we
never have to numerically invert a matrix (a procedure that may require
some care); we simply obtain a sequence of matrices that are B-1 for each
of our tableaux.

The revised simplex method consists of the following steps:

1. Determine the entering variable Xp by choosing the most negative
z: - cj, j = 1, 2 , . . . , s. Pick randomly if there are ties. Recall that z: - c:
may be computed as

z j - cj = c ~ t j - cj = c ~ B - 1 A j - cj�9

In terms of a matrix product, we may write

[1 cTB_1] [-CJA:].

2. Determine the departing variable Xiq�9 This is the variable with the

minimum 0-ratio. The i r th basic variable has a 0-ratio

Xir//tr p ,

3.5 The Revised Simplex Method ~1

where Xir is the entry in X B on the right-hand side of the tableau and
where trp > 0. T o find the 0-ratios, we may compute

tip

tp --- tEp. = B - l a p

trap

and

x B = B - l b .

We use only those entries in x B that correspond to positive entries in tp to
form the set of 0-ratios.

3. Determine the new B-1 as described above.
4. Determine the new basic feasible solution and objective function

value. From Equations (5) and (6), (XB)ne w --(B-1)new b -- EB-lb = Ex B.
Thus, if x B is available in storage, then

(X B) n e w -" E x B.

This formula is computationally faster than Equation (5), since E is
sparse (has many zeros).

As in the simplex method, if none of the zj - cj is negative, an optimal
solution has been achieved. If none of the entries in the pivotal column t p
is positive, the optimal solution is unbounded. Observe that in using the
revised simplex method, no tableau need be computed.

EXAMPLE 1. Consider the linear programming problem in canonical
form that came from the model for the sawmill:

Maximize z = 1 2 0 x I + 1 0 0 x 2

subject to

2x 1 + 2 x 2 + x 3 - - 8

5 x 1 -~- 3 x 2 + x 4 - - 15

x j > 0 j = 1 ,2 ,3 ,4 .

For this problem

A .__
2 1 o] b 181 and

0 1 ' 15 '
C --

120
100

0 "
0

~ 0 Chapter 3 Further Topics in Linear Programming

The slack variables x 3 and x 4 are our initial basic variables, so that i 1

and i 2 - - 4 . Consequently,

[1 0] B _ I = [1 0 and C B = 0]
B = 0 1 ' 0 1 ' 0 "

Therefore,

c .l M1 [1 c .l] [i ~ ~] - = = = 1 0 ,
0 B - 1 0 1

so that [1 o o][o] [
XB b 0 0 1 15

We first determine the entering variable by computing

- Aj - - [1 0 0]

Therefore,

0]
8 .

15

: - C j* �9

= 3

(7)

E

[2]
1 0

Therefore,

Z 1 - - C 1 = - - C 1 = - - 1 2 0

Z 2 - - C 2 = - - C 2 = - - 1 0 0

Z 3 - - C 3 ~-- - - C 3 - - 0

Z 4 - - C 4 = - - C 4 -" 0 ,

and Xl (P = 1) is the entering variable.
To find the departing variable, we form

[2 2
1 0] [5] = [5] t l = B - 1 A 1 - - [0 1

and copy x B from (7). All the entries of t 1 are positive, so we compute
8 min{~, ~} = 3.

The minimum 0-ratio occurs for xi2 = x 4 (q = 2) and, thus, x 4 becomes
the departing variable. To compute the eta matrix E, we replace the
second column of 12 with the eta vector

--g
1 ~ g

3.5 The Revised Simplex Method ~1

and

(B-1)new = EB -1 = 1 - 7 1
1 0 0

Now we have i I = 3 and i 2 = 1, so that

0
CB = [120] and

M - - 1

Therefore,

and the current solution is

[1o
e~B - 1 = [0 241.

I 1
1 0 24

2
0 1 - 7 ,

1 0 0 ~

2] - - 7

1 "

I!o 241[0] [360] [] [] z = M - 1 0 1 - 7 8 = 2 �9

1 15 3 XB b 0

Next we compute

so that

z , - cj = [1 c .-11 [_cj] Aj = [1
--cj]

24] Aj '

- 120]
z 1 - - C 1 = [1 0 24] 2 = 0

5

z 2 - c 2 - [1 0 24] 2 = - 2 8
3 [o]

z 3 - c 3 = [1 0 24] 1 = 0
0

z 4 - c 4 = [1 0 24] = 2 4 .

(8)

The entering variable is x 2 (p = 2). To find the depart ing variable, we
compute

_ 1 - ~ 2
1 3 3 t 2 B 1A2 0 ~

~ Chapter 3 Further Topics in Linear Programming

and copy x B f rom (8). All the entr ies of t 2 are positive, so that we compu te

min 7 , -5- = - i = - .
3 ~ 2

The m i n i m u m 0-ratio occurs for Xil = x 3 (q = 1) and, thus, x 3 becomes
the depar t ing variable. W e compu te the e ta matr ix E by replacing the first
column of 12 by the eta vector

W e obtain

and

[] [5] 1 / ~
3 4 3 " - ~ / ~ - ~

[5]
E = 7 0

3 - 7 1

[5][2][5
(B - 1) n e w - " 7 0 1 -- ~ = 7

3 1 3

1]
1 "

Now we have i~ = 2 and i 2 = 1, so that

[100] and c T B - 1 = [3 5
Ca -- 120

Therefore ,

M - - 1 _ _ I 1
1 35 10
0 5 1

4 2

0 3 1
4

10].

and the current solution is

355101[0]1 rt43011
7 ~ 8 = - .
3 1 15
4

(9)

Next we c o m p u t e

W e have

z j - c j = [1 35 10] [- c j
Aj]"

Z 1 - - C 1 - - 0

z2 - c2 = 0

Z 3 - - C 3 - - 35

Z 4 - - C 4 - - 1 0 .

Since zj - cj >_ 0 for all j, the solut ion given by (9) is opt imal . A

3.5 The Revised Simplex Method 223

3.5 EXERCISES

In Exercises 1 and 2 calculate the eta vector and then the eta matrix E from the
given information.

1. The pivotal column tp is

i11 - 2
t p = 0

3

and the departing variable labels the fourth row (q = 4).

2. The pivotal column tp is

1

3

t p - - ~

-ig

and the departing variable labels the second row (q - 2).

In Exercises 3 and 4, find the new B-1 from the given information.

3. The current B- 1 is

1 0 2]
B - 1 - - - 1 1 3

0 2 1

and the pivotal column is given by

3
tp =

2
and x b

4. The current B- 1 is

I 1 - 1 2 1-1 l l _ l = 0 1 0 1
- 1 3 1 - 3

2 1 2 4

and the pivotal column is given by

0
4

tp = - - 2
2

and x b = Iil

~ Chapter 3 Further Topics in Linear Programming

In Exerc i se s 5 - 9 solve the g iven l i nea r p r o g r a m m i n g p r o b l e m us ing the r ev i s ed

s implex m e t h o d .

5. Exe rc i s e 6, Sec t i on 3.3

z = x I + 2 x 2 + 3x 3 + x 4 6. M a x i m i z e

sub jec t to

2 x 1 + X 2 + X 3 + 2X 4 < 18

3X 1 + 5 x 2 + 2 x 3 + 3x 4 < 24

3x I + 2 x 2 + X 3 + X 4 __< 12

Xj>_O, j = 1 , 2 , 3 , 4 .

7. M a x i m i z e

sub jec t to
z = 2X 1 + 3X 2 + X 3 + X 4 + 2X 5

2 x I + X 2 - -

X 1 + 4x 2

3x I

x j > _ O ,

3 x 3 + x 4 + x 5 __< 10

+ X 4 + 2 x 5 < 20

+ 4x 4 -t- 2 x 5 < 15

j - l , 2 5.

8. M a x i m i z e

sub jec t to
z = 3x I + 2 x 2 + 4x 5 + X 6 + 2 x 8

3x 1 + X 2 + X 3 + X 4 + 2X 5 + 3X 6 + X 8 < 12

2X 1 + X 2 + 2 x 4 + 5 x 6 + x 7 + 2 x 8 _< 15

3x 1 + 2 x 2 + X 3 + 3x 5 + X 7 + 3x 8 < 18

xj>O, j = 1 , 2 8.

9. M a x i m i z e

sub jec t to
z = 2 x 1 + X 2 + 3x 3 + X 6 + 2 x 7 + 3x 8

2 x I + x 2 + x 4 + 3x 5 + x 7 __< 24

X 1 + 3 x 3 + x 4 + x 5 + 2 x 6 + 3x 8 < 30

5X 1 + 3 x 2 + 3 x 4 + 2 x 5 + X 7 + 5X 8 _~< 18

3x I + 2 x 2 + X 3 + X 6 + 3x 8 _< 20

xj>_O, j = 1 , 2 8.

10. I f

ver i fy t h a t

M __

M-l=

1

0 B '

1 eTB-1].
0 B -1

3.6 SensitivityAnalysis 225

11. Consider the standard linear programming problem
Maximize z = eTx
subject to

A x < b
x>__O.

(a) Show that this problem can be written in canonical form as
Maximize z = eTx + (e')Tx '
subject to [xl

[A ', 11 x' = b

ix] x' > O.

(Hint." x' will be a vector of slack variables.)
(b) Show that the initial simplex tableau represents the matrix equation

[10 --eTA --(c')T] [Z] I _Xx, = [0]b

(Hint: Proceed as in the derivation of Equation (4).)
(c) Equation (5) shows that the solution represented by any tableau is ob-

tained by multiplying the vector

[01
by M-1. Show that the system of equations represented by any tableau is

[1 cTB-1A- c T cTBB-1- (c')T] [z] [cTB- lb]
X ~

0 B-1A B -1 x' B - l b

(d) Show from part (c) that, at an optimal solution to the problem in part (a),
cTB - 1A >___ C T and c~B-1 > (e,)T.

12. (a) Find the dual of the linear programming'problem in Exercise l l(a).
(b) Show that w = (B-1)TeB is a feasible solution to the dual problem. (Hint:

Use Exercise 1 ld.)
(c) Using Exercise 9 in Section 3.3, explain why w = (B-1)Te B is an optimal

Jsolut ion to the dual problem.

13. Computing project. Construct a flowchart or structure diagram for the revised
simplex method.

3.6 SENSITIVITY ANALYSIS

In the Prologue it was pointed out that solving a linear programming
problem is just one part of mathematical ly modeling a situation. After the

~ Chapter 3 Further Topics in Linear Programming

problem is solved, one must ask whether the solution makes sense in the
actual situation. It is also very likely that the numbers that are used for the
linear programming problem are not known exactly. In most cases they will
be estimates of the true numbers, and many times they will not be very
good estimates. Consequently, it is desirable to have ways of measuring the
sensitivity of the solution to changes in the values that specify the problem.
Of course, one way to proceed would be to recompute the solution using
different values. However, the tableau representing an optimal solution
contains the information we need to measure the sensitivity. Using the
final tableau makes it unnecessary to repeat the calculations for a different
set of values.

There are five things that can be singled out as subject to variation in
defining a linear programming problem.

1. One or more of the objective function coefficients can change.
2. One or more of the resource values (components of b) can change.
3. One or more of the entries in the constraint matrix A can change.
4. A variable might need to be added. This may happen if management

wants information about the effects of making an additional product.
5. Addition of a constraint might be necessary, especially if the solution

to the original problem is somewhat unreasonable. This situation also
occurs when some of the variables are constrained to take integer values.

In this section we examine simple cases of the first two possibilities,
namely, when only one quantity is allowed to change. In Chapter 4 we will
discuss the fifth case. Cases 3 and 4 and the situation in Cases 1 and 2 in
which more than one quantity changes simultaneously are discussed in
more advanced texts (Further Reading).

Another approach to this study is to assume a change in each entry of
the objective function coefficient vector, for example, and to assume that
the amount of the change depends on a parameter. This leads to the study
of parametric programming. We do not study this topic here but refer the
interested reader to Further Reading.

We assume that the original problem has been converted to the form

Maximize z - - cTx
subject to

A_x=b
x > 0

and that an optimal solution to the problem has been obtained. We further
assume that we have available the final tableau for the simplex method.

As changes are made in the problem statement, there are several things
that may happen to the old optimal solution. It may remain both feasible
and optimal, so that no further calculations are necessary. In fact, some
computer codes for linear programming problems will automatically com-

3.6 Sensitivity Analysis 227

pute a range of values for b and c in which the solution found will remain
optimal. The solution to the problem may remain feasible but become
nonoptimal. In this case a few iterations of the simplex algorithm will
restore the optimality. The optimal solution to the original problem, being
a basic feasible solution, provides an initial basic feasible solution for these
iterations. On the other hand, the solution to the given problem may
remain optimal, as judged by the optimality criterion, but may become
infeasible. In this case a few iterations of the dual simplex algorithm will
usually restore the feasibility. We now examine Cases 1 and 2.

Change in the Objective Function

Suppose c k changes to t? k = c k + A c k . The old optimal solution must
remain feasible, since neither A nor b was changed. The optimality
criterion is stated in terms of

Zj -- Cj : cTtj - - c j ,

where tj is the j th column of the final tableau (see Section 3.3). If k is the
index of one of the basic variables, then c B changes and every zj - cj must
be recomputed. If X k is a nonbasic variable, e a is unchanged and only
z k - c k changes. In this latter case we have

Therefore,

if and only if

zk - 6k = (z~ -- c~) -- Ack.

Zk - - (~k ~-~ 0

z k - c k > A c k . (1)

That is, the profit coefficient of the kth variable, c k , can be increased by as
much as z k - c k and the solution will remain optimal. However, making
this increase in Ck will not change the value of the objective function, since
x k = 0 in the optimal solution.

Now suppose that x k is a basic variable in the optimal solution. Suppose
k = i r , SO that the new value of c B is

^

C B

Ci 1

Ci 2

% + A C i r

Ci m

-~ C B d- ACir

0

0

1

0

rth entry.

~ l] Chapter 3 Further Topics in Linear Programming

Let e r denote the m • 1 matrix which is all zeros except for a 1 in the rth
row. Then we may write

CB = CB --I- ACire r.

Now for all values of j except j = ir, we have

2y - Cy = ~Bty -- Cy = c~ty + AC~reTty - cj = Zy - cy + try Ac~ r. (2)

The reader may show, using a similar argument, that

~ , i r - fir ~" O.

Recall that basic variables are determined only by the constraints, not by
the objective function. Furthermore, for each basic variable x~k we must
h a v e Zik -- Cik "-- 0. This follows from (2), since tri k - - 0 when k ~ r. Conse-
quently, the old optimal solution remains optimal when the objective
function coefficient of a basic variable is changed if and only if for all
nonbasic variables xj ,

zj - cj + try Aci , >_ 0

o r

If trj
divide each side of (3) by --try, reversing the inequality, to obtain

zj - cj > - t r j A c i . (3)

= 0, the inequality in (3) holds for all changes A c i . If try > 0, we can

ACir > Zj -- Cj
_ - ~ (4)

tq

for those j for which xj is nonbasic and try > 0. If try < 0, we again divide
both sides of (3) by --try, but do not reverse the inequality, and obtain

Zj -- Cj
mCir ~_~ - - ~ (5)

try

for those j for which xj is nonbasic and trj < 0. Combining (4) and (5), we
find that the old optimal solution remains optimal if the change in c i,
satisfies

m a x (_ trj- cy
(Zj -- Cj

trj > 0 <_ A C ir ~ min --
J try

trj < 0) , (6)

where the index j runs over all nonbasic variables. If there are no j such
that try > 0, then the left side of (6) gives no restriction on Aci,. It may
take on arbitrarily large negative values. Likewise, if there are no j such
that trj < 0, the right side of (6) gives no restriction on Aci.

3.6 Sensitivity Analysis 229

If ACk does not satisfy the inequality in (1) when Xk is a nonbasic
variable or if A c k does not satisfy the inequalities in (6)when x k is a basic
variable, the solution represented by the final tableau is no longer optimal.
Some iterations of the simplex method will restore optimality.

EXAMPLE 1.
2 in Section 2.3:

Consider the linear programming problem from Example

Maximize

subject to

x 1 + 2 x 2 + 2 x 3 + x 4 + x 5

x 1 + 2 x 2 + x 3 d - x 4 + 2x 5 + x 6

3 x I + 6 x 2 + 2 x 3 + x 4 + 3 x 5

Z - - X 1 - - 2 X 2 -- 3 X 3 - - X 4 - - X 5 -~- 2 X 6

= 1 2

= 1 8

= 2 4

x j > 0 , j = 1 , 2 , . . . , 6 .

An optimal solution is given by Tableau 3.31.
Since x 2, x4, and x 5 are nonbasic variables, we use (1) and see that c2

can be increased by 4 = z z - c2, c 4 can be increased by ~ = z 4 - c a, or c 5
can be increased by 4 = z 5 - c 5 without changing the optimality of the
solution.

Tableau 3.31

CB

3 x 3

2 x 6

1 x 1

1 2 3 1 1 2

x1 x 2 x 3 x4 x 5 x 6

1 0 0 0 0 1

1 1 1 0 0 0 ~-

1 2 0 0 1 0

1 4 0 0 4 0

x B

3

9

6

15

We now examine the objective function coefficients of the basic vari-
ables xl, x3, and x 6. To determine the range for a change in c 1, we
compute

and

cJ I) 4 4 -- t3j > 0 = max{ ~, i} = --2
t3j

Zj -- Cj
min -

t3j
t3j < 01 �9

230 Chapter 3 Further Topics in Linear Programming

Since there are no j for which t3j < 0, there is no upper bound for the
change in Cl. That is, if

- 2 < A c I < oo,

the current solution remains optimal.
To determine the range for a change in c a for which the solution

remains optimal, we compute

max zj - cj - ~ - t i j > O = m a x -7- - = - 1 .
t l j

Again there are no values of j for which t l j < 0, so that the change in c 3 is
not bounded above. The solution remains optimal if

- 1 < m c 3 < m.

Finally, checking the range for a change in c 6, we see that the solution
remains optimal if

- 1 < Ac 6 < m.

Summarizing our results, the optimal solution

x 1 = 6 , x 2 = 0 , x 3 = 3 , x 4 = 0 , x s = 0 , x 6 = 9

remains optimal for a change, Ac k, in the k th coefficient of the objective
function if A c k satisfies the appropriate inequality listed in Table 3.4. This
assumes that only one coefficient is changed.

TABLE 3.4

k Ac k

1 - 2 <_ A c I (oo

2 -oo < Ac2 < 4

3 - 1 < Ac 3 < oo

k AC k

1 4 - m < A c 4 ~_~

5 -oo < Ac 5 < 4

6 - 1 < A c 6 <oo

A

EXAMPLE 2.
Section 1.2)

The canonical form of the sawmill problem (Example 3,

Maximize z = 120x 1 + lOOx 2

subject to

2 x I + 2 x 2 + x 3 - - 8

5X 1 + 3X 2 + X 4 - - 1 5

X 1 ~_~ 0 , X 2 ~__ 0 ,

has a final tableau as shown in Tableau 3.32.

3.6 Sensitivity Analysis 231

Tableau 3.32

CB

100 x 2
120 x 1

120 100 0 0

X1 X2 X3 X4

5 1 5 0 1 ~ ~ 7
3 1 3

1 0 ~ ~ 7

0 0 35 10 430

X B

The owner of the sawmill would like to know how much it is possible to
increase the price (and hence the profit) on each of the outputs individu-
ally and still make the same amount of each type of board.

The change in c 1 that does not affect optimality is

- 1 0 - 35 140
1 = - 2 0 _< A c 1 _~< 3 = 3

4

Likewise, the bounds for the change in c 2 are

- 3 5 - 1 0
5 = - 2 8 _< Ac 2 < 1 = 20.
n
4 2

These computat ions show that, if the owner increases prices so that the
2 (instead of $120) profit on 1000 board feet of finish-grade lumber is $166 7

or so that the profit on the same amount of construction-grade lumber is
$120 (instead of $100), then the owner can still make 1500 board feet of
finish-grade and 2500 board feet of construction-grade lumber to maximize
the profit. If the owner chooses to increase c 2 to $120, the final tableau
will be Tableau 3.33 and the profit will be $480.

Tableau 3.33

CB

100 x 2
1662 x 1

1662 100 0 0

X1 X2 X 3 X4

0 1 5 z

3 1 1 0 ~

0 0 60 0 480

XB

A

Changes in the Resource Vector

Suppose that b k changes t o bk = bk q- A bk" The old optimality criterion
does not depend on b. However, the old solution may no longer be feasible

~ Chapter 3 Further Topics in Linear Programming

because the values of the basic variables may change. To compute their
new values, we proceed as follows. Let

bl

b2

bk + Abk

bm

bl - - 0

i bk + Ab k

b m -

We may write b = b + Abke k. Then

kth entry.

]~B -- B - l b = B - l b + A b k B - l e k

and

XB = XB -+- AbkB- l ek" (7)

Now B- lek is the k th column of the matrix B-1. This column appears in
the final simplex tableau in the column that held the kth column of the
identity matrix in the initial tableau. If the new solution ~B is to be
feasible, then A b k must be chosen so that

X B + A b k B - l e k > O.

EXAMPLE 3. Looking again at the sawmill problem, we see that a
change, A b 1, in the availability of the saw yields

XB = 3 + A b l 3 �9

If R B is to remain feasible, A b I must satisfy

5 �88 > 0 2 "[- 1 - -
3 3
2 ~ A b l > 0

o r

- 2 < Ab 1 _< 2. (8)

Likewise, we find that, if the change A b 2 in the available hours of the
plane satisfies

- 3 < Ab 2 < 5,

the solution remains feasible (and optimal). On the other hand, if Ab 1
does not satisfy (8), the old solution becomes infeasible. For example, if
the availability of the saw is increased from 8 to 12 hr a week (Ab I = 4),
then using (7)

= 3 + 4 3 = 3 �9

3.6 Sensitivity Analysis 233

In se r t i ng X n in to T a b l e a u 3.32, we ob t a in T a b l e a u 3.34, which r e p r e s e n t s

an infeas ib le so lu t i on tha t satisfies the o p t i m a l i t y c r i t e r ion . By app ly ing the

dua l s implex m e t h o d , we m a y r e s t o r e feasibil i ty. W e t h e n o b t a i n T a b l e a u

3.35.

Tableau 3.34

CB

100

120

X2

X1

120 100 0 0

X1 X2 X3 X4

0 1 5 1

@ 1 0 7

0 0 35 10 570

IB
15
2

Tableau 3.35

CB

100 x 2

0 x 3

120 100 0 0
X1 X2 X 3 X4 XB

5-- 1 0 • 5 3 3
4 2 0 1 ~ 2

140 100 5 0 0 0 0 3

W e see tha t the mill o p e r a t o r shou ld m a k e only c o n s t r u c t i o n - g r a d e

l u m b e r if the saw is ava i lab le 12 hr p e r day. F ive t h o u s a n d b o a r d fee t can

be m a d e with this m u c h sawing t i m e for a prof i t of $500. /x

3.6 EXERCISES

1. Consider the linear programming problem

Maximize z --" X 1 -~- 2x 2 + X 3 "~" X 4

subject to

2x I + x 2 + 3x 3 + x 4 < 8

2x~ + 3x 2 + 4x 4 _< 12

3x I + x 2 -q- 2x 3 < 18

xj > O l _ < j _ < 4 .

~ 4 Chapter 3 Further Topics in Linear Programming

After adding slack variables x 5, x6, and x 7 and solving by the simplex method,
we obtain the final tableau shown below.

CB

1 X 3

2 x 2

0 x 7

1 2 1 1 0 0 0

X 1 X2 X 3 X4 X 5 X6 X7 X B

4 0 1 1 1 1 4

1 0 • 0 ! 0 4 3 3 3

7 0 0 10 2 1 9 3 ~ 1 3~

_ ! ~ 0 2~ 7 0 0 ~4 3 9 9

(a) For each of the cost coefficients cj, 1 ~ j < 4, find the range of values for
Acj for which the above solution remains optimal.

(b) For each of the resources bi, 1 < i < 3, find the range of values for Ab i for
which the above solution remains feasible.

2. What will be an optimal solution to the problem in Exercise 1
(a) if c 1 is changed to 3?
(b) if b 2 is changed to 26?

19 (c) if c 3 is changed to 3.
(d) if b 3 is changed to 127?

3. Resolve the linear programming problem in Example 2, Section 2.3, keeping the
columns for the artificial variables when forming Tableau 2.20.
(a) For each of the cost coefficients cj, 1 < j < 6, find the range of values for

Acj for which the solution remains optimal.
(b) For each of the resources bi, 1 < i < 3, find the range of values for Ab i for

which the solution remains feasible.

4. What will be an optimal solution to the problem in Exercise 3
(a) if c 2 is changed to 5?

_79 (b) if c3 is changed to - 2.
(c) if b 1 is changed to 30?
(d) if b 2 is changed to 25?

5. Consider the agricultural problem in Exercise 4, Section 1.1.
(a) Suppose the farmer is able to hire additional workers who can devote 60 hr

to working the crops. How much of each crop should be planted?
(b) Suppose the farmer decides to only plant 10 acres. How much of each crop

should be planted?
(c) Suppose the price received for oats increases by $1/acre, so that the profit

per acre of oats is now $21. How much of each crop should the farmer
plant?

(d) What increase in profit for soybeans would induce the farmer to plant
soybeans?

6. Consider the investment problem in Exercise 8, Section 1.1.
(a) Suppose the rate of return on the electronics stock increases to 5.2%. What

is the optimal investment policy?

3.6 SensitivityAnalysis 235

(b) Suppose the rate of return on the utility stock decreases to 7%. What is the
optimal investment policy?

(c) Suppose the amount invested in the bond is at least $90,000. What is the
optimal investment policy?

7. The text discusses changing only one component of the resource vector at a
time. Consider now the situation in which

Ab 1

Ab2
= b + A b and A b = . .

Ab m

That is, several components of the resource vector are changed. Following the
text discussion, show that

~B = XB + B - 1 Ab

and that the solution ~B is a feasible solution (and hence optimal) if and only if
XB + B - l A b > O.

3.6 PROJECT

A tractor manufacturer in a developing nation subcontracts the task of making
air filters for the tractors to a small company. The filter consists of a cylindrical
main chamber with a cylindrical exit duct mounted on top of it. The specifications
for the filters are as follow.

1. In order to keep the dust efficiency within permissible limits, the diameter of
the main chamber and the exit duct should not exceed 16 and 6.5 cm, respectively.

2. To keep the pressure drop across the air cleaner small enough to prevent
excessive power loss, the main chamber diameter and exit duct diameter should not
be less than 9.5 and 3.5 cm, respectively.

3. The main chamber is to be 24 cm tall, and the exit duct is to be 6.5 cm long.
4. To maintain acceptable weight and durability, each filter must contain at

least 1600 cm 2 of metal.
5. At least 50 air filters must be supplied each month.

As is typical in such countries, industrial materials such as sheet metal are not
available in unlimited supply. The government has allocated 9.65 m 2 of metal each
month to the filter manufacturer.

A cross-sectional view of the filter is shown in Figure 3.6. Assume that the
intake port and other interior structures need 40% of the total metal used for the
main chamber and exit duct. Also assume that unusable scrap accounts for 15% of
the total metal used for the main chamber and exit duct.

(a) Set up a linear programming model for this situation to meet the objective of
minimizing the amount of sheet metal used per air cleaner.

(b) Solve the model.
(c) Perform a sensitivity analysis on the model.
(d) Comment on the solution, noting the meanings of the slack variables, the

dual variables, and the ranges for "resource" and "cost" components.

236 Chapter 3 Further Topics in Linear Programming

/ i / / / / T
6.5

FIGURE 3.6

24

3.7 COMPUTER ASPECTS (OPTIONAL)

The development of linear programming and its applications has paral-
leled the development of the digital computer. The first linear program-
ming problem to be solved on a computer dealt with a U.S. Air Force
problem regarding the development and support of aircraft subject to
strategic and physical requirements. It was solved in January 1952, on a
machine at the National Bureau of Standards, now called the National
Institute of Standards and Technology. The large computer programs
(called LP codes or LP systems) that are available today to solve linear
programming problems owe their existence to the current generation of
computers with their extremely large auxiliary storage disks and their fast
arithmetic operations. These large LP codes can theoretically handle
problems involving as many as 5 million variables and at least 32,000
constraints in reasonable (but not short) amounts of time.

An LP system is typically available from a computer manufacturer as an
option when leasing a large system, or it can be leased from one of many
software development companies. Such a system may represent an invest-
ment of 10-20 person-years of development time. Typical of the commer-
cially available systems are IBM's Mathematical Programming System
Extended, MPSX, and Optimization Subroutine Library, OSL; Bonner and
Moore Software Systems' Functional Mathematical Programming System,
FMPS; Ketron Management Science's Mathematical Programming System
III, MPSIII; and CPLEX Optimization's CPLEX.

Personal computers are now very popular for solving linear program-
ming problems. Problems with up to 32,000 constraints and as many as

3.7 ComputerAspects (Optional) 237

100,000 variables have been solved on such computers. Typical of PC
systems are Lindo System's Lindo and Ketron Management Science's
MPSIII/PC.

Two new tools for solving LP problems are modeling languages such as
GAMS and LINGO and spreadsheet-based LP packages such as What's
Best!. The major advantage of modeling languages is that they allow one
to develop and state models much more compactly and faster than older
systems, which describe an LP problem by presenting all of the coefficients
in tabular form.

Spreadsheet-based systems have the main advantage of getting the
results directly in ready-to-use form in the spreadsheet. Also, for many LP
problems it is much faster to formulate the model in the spreadsheet than
in old-fashioned tabular form. Further details are provided in Appendix B.

In this section we will describe typical features of an LP code to give the
reader some idea of what to look for in the course of solving a linear
programming problem. The following example will be used as an illustra-
tion.

EXAMPLE 1. A health food store packages two types of snack foods,
Chewy and Nutty, by mixing sunflower seeds, raisins, and peanuts. For the
coming week the store has available in bulk quantities 90 kg of sunflower
seeds, 100 kg of raisins, and 60 kg of peanuts. Invoices show that they paid
$135 for the sunflower seeds, $180 for the raisins, and $60 for the peanuts.

Chewy consists of two parts sunflower seeds, two parts peanuts, and six
parts raisins. Nutty consists of three parts sunflower seeds and seven parts
peanuts. Chewy sells for $2.00/kg, and Nutty sells for $1.50/kg. Deter-
mine a mixing scheme that will maximize the store's profits, assuming that
its entire production of Chewy and Nutty will be sold.

Input
To solve a general linear programming problem, clearly the LP code

will need to know the type of problem (maximize or minimize), the
coefficients of the objective function c, the coefficients of the constraints
A, the right-hand sides of the constraints b, and the relation (< , = , >)
for each constraint. There are several tradeoffs that can be made between
ease of use for the problem solver and ease of programming and standard-
ization for the programmer. Some codes assume that all problems are
minimization problems, that all entries in b are nonnegative, and that all
constraints are equalities. Thus, the user of these codes must put the
model into a particular form by including slack variables and multiplying
the objective function and each constraint by - 1 if necessary. In this case
the code provides the artificial variables where necessary.

In larger problems the majority of the entries of A will be zero. In this
case the user would not want to have to input all these zeros, so most

~ Chapter 3 Further Topics in Linear Programming

codes provide for entering only the nonzero elements of A and assume that
all other entries are zero. Consequently, the input must identify the
constraint and variable to which the coefficient belongs. This specification
is accomplished by asking the user to assign a name (perhaps limited to six
or eight characters) to each constraint and each variable. Then each
nonzero coefficient can be entered by giving the names of the constraint
and variable to which it belongs. A drawback to this method is that the
computer will interpret a misspelled name as a new variable or constraint.
Some codes try to protect against such errors by keeping the name in two
pieces and flagging all input where one piece of the name agrees but the
other does not. Naming the variables and constraints also provides more
descriptive output, especially when the names are chosen as mnemonics
for the quantities that the variables and constraints represent. A disci-
plined naming convention is essential for automated report generation and
solution analysis.

Either the objective function is entered separately by giving the name of
the variable and its objective function coefficient or it is entered as part of
the constraints. The right-hand sides are entered by giving the constraint
name and the coefficient value. If the constraints have not been changed
into a particular form, the type of relation for each constraint must also be
specified.

EXAMPLE 1 (CONTINUED). Using mnemonic labels for the variables, we
can write the mathematical model of the situation as

OI"

Maximize z = 2 x CHEWY - (1.5) (0.2) • C H E W Y

- (1.8)(0.6) x C H E W Y

- (1) (0 . 2) x CHEWY + 1.5 x NU' ITY

- (1 .5) (0 .3) x N U T T Y - (1)(0.7) x NUqq 'Y

Maximize
subject to
RAISIN:
PEANUT:
SUN:

z = 0.42 x C H E W Y + 0.35 x NUTTY

6 x C H E W Y < 100
2 x CHEWY + 7 x N U T I ~ < 60
2 x CHEWY + 3 x N U T / ' Y < 90.

Most modern LP codes consist of three modules that are executed in the
sequence listed.

1. The preprocessor attempts to reduce the user's statement of the
problem to one that can be solved more quickly. The preprocessor searches
for ways to reduce the size of the problem by eliminating redundant
constraints and variables. It seeks to set as many entries in the constraint
matrix to zero as possible to allow this matrix to be stored more compactly
and to improve the numerical stability of the solution process. The
preprocessor uses reduction patterns that it tries to match with parts of the

3. 7 Computer Aspects (Optional) 239

given coefficient matrix. Typical, a l though very simple, reduc t ion pa t te rns
include the following.

�9 Empty rows or columns
�9 Rows involving only one variable: xj = b k

�9 Genera l i zed uppe r bounds with only two variables: x~ + xj = b k

�9 Rows with all positive coefficients and a nonposi t ive r ight -hand side
�9 Rows with all negat ive coefficients and a nonnega t ive r ight -hand side
�9 Const ra in ts that are implied by o the r constra ints

2. The op t imizer actually solves the r educed l inear p r o g r a m m i n g
problem.

3. The pos tp rocesso r t ransforms the ou tpu t back to the set t ing of the
original p roblem.

Besides specifying the problem, many codes allow for the user to specify
various e r ror -cor rec t ing fea tures and ou tpu t formats , which we will discuss
later. They also provide the capabili ty of identifying the p rob l em to the
code and user by allowing the user to give a title to the p rob lem, which will
be pr in ted as a heading on each page of output .

A typical job se tup for an LP code is shown in Figure 3.7. No te that the
various types of data are sepa ra ted by the key words R O W S , C O L U M N S ,
and RHS.

Control
Language

Linear programming problem title

Options for error diagnosis and correction tolerance, number
of iterations between basis reinversions, number of
iterations between row and column error checking

Options for output formatting: controls for saving final results
on tape or disk

Type of Problem" MAX or MIN

Input
Data

ROWS

List of constraint names, constraint relations

OBJECT (no relation given)

COLUMNS

List of variable names, constraint names, coefficient values

List of variable names, OBJECT, objective function coefficients

RHS

List of constraint names, right-hand side values

End of problem marker

FIGURE 3.7

240 Chapter 3 Further Topics in Linear Programming

Figure 3.8 shows the input for this example expressed in standard MPS
format as used by nearly all current optimizers and a procedural control
program that is typical for batch-oriented mainframe systems. The display
of the input matrix was produced by a subroutine of the optimizer,
typically called TRANCOL.

Typical execution control program

0001 PROGRAM MIXTURE
0 0 0 2 AMINMAX:'MAX'
0003 CALL INPUT
0004 CALL SETUP
0005 CALL BCDOUT
0006 CALL PICTURE
0007 CALL TRANCOL
0008 CALL TRANROW
0009 CALL OPTIMIZE
0010 CALL SOLUTION
0011 STOP
0012 END

Standard format MPS input

NAME
ROWS.

N PROF I T
L RAIS IN
L PEANUT
L SUN

COLUMNS
CHEWY
CHEWY
NUTTY
NUTTY

RHS

PROFIT
PEANUT
PROFIT
SUN

RHS 1 RAI S I N
RHS1 SUN

ENDATA

.42000
2.00000
.35000

3.00000

100.00000
90.00000

RAISIN
SUN
PEANUT

PEANUT

6.00000
2.00000
7.00000

60.00000

Display of input matrix

CHEWY
AT *LO*

PROFIT .42000
RAISIN 6.00000
PEANUT 2.00000
SUN 2.00000

NUTTY
LO

.35000

.00000
7.00000
3.00000

FIGURE3.8

RHS1

.00000
100.00000
60.00000
90.00000

3. 7 Computer Aspects (Optional) 241

Algorithm
Virtually all LP codes designed for production, rather than teaching,

use the revised simplex method. This method has several desirable fea-
tures, including the ability to handle a large number of variables. The real
limit on the size of a problem is the number of constraints (see Section
3.5). Other features will be described when we discuss error detection and
correction.

Most of the large LP codes provide an option for computing B-1 that is
based upon a procedure from numerical linear algebra called LU factoriza-
tion. That is, B is written as LU, the product of a lower triangular matrix L
and an upper triangular matrix U. The inverses of upper and lower
triangular matrices are easily calculated. Then B-1 = U-1L-1. Many large
linear programming models have sparse matrices (ones with few nonzero
entries). The matrix representations can then be highly compressed and
L-1 and U-1 can be calculated in RAM, with special routines for sparse
matrices, resulting in significant time savings. For this reason, more and
more codes will provide an LU-factorization option.

The revised simplex algorithm with iterative B -1 calculation is usually
programmed to check itself at specified intervals. Between checks it
follows the description we gave in Section 3.4. The check involves comput-
ing the next B -1 in a manner different from the one we described. The
matrix B can be constructed from the list of basic variables and the
original problem as it was read in and stored. Then a very good method of
numerically inverting B, such as the LU-factorization method described
above, is used. This procedure of occasionally recomputing B-1 from the
given problem serves to produce a more accurate basic feasible solution.
However, in general the procedure is expensive in terms of computation
time and must be used sparingly.

As was indicated in Section 2.2 most LP codes provide several options
for handling degeneracy when it occurs.

Generalized Upper Bounding
Earlier commercially available mathematical programming systems typi-

cally included a procedure called generalized upper bounding (GUB, for
short). This approach is historically interesting but has been superseded by
improvements in algorithms and increased hardware speed.

It is usual for a large linear programming problem to have a substantial
number of constraints that deal with bounds on certain variables or sums
of variables or with the balance of materials between two stages of a
process (the output of the first stage equals the input of the second stage).
The special structure of these constraints allows them to be treated in a
way different from that of a general constraint. The GUB procedure may
be used on a problem whose constraints have the form shown in Figure
3.9. The GUB constraints are shaded.

242 Chapter 3 Further Topics in Linear Programming

The GUB procedure allows the reduction of the number of basic
variables from one corresponding to each constraint to one corresponding
to each general constraint (r variables in Figure 3.9). Thus, a problem with
1000 constraints, 800 of which are GUB constraints, can be solved with
about the same effort as a problem with 200 general constraints plus the
overhead of dealing with the GUB structure.

Models to which the GUB procedure may be applied arise in a number
of areas, including production resource allocation (e.g., forest management
or commercial fishing), multiproduct blending, and large-scale models of
economic sectors.

Output
We have seen in Sections 3.3 and 3.5 that there is a large amount of

information about the solution to a linear programming problem that is
contained in the final tableau. A typical output from an LP code will
summarize this information in a useful form. Some codes also allow the
option of having the output saved on disk for future input to a report
generator or to rerun the problem with slight variations.

The output will give the problem heading, the number of iterations
used, and the optimal value of the objective function. Then usually a list of
all the variables originally specified for the problem is produced. Those
variables which are basic are so labeled. The value of each variable is
given, along with the value of z j - c j from the objective row.

The next part of the output lists the constraints and notes whether each
is slack or binding. The value of the slack variable is also given. Because
each constraint corresponds to a dual variable, the value of each dual
variable, which may be interpreted as the marginal cost of each right-hand
side (or resource) value, is also given.

Optionally, ranges of values for each of the objective function coeffi-
cients and each of the right-hand side values are given. These ranges come

3.7 Computer Aspects (Optional) 243

from the sensitivity analysis of the optimal solution. One must interpret
each range as giving the values that that particular coefficient may take,
assuming that (1) no other coefficients are changed and that (2) the
computed optimal value remains optimal. The output from MPS/90 for
our example is shown in Figure 3.10.

Error Detection and Correction
2 Throughout this chapter we have used rational numbers such as ~ and

8 while solving linear programming problems using the simplex or
revised simplex algorithms. A computer, however, will convert these num-
bers to decimal representation and round off in the process. If the

2 8 computer typically carries seven digits, x becomes 0.6666667 and 11

becomes -0.7272727. After many calculations the errors made through
round-off and truncation tend to accumulate. It is possible for the
computer to produce a "solution" to a linear programming problem that is
not feasible because of the round-off error.

Fortunately, the revised simplex method allows us to easily detect such
errors as they accumulate. The key to this detection is that the revised
simplex algorithm keeps the problem as it was entered and changes only
the B -1 matrix. Suppose after some iterations the algorithm claims that
i B = l l -~b is a feasible solution. Since at each iteration B-1 is computed
from the previous value, round-off errors could have occurred, making
what we have recorded as B-1 different from the theoretical B-1.

However, we may take the original constraints in canonical form as
Ax = b and set all the nonbasic variables to zero. This yields the system

I
Xi

Xi 2
Bx B = B . = b .

[_xi~

We then compute B~ B and compare it with b. If the difference between
the two values exceeds a preset tolerance, we can invoke an error-
correcting routine. This process is generally referred to as checking r o w

s u m s . Normally, the tolerance is set at 10 -6, although most LP systems
allow the user to change its value.

Column sums may also be checked by recalling that the entries in the
objective row should be

c~tj - cj = c ~ B - 1 A / - c/.

The error-correcting routine that is used when row or column sum errors
are detected involves what is usually referred to as r e i n v e r t i n g t h e b a s i s .

The matrix B can be formed exactly for the present list of basic variables

cO

'l-
r~

II

0
0

I..~1

"!-1
,,4

x <
Z

0

0

"
"

II

O
~
a

X

0
~
m

E

.i
i~1

~
N

0
~"

o
o

"-~

o
o

r

~
o

o

f,~
~

o

I
I

I--
Z

3

0
(~11',m

(_.)
LI-
> Z LLI
> I"-

0
O

'4

Z
0 Z

1.1..I
O

r,~

"r
-..J

o
P,~

,,::C

o
J,~

,~

~
o

P
~

I..l_J

rim

r....
0

o

>
-

0
!.--

._1

r',-
,..-~ c,,~

~
"

IJJ
I--

I--
--

13_
0

1::
0 L

.._

0
,m

,

em
m

0
(8)

0 II

v.....4

Z
0 F--

w

i"
-

....J

I..1.1

0 ...J

I--

0 r~

n,n

Z

o
!,r

o
o

o
r,r

o
o

o
I',r

o
o

o
I.t~

I..r
o

o
o

o
o

�9

�9
�9

�9

I
I

n
t

n
O

0
0

Z

o
o

o

0
o

o
o

Z

O
O

O

o
o

o

�9
�9

�9

i.l.l
ot t

I..~
n, t

Z
Z

Z
Z

0

0
0

0

Z
Z

Z
Z

I,r
o

o
o

1,,r
o

o
1.-I

r,r
o

o
0

o

i,,r~ o
o

i,,t~
I,r

o
o

C
'~l

I

I~'~ o
o

,.-I

0
o

o

o
...~-

o
~

.~
"

tJ)
-J

--J
ch

r,m

Z

~

~
rn

l
-

-
Z

l
-

-

u
-o

o
Z

O

--
,,~

Z

r~"
<

E

,,,
Z

3

O
0

Z C
3

.--I
0 rJ

Z 0 I--

I.LI
O

0

1.1.1
::3

-J

O
0

O

0

O
0

O

0

O
0

LLI
IJ.I

Z
Z

O

0

Z
Z

o
o

o

o

o
o

o

o

o
o

I--
o

o

(./)
o

o

0
o

o

C
3

Z -
-

c
o
o

c
o
o
o

(
J

,--4

n
n
r
n

Z

>
-
>
-

0
u
J
i
-
-

c
O

-
r
~

(
J
Z

C
3

Z

o 1.1.1

3. 7 Computer Aspects (Optional) 2 4 5

from the original problem. Then a very accurate method from numerical
analysis is used to calculate B -1. From this a better value of x B can be
found, as x B = B- 1 b.

In some codes this method of reinverting the basis is done at specified
intervals irrespective of whether the row and column sums check. The
length of this interval may be set by the user or may be determined
automatically as a function of the size of the problem.

Scaling
One thing the user can do to minimize the errors generated by the

algorithm is to make sure that the problem is appropriately scaled. This
means that all the numbers in the constraint coefficient matrix A should be
about the same size. If the coefficients of one constraint are more than 100
times the size of those of another constraint, severe error propagation may
result. However, the large coefficients can be divided by an appropriate
number to make them about the right size.

EXAMPLE 2. If tWO constraints in a linear problem are

2 x 1 + 0 . 1 2 x 2 + x 3 -- 3 x 4 = 7

and

(1)

75x I + 250x 2 + 121x 3 + 314x 4 = 500, (2a)

the second can be divided by 100 to yield

0.75x I + 2.5x 2 + 1.21x 3 + 3.14x 4 -- 5. (2b)

Constraints (1) and (2b) should be used as input to the revised simplex
algorithm.

In the same way, if the coefficients of one variable are significantly
different in magnitude from those of all other variables, the units of the
variable should be changed to bring the size of the coefficients in line. This
means that the corresponding objective row coefficient will also have to be
changed.

EXAMPLE 3. Consider the linear programming problem

Maximize z = 23x I + 2x 2 + 3x 3

subject to

140x 1 + 5 x 2 - x 3 < 10

210x I + x 2 + 3x 3 < 14

X 1 ~_~ O, X 2 ~__ O, X 3 >__ O.

246 Chapter 3 Further Topics in Linear Programming

Replacing x 1 with x' 1 = 100Xl, we obtain the following problem:

Maximize z = 0.23x'i + 2 x 2 + 3x 3

subject to

1.4x' 1 + 5 x 2 - x 3 <_ 10

2.1x' 1 + x 2 + 3x 3 < 14
?

X 1 ~__ 0, X 2 >__ 0, X 3 ~__ 0.

Thus, if the units of x 1 are grams/kilogram, the units of x~ will be 100
grams/kilogram.

Restarting
Most large codes allow the user the option of saving the computations

that have been done to a certain point. One scheme allows the user to
specify the maximum number of iterations permitted. When that maximum
number is reached, the list of basic variables and the original problem
statement are written to disk for restarting at a later time. Another scheme
allows the final solution and list of basic variables to be saved along with
the original problem. This scheme is particularly useful because the
restarting procedure allows additional constraints or variables to be put
into the problem. In this case the dual simplex method can be used to
restore feasibility if necessary.

The restart procedures are especially useful when analysis shows that
the original model produced results that are inappropriate to the situation
that was modeled and the model must be changed to better represent the
actual situation. This procedure is also used when solving a family of
related problems. The list of basic variables from the solution to one
model is used as the starting point for solving the other methods.

Further Reading
Beale, E. M. L. Mathematical Programming in Practice. Pitman, London, 1968.
Dantzig, George B., and Van Slyke, R. M. "Generalized Upper Bounding Techniques for

Linear Programming." J. Comput. System Sci. 1 (1967), 213-226.
Gale, David. The Theory of Linear Economic Models. McGraw-Hill, New York, 1960.
Gale, David, Kuhn, Harold W., and Tucker, Albert W. "On Symmetric Games," in Contribu-

tions to the Theory of Games (H. W. Kuhn and A. W. Tucker, Eds.), Annals of Mathemati-
cal Studies, No. 24, Princeton Univ. Press, Princeton, NJ, 1950.

Gass, Saul I. Linear Programming, fifth ed. McGraw-Hill, New York, 1984.
Geoffrion, A. M. "Elements of Large-Scale Mathematical Programming." Management Sci.

16 (1970), 652-691.
Lenstra, J. K., Rinnooykan, A. H. G., and Schrijver, A. (Eds.). History of Mathematical

Programming: A Collection of Personal Reminiscences. Elsevier Science Publishers,
Amsterdam, 1991.

Murty, Katta. Linear and Combinatorial Programming. Wiley, New York, 1976.

3. 7 Computer Aspects (Optional) 247

Nazareth, J. L. Computer Solution of Linear Programs. Oxford Univ. Press, New York, 1987.
Orchard-Hays, William. Advanced Linear Programming Computing Techniques. McGraw-Hill,

New York, 1968.
Salkin, Harvey S., and Saha, Jahar (Eds.). Studies in Linear Programming. North-Holland,

Amsterdam, 1975.
Thesen, Arne. Computer Methods in Operations Research. Academic Press, New York, 1978.
Wagner, Harvey. Principles of Operations Research. Prentice-Hall, Englewood Cliffs, NJ, 1969.
White, William W. "A Status Report on Computing Algorithms for Mathematical Program-

ming." ACM Comput. Surveys 5 (1973), 135-66.

Integer

Programming

I
N THE LINEAR programming problems considered so far, the vari-
ables have been permitted to assume all nonnegative real values.
However, there are many problems in which the variables must

assume only integer values. For example, it would be meaningless to have
an answer calling for the manufacture of half a table or for the chartering
of 1.2 airplanes. In some problems, such as the transportation problem
with integer values for supply and demand, the simplex method will yield
integer answers; however, in many other problems it will not. In this
chapter we formulate a number of problems that require integer variables
and present three algorithms for solving these integer programming prob-
lems.

4.1 EXAMPLES

EXAMPLE 1 (THE TRANSPORTATION PROBLEM). Suppose a manufac-
turer making one product has rn factories and n warehouses. The demand

249

~ 0 Chapter 4 Integer Programming

at the j th warehouse is dj, j = 1, 2 , . . . , n, and the supply available from
the ith factory is s i, i = 1, 2 , . . . , m. The cost of shipping one unit from the
ith factory to the j th warehouse is Ciy. Our problem is to determine the
amount, xq, of the product to be sent from the ith factory to the j th
warehouse.

If we assume that the total supply at least equals the total demand,

m n

ESi>-~ E d j ,
i = 1 j = l

so that our problem is feasible, then the mathematical model is

Minimize
r n n

Z - - E E CijXij
i = l j = l

subject to

n

E Xij <-~ S i,
j=l

i = 1 , 2 , . . . , m

m

Exij>_~dj, j = 1 , 2 , . . . , n

i=1

xij > 0 and integral,

i = 1 , 2 , . . . , m ; j - 1 , 2 , . . . , n .

If this problem is converted to standard form, then the only entries in
the constraint matrix are ls, - l s , and 0s. It can be shown using a result of
Hoffman and Kruskal that in this case the simplex method will automati-
cally yield integer solutions if the s i and dj are integers. However, the
simplex method is a rather poor way of solving the transportation problem.
In Chapter 5 we present a special algorithm for this problem that is rather
efficient. This algorithm was developed because the transportation model
arises repeatedly in practice. A

EXAMPLE 2 (THE KNAPSACK PROBLEM). Consider the problem faced by
a hiker who cannot carry more than k pounds of equipment. She has n
items that she is considering bringing. To each item she assigns a relative
value, cj, with the most important items having the highest values. Let aj
be the weight of the j th item. The hiker's problem is to decide which of
the n items to carry; she will choose those that maximize the total relative
value subject to the weight limitation.

4.1 Examples 251

To construct the mathematical model, let xj = 1 if the j th item is
chosen and let xj = 0 if the j th item is not chosen. Then the model is

n

Maximize z = ~ cjxj
j=l

subject to
n

E ajxj <__ k
j=l

x j = 0 or 1, j = 1 , 2 , . . . , n .

Note that by limiting the value of xj to 0 or 1, the left-hand side of the
constraint represents just the weight of the items that are chosen. This
type of an integer programming problem is called a zero-one program-
ming problem. A

EXAMPLE 3 (THE ASSIGNMENT PROBLEM). Suppose n people, el ,
P2,..., Pn, are being considered for n jobs, J1, J2,..., Jn" Using various
criteria, including past performance, aptitude, and job ability, we specify a
value cij that would accrue if the ith person is given the j th job. We
assume that each person is assigned to exactly one job and that each job is
assigned to exactly one person. Our problem is to assign the people to the
jobs so that the total value of the assignment is maximized.

To construct the mathematical model, define the variables Xiy so that

1 if Pi is assigned to Jj
Xij --

0 otherwise.

Then the mathematical model is

Maximize

subject to
n

E Xij
i = 1

n

E Xij
j=l

= 1 ,

= 1 ,

n n

Z = E E CijXij
i=l j=l

j = 1 , 2 , . . . , n

i = 1 , 2 , . . . , n

xij=O or 1, i , j = l , 2 , . . . , n .

(1)

(2)

Under the condition that x i /has a value of either 0 or 1, exactly one of the
summands in Equation (1) can be nonzero, and, likewise, exactly one of
the summands in Equation (2) can be nonzero. Constraint (1) says that job

~ Chapter 4 Integer Programming

j is assigned to exactly one person; constraint (2) says that person i is
assigned to exactly one job. Just as in the transportation problem, the
result of Hoffman and Kruskal applies and the simplex algorithm yields a
zero-one solution to the assignment problem. However, there is a special
algorithm that efficiently handles this problem; it will be discussed in
Chapter 5. A

EXAMPLE 4 (THE TRAVELING SALESMAN PROBLEM). A traveling sales-
man has to visit each of n cities, Ca, C2 , . . . , Cn. He must start from his
home office in city C1 and return to Ca after visiting each city exactly
once. Such a route is called a tour. The order in which he visits cities
C2, C3,..., Cn does not matter. He knows the distance between each pair
of cities and wants to choose a tour that minimizes the total distance
traveled.

To formulate the mathematical model, let cij be the distance between
Ci and Cj. Let the variable xij be defined by

Xij -- 1

= 0

if the route includes traveling from Ci to Cj

otherwise.

The condition that the route must go to exactly one city after leaving C i
may be written

n

~_.xij= 1, i = 1 , 2 , . . . , n .
j = l

The condition that the route goes through every city exactly once can be
phrased by saying that each city must be reached from exactly one city, or

n

~ x i j = 1, j = 1 , 2 , . . . , n .
i = 1

Our mathematical model is then

Minimize
n n

Z = E E CijXij
i = l j = l

subject to
n

E X i j = 1,
i - 1

j = 1 , 2 , . . . , n (3)

n

E Xij "- 1, i= 1 , 2 , . . . , n (4)
j = l

x i j = 0 or 1, i , j= 1 , 2 , . . . , n .

4.1 Examples 253

Consider the feasible solution for this problem when n = 12:

and

X12 - - X 2 3 - X 3 4 ~---X45 ~--X56 = X61 = 1

X78 -- X89 = X9,10 -- Xl0,11 --- X11,12 --- X12,7 = 1

xi j = 0 for all other values of i and j .

This solution is feasible, since each index from 1 to 12 occurs exactly once
in the first position and exactly once in the second position. However, it is
not an acceptable solution, since there are two disconnected subtours. We
must design a way to eliminate disconnected routes from our set of
feasible solutions.

To this end we introduce n - 1 new variables, u 2, U 3 , . . . , U n , and
(n - 1)2 _ (n - 1) new constraints. The constraints are

U i -- Uj + rI.Xij ~_ n - 1, i , j -- 2 , 3 , . . . , n , and i ~ j (5)

ui > 0 and integral, i = 2 , 3 , . . . , n .

Before we had 2n constraints and n 2 variables; these variables had values
of either 0 or 1 and n of them x , were always 0. We now have

2n + (n - 1) 2 - (n - 1) = n 2 - n + 2

linear constraints and

n 2 + n - 1

integer-valued variables.
We now show that the constraints (3), (4), and (5) do not permit

disconnected routes and still include all routes satisfying the original
problem statement. First we assume that there is a subtour; that is, the
route leads back to C 1 before visiting all the cities. Then there must be
another subtour, since each city is visited exactly once. This subtour will
start and end at some city in the list C 2, C 3 , . . . , Cn; it will not include C1;
and it will include r < n - 1 cities. The r variables x q that describe this
subtour will be equal to 1. We add up the r constants (5) that correspond
to these nonzero xij . This new constraint is satisfied by any solution that
satisfies (5). As we take the sum to form this new constraint, we have - u j
when the route enters city Cj and + u j when it leaves. Since the route
enters and leaves each of the r cities exactly once, the uj ' s cancel out in
the sum. Thus, the new constraint is

nr <__ (n - 1)r ,

which is a contradiction of our assumption that there was a subtour of
length r _< n - 1.

For example, if we had the subtour starting at C 4,

C 4 ~ C 5 ~ C 3 ~ C 2 ~ C 4 ,

~ Chapter 4 Integer Programming

so that

X45 = X53 - - X32 - - X24 - - 1 ,

then we would form our new const ra in t by adding the constraints

U 4 - - U 5 �9 r/X45 __< n - 1

U 5 - - U 3 -]- /'/X53 __< n - 1

U 3 - - U 2 - - [- n x 3 2 _~< n - 1

u 2 - u 4 + n x 2 4 - < n - 1

and obtain

4n < 4 (n - 1).

We have now shown that constra ints (3), (4), and (5) allow no subtours.
Now we show that these constraints do not exclude any potent ia l routes.
To do this we show that each u i can be assigned a nonnegat ive in teger
value for any route and that these values satisfy the constraints given in
(5).

L e t t i be the posi t ion in the route at which C i is visited. Thus, t I = 1 for
C1. If we consider the route that starts C1 ---> Ca --* C6 ---> C2 ---> " " , then
t I = 1, t 4 - - 2 , t 6 = 3 , t 2 = 4 , Let u i = ti for i = 2 , 3 , . . . , n. We show
that for each i and j, (5) holds. E i the r x~j = 1 or x i / = 0. If xij = 1, then
C/ is visited immedia te ly after Ci , so that

tj = ti + l .

Substi tut ing this equa t ion into (5), we have

U i - - Uj 7 t- n x i j = t i - - (t i + 1) + n = n - 1

as we needed. If X ij - - O, then since u i < n and u/>_ 2, we have

U i - - U j _~< n -- 2 < n -- 1,

so that (5) holds.
We have shown that a model for the traveling sa lesman p rob lem is

n n

Minimize z = ~ ~ c i / x i /
i = 1 j = l

subject to
n

~ x i / = l , j = 1 , 2 , . . . , n
i = 1

n

~_, x~j
j = l

= 1, i = 1 , 2 , . . . , n

U i - - U j -~- n x i j <_~ n - 1, i , j = 2 , 3 , . . . , n, and i 4 : j

Xij -- 0 or 1, i , j = 1 , 2 , . . . , n

u i>_O and integral , i - 2 , 3 , . . . , n . A

4.1 Examples 255

EXAMPLE 5 (STOCK CUTYING PROBLEM). A plumber can buy plastic
pipe in 6- and 12-ft lengths. The current job requires eight 4-ft lengths, five
5-ft lengths, and three 7-ft lengths. The plumber wants to figure out how
many of each of the two stock lengths should be bought to minimize waste.

We determine all the possible ways the stock lengths can be cut to yield
the necessary lengths. A 6-ft piece can be cut to give

one 4-ft length and 2 ft of scrap
one 5-ft length and 1 ft of scrap

(cutting pattern 1)
(cutting pattern 2).

A 12-ft piece can be cut to give

one 4-ft piece and 8 ft of scrap
two 4-ft pieces and 4 ft of scrap
three 4-ft pieces
one 4-ft piece, one 5-ft piece, and 3 ft of scrap
one 4-ft piece, one 7-ft piece, and 1 ft of scrap
one 5-ft piece and 7 ft of scrap
two 5-ft pieces and 2 ft of scrap
one 7-ft piece and 5 ft of scrap
one 7-ft piece and one 5-ft piece

(cutting pattern 3),
(cutting pattern 4),
(cutting pattern 5),
(cutting pattern 6),
(cutting pattern 7),
(cutting pattern 8),
(cutting pattern 9),
(cutting pattern 10),
(cutting pattern 11).

Let piece 1 be of length l I = 4 ft, let piece 2 be of length 12 = 5 ft, and let
piece 3 be of length 13 -- 7 ft. Let

aii = number of pieces of length I i in cutting pattern j;
b i = number of pieces of length I i which are needed;
cj = waste in cutting pattern j;
xj = number of times cutting pattern j is used.

Our mathematical model is

Minimize z = s

subject to

A x = b

x >_ 0 and integral,

~ Chapter 4 Integer Programming

where

1 0 1 2 3 1 1 0 0 0 0]

1 A-- 0 1 0 0 0 1 0 1 2 0 1
0 0 0 0 0 0 1 0 0 1 1

C T = [2 1 8 4 0 3 1 7 2 5 O]

and [sj
b = 5 . ZX

3

EXAMPLE 6 (FIXED CHARGE PROBLEM). A manufacturing corporation
makes n products, and naturally the board of directors wants to minimize
manufacturing costs. Each unit of product j that is made costs cj dollars to
produce (raw materials, labor, direct machine costs, etc.). Moreover, if any
units of product j are made, there is a fixed cost of k i dollars, which
represents the initial cost of setting up the production and distribution
process.

Let xj be the number of units of product j that are made. Suppose that
the production process is constrained by a system of inequalities such as
that in Exercises 1 or 2 in Section 1.1. Our objective function is

Minimize Z-- ~ (CjXj + kjyj)
j=l

where the production constraints not involving the new variables Yi hold
and in addition

1 if xj > 0
YJ = 0 if Xj = O. (6)

That is, yj indicates whether any of the j th product is manufactured. The
constraints in (6) are nonlinear functions of x/ and Yi" These constraints
are not defined by hyperplanes as they must be for a linear programming
problem.

However, this problem can be cast as a problem with linear constraints
in which some of the variables are restricted to be integers and others may
take any value. Such problems are called mixed integer programming
problems.

Suppose we know an upper bound on the number of units of Xg that can
be produced. That is, suppose we know numbers Mj, such that

xj<_Mj, j = 1 , 2 , . . . , n .

4.1 Examples ~ 7

We now show that we may reformulate the definition of yj in (6) as xj /
y j > ~

Mj (7)

y j = 0 or 1.

If xj > 0, then yj > x j / M j > 0 implies that yj = 1 since yj can be only 0
or 1. If xj ---- 0, then yj > x j / M j >_ O, so that yj = 0 or 1. But since we are
minimizing, the objective function will be smaller if yj = 0. Therefore, at
the min imum value of the objective function, if xj = 0, then yj - 0. The
constraints given by (7) are now linear. We combine (7) w i t h those
constraints describing the production process to obtain our mixed integer
programming model. A

EXAMPLE 7 (EITHER-OR PROBLEM). Suppose that we have a situation
in which either the constraint

~ aljx j <~ b 1 (8)
j=l

or the constraint
n

E a2jxj <~ b2
j=l

(9)

holds. We can convert this condition to one in which the constraints are
linear if we have available numbers M1 and M2, such that

n

Y'~ a~jxj - b 1 < M~
j=l

and

• a2jx j - b 2 ~ m 2
j=l

for all feasible solutions.
Let y be a z e r o - o n e variable. Consider the problem

n

aUx j - b I < M l y (10)
j=l

~ azjX j -- b 2 ~ m2(1 - y) (11)
j=l

y = 0 or 1.

If y = 0 in our new problem constraint, then (10) is the same as constraint
(8), and constraint (11) is redundant , since it holds for all feasible solu-
tions. If y = 1, then constraint (11) is the same as constraint (9), and
constraint (10) is redundant . A

~1~ Chapter 4 Integer Programming

We now examine a general integer programming problem and describe
some methods for solving it. We consider the following problem:

Maximize z = cTx

subject to

A x < b

x > 0
x j = i n t e g e r if j ~ I ,

where I is a subset of {1, 2 , . . . , n}. If I = {1, 2 , . . . , n}, then the problem is
called a pure integer programming problem. If I is a proper subset of
{1,2, . . . ,n}, then the problem is called a mixed integer programming
problem. In a pure integer programming problem every variable is re-
quired to be an integer. In a mixed integer programming problem only
some of the variables are required to have integer values. Examples 6 and
7 are mixed integer programming problems. Examples 1-5 are pure
integer programming problems. In Examples 2 and 3 the variables are
restricted to the values 0 or 1.

One might attempt to solve an integer programming problem by treat-
ing it as a linear programming problem (that is, by not restricting the
variables to integer values)and then rounding the answer to the nearest
integer. Under extremely fortunate circumstances one might not have to
round at all. But there are other situations in which rounding will produce
an incorrect answer.

EXAMPLE 8. Consider the integer programming problem

Maximize z = 7 x + 8 y

subject to

10x + 3y < 52

2x + 3y < 18

x > 0 , y > 0 , and integers.

If we ignore the restriction that x and y are integers, the simplex method
gives the solution (verify)

with optimal value

1 1 x = 4 ~ - , y = 3 g

z = 55~ .

If we round the values of x and y to the nearest integer values that are
feasible, we get

x = 4 , y - 3 ,

4.1 Examples 259

and

z = 52.

However , the solut ion

x = 3 , y = 4

is also feasible, and the value of the object ive funct ion for this solut ion is

z = 53. A

4.1 EXERCISES

In Exercises 1-6 formulate the given problem as an integer programming
problem.

1. Equipment purchasing problem. A ribbon manufacturer is considering the
purchase of two different types of printing machines that will be used to emboss
designs on the ribbon. Machine A can print 100 m per minute and requires 50
m 2 of floor space, whereas machine B can print 200 m per minute and requires
140 m 2 of floor space. Suppose that the manufacturer must print at least 600 m
per minute and has no more than 350 m 2 of floor space. If a model A machine
costs $22,000 and a model B machine costs $48,000, how many machines of each
type should be bought to minimize the cost?

2. A production problem. A chair manufacturer makes three different types of
chairs, each of which must go through sanding, staining, and varnishing. In
addition, the model with the vinyl-covered back and seat must go through an
upholstering process. The following table gives the time required for each
operation on each type of chair, the available time for each operation in hours
per month, and the profit per chair for each model. How many chairs of each
type should be made to maximize the total profit?

Sanding Staining Varnishing Upholstering Profit
Model (hr) (hr) (hr) (hr) ($)

A--solid back 1.0 0.5 0.7 0
and seat

B--ladder back, 1.2 0.5 0.7 0
solid seat

Cwvinyl-covered 0.7 0.3 0.3 0.7
back and seat

Total time available 600 300 300 140
per month

10

13

8

3. Pam Hardy currently has six favorite country and western songs. There are 10
compact disks that contain different groups of these songs available. Suppose
that the j th CD costs cj dollars. Set up a model that Pam could use to

~ 0 Chapter 4 Integer Programming

determine the cheapest selection of CDs to buy to get at least one version of
each of her favorite songs.

4. Tommy Jones's mother is planning his 10th birthday party and will serve a
variety of soft drinks, which will be chosen from the list below.

Root Ginger
Drink Cola beer Cherry Lemon Orange Grape ale

Price per bottle 69 59 62 62 65 55 65
(cents)

From past experience it has been determined that at least 12 bottles of soft
drinks are needed. Also, at least 2 bottles of ginger ale, at least 2 bottles of cola,
and no more than 3 bottles of fruit-flavored soft drinks are needed. How many
bottles of each type should be bought to minimize the total cost?

5. A manager for a large corporation must prepare a list of projects that her group
will complete over the next year. She has under consideration 10 such projects
but will not be able to do all of them because of limits on personnel and budget.
She has assigned a weight to each project that represents to her the value of
completing the project. The personnel, capital requirements, and weights for
each project are given in the following table.

Project

1 2 3 4 5 6 7 8 9 10

Person-weeks 250 195 200 70
Cost (thousands 400 300 350 100

of dollars)
Value of completion 70 50 60 20

30 40 100 170 40 120
70 70 250 250 100 200

10 20 30 45 10 40

The manager has available 1000 person-weeks and $1,500,000 to allocate among
the projects. Which projects should she choose to complete to maximize the
value?

6. Each day at the Graphic Arts Co. the press operator is given a list of jobs to be
done during the day. He must determine the order in which he does the jobs
based on the amount of time it takes to change from one job setup to the next.
Clearly he will arrange the jobs in an order that minimizes the total setup time.
Assume that each day he starts the press from a rest state and returns it to that
state at the end of the day. Suppose on a particular day that he must do six jobs
for which he estimates the changeover times given in the following table. What
schedule of jobs should the operator use?

4.1 Examples 261

J
i 1 2 3 4 5 6 Rest

1
2
3
4
5
6
Rest

(From job i to job j (min))
0 10 5 15 10 20 5

10 0 10 10 20 15 10
5 5 0 5 10 10 15
8 10 3 0 9 14 10
4 7 8 6 0 10 10

10 5 10 15 10 0 8
7 7 9 12 10 8 0

4.1 PROJECTS

1. Meg Watkins is trying to decide which college to attend. From among the
applications that she submitted, she has been admitted to four schools. One is a
large state university that is about 250 miles from her home. At this school she
may live in a dormitory for two years, but then must find accommodations in the
community. Another is a small private school about 1000 miles from her home
that has an excellent reputation. At this school there are dormitory accommoda-
tions for all students. Meg, under pressure from her father, also applied to and
was accepted by the private church-related school in her hometown. Since she is
a local student, the school would expect her to live at home.

Another possibility open to Meg is to go to the local community college for
two years and then transfer to another school. The reputation of the community
college has been improving over the last few years. The state university would
carry forward her acceptance for two years and transfer all credits. The distant
private school will also carry forward her acceptance but most likely will transfer
nine credits fewer than two full years of credit. The local private school has no
formal statement on transfer from two-year schools. The accompanying table
gives the cost for attending each school and Meg's assessment of the worth (or
utility) of having certain blocks of credit from each school.

Distant Local Community
State priva te private college

Tuition $2500/year $14,000/year $9000/year
Living

On campus $3500/year $3500/year $125/month
Off campus $4000/year

Humanities 7 9 6
Social science 6 8 5
Science 8 5 4
Major 8 10 6

$125/month

Set up a model that Meg could use to maximize the future worth of her
education assuming that she can earn $3000/summer and that her father will

262 Chapter 4 Integer Programming

provide $6000/year for her education and living expenses. You may wish to
consider allowing Meg the option of working while going to school or of going to
summer school for certain courses.

2. Consider the problem of making change in a supermarket. Suppose that the
cash register shows that your change is to be C cents. Initially, we assume
C < 100. The coins that are available to make change have values

w 1= 1, w 2 = 5 , w 3 = 10, w 4 = 2 5 , and w 5 = 5 0 .

(a) Set up an integer programming problem for finding which combination of
coins yields the correct change using the smallest number of coins.

(b) Construct a table giving the solution to part (a) for C = 1, 2 , . . . , 99.
(c) One algorithm for change-making calls for giving as many of the largest-de-

nomination coins as possible, then using the next largest denomination for
the remaining amount, and so on. Does this algorithm give the correct
answer for each C = 1, 2 ,99?

(d) Suppose our monetary system had coins with values

w 1= 1, w 2 = 5 , w 3 = 2 0 , and w 4 = 2 5 .

Use the algorithm in part (c) to make up C = 40. Is this a minimal solution?
(e) Consider the problem of giving C dollars in change, where C = 1, 2 9.

Would it be advantageous to use a $2 bill in addition to the $1 and $5 bills?
(f) What other situations have models similar to the change-making problem?

Further Reading
Chang, S. K., and Gill, A. "Algorithmic Solution of the Change-Making Problem." J. ACM

17 (1970), 113-122.
Hoffman, A. J., and Kruskal, J. B. "Integral Boundary Points of Convex Polyhedra," in

Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, Eds.), pp. 223-246.
Princeton Univ. Press, Princeton, NJ, 1956.

4.2 CUTTING PLANE METHODS

In this section we discuss one approach that has been used to solve
integer programming problems. The algorithms for such problems are not
as nice as those for linear programming problems in the sense that there is
not one algorithm that works well for all integer programming problems.
Among the difficulties with these algorithms is their inefficiency for even
medium-sized problems. For example, computat ions for the traveling sales-
man problem (Example 4 in Section 4.1) become prohibitively long for
over 200 cities.

Consider the pure integer programming problem

Maximize z = cTx (1)

subject to

Ax = b (2)

x > 0 and integral, (3)

4.2 Cutting Plane Methods ~

where A is an m • n matrix, c is an n • 1 column vector, and b is an
m • 1 column vector.

The cutting plane algorithms were developed by Ralph Gomory in
1958. The idea behind the algorithms is to start with the problem given by
(1), (2), and (3); ignore the restriction that x must be a vector with integer
components; and solve the resulting problem by the simplex method. If the
resulting solution is integral, we are finished. Otherwise, we add a new
constraint that "cuts off" (eliminates)some nonintegral solutions, includ-
ing the one just obtained by the simplex method. However, the new
constraint is carefully constructed so as not to eliminate any feasible
integer solutions. We solve the new problem and repeat the simplex
algorithm. By adding enough constraints, we eventually reach an optimal
integer solution.

Suppose the problem has a feasible solution and that a finite optimal
value exists. We may assume that A, B, and c have integer entries. The ith
constraint as it appears in the final simplex tableau for the related linear
programming problem is

n

E tijxj = XBi, (4)
j = l

where XBi is the value of the ith basic variable for the optimal solution of
the related linear programming problem. We denote by [a] the integer
part of a. That is, [a] is the largest integer K, such that K < a. For
example,

3 3 [~1= 1, [~] = 0
2 1 [- 3 1 = - 1 , [- 3 7 1 = - 4

[3 1 = 3 , [- 2 1 = - 2 .

Since [tij] < tij and xj > 0, we can write from (4)
n

E [tij]Xj <_~ XBi.
j = l

(5)

Any integer vector x that satisfies (4) must also satisfy (5). For such x the
left-hand side of (5) is an integer. Thus, we may write the constraint (6)
that x must also satisfy:

n

E [tij]Xj <_~ [XBi]. (6)
j = l

We can transform (6) into an equation by introducing the slack variable u/"
n

E [tij]Xj -Jr- U i = [XBi]. (7)
j - -1

~ Chapter 4 Integer Programming

Since u/ is the difference between two integers, we may require that u i be
an integer. We have shown that any feasible solution to the given integer
programming problem will also satisfy (7) for some value of u i.

Now assume that Xni is not an integer. We may write

[tij] + gij = tij
and

[XBi] + fi -- XBi'

where 0 < gij < 1 and 0 < f i < 1. The quantity f i is called the fractional
part of Xni. Thus, if

9 2
tij - -~ , then gij = v ,

and if
__. 1 ti j 2 then gij = 3 37

If we subtract (4) from (7), we have
n

(- g ~ j) x j + u~ = - L . (8)
j = l

Equation (8) is the cutting plane constraint to be added to the constraints
in (2). We now proceed as follows.

S tep 1. Solve the related linear programming problem obtained from
the given integer programming problem by dropping the integrality re-
quirements. If the solution is a vector with integer components, stop.
Otherwise, go to Step 2.

S tep 2. Generate a cutting plane constraint as in (8). A heuristic rule
to use for choosing the constraint in the cutting plane construction is
choose the constraint in the final simplex tableau that gives the largest fi.

S tep 3. Consider the new integer programming problem, which consists
of the same objective function, the constraints in (2), and the cutting plane
(8), which have been added in Step 2. Return to Step 1.

Since the coefficients of all the basic variables except the ith one in the
list will be zero in (4), we may rewrite (4) as

Xr i "[- E t i i x j = XBi, (9)
j ~ N

where N is the set of indices of the nonbasic variables and where the
variable labeling this ith constraint is Xr . Suppose that XBi is not an
integer. The Gomory cutting plane obtained from (9) is

E (- -g i j)X j + Ui = - - L , (10)
j ~ N

where

[tij] + gij = tij and [XBi] + L --- XBi"

4.2 Cutting Plane Methods 265

If we set the nonbasic variables xj equal to zero in (10), we obtain
u i = - f / < 0. Since the slack variable u i is negative, we see that the
optimal solution to the related linear programming problem whose i th
constraint is given by (9) is no longer a feasible solution to the new linear
programming problem with the added constraint (10). We have cut off the
current optimal solution. The dual simplex method can now be used to
solve the new problem; it will remove the infeasibility caused by adding the
constraint (10).

We have shown that the cutting plane method fulfills the two criteria. It
does not remove any integer vectors from the set of feasible solutions, but
it does remove noninteger optimal solutions.

EXAMPLE 1. Consider the pure integer programming problem

M a x i m i z e z = 5 X 1 -~- 6X 2

subject to

10x I + 3x 2 _< 52

2x 1 + 3x 2 _< 18

X l > 0 , x e > 0 , integers.

The final simplex tableau for the related linear programming problem is
given in Tableau 4.1 (verify), where x 3 and x 4 are the slack variables for
the first and second constraints, respectively. Since the solution is noninte-

1 1 gral, we must add a cutting plane constraint. We find f~ = ~ and f2 = g,
so that we choose the first row for constructing the cutting plane. We have

and

r 1 1 1 1

1 7 1
[- ~ 1 ~ ~ - ~.

Tableau 4.1

CB

5 x 1

6 x 2

5 6 0 0
X 1 X 2 X 3 X 4 X B

1 1 1 0 g g 17

0 1 }2 5

1 15 161 0 0 ~ 8

The Gomory cutting plane is then

1 7 ~ 1
g X 3 - - g X 4 -t- U 1 - - - - ~ .

Our new tableau is Tableau 4.2. We must now use the dual simplex
method on Tableau 4.2 to restore feasibility. We obtain Tableau 4.3.

266 Chapter 4 Integer Programming

Tableau 4.2

CB

5 X 1

6 x 2

0 u I

5 6 0 0 0
X 1 X2 X3 X 4 U 1

1 1 1 0 ~ ~ 0
5 0 0 1 }2 12

0 0 a

1 15 0 161 0 0 g 8

X B

Tableau 4.3

CB

5 x 1

6 x 2

0 x 3

5 6 0 0 0
X1 X2 X3 X4 Ul X B

1 0 0 1 1 4
2 10

0 1 0 1 3 3
0 0 1 7 8 2

0 0 0 1 1 40

Since t h e s o l u t i o n is still n o n i n t e g r a l , we f o r m u l a t e a n o t h e r G o m o r y

cu t t i ng p l a n e us ing t he x 2 row. W e h a v e

[11 + 0 - 1

1 ~ 2

T h e c u t t i n g p l a n e e q u a t i o n is

1 1
0 X 4 - - 3 U l -~- / ' /2 - - 3 "

W e show t h e n e w t a b l e a u in T a b l e a u 4.4.

Tableau 4.4

CB

5 X 1

6 x 2
0 X 3

0 /A 2

5 6 0 0 0 0
X1 X2 X3 - -X 4 U 1 U 2

1 0 0 1 1 0
2 0 1 0 1 3 0

0 0 1 7 8 0

0 0 0 0 (- f) 1

0 0 0 1 1 0

XB

4
10
3

2

1

40

4.2 Cutting Plane Methods 267

Tableau 4.5

5 6 0 0 0 0

c B x1 x2 x3 x4 Ul u2 XB

5 X 1 1 0 0 1 0 3 3

6 X 2 0 1 0 1 0 - -2 4

0 X 3 0 0 1 7 0 24 10

0 U 1 0 0 0 0 1 3 1

0 0 0 1 0 3 39

Using the dual simplex method on Tableau 4.4, we obtain Tableau 4.5.
We have obtained the optimal integer solution

x 1 = 3 , x 2 = 4 , z = 3 9 .

The first cutting plane,
1 7 1

- - 8 X 3 - - 8 X 4 -+- U1 - - 4 ,

can be expressed in terms of x 1 and x 2 by substituting

X 3 --" 5 2 - 1 0 x 1 - 3 x 2

X 4 --" 1 8 - 2 X 1 - - 3 X 2 ,

which come from the constraints of the original problem. We obtain

3 x I + 3 x 2 + u 1 = 22

o r

The second cutting plane,

gives

(11)

1 1
3U1 + U2 - - 3 ,

X 1 -+- X 2 ___< 7. (13)

In this calculation we used (11) to write u 1 in terms of x 1 and x 2. We
sketch the original feasible region and the cutting planes in Figure 4.1. /x

Several remarks are in order. For a linear programming problem the
number of positive components in the solution vector is < m, where A is
m x s. For an integer programming problem this is no longer true. In fact,
the optimal value may not occur at an extreme point of the convex region
defined by the constraints.

For a pure integer programming problem, the set of feasible solutions is
the set of points with integer coordinates, called lattice points, lying within
the convex region defined by the constraints (see Figure 4.1). If the convex
region is bounded, there are just a finite number of feasible solutions.

X 1 -~-X 2 ___< - ~ . (1 2)

268 Chapter 4 Integer Programming

.x 2

7- ~ �9 ~ l O X l + 3X 2 = 52

6-~ 5-q �9 o ~ ~

44~- , �9 '3~

3 ~ �9 �9 �9 "ek 2Xl+ 3x 2 = 18

24 �9 �9

14 �9 �9

22 �9 �9 ~l+X2 = --g-
(Cutting plane 1)

" -

XI+X 2 --
(Cutting plane 2) .,. # A .~t ,,, I ~-Xl

1 2 3 4 5 6 7 8 9

FIGURE 4.1

However, for problems with several variables it is computationally imprac-
tical to evaluate the objective function at each of these points and then
choose the point with the largest value. Instead the cutting plane method
works from an extreme point and closes in on one of the lattice points at
which the objective function attains its optimal value.

The cutting plane algorithm that we just gave has several major draw-
backs. The integral answer does not appear until the very last step. This is
unlike the simplex method, in which we can stop at any stage and obtain a
feasible solution that is better than the previous feasible solutions. In the
Gomory algorithm, if we stop before the end, we have no integral solution.
Also, the cutting planes are constructed by using fractional parts of the
coefficients and the right-hand side of a constraint, and, consequently,
round-off errors may cause the method to converge slowly.

Another method used for solving integer programming problems occur-
ring in common applications avoids this difficulty by introducing a pair of
constraints based on the integer part of one of the basic variables. This
method, called the branch and bound method, is described in the Section
4.3.

Gomory's Method for Mixed Integer Programming

We can attempt to solve a mixed integer programming problem in the
same way as a pure integer programming problem. We use the simplex
method to obtain the optimal solution to the related linear programming

4.2 Cutting Plane Methods ~

problem. This will be a solution to the mixed integer programming prob-
lem if those variables appearing in the basis for the optimal solution that
are required to have integer values actually do have such values. We
suppose now that Xri, the ith basic variable in the optimal solution of the
related linear programming problem is required to be integral and that xBi
is not an integer. We saw that we may write the i th constraint (9) as

Let XBi

o r

Xr i -~- E tijX j --- XBi. (14)
j nonbasic

-- [XBi] + fi" We may write (14) as

Xr i + E t i j x j -- [XBi] Jr- L
j nonbasic

E t i j x j - - L + ([XBi] - Xri)" (15)
j~N

We now divide the set of indices for the nonbasic variables into two
subsets N § and N- , where

N += { j l j is the index of a nonbasic variable and tij >__ 0}

N - = { j l j is the index of a nonbasic variable and tij < 0}.

Then (15) may be written as

E tijxj + E t i j x j - - f i + ([XBi] - Xri)"
j~N + j~N-

(16)

Using (16), we want to derive a cutting plane constraint that will cut off
the current optimal solution to the related linear programming problem
because in that solution Xr, does not have an integer value. The cutting
plane constraint must also have the property, as before, that no feasible
solutions for the mixed integer problem should be cut off. We can
interpret this condition as saying that if Xr, satisfies (16) and if Xr, is an
integer, then Xr, must satisfy the cutting plane constraint.

We consider two cases: the right-hand side of (16) is positive, or it is
negative. Assume, first, that fi + ([xBi] -Xri) < 0. The quantity in paren-
theses is an integer by assumption and 0 < fz < 1. We see that [xB~] -Xri
must be a negative integer for all these assumptions to hold.

Thus, the largest value that the right-hand side of (16) can have while
still remaining negative is f i - 1. Our original constraint (14) implies, in
this case,

E tijxj + E tijxj <-- f i - 1. (17)
j~N + j~N-

~ 0 Chapter 4 Integer Programming

We can make the left-hand side of (17) smaller by removing the first sum,
since it represents a nonnegative quantity. We obtain

E tijxj ~ fi -- 1.
yeN-

Dividing by f / - 1 and reversing the inequality, since f , - 1 is negative,
and then multiplying by fi yields

~N f i > (18) tijxj L.
j - f i - 1 -

Since the first sum in (17) is nonnegative, we may add it to (18) to obtain

L
E tijXj + ~ E tijXj >-- fi" (19)

j ~ N + L- 1 j ~ N -

For the other case, we assume that f i + ([XBi] -- Xr i) >-- O. Using reason-
ing similar to that in the first case, we see that [x n i] - - X r , must be
nonnegative. Thus, our original constraint (14) implies that

E tijxj + E tijxj >-- fi" (20)
j~N- j~N-

We may replace the second sum in (20) by any larger quantity and still
maintain the inequality. We have

L
tijx j < 0 < ~ tijx j.

j ~ s - - - f i - l j ~ s -

Consequently, (20) implies that

L
E tijxj + ~ E tijxj >---fi'

WeN + f i - 1 j e N -

which is the same as (19).
We have now shown that if (14) is a constraint in a mixed integer

problem whose corresponding basic variable is supposed to have an integer
value but does not, then (19) is satisfied by every vector x that satisfies (14),
assuming that Xr, is an integer. From (19)we can construct the equation of
the cutting plane. We reverse the inequality in (19) and add a slack
variable u/, obtaining

f/
-- E tijxj E tijXj + Ui = --fi" (21)

j ~N + f l - 1 j ~ N -

Equation (21) is the Gomory cutting plane. For the current optimal
solution, xj = 0 if j ~ N § or j ~ N- . Therefore, introducing the con-
straint (21) gives

Hi--- --L < 0

4.2 Cutting Plane Methods 271

for the current optimal solution, and hence it has been cut off, since u i
must be nonnegative.

Note that (21) may be written as

u, = - L + djxj ,
j ~ N

tij if tij >__ 0

dj = fi
f ~ - l t i j if t~ j<O.

where

(22)

It is possible that some of the nonbasic variables are also required to be
integer valued. We can refine the cutting plane defined by (21) if we use
this information. The refinement will simply cut off more solutions that do
not satisfy the integrality conditions. We write

tij = [tij] + gij"

Then, instead of the definitions of dj given in (22), we have for the refined
cutting plane

tij if tij >__ 0

f ~ - 1 tij if tij < 0

gij if gii < f i

fi (g i j - 1) if g i j> f~
f / - 1

and xj may be nonintegral

and xj may be nonintegral

and xj must be integral

and xj must be integral.

(23)

/x

EXAMPLE 2. Consider the mixed integer programming problem

Maximize z = 5 x 1 + 6 x a

subject to

10X 1 + 3X 2 < 52

2x 1 + 3x 2 _< 18

x 1 > 0 and integral

X2>__0.

The final simplex tableau for the related linear programming problem is
the same as that in Example 1 and is given in Tableau 4.1. Since the value
for x 1 is not an integer, we must add a cutting plane constraint. The
nonbasic variables are x 3 and x 4, the slack variables. Neither is con-
strained to be an integer. We therefore use (21) to define our cutting
plane. In this case, i = 1 and

1
X B i = 4 + ~ ,

272 Chapter 4 Integer Programming

so that f l = ~. F r o m T a b l e a u 4.1 w e see that N + {3} and N - = {4}. T h e
cutt ing p lane is

fl
- - t 1 3 x 3 - - f l - - 1 t 1 4 x 4 + u l - - - - f l

o r

1
1 4 1 1

- - 8 X 3 3 (- 8) x 4 + U l = 4
4

or

1 1
8X3 - - ~4X4 "J- U l --" 4"

Putt ing this constra int into T a b l e a u 4.1, we get T a b l e a u 4.6.

Tableau 4.6

CB

5 X 1

6 x 2

0 U 1

5 6 0 0 0
X1 X2 X3 X 4 U 1

1 1 1 0 ~ ~ 0
0 1 liE ~ 0

@ 1 0 0 i4 1

1 0 0 ~ ~5 0

X B

~7

1

161

W e use the dual s implex m e t h o d to restore feasibi l i ty in T a b l e a u 4.7.
T h e so lut ion that T a b l e a u 4.7 represents ,

10
X 1 - - 4, x2 "-- 3 , Z = 4 0 ,

satisfies the integral i ty cond i t i ons so that i t is an opt imal so lu t ion to the
g iven mixed integer p r o g r a m m i n g prob lem.

Tableau 4.7

CB

X1

X2

X3

5 6 0 0 0
X 1 X 2 X 3 X 4 U 1 XB

1 1 0 0 ~ 1 4
4 2 10 0 1 0 ~ 3 3

1 8 2 0 0 1

0 0 0 11 1 40

A

4.2 Cutting Plane Methods 273

EXAMPLE 3. Consider the mixed integer programming problem

Z - - 4 X 1 + 5X 2 + 3X 3 Maximize

subject to

3x 1

2x I +

+ 4 X 3 _< 1 0

X 2 + X 3 < 7

3x I + 4x 2 + X 3 < 12

X 1 >_~ 0 , X 3 >_ 0, and integral

X2 >_~ 0 .

The final tableau of the related linear programming problem is Tableau
4.8 (verify). Since x 1 and x 3 are constrained to be integer valued, the
solution represented by Tableau 4.8 is not feasible for the given mixed
integer problem. We introduce a cutting plane from the first constraint in
Tableau 4.8 (i = 1). Note that x 4 must also be integer valued, since it is
the difference of two integers. The set of indices of nonbasic variables is
N - {1, 4, 6}. We calculate the value of dj using (23) for each of these

5 1 indices. The fractional part of x 3 - $ is f~ = ~.

Tableau 4.8

CB

3 X 3

0 x 5

5 x 2

4 5 3 0 0 0
X 1 X 2 X 3 X4 X 5 X 6 X B

3_ 0 1 • o o 5_ 4 4 2

11 0 0 16 4
9
16 1 0 1~ 0

1716 0 0 ?6 0 5_. 4 155 8

For j = 1, x I must be integer valued, and we have

3 _ _ 0 + 3 3
~ - a or gll = 7 > f l "

Therefore,

1 1
_ _ 3 _ 2 1 1

(7 1) = - - 7 - (- 7) = 7. d l - 1 1
2 2

For j = 4, x 4 must be integer valued, and we have

1 0_1_ 1 1 = ~ or g14 = 7 < f l -

Therefore,
1

d4 = 7 .

274 Chapter 4 Integer Programming

For j = 6, x 6 may have any value, t16 -- 0, and therefore

d 6 -- 0.

The cutt ing p lane constraint is

1 1 1
U l - - - - ~ + ~ X 1 + ~ X 4

o r

1 1 m 1
4 X 1 - - 4 X 4 -~ U l 2 "

W e add this constraint to Tab leau 4.8 to get Tab leau 4.9. This tableau
represents an opt imal but infeas ible so lut ion to the re lated l inear pro-
gramming problem. W e apply the dual s implex m e t h o d to restore feasibil-
ity. The result is shown in Tab leau 4.10, which yie lds the opt imal so lut ion

5 37
X 1 - - 0 , X 2 = ~ , X 3 = 2 , Z = T "

Tableau 4.9

CB

3 X 3

0 x 5

5 x 2

0 u 1

4 5 3 0 0 0 0
X 1 X 2 X 3 X 4 X 5 X 6 U 1 XB

3 0 1 1 0 0 0 5 4 a"
11 3 1 1 i?, 0 0 16 ~ 0 ~7
9 1 0 8 9 i-6 1 0 16 0 ~

1 @ , ~ 0 0 0 0 1 ~

17 0 0 7 6 0 5 0 16 4
155

Tableau 4.10

CB

3 X 3

0 X 5

5 X 2

0 X 4

4 5 3 0 0 0 0
X1 X 2 X 3 X 4 X 5 X 6 U 1 X B

! 0 1 0 0 0 1 2 2
7 1 3 5 0 0 0 1 ~ 4
5 1 1 5 1 0 0 0 ~ ~
1 0 0 1 0 0 4 2

0 0 0 0 ~ ~ 37
8 4 4 2

A

4.2 EXERCISES

In Exercises 1 and 2 assume that every variable is constrained to be an integer.
Using the given final simplex tableau, find the equation of the cutting plane.

4.2 Cutting Plane Methods ~

CB

X4

X2

Xl

2 3 1 0 0
X 1 X2 X 3 X4 X5 XB

1 1 5 0 0 ~ 1 ~
1 0 1 7 0 1 ~
3 L 13 1 0 - 0 8 4 8

5 7 47
0 0 z 0 ~ s

CB

3 X 2

1 x 4

4 x 3

2 3 4 1 0 0 0
X 1 X2 X3 X4 X5 X6 X7 It B

'- ~ 2 s 1 0 0 ~2 2 24
11 1 3 7 ~ 0 0 1 ~ 1 ~ 24

3 11 13 1
1 0 1 0 ~ "12 12 3"

11 0 0 0 3512 376 296 1838

In Exercises 3 and 4 solve the given integer p rogramming problem by the
cutting plane me thod and sketch the graph of the set of feasible solutions and the

cutting planes.

3. Maximize z = x + y
subject to

4. Maximize z = x + 4y
subject to

2x + 3y < 12

2 x + y < 6

x > 0 , y > 0, integers.

x + 6 y < 3 6

3x + 8y < 60

x > 0 , y > 0 , integers.

In Exercises 5 -12 solve the given integer p rogramming prob lem using the
cutting plane algorithm.

5. Maximize z = 4x + y
subject to

x > O ,

3x + 2y < 5

2x + 6y < 7

3 x + T y _ < 6

y > 0, integers.

276 Chapter 4 Integer Programming

6. Maximize z = x 2 -I- 4x 3
subject to

X 1 >___0,

3x I -- 6x 2 + 9x 3 < 9

3x a + 2x 2 + X 3 _< 7

x 2 >~ O, x 3 >_ O, integers.

7. Maximize z = 5x + 2y
subject to

12x - 7y < 84

6x + 10y < 69

x > 0 , y > 0 , integers.

8. Maximize z = x I + 2x 2 + X 3 -'[-X 4

subject to

2x I + x 2 + 3x 3 + X 4 __< 8

2x 1 + 3 x 2 + 4 x 4 < 12

3x I + x 2 + 2x 3 < 18

x j > 0 , j = 1 , 2 , 3 , 4 , integers.

9. Repeat Exercise 3 under the assumption that only x must be an integer.

10. Repeat Exercise 6 under the assumption that only x l and x 3 must be integers.

11. Repeat Exercise 8 under the assumption that only xl and x 2 must be integers.

12. Repeat Exercise 6 under the assumption that only x2 must be an integer.

4.2 PROJECT

In Step 2 of the procedure for generating a cutting plane constraint, we gave the
following heuristic rule for choosing the variable to be affected by the cutting
plane: from among the basic variables constrained to be integers, choose the basic
variable whose value has the largest fractional part. This arbitrary rule was included
so that there was an unambiguous procedure for developing the cutting plane
constraint. But other rules are possible. Consider the following problem.

Maximize z = 5 x + 2 y

subject to

6 x - 15y < 24

6x + 10y < 69

3x + 10y < 60

x > 0 , y > 0 , integers.

(a) Sketch a graph of the feasible region of the associated linear programming
problem and identify the feasible and optimal solutions of the given integer
programming problem.

4.3 Branch and Bound Methods 277

(b) Solve the integer programming problem using the heuristic rule as given in
Step 2. (Warning: the computation is lengthy.)

(c) Solve the integer programming problem using the following as the heuristic
rule: from among the basic variables constrained to be integers, choose the basic
variable whose value has the smallest fractional part.

(d) What other rules can you propose for choosing the basic variable to be
affected by the cutting plane?

4.3 BRANCH AND BOUND METHODS

If the set of feasible solutions to the related linear programming
problem of a mixed integer programming problem is bounded, then the
integer valued variables can take on only finitely many values in this
region. We had previously discussed solving a linear programming problem
by enumerating the extreme points of the set of feasible solutions and then
choosing an optimal solution from among these. We dismissed this brute
force method in favor of the simplex algorithm that listed only some of the
extreme points and chose an order for the list in which the value of the
objective function improved each time. However, using cutting planes and
the simplex algorithm can involve very lengthy computations. Thus, it may
be advantageous to again consider some enumerating technique.

We examine the possibility of cleverly enumerating the integer values
that should be considered for a mixed integer programming problem. The
clevemess is needed so that the task does not become overwhelming. One
technique that is used is that of implicit enumeration. This involves
generating a list of some of the feasible integral solutions and saving the
best solution in the list for comparison with lists that will be generated
subsequently.

A set S of feasible solutions to a mixed integer programming problem is
said to be implicitly enumerated if S does not contain any solution that is
better than the best currently known solution. Our strategy will be to
partition the set of feasible solutions into several subsets and then to
dismiss many of these subsets because they are implicitly enumerated. We
can derive certain relations from the constraints of the problem and the
value of the best current solution. These relations will be violated by any
set of solutions that is implicitly enumerated; that is, these relations give
conditions that are necessary for a solution to satisfy if it is to improve the
value of the objective function. If many subsets of the set of feasible
solutions can be implicitly enumerated, we can greatly limit the number of
solutions that have to be explicitly examined.

It will be easiest to describe the enumeration technique if we initially
limit ourselves to a zero-one programming problem. Consider such a
problem and assume that it has n variables. The set of all feasible

~71] Chapter 4 Integer Programming

solutions, S, can be partitioned into two subsets, S o and S1, where

S0 = {x ~ Six1 = 0}

and

S 1 = (x ~ S i x I = 1}.

Likewise, both So and S 1 c a n be partitioned into two subsets--say, So is
divided into S00 and S0a, and S 1 is divided into $10 and Sll. We define S00
by

Similarly,

Soo = {x ~ S i x 1 = 0 and X 2 " - 0 } .

Sol = {x ~ S i x 1 = 0 and X 2 = 1}

S~o = {x ~ S l x l = 1 and X 2 ~- O}

$11 = { x ~ S I x i = 1 and x 2 = 1}.

Each of the four subsets S i j , i, j = 0 or 1, can be partitioned further. We
can describe this procedure with a tree diagram, as shown in Figure 4.2.
The numbered circles are called nodes; the lines connecting them are
called branches. Node 1 represents the set S of all feasible solutions. The
partitioning of S into So and $1 is represented by the branches leading to
nodes 2 and 3. Node 2 represents S O and node 3 represents S 1.

A sequence of nodes and branches from node 1 to any other node k is
called a path to node k. Each branch represents the imposition of one
constraint on the variables (setting one variable equal to 0 or 1). Node k

FllliiflE 4,2

4.3 Branch and Bound Methods ~' i~

represents the set of all solutions to the original constraints that also
satisfy the constraints imposed by the branches in the path to node k. For
example, node 9 represents

{ x ~ S I X l = 0 , x 2 = 0 , x3 = 1}.

If two nodes are connected by a path, the lower node represents a subset
of the solutions that are represented by the higher node.

If all possible values for the n variables in a zero-one programming
problem are enumerated, we have to generate 2 n paths. The bottom node
of each path would correspond to exactly one value for x, and this value
may be infeasible depending on the nature of the constraints. Our enu-
meration strategy will try to eliminate as many of these paths as possible
from consideration. We describe one method that might be used to
perform this elimination.

Suppose our zero-one programming problem has an optimal solution
for which the value of the objective function is z*. Assume that we have
found a feasible solution to the problem that has an objective function
value of z c. Obviously, z L < z*. Keep in mind that z* is unknown and is
precisely what we are trying to find. At this point we know that we do not
have to consider any set of solutions whose objective function values are
smaller than z L. Consider the set of solutions to the zero-one problem
that is represented by node k. We can find an upper bound z~ for the
values of the objective function at the solutions represented by node k by
solving a related linear programming problem. If

Z k ___< Z L

then no path that includes node k will yield an improved solution; the
objective function values will all be no larger than z k. Consequently, we
can eliminate all paths through node k without explicitly evaluating the
objective function at each solution on the path. This set of solutions has
been implicitly enumerated. In this case, node k is called a terminal node.

Node k is also called a terminal node if there are no feasible solutions
satisfying the constraints imposed at node k. Besides the original con-
straints and those imposed by the path leading to node k, we often add the
constraint

c T x ~_~ Z L

since we are interested only in solutions that are better than the current
best feasible solution. Finally, node k is called a terminal node if it
represents a single feasible solut ionmthat is, if all the variables have been
assigned a unique value.

Both branch and bound methods and methods that search in the tree of
solutions generate the nodes of the tree until all paths end in terminal

~ 0 Chapter 4 Integer Programming

nodes. At that point all solutions will have been explicitly or implicitly
enumerated and the best solution found is an optimal solution. The
difference between the two types of methods is the manner in which the
nodes are generated. Search methods follow a path until it ends at a
terminal node before examining another path. Branch and bound methods
examine the nodes in a less straightforward manner. They may generate,
more or less simultaneously, many different paths. Branch and bound
methods use more computer storage than search methods do, but they
have much more flexibility in examining the nodes and thus may be faster.

We will give the details of one branch and bound method for solving an
arbitrary mixed integer programming problem. This method was developed
in 1966 by R. J. Dakin and is a modification of the Land-Doig method. It
is widely used in the computer codes for integer programming.

Consider the mixed integer programming problem

Maximize z = cTx
subject to

A x = b
x > 0

xj, j ~ I, integral,

(1)

whe reAi s m x s , b i s m x 1, c i s s x 1, a n d x i s s x 1.
Dakin's method will generate a tree very similar to the one we formed

for the zero-one programming problem. For each node there will be two
branches to check. If neither of the branches ends in a terminal node, the
method follows the most promising branch. The other branch is called
dangling and must be examined before the algorithm terminates. Dakin's
method proceeds as follows:

Step 1 (Initial Solution). Solve the problem given by (1) as a linear
programming problem, ignoring the integrality restrictions. If all xj, j ~ I,
have integral values, we are done. If not, go to Step 2.

Step 2 (Branching Variable Selection). Choose, from among those vari-
ables, xj, j ~ I, that do not have integral values at this node, one variable
to be used to form the branching constraints. An easily implemented rule
for this choice is to use the variable whose value has the largest fractional
part. There are other more complicated rules that may even involve one
iteration of the dual simplex method to determine which variable to
choose. The xj selected must be a basic variable; otherwise, its value would
be zero. Suppose it is the i th basic variable in the final tableau for the
node, so that its value is xBi. We can write

4.3 Branch and Bound Methods ~ 1

where 0 < f / < 1. Since xj must have an integral value, it must satisfy
either

Xj <_~ [XBi] (2)

or

xj >__ [XBi] + 1. (3)

Step 3 (Formation of New Nodes). We create two new mixed integer
problems represented by the node under consideration in Step 2. One
problem is formed by adding constraint (2) and the other problem is
formed by adding constraint (3). Solve each of these problems as a linear
programming problem using the dual simplex method.

Step 4 (Test for Terminal Node). Each of the nodes formed in Step 3
may be a terminal node for one of two reasons. First, the problem
represented by the node may have no feasible solutions. Or the values of
xj, j ~ I, are all integers. In the former case, label the nodes as terminal
nodes and go to Step 5. In the latter case, besides labeling the nodes,
compare the values of the objective function with the current best value. If
the objective function value for the new node is better, replace the current
best value with it. Go to Step 5.

Step 5 (Node Selection).

(a) If both nodes were terminal nodes in Step 4, the next node to be
considered is the next one on the list of dangling nodes. If this dangling
node has an objective function value larger than the current best value,
then use this node and go to Step 2. Otherwise, check the next node in the
list of dangling nodes. When the list of dangling nodes is exhausted, stop.
The current best value is the optimal solution.

(b) If exactly one node in Step 4 was terminal, use the nonterminal node
and go to Step 2.

(c) If both nodes in Step 4 were nonterminal, we choose the more
promising one. Usually the node with the largest objective function value is
considered more promising. The other node is recorded in the list of
dangling nodes to be considered later.

EXAMPLE 1. Consider the pure integer programming problem

Maximize z = 7 x 1 + 3 x 2

subject to

2x 1 + 5x 2 _< 30

8X 1 -]" 3X 2 < 48

x~ >_0, x 2>_0, integers.

282 Chapter 4 Integer Programming

We solve the related linear programming problem and obtain the final
tableau shown in Tableau 4.11. From this tableau we see that an optimal
solution is

x 1 -" 4 7 , x e = 4 4 , z = 431~.

We choose x I as the branching variable, since it has the largest fractional
part. The constraints to be added are

X 1 _~ 4 a n d x I >__ 5 .

Tableau 4.11

CB

3 x 2

7 x I

7 3 0 0

x1 x 2 x 3 x 4

0 1 1~ ~7
3 5

1 0 34 34

3 29
0 0 34 34

X B

741
17

To carry out Step 3 we add each of these constraints in turn to the final
tableau in Step 1. We get the tableaux shown in Tableaux 4.12 and 4.13.
For Tableau 4.12 we have written

75
X 1 - - - ~ d- ~ 4 X 3 - - 3--~X4

from the second row of Tableau 4.11 and then introduced a slack variable,
u l, so that our new constraint is

X 1 + U 1 = 4

o r

3 5 = 4 - 75 7
~-~X 3 - - X4 -{- U 1 "i'ff = 17"

In the same way the new constraint for Tableau 4.13 becomes

75 ~__ 10
34X 3 + 3-~X4 "~- U 1 --- - - 5 "1" "i'ff 17"

Tableau 4.12
,I,

CB

3 X 2

7 X 1

0 U 1

7 3 0 0 0

X 1 X2 X3 X 4 U 1

4
0 1 i-7 i~7 0

3 5 0 1 0 34 34

3 @ 1 0 0 34

XB

3 29 0 71~ 0 0 3-4 34

4.3 Branch and Bound Methods 283

Tableau 4.13

CB

3 X 2

7 x 1

0 U 1

7 3 0 0 0

X 1 X2 X3 X 4 U 1 XB

0 1 4 17- 0 72~7
3 75

1 0 34 34 0 17

5 1 10
0 0 34 17

3 29 0 71~
0 0 34 34"

W e now apply the dual s implex m e t h o d to each of these tableaux to obtain
Tableaux 4.14 and 4.15, respectively.

Tableau 4.14

CB

3 X 2

7 x 1

0 x 4

7 3 0 0 0
X1 X2 X3 X4 U 1 XB

1 0 2 22 0 1 ~ 5 5
1 0 0 0 1 4

3 14 0 0 ~ 1 35 5

3 0 ~ 206
0 0 ~ 5

Tableau 4.15

CB

3 x 2

7 x 1

0 x 3

7 3 0 0 0

x 1 x 2 x 3 x 4 u 1 XB

1 8 8 0 1 0 ~ ~
1 0 0 0 1 5

5 34 20 0 0 1 ~ 3 3

0 0 0 1 1 43

At this point we have the tree in Figure 4.3. The objective funct ion value
in node 3 is larger than that in n o d e 2. Consequent ly , node 2 is recorded in
our list of dangling nodes and we cont inue from node 3. W e add the
constraints

X 1 < 2 and X 2 >_ 3

to the problem represented by n o d e 3 to form two new problems. As
before, we write

1 8 8
X2 - - - - - ~ X 4 - - ~ U 1 +

284 Chapter 4 Integer Programming

�9

Q z = 4317 ~

x 1 = 4 7 (Tableau 4.11)

X 2 = 4 4

1 Q z = 41~- z = 43

x I = 4 (Tableau 4.14) x 1 - 5

2 X~ = 2 2 x 2 = 4~-

FIGURE 4.3

(Tableau 4.15)

from the first row of Tableau 4.15. Then by adding a slack variable to each
of the constraints, we have

X 2 -~- U 2 - - 2 a n d - x 2 %- u 2 - - - 3

o r

1 8 8 2 (4)
~X 4 - - ~ U 1 -~- U 2 - - 2 - 3 - 3

and
1 8 8 1
3X4 + g U 1 + U 2 = - - 3 + ~ = 3 . (5)

We add each of constraints (4) and (5) to Tableau 4.15 to form Tableaux
4.16 and 4.17. We use the dual simplex method on each of these tableaux
to try to restore feasibility. Tableau 4.18 is obtained from Tableau 4.16 by
this process. However, Tableau 4.17 represents an infeasible solution that
satisfies the optimality criterion, because there are no negative entries in
the pivotal row (labeled by u2). Thus, Tableau 4.17 represents a terminal
node.

Tableau 4.16

CB

3 X 2

7 x 1

0 X 3

0 u 2

7 3 0 0 0 0

X1 X2 X 3 X4 Ul U 2 XB

1 8 0 8 0 1 0 ~ ~

1 0 0 0 1 0 5
0 0 1 3 5 ~ 0 203

1
0 0 0 x 1 3

0 0 0 1 1 0 43

4.3 Branch and Bound Methods 285

Tableau 4.17

CB

3 X 2

7 x 1

0 x 3

0 u 2

7 3 0 0 0 0

X 1 X2 X3 X4 U 1 U 2

1 8 0 1 0 ~ x 0
1 0 0 0 1 0
0 0 1 5 34 0

3 3
1 8 0 0 0 ~ ~ 1

0 0 0 1 1 0

XB

43

Tableau 4.18

CB

3 X 2

7 x 1

0 x 3

0 u 1

7 3 0 0 0 0

X 1 X2 X3 X4 U 1 U 2

0 1 0 0 0 1
1 0 3 1 0 0 ~ 8
1 0 0 1 ~ 0

1 3 0 0 0 ~ 8

0 0 0 7 0 3

XB

171

At this p o i n t w e h a v e t he t r e e in F i g u r e 4.4. N o t e t h a t in n o d e 3, x 1 h a d

an i n t e g e r va lue , b u t in n o d e 4, t h e v a l u e o f X l is n o l o n g e r an i n t ege r .

Thus , w e c a n n o t e x p e c t a v a r i a b l e o n c e it ha s an i n t e g e r v a l u e to c o n t i n u e

hav ing an i n t e g e r va lue .

W e n o w use S t e p 2 o n n o d e 4, a d d i n g t h e c o n s t r a i n t s

X 1 _~ 5 a n d x 1 >_ 6 .

Tableau 4.19

CB

3 X 2

7 X 1

0 X 3

0 U 1

0 U 3

7 3 0 0 0 0 0
Xl X2 X3 X4 g l U2 U3

0 1 0 0 0 1 0
1 0 3 1 0 0 ~ ~ 0
1 0 0 1 ~ 0 1~ 0
1 1 3 0 0 0 0 ~ 8

~ 3 1 0 0 0 0

7 0 3 0 171 0 0 0 ~ ~ 4

XB

286 Chapter 4 Integer Programming

�9

Q z = 43]0

x] = 4 7 (Tableau 4. l l)

x 2 = 4~7

z-4, Q z-4

x I - 4 (Tableau 4.14) x) = 5

x 2 - 4 2

Dangling node

Q

(Tableau

x 2 =2}

xl = 5�88 (Tableau 4.18) Terminal node

x 2 =2

4.15)

FIGURE 4.4

4.17)

Tableau 4.20

CB

3 X 2

7 x 1

0 x 3

0 u 1

0 u 3

7 3 0 0 0 0 0

X 1 X 2 X 3 X 4 U 1 U2 U3 X B

0 1 0 0 0 1 0 2
1 0 3 0 21 1 0 0 ~ 8
1 0 0 1 X 0 17 0 19

1 1 3 0 1 0 0 0 ~ a

0 (_ 3 ") 1 O O O 81 "43

7 0 3 171 0 0 0 ~ ~ 0 4

We obtain Tableaux 4.19 and 4.20 after introducing the slack variable u 3
and rewriting these constraints. We use the dual simplex algorithm on
each of these tableaux to try to restore feasibility. Tableau 4.21 is obtained
from Tableau 4.19, and Tableau 4.22 is obtained from Tableau 4.20 by this
process. Since both Tableaux 4.21 and 4.22 give integer solutions, they
correspond to terminal nodes. The solution

X 1 = 6, x 2 = 0, z = 42

4.3 Branch and Bound Methods 287

Tableau 4.21

CB

3 X 2

7 x 1

0 x 3

0 u 1

0 x 4

7 3 0 0 0 0 0

X 1 X2 X3 X4 Ul U2 U3

0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 0 5 2
0 0 0 0 1 0 1
0 0 0 1 0 3 8

0 0 0 0 0 3 7

XB

2
5

10
0
2

41

Tableau 4.22

CB

3 X 2

7 x 1
0 X 3

0 U 1

0 U 2

7 3 0 0 0 0 0
X 1 X 2 X 3 X 4 U 1 U2 U3

8 1 0 0 0 1 0
1 0 0 0 0 0 1

5 0 0 1 ~ 0 0 34

0 0 0 0 1 0 1
1 8 0 0 0 3 0 1 3

0 0 0 1 0 0 1

X B

0
6

18
1
2

42

f rom Tab leau 4.22 is the be t t e r one, since it gives a larger objective
function value. We then check the list of dangling nodes to see whe the r
o ther branches of the t ree must be pursued. The only dangling node has

1 the objective funct ion value z = 417, which is smal ler than the value
obta ined in Tab leau 4.22. Branching at this dangling node will not increase
the objective funct ion value. The re fo re , we have found an opt imal solut ion

to the original problem:

X 1 - - 6, x 2 = 0, z = 42.

The t ree of p rob lems that was cons t ruc ted by the branch and bound

a lgor i thm for this example is given in Figure 4.5. /x

The following p rob lem shows an appl icat ion of the branch and bound

a lgor i thm to a mixed in teger p r o g r a m m i n g problem.

EXAMPLE 2. Cons ider the mixed in teger p r o g r a m m i n g p rob l em

Maximize z = 2x I + X 2 ' [- 3x 3

subject to

4x 1 + 3x 2 - 3x 2 < 6

2x 1 + 3x 2 + 3x 3 < 4

x j > _ 0 , j - 1, 2, 3; Xl, X3, in tegers .

288 Chapter 4 Integer Programming

�9

63

Q z = 4311---07

x I = 4 7 (Tab leau 4.11)

x 2 = 4~147

1 ~ z = 43
z = 4 1 ~ -

x z = 4 (Tab leau 4 . 14) x I " 5

2
x 2 = 4~-

Q

(Tableau 4 .15)

x 1 = 2~

x I = 51 (Tab leau 4 . 18)

x 2 = 2

z = 4 1 Q z = 4 2

x I = 5 (Tab leau 4.21) x I = 6 (Tableau

x 2 = 2 x 2 = 0

Optimal solution

4 .22)

FIGURE 4.5

(Tableau 4 .17)

Solution. The branch and bound method yields the tree shown in
Figure 4.6. Observe that node 4 represents a possible solution to the
problem since x a and x 3 both have integer values. However, node 5 gives
an objective function value that is larger than the one in node 4, so we
might have a solution in which x a and x3 have integer values with an

1 objective function value greater than 3x. Thus, we must generate nodes 6
and 7. We do not have to go beyond node 6 since its objective function
value is smaller than that of node 4 and any further branching will not
increase the value of the objective function. Thus, node 4 represents the
optimal solution to the given problem:

1 1
X 1 = O, X 2 = ~ , X 3 = 1, Z = 3~. A

4.3 Branch and Bound Methods 289

|

~ I

(~I z=4
Xl=0
x2=0
x3=l" ~

z=4 "1 @1 X I ' - �89

X2=0 1 x3=l
,

z=3-~ @ z=4
X 1 = 0 XI = 1

x2 3 x 2 =0
X 3 = 1 X3 = 2

|

Not feasible

z=3 (~
x I = 1�89 Not feasible
x2=0
x3=0

FIGURE 4.6

4.3 EXERCISES

In Exercises 1-10 solve the indicated mixed integer programming problem in
Section 4.2 and draw the tree of problems used in finding the solution.

1. Exercise 3

2. Exercise 4

3. Exercise 5

4. Exercise 6

5. Exercise 7

6. Exercise 8

7. Exercise 9

8. Exercise 10

9. Exercise 11

10. Exercise 12

290 Chapter 4 Integer Programming

In Exercises 11-14, use either the cutting plane method or the branch and
bound method to solve the indicated mixed integer programming problem in
Section 4.1.

11. Exercise 1

12. Exercise 2

13. Exercise 4

14. Exercise 5 (If a computer program is available for solving linear programming
problems, make use of it.)

4.3 PROJECT

Consider the air filter manufacturer in Section 3.5, Project 1. Suppose that there
is an additional specification for the purposes of standardization: the diameters of
the main chamber and exit duct must be integer values. Rework the problem with
this additional specification and comment on its economic impact on the company.

4.4 COMPUTER ASPECTS (OPTIONAL)

The computation of a solution to a mixed integer programming problem
can be an extremely difficult task. We have discussed two algorithms for
finding such a solution. Experimental evidence indicates, however, that
there are integer programming problems for which each of these algo-
rithms would be very inefficient. There have been many other algorithms
reported in the literature, along with several papers comparing their
effectiveness. Most researchers now feel that there will never be a univer-
sally good algorithm for mixed integer programming. This is perhaps
disappointing, because in the linear programming case the simplex algo-
rithm with modifications to make it numerically stable is a universal
algorithm, and one might expect that restricting the range of some of the
variables to integer values would simplify the computations. In fact, just
the opposite happens.

The state of the art for computational methods for integer program-
ming is as follows. There are commercially available codes, just as for the
simplex method, virtually all of which use a branch and bound technique.
At various universities there are also experimental implementations of
various modifications of the branch and bound algorithm and of cutting
plane techniques. Several authors have proposed lists of problems against
which one can test an algorithm. In running these tests, it is found that
each algorithm is successful on some problems but no algorithm is success-

4.4 Computer Aspects (Optional) 291

ful on all problems. Worse than this is the discovery that by simply
renumbering the variables or reordering the constraints of a problem, an
algorithm that solved the original problem well may perform poorly on the
reformulated problem.

Recently an extremely important development has taken place in the
area of preprocessing a mixed integer programming problem to reduce its
complexity. The problem and an initial solution are assessed as to their
closeness to be a pure integer model. This approach has succeeded in
turning many difficult problems into manageable ones. For example,
Ketron Management System's MIPIII does extensive preprocessing using
these ideas.

The size of a mixed integer programming problem that can be success-
fully solved in a reasonable amount of computer time is much smaller than
that for a linear programming problem. Mixed integer problems that have
thousands of integer variables, hundreds of thousands of continuous vari-
ables, and tens of thousands of constraints can be solved successfully. Of
course, as the computational speed of new computers increases, larger
problems will become feasible.

To be a successful problem solver of mixed integer programming
problems then, one must be able to do much more than provide data to a
computer program. First, one must be skilled at formulating problems and
must know alternative formulations so that when the problem is given to
the computer it will be in a form on which the code will work efficiently.
Several factors that should be considered while constructing the model are
as follows.

(a) Having a large number of variables constrained to be integers may
cause the solution procedure to be very complex and lengthy. Each integer
variable can cause branches in a branch and bound algorithm. A large
number of these variables will cause a very large tree of problems to be
constructed. It will require an extensive amount of storage for the tree and
a large amount of time to process the branches. One way of limiting the
number of integer variables is to agree that an almost optimum solution
will be acceptable. Having a solution 10% less than optimal would not be
bad if uncertainties in input parameters would cause almost that much
deviation anyway. After settling for an almost optimal solution, one can
argue that variables with large values need not be constrained to be
integers. Simply take the noninteger values for these variables and round
off. Most likely, rounding off will not change the objective function value
greatly. For example, if a variable represents the number of workers but its
magnitude will be at least 1000, allowing it to be noninteger and rounding
off will make an error of less than 0.05% in the variable, and if the model
is well formulated, this error should not propagate to a very large error in

292 Chapter 4 Integer Programming

the objective function. In fact, some suggest that any variable whose value
will be larger than 20 should not be constrained to be an integer.

(b) Tightly bounding integer variables will allow a branch and bound
algorithm to find terminal nodes more quickly as the extra constraints
become inconsistent with the bounds. Geometrically, the tight bounds
reduce the number of lattice points within the convex set of feasible
solutions to the related linear programming problem that must be consid-
ered.

(c) It helps to formulate the problem as a network problem or special-
type (transportation, assignment) integer programming problem to take
advantage of the special algorithms that are available. These special
algorithms exist because they are more efficient than the general algorithm
on a particular type of problem. Even though the combinatorial problems
arising in network theory can be difficult, it is generally better to make use
of the additional information or structure that the problem has.

Second, the user should be prepared to monitor the progress of the
computer solution by dividing the problem into stages and carefully
interpreting the output from each stage. If the user suspects that a
particular algorithm is not proceeding quickly enough to the solution, he
or she may choose to change algorithms for a few iterations. Or perhaps
the structure of the problem and the output will indicate that a different
selection of decision rules for the algorithm will speed the process.

Finally, the user should be familiar with the heuristic methods that are
applicable to his or her type of problem. Perhaps one of these methods will
determine a good starting solution or good decision rules.

Further Reading
Dakin, N. J. "A Tree Search Algorithm for Mixed Integer Programming Problems." Comput.

J. 9 (1966), 250-255.
Garfinkel, Robert S., and Nemhauser, George L. Integer Programming. Wiley, New York,

1972.
Geoffrion, A. M., and Marsten, R. E. "Integer Programming Algorithms: A Framework and

State-of-the-Art Survey." Management Sci. 18 (1972), 465-491.
Gilmore, P. C., and Gomory, Ralph E. "A Linear Programming Approach to the Cutting

Stock Problem." Operations Res. 9 (1961), 849-859.
Gilmore, P. C., and Gomory, Ralph E. "A Linear Programming Approach to the Cutting

Stock Problem--Part II." Operations Res. 11 (1963), 863-888.
Gilmore, P. C., and Gomory, Ralph E. "Multistage Cutting Stock Problems of Two or More

Dimensions." Operations Res. 13 (1965), 94-120.
Kastning, Claus. Integer Programming and Related Areas: A Classified Bibliography. Lecture

Notes in Economics and Mathematical Systems, No. 128. Springer-Verlag, New York,
1976.

Lawler, Eugene L. (Ed.). The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, New York, 1985.

4.4 Computer Aspects (Optional) 2g~

Nemhauser, George L., and Wolsey, Laurence A. Integer and Combinatorial Optimization.
Wiley, New York, 1988.

von Randow, Rabe, (Ed.). Integer Programming and Related Areas: A Classified Bibliography:
1978-1981. Lecture Notes in Economics and Mathematical Systems, No. 197. Springer-
Verlag, New York, 1982.

von Randow, Rabe (Ed.). Integer Programming and Related Areas: A Classified Bibliography:
1981-1984. Lecture Notes in Economics and Mathematical Systems, No. 243. Springer-
Verlag, New York, 1985.

Salkin, Harvey M. Integer Programming. Addison-Wesley, Reading, MA, 1975.
Taha, Hamdy A. Integer Programming: Theory, Applications. Academic Press, New York, 1975.

Special Types

of Linear

Programming

Problems

I
N THIS CHAPTER we study a number of special types of linear
programming problems. These problems arise in transportation sys-
tems, in communication systems, in pipeline systems, in electrical

networks, in the planning and scheduling of projects, and in many other
applications. Each of these problems can be formulated and solved as a
linear programming problem. However, because of their special structure
these problems can be more effectively solved by other methods that have
been specifically developed to handle them.

5.1 THE TRANSPORTATION PROBLEM

We have previously considered two examples of the transportation
problem~Example 3 in Section 1.1 and Example 1 in Section 4.1. We
present another example here that will be used to indicate the ways in
which the simplex method can be adapted to the special structure of this
problem. Our eventual goal is the transportation algorithm.

295

~ Chapter 5 Special Types o f Linear Programming Problems

EXAMPLE 1. The plastic manufacturing company described in Example
3 of Section 1.1 has decided to build a combination plant-warehouse in
San Antonio. This expansion will give it three plants and four warehouses.
The following shipping costs have been determined for the new plant and
warehouse:

To

From Los Angeles Chicago New York City San Antonio

Salt Lake City ~ ~ m 6

Denver ~ ~ 5

San Antonio 7 6 8 1

The San Antonio plant can supply 100 tons per week, and the warehouse
needs 120 tons per week to meet its demand. We want to determine how
many tons of sheet polyethylene should be shipped from each plant to
each warehouse to minimize the transportation cost.

MATHEMATICAL MODEL. The cost matrix is given by

Los New York San
Angeles Chicago City Antonio

[5 7 9 6] Salt Lake City
C = 6 7 10 5 Denver (1)

7 6 8 1 San Antonio,

where we have labeled the rows with the points of origin and the columns
with the destinations. The supply vector is

s = 140
100

and the demand vector is

d __.

100
60
80 "

120

5.1 The Transportation Problem ~

We let Xij denote the amount shipped from the ith plant to the j th ware-
house, where the plants and warehouses are numbered as in Equation (1).
Our model is to minimize

subject to

3 4

Z = E E CijXij
i = l j = l

4

E Xij ~ Si, i = 1 , 2 , 3
j=l

3
E xij ~___ 4 , j = 1 , 2 , 3 , 4

i=1

Xij ~_~ O, i n t e g e r s .

(2)

Clearly the company must be able to provide a supply of polyethylene at
least equal to the demand. In our example, we have

3 4

E s ~ = 360 = E 4 "
i=1 j = l

/x

Later we will indicate what to do if supply exceeds demand. We will say
that the model is infeasible if demand exceeds supply. The student may
show that, when demand equals supply, each of the constraints in (2) is an
equality.

We will now develop an algorithm for solving the general transportation
problem

Minimize Z = E CijXij
i = l j = l

subject to

n

E xij -- Si,
j=l

r n

~ xij = dj,
i=1

i = 1 , 2 , . . . , m

j = 1 , 2 , . . . , n

(3)

m

Esi=
i = 1 j = l

(4)

xij>O, i = 1 , 2 , . . . , m , j = 1 , 2 , . . . , n .

~1] Chapter 5 Special Types of Linear Programming Problems

This form of the transportation problem has the following properties.

1. The problem always has a feasible solution (Exercise 17).
2. The set of feasible solutions is bounded (Exercise 18).
3. Because of (4), one of the m + n constraints in (3) is redundant

(Exercise 15).

We may substitute the values for the coefficients in our model and write
it as

Minimize Z = 5Xll + 7X12 + 9X13 4- 6X14 + 6X21

+ 7X22 + 10X23 + 5X24 -~- 7X31 -4- 6X32 4- 8X33 -~-X34

subject to

Xll d- X12 -4- X13 d- X14

Xll -F X21

X21 -~- X22 -4- X23 -4- X24

X 12 "4- X22

X 13 -I- X23

X14 "~- X24

= 120

= 140

X31 + X32 + X33 + X34 = 100

+ x31 = 100

+ X32 -- 60

+ X33 -- 80

q- X34 = 120

(5)

xij >0 , integers, i = 1,2,3, j = 1,2,3,4.

Note that each variable appears in exactly two constraints. Since there are
seven constraints in the problem, we expect that there will be seven
nonzero variables in a basic feasible solution. Actually, there will be only
six nonzero variables in any basic feasible solution, because one constraint
is redundant. This redundancy occurs because the supply is equal to the
demand.

The model can be solved by the simplex algorithm, and its solutions will
always be an integer vector, since the constraint matrix contains only O's
and l's. However, there is a much more efficient algorithm that uses a
3 x 4 tableau instead of the 6 x 12 tableau for the simplex algorithm.

We construct the transportation tableau by writing a 3 x 4 matrix to
hold the values of xij. The supply vector is placed to the right of this
matrix, the transpose of the demand vector is written below the matrix,
and the unit costs are written in the insets. For our problem we obtain
Tableau 5.1.

5.1 The Transportation Problem 299

Tableau 5.1

] m

Y

7] __

71

61

91

,01

6]

51

81 , J

120

140 Supply

100

100 60 80 120

Demand

There are several ways of systematically filling in the tableau with values
for x ij . For now, we start by allocating as much of the supply in row 1
(from plant 1) as possible to the cheapest route. This means Xll = 100,
which satisfies the demand in the first column and leaves 20 units to be
allocated to the next cheapest route in the first row. We set x14 = 20,
which exhausts the supply from the first plant. Consequently, x12 = x13 = 0.
Moving to the second row, we follow the same procedure of allocating as
much as possible to the cheapest route. We set x24 = 100, since 20 units
have already been provided in row 1. The 40 remaining units from plant 2
are shipped to warehouse 2, since that route is the cheapest remaining
one. The rest of the tableau is filled in using the same reasoning (Tableau
5.2). Observe that the solution represented by Tableau 5.2 is a basic
feasible solution. There are six nonzero variables. Later we will develop a
technique to show that the columns of the simplex tableau corresponding
to these variables are linearly independent.

Tableau 5.2

J
10o

Y _
0

Y _
o

71

71

61
40

20

9] 61

,01

81

0 20

0

80

'1

'1
1 O0

100 60 80 120

Demand

120

140

100
0

_

Supply

Have we found the minimum cost solution? Our scheme for distributing
the polyethylene represents $2160 in transportation costs. It is most likely

300 Chapter 5 Special Types of Linear Programming Problems

not the minimum, since no goods made in San Antonio are shipped to San
Antonio.

We now look for a way of systematically modifying our initial solution to
arrive at the minimum cost distribution scheme in a small number of steps.
For each of the unused routes, routes along which no goods were shipped,
we calculate the change in the total shipping cost due to shipping one unit
of goods along that route subject to the restriction that the corresponding
changes must be made in the used routes. For example, shipping one unit
from plant 1 to warehouse 2 (x12 = 1) leads to the modifications of
Tableau 5.2 as shown in Tableau 5.3.

Tableau 5.3

,_J

] m

J

7j

71 _

61

+1

4 0 - 1

91

,oi

81 __

61
2 0 - 1

100+ 1

'1

120

140 Supply

100

100 60 80 120

Demand

The change in the total shipping cost due to this one modification is

7 - 6 - 7 + 5 = - 1 .

That is, the total shipping cost for the modified tableau (Tableau 5.4) is
$2159. Thus, the cost has decreased and we have improved our solution by
$1.

Tableau 5.4

s__l _
100

~ _
0

0

100

7~
1

39

20

60

91 61

r y 51

80

19

80

8]
0 101

'1

120

120

140 Supply

100

Demand

5.1 The Transportation Problem 301

We now compute the possible improvements for each of the unused
routes. There are six unused routes shown in Tableau 5.2, namely, (1, 2),
(1, 3), (2, 1), (2, 3), (3, 1), and (3, 4). In doing these computations remember
that all changes that are forced by the initial change must be assigned to a
route that is being used. Thus, in computing the possible improvement for
route (3, 4), for example, we have two choices for decreasing by 1 the
amount shipped along a route in use. We may choose either (1, 4), or (2, 4).
However, only the choice of (2, 4) works, since choosing (1, 4) leads to a
change in an unused route that cannot be balanced with a corresponding
change in a route that is being used. These two cases are illustrated in
Tableaux 5.5 and 5.6.

Tableau 5.5

61

Y
100

7J m

7] m
40+ 1

6]

20- 1

60

9]

lol

81

51
100- 1

II
+l

80 120

120

140 Supply

100
This case works

Demand

Tableau 5.6

m

Cannot balance _
this increase --~ I 0 0 + I

Y

Y

7]

7I

6}

9}

lO]

61
20- 1

81 '1
+1

120

140 Supply

I00

100 60 80 120

Demand

We show in Tableaux 5.7a-5.7f (displayed in abbreviated form) the
modifications that would have to be made to the amounts shipped as
shown in Tableau 5.2 if each of the unused routes were brought into the
solution. The corresponding change in cost is noted below each tableau.
We see that the shipping cost would be substantially reduced if we

302 Chapter 5 Special Types of Linear Programming Problems

Tableau 5.7

I m

6__1

100

71

71 _

61

+1

- 1

I m

,ol

81 _

61

5j

60 80

Cost decreases by 1
(a)

120

- 1

+1

120

140

100

61

.7-] N

100

7I _

7j

61 _
-1

+1

~j

,o I

81

+1

- 1

61

sl

'I
60 80

Cost decreases by 1
(b)

120

- 1

+1

120

140

100

6 ~

Y

- 1

+1

7I _

71 _

61 _

91

,ol

81

61

sl

'I
t O0 60 80 120

Cost increases by 2
(c)

+1

- 1

120

140

100

Tableau 5.7 (continued)

5_~ m 71

~ 6 ~

Y

91

7] _
- 1

61
+1

,ol
+1

J

- 1

6j

5.1 The Transportation Problem 303

,J

1 O0 60 80 120

Cost increases by 1

(d)

120

140

100

,1

_vJ

- 1

+1

71

6]
+I

- 1

,oi 51

,]

1 O0 60 80 1 20

Cost increases by 4
(el

+1

- I

120

_

140

100

51 _ 7]

'I
+1

- I

8J '

6 1 -

51

'1
I O0 60 80 1 20

-1

+ !

Cost decreases by 3
(1)

120

140

100

304 Chapter 5 Special Types of Linear Programming Problems

allocated more to routes (2, 2) and (3, 4) and then modified routes (3, 2)
and (2, 4) accordingly. If we set x34 = 20 [the largest amount by which we
can decrease route (3, 2)] and increase x22 by 20, then we get Tableau 5.8,
which represents a tableau whose total shipping cost is $2100. Conse-
quently, Tableau 5.2 did not represent an optimal solution.

Tableau 5.8

lOO

o

0

7__j

71

61
60

91

, 0J m

80

6I

51

'I
100 60 80 120

20

80

20

120

140

100

Supply

Demand

By developing a way to easily compute the possible improvements, we
shall see how to reallocate shipments and how to determine when an
optimal solution has been reached. We first formulate the dual problem to
the transportation problem.

Let v~, u2, and u 3 be the dual variables corresponding to the supply
constraints, and let Wl, w E, w3, and w 4 be the dual variables corresponding
to the demand constraints. Then the dual problem to the transportation
problem (5) is

Maximize z'

subject to

U i -~ Wj <___ Cij ,

Ui,

3 4

E SiUi -Jr- E djwj
i=l j= l

i = 1,2,3, j = 1 ,2 ,3 ,4

wj unrestricted.

Tableau 5.2 represents the initial basic feasible solution to the trans-
portation problem with basic variables Xll , x14 , x22 , x24 , x32 , and x33.
Since the variables xij of the transportation problem are doubly indexed,
so are the imputed values zij, and from the properties of the simplex
algorithm, zij = cij when xij is a basic variable. It follows from the
discussion of complementary slackness in Section 3.2 that there are values
for the dual variables for which the left-hand side of the dual constraint

U i -Jr- Wj <__ C ij

5.1 The Transportation Problem ~ 0 ~

is equal to Zi j , for all i and j. This means that for the pairs (1, 1), (1, 4),
(2, 2), (2, 4), (3, 2), and (3, 3), we have

U i + Wj " - -Ci j . (6)

This gives us six equations in seven unknowns. The values of the dual
variables can be found from (6) by giving one of the unknownsmsay, the
one that appears most o f t en - -an arbitrary value--say, 0 m a n d then solv-
ing for the remaining unknowns. Our system is

X l l " U 1 + W 1 - - 5

X14" U 1 + w 4 = 6

X22" U 2 + W 2 = 7

X24" U 2 + W 4 - - 5

X32" U 3 + W 2 = 6

X33" U 3 + W 3 - - 8 .

Setting U 1 - - O, we have

U 2 - - - - 1 , U 3 = - - 2 , W 1 = 5 , 1412 = 8 , W 3 = 10, and w 4 = 6.

Now the entries in the objective row of the simplex tableau corresponding
to the solution in Tableau 5.2 can be determined. The only nonzero entries
will be those for the nonbasic variables. Each entry will be of the form

Zij - - Cij = U i + Wj - - Cij

since z/j is the left-hand side of the (i, j) constraint of the dual problem.
The entries are

U 1 + W 2 - - C12 = 0 + 8 - - 7 = 1

v l + w 3 - c 1 3 = 0 + 1 0 - 9 = 1

X12 �9

X13 �9

X21: U 2 + W 1 - - C21

X23" U 2 + W 3 - - C23

X31: U 3 + W 1 - - C31

X34" U 3 + W 4 - - C34

= - 1 + 5 - 6 = - 2

= - 1 + 1 0 - 1 0 = - 1

= - 2 + 5 - 7 = - 4

= - 2 + 6 - 1 = 3 .

Since we are dealing with a minimization problem, the largest positive
value determines the entering variable. In this case it is x34. To determine
the departing variable, examine route (3, 4). If we try to send one unit
along unused route (3, 4) and make the corresponding modification in the
routes that are being used (basic variables), we have Tableau 5.9. The total
shipping cost is changed by

7 - 5 - 6 + 1 = - 3 (N o t e " u 3 + W 4 - - C34 = 3),

306 Chapter 5 Special Types of Linear Programming Problems

Tableau 5.9

A

A

71

71
4 0 + 1

6 1

2 0 - 1

91

loj

81

61

51
1 0 0 - 1

100 60 80 120

Demand

+1

120

140 Supply

100

so tha t it has b e e n r e d u c e d by $3. W e can s end as m a n y as 20 un i t s a l o n g

r o u t e (3, 4), so tha t if x34 = 20, we dr ive x32 to zero . Thus , x32 b e c o m e s
the d e p a r t i n g var iab le . M o d i f y i n g T a b l e a u 5.2, we o b t a i n T a b l e a u 5.8, as

we did be fo re . Since e a c h un i t sen t a l o n g r o u t e (3, 4) r e d u c e d the to ta l

sh ipp ing cost by $3, w h e n 20 uni t s a re sen t t he cost s h o u l d be r e d u c e d by

$60. I n d e e d , the cost r e p r e s e n t e d by T a b l e a u 5.8 is $2100.

W e now give the ca l cu la t ions n e c e s s a r y to d e t e r m i n e the next t ab l eau .

T h e sys tem of e q u a t i o n s r e l a t ing the dua l va r i ab le s is

X l l : U 1

X14 " U1

X22 �9 U2

X24 " U2

X33 :

-+- W 1

+ W 2

= 5

+ w 4 = 6

= 7

--I- W4 --- 5

v 3 + w 3 = 8

X34" U 3 + w 4 = 1.

T o ob t a in a so lu t ion to this sys tem of six e q u a t i o n s in seven u n k n o w n s , we

a rb i t ra r i ly set w 4 = 0, o b t a i n i n g

v I = 6, u 2 = 5, v 3 = 1, w 1 = - 1 , w 2 = 2, and w 3 = 7.

C o n s e q u e n t l y , t he va lues of z i j - ci j for the n o n b a s i c va r i ab le s a re

X12 ;

X13 ;

X21 ;

X23 ;

X31 ;

X32 ;

U 1 + W 2 - - C12 "- 6 + 2 - 7 = 1

/31 -~- W 3 - - C13 "-- 6 + 7 - 9 = 4

u 2 + w 1 - c21 -'- 5 - 1 - 6 = - 2

u 2 + w 3 - c 2 3 ~-- 5 + 7 - 10 = 2

v 3 + w 1 - c 3 1 = 1 - 1 - 7 = - 7

v 3 + w 2 - c 3 2 = 1 + 2 - 6 = - 3 .

5.1 The Transportation Problem 307

The entering variable is x13. If we send one unit along the unused route
(1, 3) and make the modifications in the routes being used (basic variables),
we have Tableau 5.10. The total shipping cost is changed by

9 - 6 - 8 + 1 = - 4 (No te" u 1 "l- W 3 - - C 1 3 - - 4),

so that it has been reduced by $4. We can send as many as 20 units along
route (1,3), so that, if x13 = 20, we drive x14 to 0. Thus, x14 becomes the
departing variable. Modifying Tableau 5.8, we obtain Tableau 5.11. Since
each unit sent along route (1,3) reduced the total shipping cost by $4,
when 20 units are sent the cost should be reduced by $80. Indeed, the cost
represented by Tableau 5.11 is $2020.

Tableau 5.10

s_j _

61

7]

71 _

6j

91 _
+1

10J

8 0 - 1

61
2 0 - 1

'1
2 0 + 1

100 60 80

Demand

120

Tableau 5.11

A _
100

0

A
0

~..

71

71

6j _
60

91

101

81

20

60

61

5}

11

0

80

40

100 60 80 120

Demand

120

140 Supply

100

120

140 Supply

100

Performing these steps several more times, we come to the point at
which no entering variable can be chosen (all z i j - cij are negative
because this is a minimization problem), and the procedure stops. An

308 Chapter 5 Special Types of Linear Programming Problems

optimal solution has been obtained; it is given in Tableau 5.12. The cost of
this solution is $1900. Note that it chooses the plant in San Antonio to
supply all the demand of the San Antonio warehouse.

Tableau 5.12

100

0

71 _

0

7I

71

1 m

60

1 m

,oi

81 _

20

60

61

,I

0

20

1 O0

100 60 80 120

Demand

120

140 Supply

1 O0

A

We formalize the procedure used in this example as "the transportation
algorithm." Given the transportation problem

Minimize

subject to
n

E Xij --- Si
j = l

m

~_~ xij
i = 1

m n

7. = E E c,jx,j
i = 1 j = l

i = 1 , 2 , . . . , m

=dj, j = 1 , 2 , . . . , n

Xij ~ 0 , integers
m n

E Si ~-- E dj,
i = 1 j - -1

we choose an initial basic feasible solution using the minimum cost rule:
For each row i = 1, 2 , . . . , m assign the maximum possible amount xij of
the remaining supply to the cheapest route. The transportation algorithm
then consists of the following steps.

1. Find the entering variable.
(a) Solve the dual constraint equations corresponding to the basic

variables for the remaining m + n - 1 dual variables. The value of one
dual variable will have to be chosen arbitrarily.

5.1 The Transportation Problem ~09

(b) Evaluate the objective row coefficients by computing Z i j - Ci j - -
U i -Jr- Wj -- Cij for each pair (i, j), where xij is a nonbasic variable.

(c) The entering variable is xij, where z i j - c~j is the largest positive
value from Step (b). If all z i j - cij are nonpositive, stop; an optimal
solution has been obtained.

2. Find the departing variable (these steps will be modified to cover
certain degenerate cases).

(a) Determine which basic variables Xeq will decrease when xi/ is
increased.

(b) The departing variable is the one from the list in Step (a) whose
value is smallest.

3. Form the new tableau.
(a) Set the departing variable to 0.
(b) Set the entering variable equal to the previous value of the depart-

ing variable.
(c) Adjust the values of the other basic variables to make the supply and

demand constraints hold.

To show that this algorithm works for all possible transportation problems,
we must check the following points.

1. The minimum cost rule yields a basic feasible solution.
2. The dual constraint equations can always be solved.
3. The values of the objective row entries zij - cij are independent of

the choice of value for one of the dual variables.
4. The departing variable can always be computed by the given scheme.

A more precise statement of this scheme will also be needed.

We need to introduce some definitions so that we can further discuss
the points we raised above. We will call each block in the transportation
tableau a cell. The value of xi/ is recorded in cell (i, j). In our example we
saw that if we changed the entry in cell (i, j) from 0 to 1, where xij was a
nonbasic variable, then this change forced changes in the values of some of
the basic variables. We now systematize the recording of these changes.

A loop in a transportation tableau is a sequence of cells in the tableau
that satisfies the following criteria.

1. The sequence consists of alternating horizontal and vertical segments.
2. Each segment joins exactly two cells.
3. The first cell of the sequence is the last, and no other cell is used

twice.

Properties 1 and 2 tell us that if (i, j) is a cell in a loop and if we reached it
horizontally (along row i), then the next cell in the loop must be in column
j. Likewise, if we reached cell (i, j)vertically, then the next cell in the loop
must be in row i. Consequently, we use the cells in each row two at a time

310 Chapter 5 Special Types of Linear Programming Problems

when forming a loop. A loop must therefore have an even number of cells
in it. We sketch some of the loops we found when computing possible
improvements for our example in Tableau 5.13. The heavy dot in the cell
indicates that the cell is included in the loop. This loop could be written as

(1,2), (1,4), (2,4), (2, 2)

if we proceeded horizontally from (1,2). The example in Tableau 5.14
shows how a loop can be more complicated. In this example the loop is

(3,1), (1,1), (1,4), (2,4), (2,2), (3,2).

Another example is given in Tableau 5.15. This loop is

(1,3), (3,3), (3,2), (2,2), (2,4), (1,4).

Tableau 5.13

7J _ _

61 7J

] m 61 _ _

l~ 'I

8J 11

100 60 80 120

120

140

100

Supply

Demand

Tableau 5.14

61

71 _

7j

6j

91

10j

61

'1

100 60

Demand

80 120

120

140

100

Supply

5.1 The Transportation Problem 311

Tableau 5.15

A
6_j

A

71
'i 6]
,L

~

10J

81

61
"i

5]

11

100 60 80 120

Demand

120

140 Supply

100

Note that cell (2,3) is not in the loop, even though two segments cross
there.

Recall that a basic feasible solution to a linear programming problem
with m constraints, none of which was redundant, had at most m nonzero
values, and the corresponding columns of the coefficient matrix A were
linearly independent. Loops give us a very convenient way of determining
the linear independence of the corresponding columns of A for a trans-
portation problem. We saw in (3) that each column of the coefficient
matrix A corresponded to one of the variables xij and hence to one of the
cells in the transportation tableau.

THEOREM 5.1. The columns of A determined by

(il, jl)(i2, J2),.--, (ik, J~)

are linearly dependent if and only if the corresponding cells (or some of them)
can be arranged in a loop.

Proof Omitted. A

This theorem shows that in computing possible improvements we were
discovering how to write each column of A that corresponds to a nonbasic
variable as a linear combination of the columns that correspond to the
basic variables. It also allows us to conclude that the minimum cost rule
gives a basic feasible solut ion--one whose corresponding columns of A are
linearly independent.

Theorem 5.1 also allows us to formalize the procedure for computing
the departing variable. If xij has been chosen as the entering variable,
then cell (i, j) must belong to a loop consisting of basic cells. That is, the
column of A corresponding to x ij must be a linear combination of the
columns of A corresponding to the basic variables. We list the cells of
the loop for xij in order, starting with (i, j). The cells that appear in the

~1 ~- Chapter 5 Special Types of Linear Programming Problems

even-numbered positions in the sequence will have their values decreased
when the value of xiy is increased. To maintain feasibility, these values
cannot be decreased to a negative number. Therefore, we may choose the
departing variable Xkl as one that satisfies the following criteria.

(a) The variable Xkt is a basic variable and cell (k, l) appears in the loop
for cell (i, j).

(b) Cell (k, 1) appears in an even-numbered position in the loop.
(c) The value of Xkl is the smallest of the values of all variables in

even-numbered positions in the loop.

For example, going from Tableau 5.2 to 5.8, we found that X 3 4 was the
entering variable and that it belonged to the loop

(3,4), (2,4), (2,2), (3,2)

We have x24 - - 100 and x32 = 20, so that x32 has the smaller value. Thus,
x32 is the departing variable.

The special form of the transportation problem allows us to do the
x

pivotal elimination in a very concise form. Suppose the value of the
departing variable xkt is a. Then each variable in an odd-numbered
position in the loop of the entering variable has, as its new value, a plus
its old value. Each variable in an even-numbered position in the loop has,
as its new value, its old value minus a. In this scheme the entering
variable automatically is set at c~, and the departing variable is set at 0.

The equations that are the dual constraints can always be solved. There
are more unknowns than equations, and the equations are consistent. In
the following example we show a fast technique for solving these equations
by hand.

EXAMPLE 2. Consider a transportation problem between three sources
and five destinations in which the supply vector is

and the demand vector is

100]
s = 160

140

d ~ .

90
60
80 .

100
70

The costs are shown in Tableau 5.16. We find an initial basic feasible
solution by using the minimum-cost rule. It is shown in Tableau 5.17 and
has a value of z = 1990. Note that this solution was found in the order

5.1 The Transportation Problem 313

shown in Table 5.1 and that each assignment satisfied either a demand
constraint or a supply constraint but not both (with the exception of the
last assignment). Also note that the solution has

3 + 5 - 1 = 7

nonzero variables.

Tableau 5.16

~ ,

A m

90

' !

sl

41

60

61 _

2j

91

80

71

.01

81

100

J

61

.ol

70

100

160

140

Supply

Demand

Tableau 5.17

Y
0

Y _
50

40

90

51

41

60

61
60 0

,1
0 80

91
0 0

80

71

.01
0

100

100

'!

61

,ol

70

40

30

100

160

140

Supply

Demand

314 Chapter 5 Special Types o f Linear Programming Problems

Table 5.1

Assignment Cell Constraint satisfied

1 (1, 2) D e m a n d
2 (1,5) Supply
3 (2, 3) Demand
4 (2, 5) Demand
5 (2, 1) Supply
6 (3, 1) Demand
7 (3, 4) Demand and supply

To find the enter ing variable, we must compute the possible improve-
ment or z i j - c i j for each nonbasic variable. Recall that

Zij -- Cij -~- U i +" Wj -- Cij.

For the basic variables we solve the system of equat ions

(a) v 1 -[- w 2 ~ - c 1 2 = 3

(b) v 1 + w 5 =c15 = 3

(c) v 2 + w ~ =c2~ = 7

(d) v 2 + w 3 = c 2 3 = 2

(e) v 2 + w 5 =c25 = 6

(f) U 3 -[" W 1 : C31 -- 5

(g) U3 -q- W4 -" C34 "- 8 .

We adjoin a row below the tableau for the values of w s and a column to
the right for the values of u r and leave out the zeros in the nonbasic cells.
We start by assuming v 1 = 0. We obtain in the following order

w 2 = 3 from (a)

w 5 = 3 from (b)

v 2 = 3 f rom (e)

W 3 = -- 1 f rom (d)

W 1 = 4 from (c)

v 3 = 1 f rom (f)

w 4 = 7 f rom (g).

These results are shown in Tableau 5.18. Now the values for zij - cij can
be filled in for the blanks in Tableau 5.18. The values of the basic variables
are circled to distinguish them. W e obtain Tableau 5.19. Only z22 - c22 is

5.1 The Transportation Problem 315

positive. Hence, x22 is the entering variable. It belongs to the loop of basic
variables.

(2, 2), (2, 5), (1,5), (1,2).
Tableau 5.18

9I 3j 6 1 7 _ _ 1 _ @
7 _ _ I 5 I @-
51 4j @-

90 60

21 lOj
@

31

6j

91 8j lO 1 Q
100 80

-1

70

100

160

140

Supply

Demand

Tableau 5.19

Y ~ @
j 51 @
j 41 @

90 60

6j

2j
-7

7]

lol
@ o

80

-1

8I

0

61

100

31 @

9I
-9

@
1ol

(~ -6

70

100

160

140

Supply

Demand

We have x25 = 30 and x12 = 60, so that the smaller x25 becomes the
departing variable. We increase x22 and x15 by 30 and decrease x25 and

316 Chapter 5 Special Types of Linear Programming Problems

X12 by 30. This gives Tableau 5.20 with objective function value z = 1960.
Solving for v~ and % and then computing z i j - c~j, we obtain Tableau
5.21.

Tableau 5.20

1 m 6 J m

y 21 @ -
Y 91

90 60 80

3j
@

Q ~ Q
4 J @ -

7j

1 o] m

•
100

31

61

1oi

70

Q 100

160

140

Supply

Tableau 5.21

Y

A

A

w

Demand

--4

Q m

m

90

31 61 Q
51 2J

4I 91 __

60

-6

@

-1 -9

80

7~

l O j m

0

~J O -
100

31
1

6I

1o]

G
-1

-7

70

1 O0

160

140

Supply

Demand

In Tableau 5.21 the entering variable is x14 and it belongs to the loop

(1,4), (3,4), (3,1), (2,1), (2,2), (1,2).

5.1 The Transportation Problem 317

We have

x34 = 100, x21 = 50, and x12 = 30,

so that x12 is the departing variable. Decreasing x34 , x21 , and x12 by 30
and increasing x14, x31, and x22 by the same amount gives us Tableau 5.22.
We have also solved for the dual variables and given the values of z i j - c i j .

Since all these values are nonpositive, we have found an optimal solution.
Its value is z = 1930.

Tableau 5.22

9I �9 3 1 m

-5

@
41 @

90

-1

-1

60

Y

2I

9I m

-7

@

-9

80

-1

71

10] m

8j
~ m

100

31 @
61

,0I
-6

70

100

160

140

Supply

Demand

A

Degeneracy
Degeneracy in a transportation problem has the same meaning as it did

for a general linear programming problem. That is, a basic variable has
value zero. This means that we have designated a route as being used
although no goods are being sent along it. In a transportation problem
degeneracy can occur in two ways. It is possible that while finding an initial
basic feasible solution both a supply and a demand constraint are satisfied
simultaneously. On the other hand, there may be a tie for choosing a
departing variable. In either case at least one basic variable will have value
zero. As in the simplex method, degeneracy generally causes no difficulties.
A transportation problem has never been known to cycle.

An algorithm to find an initial basic feasible solution to the transporta-
tion problem assigns a value to a variable to satisfy a demand constraint or

318 Chapter 5 Special Types of Linear Programming Problems

a supply constraint. This variable is then an initial basic variable that
corresponds to the constraints satisfied. If both a demand and a supply
constraint are simultaneously satisfied by the assignment of a value to Xrs,
except for the final allocation, we have degeneracy. To maintain the corre-
spondence between basic variables and satisfied constraints, we must
designate a variable other than Xrs as also being basic and assign to it the
value zero.

EXAMPLE 3. Consider the transportation problem defined by Tableau
5.23. Using the minimum cost rule, the cells are filled in the order

(1,2), (1,5), (2, 3), (2, 5).

Tableau 5.23

3]

5]

4I

50 60

61 71 _

91

80

81

100

3J

61

101

70

100

160

100

Supply

Demand

At this point the tableau looks like Tableau 5.24. The next assignment of
50 units to cell (2, 1)will complete both the first column and the second
row.

Thus, we have degeneracy. To systematically choose a variable as basic
and having value zero, we agree in this case to say that only the second row
has been completed. Moving to the third row, the smallest available cost is
for cell (3, 1), and x31 is assigned the value zero. This makes x31 a basic
variable. We complete the determination of an initial basic feasible solu-
tion by letting X34 - - 1 0 0 . Degeneracy during the iterations of the trans-
portation algorithm may be ignored. A

5.1 The Transportation Problem 319

Tableau 5.24

J
0

50

31 _

51 _

4[

60

60

61

21

91

80

71 _

80

0 0

,01

l ~ m

100

31

61

70

100
40

160
30

100
0

Supply

Demand

Starting Procedures
We have already described the minimum cost rule for obtaining an

initial basic feasible solution to the transportation problem. A number of
other methods are available. A desirable starting method is one that will
provide a starting solution that is not far from the optimal one in the sense
that only a small number of iterations of the transportation algorithm are
required. We now describe Vogel's method, which is widely used.

Vogel's Method
Let C = [Cij] be the cost matrix of a transportation problem.

1. For each row and each column of C find the difference between the
smallest and the next smallest entry. This difference represents the mini-
mum penalty incurred when one fails to assign goods to the cheapest
route.

2. Select the row or column with the largest difference. Ties may be
broken arbitrarily.

3. Allocate as much as possible to the cell with the smallest cost in that
row or column. Let us say that this allocation is made to cell (r,s).
Decrease the available supply in row r and the required demand in column
s by the amount allocated. This allocation will satisfy a demand constraint,
a supply constraint, or perhaps both. The indication of which constraint
has been satisfied is the reduction of the available supply in row r or the
required demand in column s to zero. Remove the constraint that is
satisfied from further consideration by crossing out the corresponding row
or column of the cost matrix. If both a demand and a supply constraint are
satisfied simultaneously, remove only one from further consideration. In

320 Chapter 5 Special Types of Linear Programming Problems

this case both the available supply and the required demand have been
reduced to zero.

4. Repeat Steps 1, 2, and 3 until either exactly one row or exactly one
column remains. In doing Step 1, do not compute differences for any row
with 0 available supply or any column with 0 required demand. When
exactly one row or one column remains, the entries in that row or column
are fully determined by the previous allocations and are filled in accord-
ingly.

EXAMPLE 4. We apply Vogel 'smethod to the transportation problem
with the cost matr~ and supply and demand vectors shown below:

100
[8 6 3 9] [120]

C = 2 6 1 4 s = 140 and d = 60
' ' 8 0 "

7 8 6 3 100 120

We compute the differences according to Step 1 of the algorithm and
circle the largest.

Differences:

Differences
[8 6 3 9] 3

2 6 1 4 1
7 8 6 3 3

(~ 0 2 1

Thus, we allocate as much as possible (100 units) to the cheapest route
in the first column (x21 = 100), fill in the rest of this column with zeros,
and cross out the column. The allocation in x21 is circled to indicate that
x21 is a basic variable. The revised supplies and demands from Step 3 of
the algorithm and the new differences are shown in Tableau 5.25.

Tableau 5.25

d 61

J 61
O

I 81

3] 91

0

0

11

61

41

31
Demand 60 80 120

Supply Differences

120

40 3

1 O 0 3

Differences 0 2 1

5.1 The Transportation Problem 321

We can arbitrarily choose among rows 1, 2, and 3. Choosing the first
row, we allocate 80 units to the cheapest route in that row (x13 = 80),
circle the allocation, fill in the rest of the row with zeros, and cross out the
third column. We revise the supplies and demands, compute the new
differences, and show the result in Tableau 5.26.

Tableau 5.26

~g

_g

_ _

61

61
8]

J 91 @
J 41

J 31
Demand 60 120

0 0

0 0

Differences 0 1

Supply Differences

40 3

40 2

100 @

Choosing row 3, we allocate 100 units to the cheapest route in that row
(X34 -- 100) and cross out the row. Tableau 5.27 shows the consequences of
this allocation along with the new differences. The largest difference is
now in column 4, so that we allocate 20 units to the cheapest route in that
column (x24 = 20), cross out the column, and obtain Tableau 5.28.

Tableau 5.27

l

Demand

~ 6 j

J 6I
O

1 o i
__J ~

0

0

0

60

Differences 0

'I

J
!

'1

_ _

0

0

91

4I

20

@

Supply Differences

40 2

0

40 3

322 Chapter 5 Special Types of Linear Programming Problems

Tableau 5.28

! 6j

d 61 @
, I
__J

0

Demand 0 60

.I
o

d

J
1 LJ

@

o

0

,J
o

,J @
I

"-J (D

o

Supply

40

20

0

There is now exactly one column remaining. The allocations for that
column are completely determined (x21 = 40 and x22-- 20). Thus, the
initial basic feasible solution is Tableau 5.29, with a cost of $1180.

Tableau 5.29

S
0

S @

0

61

61

81

m

@

31 @
11

0

61

91

41

31
@

@
100 60 80 120

Demand

120

140 Supply

100

The minimum cost method yields the initial basic feasible solution in
Tableau 5.30, whose cost is $1240. Thus, in this case the Vogel method
gives a better starting solution. Applying the transportation algorithm to
either of the two starting solutions given above, the reader may show that
the minimum cost for this transportation problem is $1140. A

The effectiveness of Vogel's method can be improved by using a
procedure due to Roland E. Larson that is, perhaps, too complicated for
hand computation but can be carried out rapidly on a computer. Instead of

5.1 The Transportation Problem 323

Tableau 5.30

Y

Y
@

61 31 91 @ @
61

81 61 @

0

'I 41 @
__ J @

100 60 80 120

120

140 Supply

100

Demand

using the given costs Cij for Vogel's method, we use the normalized costs
c'ij defined by

1 n 1 m
' -- E r E r cij r n p = l m q = l

That is, we subtract from each C ij the average of the costs of the row and
column in which it appears. We then apply Vogel's method to the matrix

[C'ij].

EXAMPLE 5. We consider the same transportation problem as that in
Example 4. When we compute the normalized cost matrix, we obtain

25 43 41 17
6 6 6 6

p 73 37 67 35
12 12 12 12 �9

14 14 10 25
3 3 3 3

Applying Vogel's method to C', we obtain the starting solution in Tableau
5.31. This solution is actually an optimal solution, and its cost is $1140.

Tableau 5.31

0
i q @
q

6j

6]

8]

m

3] 91
@

'! 41 @ @
61 _

120

100 60
Demand

80

140 Supply

31 100

. . .

120

/X

324 Chapter 5 Special Types of Linear Programming Problems

Extensions

If the total supply exceeds the total demand in the original statement of
the transportation problem, a dummy destination can be set up. That is, we
create a destination with a demand equal to the difference between the
total supply and the total demand. The cost of shipping to this destination
from any source is 0. In fact, we have just added a slack variable to each
supply constraint.

EXAMPLE 6. The problem originally given in Example 3, Section 2.1, is

z = 5Xll + 7x12 + 9x13 + 6x21 + 7x22 + 10x23 Minimize

subject to

Xll q- X12 -~- X13 _~< 120

X21 -q-X22 -~-X23 __< 140

Xll q-X21 >__ 100

X12 -I- X22 ~_~ 60

X13 "~-X23 ~__ 80.

The difference between supply and demand is 20. We create a destination
with a demand equal to this amount. The constraints then become equali-
ties, since demand equals supply. The tableau for the problem is Tableau
5.32.

Tableau 5.32

N

61

71

71 l01

01

01
120

140

Supply

100 60 80 20

Demand

A

5.1 EXERCISES

1. Verify that Tableau 5.12 represents the optimal solution to Example 1 by
performing the necessary steps to obtain Tableau 5.12 from Tableau 5.11.

In Exercises 2-4 find an initial basic feasible solution using (a) the minimum
cost rule, (b) Vogel's method, and (c) Larson's method if a hand calculator is
available.

5.1 The Transportation Problem ~

i5236] [1oo] I6o 1 2. C= 2 7 7 4 , s= 80 , and d = 60
1 3 6 9 140 80

120

I663921 I9o 1 8 7 5 7 5 70 and d =
3. C= 3 4 8 2 7 ' s= 110 '

6 0 0 2 9 150

146751 I1~176 4. C= 4 4 7 8 60 and d =
5 3 6 5 ' s= 5 0 '
6 5 3 4 70

5. Solve the transportation problem given in Example 3.
6. Solve the transportation problem given in Example 6.
7. Solve the transportation problem given in Exercise 3.

In Exercises 8-13 solve the given transportation problem�9

[2 5 6 3] [100] I 701 8. C-- 9 6 2 1 , s= 90 , and d = 50
7 7 2 4 130 30

120

13 2 5 41 I 801 I701 9. C= 6 5 7 8 60 and d = 70
2 1 4 3 ' s= 50 ' 70
4 3 5 2 100 80

100
60

120

I4~ 70
120
50

60 I ol
10. C= 8 3 4 5 7 80 and d = 50

6 8 6 7 5 ' s= 60 '
4 3 5 2 4 120 70

100

I4 2 9 71 I1 1 11 C= 7 8 5 6
�9 3 3 4 1 ' s = d =

7 5 2 6

[5 6 7 4] [75] I451 12. C= 2 9 7 5 , s= 50 , and d = 50
8 5 8 7 60 25

50

[6 4 3 5] [100] I601 13. C= 7 4 8 6 , s= 60 , and d = 80
8 3 2 5 50 70

40

326 Chapter 5 Special Types of Linear Programming Problems

14. Show that, in the m • n transportation problem, if
m ~
E s i = dj,

i=1 j= l

then the constraints are equalities.

15. Show that, in the m x n transportation problem, if
m

Es/= Eg,
i=1 j= l

then one constraint is redundant. (Hint: First, sum all the supply constraints.
Second, sum all but one of the demand constraints. Then show that the
difference between the two sums is the other demand constraint.)

16. Write the formulation of the dual of the m x n transportation problem.

In Exercises 17 and 18 consider the general transportation problem in which

m k s - Esi= g.
i=1 j= l

17. Show that X i j = sidj//S is a feasible solution.

18. Show that if X = [xij] is a feasible solution, then, for all i and j,

0 <___ Xij <___ min{si, dj}.

Further Reading
Berge, C., and Ghouila-Houri, A. Programming, Games and Transportation Networks. Wiley,

New York, 1965.
Larson, R. E. "Normalizing Vogel's Approximation Method." Math. Magazine, 45 (1972),

266-269.
Reinfeld, N. V., and Vogel, W. R. Mathematical Programming. Prentice-Hall, Englewood

Cliffs, NJ, 1958.

5.2 THE ASSIGNMENT PROBLEM

We gave an example of the assignment problem in Section 4.1, Example
3. In this section we will discuss the simplest formulation of the problem.
We assume that there are exactly as many persons available for assignment
as there are jobs and that each person is to be assigned exactly one job. In
the event that there are more persons available than jobs, we can create
dummy jobs for the excess persons. Being assigned to a dummy job means
in reality that the person is not assigned. We do not consider the case in
which there are more jobs than people if all the jobs are to be completed
because this violates our basic assumption that each person is assigned
exactly one job.

5.2 The Assignment Problem 327

The assignment problem, like the transportation problem, will also be
considered as a minimization problem. That is, if we assign person i to job
j, this assignment will cost c u . Our goal is to minimize the total cost of the
assignment. Our first model for the problem is

Minimize
n n

Z --- E E CijXij
i = l j = l

subject to

~ Xij : 1,
i=l

j = 1 , 2 , . . . , n (1)

n

E X i j - - 1, i = 1 , 2 , . . . , n (2)
j = l

Xij "-" 0 or 1, i = 1 , 2 , . . . , n; j = 1 , 2 , . . . , n (3)

We can actually remove the restriction that X ij take on only 0 or 1 as a
value. If we simply assume that x ij must be an integer, then each of
constraints (1) and (2) guarantees that x ij can take on only 0 or 1 as a
value. Thus, in place of (3)we write

x i j > 0, integers, i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n . (4)

The model defined by (1), (2), and (4) is actually a transportation problem
in which the demands are all equal, the supplies are all equal, the supplies
equal the demands, and the number of sources is equal to the number of
destinations. Consequently, this problem could be solved using the trans-
portation algorithm of Section 5.1. With this algorithm we will find that
2 n - 1 variables are basic. However, only n of these variables will be
nonzero, so that the solution is highly degenerate. We would suspect that
many iterations of the transportation algorithm would simply replace a
basic variable with a zero value with another variable with a zero value. To
obtain a better algorithm for the problem it will be helpful to use a slightly
different point of view.

Suppose a list of available persons and a list of the jobs are both written
in some fixed order. Then one possible assignment is to give job i to
person i. On the other hand, if the job list is reordered, it might be
possible to reduce the total cost. Assume that person i is still assigned the
job in the i th position of the new job list, but since the list was shuffled,
this job is no longer job i. What we need is a shuffling or permutation of
the job list that yields the minimum total cost.

One way of recording a permutation of the numbers 1 , 2 , . . . , n
is to write a list of these numbers in the desired order. For example,
4 2 1 3 is a p e r m u t a t i o n o f l 2 3 4. Another way of writing this
permutation is to give a 4 x 4 matrix M = [mij] with entries that are zeros

328 Chapter 5 Special Types of Linear Programming Problems

and ones. If m ij = 1, it means that i is assigned the j th position in the new
order. We see that 4 2 1 3 corresponds to the matrix

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

since 1 is in third position, 2 is in second position, 3 is in fourth position,
and 4 is in first position.

The set of all feasible solutions to the assignment problem is simply the
set of all n x n permutation matrices. Note that each permutation matrix
has the property that in each row (or column) there is precisely one entry
equal to 1.

THEOREM 5.2. I f the cost matrix for an assignment problem has nonnega-
tive entries and at least n zeros, then an optimal solution to the problem exists
if n of the zeros lie in the positions o f the ones o f some n x n permutation
matrix P. The matrix P represents an optimal assignment.

Proof In the situation described, the cost can never be smaller than
zero, and we have found an assignment for which the cost is zero. A

This theorem provides a goal for our algorithm. We will show that we
can modify the cost matrix without changing the optimal solution. The
algorithm will then attempt to carry out this modification to reach a
situation in which the cost matrix has a zero in each row and in each
column.

THEOREM 5.3. Suppose the matrix C = [c i j] is the cost matrix for an
A

n X n assignment problem. Suppose that X = [xij] is an optimal solution to
this problem. Let C' be the matrix formed by adding a to each entry in the rth
row. Then X is an optimal solution to the new assignment problem defined by
C r"

Proof The objective function for the new problem is

Z r
n n n n n

-- E E C ; j X i j - - E E CijXij "Jr- E (Crj "Jr- Ol)Xrj
i = l j = l i = l j = l j= l

i ~ r

n n n

-- E E CijXij 4;- Ol E Xrj
i = l j = l j= l

n

= E CijXij -'F Ol
i = l j = l

5.2 The Assignment Problem 32~

since each row sum is 1. Therefore, the smallest value for z
obtained when

' will be

n n

Z -- E E CijXij
i=1 j = l

is smallest; namely, it is obtained when X = X. ZX

A statement similar to Theorem 5.3 can be made if a constant is added
to some column of a cost matrix. Thus, our strategy is to modify C by
adding constants to rows or columns.

EXAMPLE 1. Suppose the cost matrix for an assignment problem is

C

4 5 2 5
3 1 1 4

12 3 6 3 "
12 6 5 9

We can begin to introduce zeros by subtracting the smallest entry in each
row from that row. We obtain

2 3 0 3
2 0 0 3
9 0 3 0 "
7 1 0 4

There is no zero in column 1, but one can be forced there by subtracting 2,
the smallest entry in column 1, from each entry in that column. We have

0 3 0 3
0 0 0 3
7 0 3 0 "
5 1 0 4

We now have at least one zero in each row and column. We at tempt to
assign the locations for the ones in a permutat ion matrix.

Actually, we will not produce the permutat ion matrix but will star the
zeros in the cost matrix to indicate an assignment. We must assign the zero
in position (4, 3) since it is the only zero in row 4. However, we will carry
out the assignment in an order that will anticipate part of the algorithm we
are developing. Starting with the first row, we assign the first zero in each
row that does not belong to a previously assigned column. We say a row or
column is assigned when some zero in it is assigned. Thus, in row 1 we
assign the zero in column 1; in row 2 we assign the zero in column 2,
skipping the zero in column 1 because that column was previously as-
signed; in row 3 we assign the zero in column 4; and in row 4 we assign the

~ 0 Chapter 5 Special Types of Linear Programming Problems

zero in column 3. The assignment that we obtain is

0* 3 0 3
0 0* 0 3
7 0 3 0*
5 1 0* 4

or person 1 is assigned job 1, person 2 is assigned job 2, person 3 is
assigned job 4, and person 4 is assigned job 3. The cost is

4 + 1 + 3 + 5 = 1 3 . A

In Example 1 we were successful in determining an assignment for each
person. However, as the next example shows, we may not always be as
fortunate.

EXAMPLE 2. Suppose the cost matrix for an assignment problem is

C __

4 1 3 4
5 6 2 9
6 5 8 5 "
7 6 2 3

Subtracting the minimum entry in each row, we obtain

3 0 2 3
3 4 0 7
1 0 3 0 "
5 4 0 1

Now subtracting the minimum entry in each column, we obtain

2 0 2 3
2 4 0 7
0 0 3 0
4 4 0 1

Making the assignments row by row, we have

2 0* 2 3
2 4 0* 7
0* 0 3 0 "
4 4 0 1

This matrix does not represent a complete assignment; person 4 has not
been given a job. Two explanations are available for this situation. Either
there is no possible complete assignment for the given pattern of zeros or
there is a complete assignment but the algorithm failed to find it. We
investigate each of these possibilities.

5.2 The Assignment Problem 331

First notice that any pattern of zeros in an n x n matrix has the
property that all the zeros can be covered by n lines. For example, choose
the n lines that each cover one column. Suppose that the zeros in the
n x n matrix C can be covered with k lines, where k < n. Let a be the
smallest of the uncovered entries of C. We form a new matrix C' by
subtracting a from the entries of each uncovered row and adding a to the
entries of each covered column. Each uncovered entry of C has decreased
by a, since it belongs to an uncovered row and an uncovered column. Each
entry covered by one line has remained unchanged: either it belonged to a
covered row and uncovered column and was not modified, or it belonged
to an uncovered row and covered column and had a added to it and
subtracted from it. Each entry in both a covered row and a covered column
has increased by a. Thus C' has a zero entry in a position in which C did
not have a zero and it might be possible to finish the assignment. The
procedure for modifying C can be more simply stated: subtract a from
each uncovered entry and add a to each doubly covered entry. For
example, we can cover the last matrix as follows:

2

1

The smallest uncovered entry of C' is 1. Subtracting 1 from each
uncovered entry and adding 1 to each doubly covered entry, we obtain the
matrix

1 0 2 2
1 4 0 6
0 1 4 0 "
3 4 0 0

Now using the assignment algorithm on this last matrix, we have

1 0* 2 2
1 4 0* 6
0* 1 4 0 '
3 4 0 0*

which is a complete assignment. A

We can be guided in our use of this procedure by the following
theorem, proved by the graph theorist K6nig.

THEOREM 5.4. The maximum number o f zeros that can be assigned is
equal to the min imum number o f lines that are needed to cover all the zeros.

~ Chapter 5 Special Types of Linear Programming Problems

A

In Example 2, since we can cover all the zeros of matrix C' with three
lines, it follows from Theorem 5.4 that at most three zeros can be assigned.
We have determined such an assignment. It is impossible to assign four
zeros with the given matrix C', and more zeros must be introduced using
the procedure described above. The other possibility when we do not
discover a complete assignment is that the row-searching algorithm has
failed.

by
EXAMPLE 3. Consider the cost matrix for an assignment problem given

C ~..

4 2 9 7
7 8 5 6
3 3 4 1 "
7 5 2 6

Subtracting the minimum entry in each row from that row and then the
minimum entry in each column from that column, we obtain

0 0 7 5
0 3 0 1
0 2 3 0 "
3 3 0 4

Assigning the first zero entry in each row that does not lie in a previously
assigned column, we get

0* 0 7 5
0 3 0* 1
0 2 3 0* '
3 3 0 4

which is not a complete assignment. However, there is a complete assign-
ment for this matrix given by

0 0* 7 5
0* 3 0 1
0 2 3 0* "
3 3 0* 4

Consequently, we must develop an algorithm to search it out. Before we do
this, let us summarize our method of solution for an assignment problem
as we now have it.

Step 1. Assuming that the cost matrix C has nonnegative entries and
the problem is a minimization problem, subtract the smallest entry in each

5.2 The Assignment Problem 333

row from that row and then subtract the smallest entry in each column
from that column. The new matrix C' defines an assignment problem that
has the same optimal solutions as C, and C' has at least one zero in each
row and column.

Step 2. For each row assign the first zero not in any previously
assigned column. If n zeros have been assigned, stop; an optimal solution
has been found.

Step 3. Assuming that fewer than n zeros have been assigned, deter-
mine whether reassigning some zeros will give a complete assignment. If it
will, stop after the reassignment.

Step 4. If reassigning some zeros does not give a complete assignment,
then find k lines (k < n) that cover all the zeros of C'.

Step 5. Let a be the smallest uncovered entry in C'. Rearrange the
zeros in C' by subtracting a from each uncovered entry of C' and adding a
to each doubly covered entry of C'. Go to Step 2 to reassign all zeros.

We now describe the details of Steps 3 and 4. The algorithm will require
many searches of the rows and columns of C'. All these searches are to be
done from left to right or from top to bottom (in order of increasing
subscripts).

Details of Step 3

Suppose that i o is the index of one of the rows for which, in Step 2, we
fail to find a zero that can be assigned. However, there must be at least
one zero in row i 0, since every row has a zero in it. Say that one of these
zeros occurs in column J0- There must be an assigned zero in column J0,
for otherwise the zero in (i 0, J0) could be assigned. Say that this assigned
zero occurs in row ia. Starting at cell (i 0, J0), we construct a path consisting
of alternating vertical and horizontal segments, joining cells that alter-
nately contain zeros and starred zeros. Specifically, we join

0 in (io,Jo) to

0* in (il,J0) to

0 in (il ,J1) to

0* in (i2, Jl) . . . ,

~ Chapter 5 Special Types of Linear Programming Problems

where the column indices J0, J l , - " , Jn must be distinct:

Jl J0
i 0 0

I
i I 0 ~ 0 "

I
i 2 0".

We can represent this path by the sequence of cells (i0, J0), (il, J0),
(il , j l) , (i2, j l) , The next cell in the sequence is obtained as follows.

Case A. Suppose that we are at a 0 in (ik, Jk). We search column Jk for
a 0". If a 0* is found, we add its cell to the sequence. If no 0* exists in
column Jk, then we make the following reassignments in C': each 0 in the
sequence from (i0, J0) to (ik, Jk) is changed to a 0* and each 0* is changed
to a 0. Note that we have created a 0* for row i 0 and that a 0* remains in
every row that previously had one. We now repeat Step 3 for the next row
in which there is no assigned zero.

Case B. Suppose, on the other hand, that we are at a 0* in cell
(ik§ 1, Jk)" We search row i k+ 1 for a 0 that does not lie in a column
appearing previously in the path. If a 0 is found, we add its cell to the
sequence. If no 0 is found, we will not be able to modify the assignment as
we did in Case A; we backtrack by labeling column Jk as necessary and
redirecting our search. This is done by deleting the 0* at (i k § 1, Jk) and the
0 at (i k, Jk) from the sequence. If k > 1, we return to the 0* at (i k, Jk-1)
and repeat this process with row i k instead of row i k § 1. That is, we search
row i k for a 0 other than the 0 in column Jk (the necessary column) that
does not lie in a column appearing previously in the path:

O*

(ik, Jk-1)

~ O (i k , jk)
I
O*
(ik+l, jk).

If k = 0, we search for another 0 in row i0 that does not lie in a necessary
column. If we find this 0, say in column j~, we construct a path as
described above starting at cell (i 0, j~). If we cannot find another suitable 0
in row i 0, a complete assignment has not been made.

There are two ways in which the construction of this sequence can be
terminated. One way is when the O's are changed to 0*'s and the 0*'s are
changed to O's. In this case we have found a 0 in row i 0 that can be
assigned. The other way is when all the cells are deleted because they lie in

5.2 The Assignment Problem 335

necessary columns. In this case, a complete assignment cannot be made
with this pattern of zeros, and we must go to Step 4.

EXAMPLE 4. Consider the assignment problem whose cost matrix is

C

8 7 9 9
5 2 7 8
6 1 4 9 "
2 3 2 6

We construct C', which has a zero in each row and column, by performing
Step 1 of the algorithm. We subtract the smallest entry in each row from
that row and then subtract the smallest entry in each column from that
column, obtaining

C f
1 0 2 0

= 3 0 5 4
5 0 3 6
0 1 0 2

We now assign zeros starting in row 1 as in Step 2. We find that row 2 is
the first row that has no 0 in an unassigned column. At this point,

C !
1 0* 2 0
3 0 5 4
5 0 3 6 "
0* 1 0 2

We then start constructing a sequence of O's and 0*'s for Step 3. The first
cell is (2, 2), which contains 0. We search column 2 for a 0* and find it in
cell (1, 2). We search 1 for a 0 and find it in cell (1, 4). We search column 4
for a 0* and find none. Consequently we are in Case A with the sequence

0 in (2,2)

O* in (1,2)

0 in (1 ,4) ,

which represents the path

(1, 2) 0 " - - 0 (1, 4).

o

(2, 2) o

336 Chapter 5 Special Types of Linear Programming Problems

Changing every 0 to 0* and every 0* to a 0 in the sequence, we obtain the
matrix

C
P

1 0 2 0*
3 0* 5 4
5 0 3 6 '
0* 1 0 2

where we increased the number of assignments by 1. We now repeat Step
3 with row 3.

There is no assignable 0 in row 3; therefore, we must construct a
sequence starting at the 0 in cell (3, 2). The 0* in column 2 is in row 2. But
there are no other O's in row 2. We are in Case B and column 2 is
necessary. Our sequence is

0 in (3, 2)

0* in (2,2) .

Since all the cells in our sequence lie in a necessary column, we must go
to Step 4 to determine the necessary rows.

A row is called necessary if it contains a 0* in an unnecessary column.
Starting with row 1, we find that its 0* is in column 4, and consequently
row 1 is necessary. Row 2 has its 0* in column 2, which is a necessary
column. Therefore, row 2 is not necessary. Row 3 has no 0* so it is not
necessary. Row 4 has its 0* in column 1 and consequently is necessary.

Details of Step 4

Covering each necessary row and column with a line provides the k
lines previously described. This procedure automatically covers all zeros
of C'.

We find that the C' of our example is covered as follows:

1 ~ 2 9*

C ' = 5 4
3 6 "

~. v L ,

We are now ready for Step 5. Subtract 3, the smallest uncovered entry,
from each uncovered entry and add 3 to each doubly covered entry. Our
new 12', ready for Step 2, is

1 3 2 0

1 2 ' - 0 0 2 1
2 0 0 3 "
0 4 0 2

5.2 The Assignment Problem ~ 7

At the completion of the assignment procedure in Step 2 we have

1 3 2 O*
O* 0 2 1
2 O* 0 3 '
0 4 O* 2

which is a complete assignment. A

We can now rewrite Step 3 in the algorithm: Assume that no zero in
row i 0 has been assigned and that there is a zero in cell (i 0, J0). Construct
a sequence of vertical and horizontal segments that alternate and join 0 to
0* to 0 to 0* and so on as follows.

(A) If we are at 0 in cell (ik, Jk), search column Jk for 0". If 0* is found,
adjoin its cell to the sequence. If 0* is not found, change each 0 in the
sequence to 0* and each 0* to 0 and search for the next row without a 0".

(B) If we are at 0* in cell (ik + 1, Jk), search row ik + 1 for 0. If 0 is found,
adjoin its cell to the sequence. If 0 is not found, label column Jk as
necessary and delete cells (ik, Jk) and (i k + 1, Jk) from the sequence. If there
are more cells, we are at 0* in cell (ik, Jk-1). Repeat Case B. If there are
no more cells in the sequence, search row i 0 for a 0 that does not lie in a
necessary column. If one is found, say in column j~, repeat Step 3 starting
at cell (i0, J~). If one is not found, go to Step 4.

The algorithm that we have developed is called the Hungarian method
in honor of the mathematicians K6nig and Egerv~ry, on whose work it is
based. The Hungarian method as we have described it assumes that the
given assignment problem is a minimization problem. However, a maxi-
mization problem can be modified in a way that will enable the Hungarian
method to produce an optimal solution. Suppose we are given the problem

Maximize

subject to

n

E Xij
j = l

n

E Xij
i=l

n n

= E E cijxij
i=lj=l

= 1, i = 1 , 2 , . . . , n

= 1 , j = 1 , 2 , . . . , n

(5)

xiy > 0 integers.

338 Chapter 5 Special Types of Linear Programming Problems

We can convert this problem to the minimization problem

Minimize
n n

Z ~--- E E (--Cij)Xij i=lj=l
subject to the constraints in (5).

If some of the entries in the matrix [cij] were positive, we now have
negative entries in [-ci j] , and the optimality criterion in Theorem 5.2 does
not apply. However, we can use Theorem 5.3 and add to each entry in
[-c i j] the negative of the smallest (most negative) entry. This new matrix
will have nonnegative entries, and the assignment problem for it can be
solved using the Hungarian method.

EXAMPLE 5. Suppose an assignment problem asks one to maximize the
total value of the assignment for which the individual values are given by

[c~j] =

3 7 4 6
5 2 8 5
1 3 4 7 "

6 5 2 6

The corresponding minimization problem is

Minimize
n n

Z-- E E (--Cij)Xij i=lj=l
subject to the constraints in (5).

The smallest entry in [--Cij] is --8; thus, we add 8 to each entry in [-c i j]
to obtain

5 1 4 2
3 6 0 3
7 5 4 1
2 3 6 2

This matrix is now used as the cost matrix for the Hungarian method. A

5.2 EXERCISES

In Exercises 1-6 solve the assignment problem with the given cost matrix.

I4 2 3 5-] 3 2 5 8 9

]
6 7 4 2 3

2 3 4 6 2. 5 3 5 4 2
3 2 5 2 4 7 3 2 4
2 5 3 4 2 6 5 5 3

5.2 The Assignment Problem 339

3 4 0 2 6 7
4 6 4 5 3 6
5 7 7 8 2 8 4.

3. 0 8 8 4 6 4
6 4 3 7 4 9
7 5 5 0 6 7

3 5 4 2 8 1
8 3 6 6 4 3

5. 4 4 8 8 3 5 6.
3 8 7 4 9 7

7 9 2 3 5
7 2 7 5 8

3 2 7 4 8
5 4 3 8 5
3 7 9 1 2
4 2 6 5 7
2 8 4 6 6

9 7 4 7 3
0 8 3 5 8
6 3 2 8 9
5 6 7 0 4
2 9 5 7 3

7. A company leases offices along one side of a hall in a large office building.
Suppose that there are 15 offices all the same size leased by the company and
that they are numbered 701 through 715. Because of a recent series of job
reassignments the desks in some of the offices must be moved. Specifically, the
desks in 702, 705, 708, 709, and 713 must be moved to 706, 707, 712, 714, and
715, but it does not matter which desk goes to which office. Consequently, the
facilities supervisor has decided to assign desks in such a way as to minimize the
total distance over which they would need to be moved. What assignment should
the supervisor use?

5.2 PROJECTS

1. Consider the problem of scheduling the full-time registered nurses on a surgical
floor of a hospital. Adequate patient care requires that there be four RNs
during the day, two RNs in the evening, and one RN at night. Assume that the
scheduling is done two weeks at a time. In the two-week planning horizon each
nurse must work 10 shifts.

(a) How many nurses are required?
(b) A schedule for a nurse is a list indicating which of the 42 shifts (why 42?)

are to be worked by that nurse. How many possible schedules are there? Which
of these schedules would be less desirable? What guidelines might be used for
making up acceptable schedules for the nurses?

(c) Assume that the decisions about schedules for each nurse are made in the
following manner: Each nurse is given a list of 10 possible schedules following
the guidelines from part (b) and asked to rank them in order of desirability.
Each nurse gets a different list of schedules. Each nurse's first choice is to be
assigned a weight of 10, the second a weight of 9, and so on. How might ties be
handled? The choice of one schedule for each nurse from among those pre-
sented is determined by maximizing the sum of the weights of the chosen
schedules. Set up a model for this situation.

(d) Estimate the human time and the computer time involved in determining
the schedule for staffing the floor in this way. (Computer time estimates can
come from the size of the assignment problem.)

340 Chapter 5 Special Types of Linear Programming Problems

2. Consider the following generalizations of the desk-moving problem (see Karp
and Lee in Further Reading) in Exercise 7.

(a) Assume that there are N offices from which desks must be moved. Let
D = [dij] be the matrix of distances from office i to office j. Suppose that the
current locations are s I < s 2 < .-- < sN, where " < " means ordered from near
to far from the elevator along the hall. Suppose that the future locations are
t I < t 2 < ... < t N. Show that an optimal assignment is s~, ~ t~,, k = 1, 2 , . . . , N.

(b) Suppose that, instead of being located along a hall, the offices are located
around the entire perimeter of a floor of the office building. Suppose that the
distance to walk completely around the floor is L and that D = [dij] is the
matrix of shortest distances from location i to location j. What is the minimal-
distance assignment?

Further Reading

Karp, R. M., and Li, S.-Y. "Two Special Cases of the Assignment Problem." Discrete Math. 13
(1975), 129-142.

Kuhn, H. W. "The Hungarian Method for the Assignment Problem." Naval Res. Logistics Q.
2 (1955), 83-97.

Kuhn, H. W. "Variants of the Hungarian Method for the Assignment Problem." Naval Res.
Logistics Q. 3 (1956), 253-258.

5.3 GRAPHS AND NETWORKS: BASIC DEFINITIONS

A g r a p h is a col lect ion of points, called nodes (also called vertices),
some of which (possibly all) are jo ined by lines, called arcs, edges, or
b ranches . Every graph can be convenient ly r e p r e s e n t e d by a figure in the
plane. Thus, F igure 5.1 shows a g raph with seven nodes and nine arcs. W e
may note that the arc jo ining nodes 1 and 3 and the arc jo ining nodes 2
and 4 intersect at a poin t that is not a n o d e in this r ep re sen t a t i on of the
graph. T h e arc joining nodes i and j will be d e n o t e d by (i, j) .

A n arc of the fo rm (a, a) is called a loop. W e will not allow loops in our
graphs. If the nodes of a g raph are n u m b e r e d consecut ively f rom 1 to n,

FIGURE 5.1

5.3 Graphs and Networks: Basic Definitions ~ 1

the graph can be represented by a matrix. The incidence matrix of a graph
G is the matrix M = [mij], where

1
mij = 0

if node i is connected to node j
otherwise.

For an arbitrary graph, the incidence matrix is symmetric (M = MT).
Why? The incidence matrix for the graph in Figure 5.1 is

M ~_

0 1 1 1 1 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 0 0 1 0 1
1 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

A path between node i and node j of a graph is an ordered set of arcs

(i, as), (a 1, a2), (a 2 , a3) , . . . , (a r , j)

joining i and j. Thus, a path between node 2 and node 6 in Figure 5.1 is

(2, 4), (4, 5), (5, 6).

Other paths between node 2 and node 6 are

(2,1), (1,4), (4,5), (5, 6)
(2,1), (1,5), (5, 6)

and

(2,3), (3,1), (1,4), (4,5), (5,6).

(2,3), (3,1), (1,2)

and

(2,4), (4,5), (5,1), (1,2).

A graph is said to be connected if there is a path joining any two nodes of
the graph. The graph shown in Figure 5.1 is connected, whereas the graph
shown in Figure 5.2 is not connected.

An arc of a graph is called directed or oriented if there is a sense of
direction so that one node is considered the point of origin and the other
node is the point of termination. The directed arc from node i to node j
will be denoted by (/-~). A graph in which every arc is directed is called a
directed graph, a digraph, or an oriented graph. An example of a directed
graph is shown in Figure 5.3.

A cycle is a path joining a node to itself. Examples of cycles in Figure
5.1 are

342 Chapter 5 Special Types of Linear Programming Problems

FIGURE 5.2

Q Q

FIGURE 5.3

An incidence matrix can also be used to represent a directed graph. In
this case m ij = 1 if a directed arc connects i to j. Consequently, the
incidence matrix of a digraph is usually not symmetric. The incidence
matrix of the digraph in Figure 5.3 is

M __.

0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 1 0 1 0 "
0 0 0 0 0 1
0 0 0 0 0 0

For certain applications of linear programming we are interested in the
idea of a network. Intuitively, a network is an interconnection of several
terminals by routes between certain pairs of these terminals. Each route
has a capacity, and we are interested in studying the movement or flow of

5.3 Graphs and Networks: Basic Definitions 34~

material along these routes. We can study pipeline networks, highway
networks, and electrical power distribution networks, as well as many other
kinds.

More formally, a network is a connected, directed graph for which a
nonnegative number has been assigned to each ordered pair of nodes. This
number is thought of as the capacity of the directed arc joining the two
nodes. If node i is not connected to node j by an arc, the capacity c~j is set
to zero. The capacities represent maximum amounts that may pass along
arcs of networks; specifically, they may be tons of o i l / h r in a transconti-
nental oil pipeline network, cubic meters of wa te r /min in a city water
system, pulses/sec in a communications network, or number of vehicles /hr
on a regional highway system. The nodes may represent shipping depots,
relay stations, highway interchanges, or pumping stations. A network may
be represented by its capacity matrix, which is a generalization of the
incidence matrix of a graph and consists of the matrix of capacities of the
arcs. The directed graph in Figure 5.3 becomes a network when we specify
its capacity matrix as

0 7 5 0 0 0
0 0 2 3 0 0

C = 0 0 0 0 0 8

i 0 8 0 2 0 "
0 0 0 0 6
0 0 0 0 0

If there is no limit on the amount passing from node i to node j in a
network, the capacity c ij is set equal to a very large number M.

If flow is permitted in both directions between a pair of nodes (as in a
two-way street system), the nodes are connected with two directed arcs,
one going in each direction, each with its own capacity. That is, a two-way
street is thought of as two one-way streets.

A flow in a network is an assignment to each ordered pair of nodes (i, j)
in the network of a nonnegative number x i j that represents the amount of
material moving in that directed arc. If node i is not connected to node j,
then xij = 0. By definition, the flow may not exceed the capacity, so that
we have for each i and j, i, j = 1, 2 , . . . , n,

0 <__ Xij ~ Cij.

In many networks we single out two types of nodes for special consider-
ation. The node S is called a source if every arc joining S to another node
is oriented so that the flow is away from S. The node T is called a sink if
every arc joining T to another node is directed so that the flow is toward
T. That is, a flow is produced at a source and it is absorbed at a sink.

344 Chapter 5 Special Types of Linear Programming Problems

We also specify that any flow cannot cause material to accumulate at
any node other than a source or a sink. That is, with the exception of a
source or a sink, the flow into a node is equal to the flow out of the node.
If we have a network with exactly one source and exactly one sink, number
the source as node 1 and the sink as node n. Then the flow must satisfy,
for each node k, k = 2 , . . . , n - 1,

n n

E x , , , = E x j.
i = 1 j = l

In the next few sections we will consider certain questions about flows in
networks and certain situations that can be modeled with such a mathe-
matical structure.

1. For the graph

5.3 EXERCISES

(a) find its incidence matrix;
(b) find three paths joining nodes 1 and 4;
(c) find two cycles from node 2.

2. Follow the instructions in Exercise 1 for the following graph.

3. Sketch the graph whose incidence matrix is

0 0 1 0 1 1
0 1 1 1 0 0 0 0 1 0 1
1 0 0 1 1 1 0 0 1 1 0

(a) 1 0 0 1 0 (b) 0 1 1 0 0 0 "
1 1 1 0 1
0 1 0 1 0 ~ 0 1 0 0 1

1 0 0 1 0

5.4 The Maximal Flow Problem 345

4. Find the incidence matrix for the graph in Figure 5.2.

5. For the network

!0
j

9

where the numbers on the edges are the capacities,
(a) find the capacity matrix;
(b) find the sources;
(c) find the sinks.

6. Follow the instructions for Exercise 5 for the following network.
10

8 7

7. Show that node i is a source in a network if and only if the ith column of the
capacity matrix of the network is zero.

8. Show that node j is a sink in a network if and only if the j th row of the capacity
matrix of the network is zero.

Further Reading
Wilson, Robin J. Introduction to Graph Theory. Academic Press, New York, 1972.

5.4 THE MAXIMAL FLOW PROBLEM

Cons ider a ne twork with n nodes that includes a single source and a
single sink. For convenience we label the source node 1 and the sink node
n. Let c 0 deno te the capacity of arc (i, j). Cons ider a flow in this network,
letting xij deno te the amoun t of mater ia l flowing f rom node i to node j
along arc (i, j). As we discussed in Sect ion 5.3, the x~j mus t satisfy

0 <_~Xij <___ Cij , i , j = 1 , 2 , . . . , n (1)

and

Xik = ~ Xkj, k - 2 , 3 , . . . , n - 1 . (2)
i=1 j = l

~ Chapter 5 Special Types of Linear Programming Problems

We may also write (2) as

n n

~ x i k - Y]Xkj = O, k = 2 , 3 , . . . , n - 1.
i = 1 j = l

The total flow starting from the source, which is to be maximized, is

f =
k = l

The total flow into the sink is
n

E Xkn~
k = l

(2a)

(3)

subject to
n n

E Xik -- E Xkj -- 0
i = 1 j = l

0 < x i j < c i j , i , j = 1 , 2 , . . . , n .

The mathematical formulation of the maximal flow problem shows that
we have a linear programming problem, which could be solved by the
simplex method. However, this approach is quite inefficient and in this
section we present several better procedures.

Before turning to the computational procedures, we note that the
maximal flow problem occurs in many applications. As a typical applied
problem, consider an electrical power distribution system represented by a
network that has one source and many sinks. When a brownout appears
imminent at a particular location (node), that location (node) is made a
sink and the goal becomes to send as much electrical power as possible to
this endangered location. Thus, we have a maximal flow problem.

The following intuitive method appears to offer some hope for solving
the maximal flow problem. We start at the source, and by proceeding along
arcs with positive capacity we find a path from source to sink. (Why can we
find this path?) The maximum amount fl of material that can be sent
along this path is the minimum of the capacities of the arcs in the path.
We now subtract fl from the capacity of each arc in the path just used.
The capacity of at least one of the arcs in this path is now reduced to zero.
We next return to the source and proceed along arcs with positive capacity

n

f= E Xlk
k = l

k = 2 , 3 , . . . , n - 1 (4)

Maximize

which by the conservation of flow is precisely the expression on the right
side of (3) (verify). Thus, a mathematical formulation of the maximal flow
problem is

5. 4 The Maximal Flow Problem 347

to find another path to the sink. The maximum amount f2 of material that
can be sent along this path is the minimum of the capacities of the arcs in
the path. The capacity of at least one of the arcs in this path is now
reduced to zero by subtracting f2 from each capacity in the path. We
continue choosing possible paths from source to sink until there are no
more paths all of whose arcs have positive capacity. The total flow f is the
sum of the flows

f= f l+f2+'"+f l , .

To illustrate this intuitive method, consider the network with source 1
and sink 6 (Figure 5.4). We first choose the path

1 - o 3 - - + 2 - - + 4 - - + 6 ,

, 4

9 5

8

9

which has flow fl = 2. Subtracting fl from the capacity of each arc in this
path, we obtain the network in Figure 5.5.

FIGURE 5.4

2

4 3

FIGURE 5.5

Next, choose the path

1 ~ 3 - o 5 - o 6 ,

whose flow f2 = 5 yields the network in Figure 5.6.

348 Chapter 5 Special Types of Linear Programming Problems

9

2

4 3

FIGURE 5.6

Now choose the path

1 ~ 2 ~ 5 - - - > 6

with flow f3 = 1, obtaining the network in Figure 5.7.
2 �9

8 3

3 2

FIGURE 5.7

For the next path we have

1 --> 2 ~ 4 ---> 6 with flow f4 = 2 (Figure 5.8).
0

6 ~ 1

FIGURE 5.8

We now choose the path

1 ~ 3 ~ 6 with flow f 5 = 1 (Figure 5.9).

5.4 The Maximal Flow Problem 349

6

0

3 !

FIGURE 5.9

Since we cannot find any other paths from source to sink, all of whose
arcs have positive capacities, we are finished. The total flow is

f = f l + f 2 + f 3 + f a + f 5 = 2 + 5 + 1 + 2 + 1 = 1 1 .

However, suppose that, instead of choosing the above sequence of paths
from source to sink, we choose the sequence of paths indicated below:

1 ---> 2 ---> 4 ~ 6, with flow fl = 4 (Figure 5.10)
0

5 i

FIGURE 5.10

1 ---> 3 ---> 5 ---> 6, with flow fe = 5 (Figure 5.11)

0

FIGURE 5.11

350 Chapter 5 Special Types of Linear Programming Problems

1 ~ 3 - - - , 6 , with flow f3 = 2 (Figure 5.12)
0

FIGURE 5.12

1 ~ 2 - - - , 5 ~ 6 , with flow f4 = 1 (Figure 5.13).

4 1

FIGURE 5.13

Since we cannot find any other paths from source to sink, all of whose
arcs have positive capacities, we are finished. The total flow is

f = f , + f 2 + f 3 + f 4 = 4 + 5 + 2 + 1 =12 .

Thus, the intuitive method does not always yield the maximal flow. How-
ever, it can be modified to a correct algorithm by allowing fictitious flows
in the opposite direction, so that an alternate path can be chosen. This
principle is at the heart of the labeling procedure (sometimes called the
augmenting path method) of Ford and Fulkerson. This procedure was
developed in 1957 and was based on the earlier results of Kuhn and
Egerv~ry (see Further Reading). In 1969 a substantial improvement in the
augmenting path method was reported by Dinic, and many of the subse-
quent improvements in the algorithms for solving the maximum flow
problem have been based on his approach. There is now great interest in
investigating the use of parallel processing to obtain further improvements.
Some of the initial ideas in this direction are discussed in Goldberg and
Tarjan.

All these improved algorithms involved advanced ideas in combinatorial
programming and complexity theory and consequently are beyond the

5.4 The Maximal Flow Problem 351

scope of this book. The interested reader may see the books by Chvfital
and by Papadimitriou and Steiglitz for more details.

The Labeling Algorithm
We now describe the labeling procedure of Ford and Fulkerson. It

attempts to construct a feasible flow from source to sink and then to
augment that flow to the capacity of the path, perhaps redirecting some of
the flow and changing to a path of greater capacity. We continue to
number the nodes so that node 1 is the source and node n is the sink. The
directed arc joining node i to j has capacity c ij. If flow cannot take place
from i to j, then cij = 0. For each arc we now define the excess capacity

d i j = c i j - x i j + x j i .

We begin with all flows set at value zero. Next label every directed arc with
its excess capacity dij.

Step 1. Starting at the source, we form the set N 1 of all nodes that are
connected to the source by an arc with positive excess capacity. We use the
index k for nodes in N 1. Now label each node in N 1 with the ordered pair
of numbers (ek , Pk) , where

e k = dlk = excess capacity of the arc from the source to node k

Pk = node that led to node k.

Here Pk = 1 for each node in N 1, because we got to this node from the
source. If we have labeled node n, the sink of the network, we then
proceed directly to Step 5, where we increase the flow.

Step 2. Choose the node in N 1 with smallest index; say it is node k.
Let N 2 denote the set of all unlabeled nodes that are joined to node k by
an arc with positive excess capacity. From now on we must assume that the
source is a labeled node. If there are no such unlabeled nodes, we pick the
node in N1 with the next smallest index and again form N2. We use the
index m for each node in N2. Label each unlabeled node in N 2 with the
ordered pair (em, Pm), where

em -- m i n { d k m ' e k}

Pm = k .

Observe that e m is the minimum of the excess capacities of the arcs from
the source to node k and from node k to node m. Also, Pm denotes the
node that led to node m. We repeat for each node in N1.

Step 3. Repeat Step 2 with N r replacing N r_ 1. After a finite number of
steps, we arrive at one of two possibilities.

(i) The sink has not been labeled and no other nodes can be labeled.
(ii) The sink has been labeled.

~ 5 ~ Chapter 5 Special Types o f L inear Programming Problems

Step 4. If we are in case (i), then the current flow can be shown to be
maximal and we stop.

Step 5. If we are in case (ii), then we have an augmenting path whose
flow we increase as follows. Suppose that the sink has the label (er, Pr).
The first number in the label, er, indicates the amount by which we can
increase the flow. The second number in the label, Pr, gives the node that
led to the sink, making it possible to move backwards along this path to the
source. Let dst denote the excess capacities of the arcs in the path P. To
increase the flow by e r we now calculate the excess capacities as

d'st = d st - e r

d'ts = d t s -t- e r

d'iy = dij for arcs not in P.

Step 6. Return to Step 1.

Assuming that a maximal flow exists, the algorithm terminates after a
finite number of iterations. That is, after a finite number of iterations we
reach case (i).

We now calculate the net flows in each arc as follows. If cj~ = 0, so that
flow cannot take place from node j to node i, then the flow in the arc from
i to j is

Xi j - - Cij - - d i j ,

where dij is the most recent excess capacity calculated as described in Step
5. If both c~j and cji are positive, so that flow can take place from i to j as
well as from j to i, observe that

Cij

Cji

- d i j = x i j - - x j i

- - d j i : x j i - x i j = - (c i j - dij).

dij and cji - dj~ cannot both be positive. We let

Xi j = Cij - - dij l
Xy~ = 0 J if Cij -- d i j ~ 0

Xji - - Cji - - d j i ~
x~j = 0] if Cji - - dji >_ O.

Hence, Cij

We illustrate the labeling method with the network considered in the
intuitive method. Start with all flows set at value zero. Figure 5.14 shows
the given network with each arc labeled with its excess capacity.

d24 =4 ~ ,{ '~
d42-0 ~ f f . , .

,,~/_ 1 \ ~ " < ~ , ,

FIGURE 5.14

e 2 -- d12 = 9, e 3 = d13 = 8

Step 1. Starting at the source, node 1, we find all nodes that are
connected to it by an arc with positive excess capacity. These are nodes 2
and 3. Thus,

P2 = 1, P3 = 1.

(9, 1)

We now label nodes 2 and 3 with the respective o rdered pairs (9, 1) and
(8, 1), shown in Figure 5.15.

5.4 The Maximal Flow Problem 353

(8, 1)

FIGURE 5.15

Step 2. Starting f rom node 2, we find all unlabeled nodes that are
joined to node 2 by an arc with positive excess capacity. These are nodes 4
and 5. The label on node 4 is (e4, P4), where

e4 = min{d24 , e2}

= min{4, 9} = 4

p 4 = 2 .

354 Chapter 5 Special Types of Linear Programming Problems

Similarly, the label on node 5 is (e 5, Ps), where

e 5 = min{d25, e2}

= min{4, 9} = 4

p5 = 2.

We proceed in the same manne r f rom node 3. The only unlabeled node
that can be reached from node 3 is node 6, the sink. This node is labeled

(e 6 , P 6) , w h e r e

e 6

P6

= rain{d36 , e3}

= min{2, 8} = 2

- - 3 .

The network in Figure 5.16 shows the labels obta ined in Step 2. Observe
that we have labeled the sink.

(9, 1) (4, 2)
d24 = 4

a 4 2 = 0 " ~ . ~ r

r.,,, 0

e.r ,,,,, (2, 3)

(8, 1) (4, 2)

FIGURE 5.16

Since we have labeled the sink, we proceed to Step 5. We can increase
the flow from its initial value of 0 by e 6 = 2 units to total flow of 2 units.
We now move backward to the source and calculate new excess capacities
as follows. Since P6 = 3, we go back to node 3 and let

d~6 = d36 - e 6 = 2 - 2 = 0

d~3 = d63 + e 6 = 0 q- 2 = 2.

Since P3 --- 1, we go back to node 1, the source, and let

d~3 = d13 - e 6 = 8 - 2 = 6

d~l = d31 -I- e 6 = 0 + 2 = 2 .

The network in Figure 5.17 shows the new excess capacities. We now
return to Step 1 and relabel the nodes. In Figure 5.17 we have also
indicated these new labels.

5.4 The Maximal Flow Problem 355

(9 1) (4, 2)
~ d24 =4 / , ~

,,4/, ~ ~ ~- ~N" _ / ~ - ' - ~ ~"~" ,, o",N_

~ \ d

(6, 1) (4, 2)

FIGURE 5.17

(4,4)

The sink has again been labeled. We can increase the flow by 4 units to
a total flow of 6 units. We move backward along the path

1 ~ 2 ~ 4 ~ 6

and calculate new excess capacities, which are indicated in the network in
Figure 5.18. In this network we have also indicated the newest labels on
the nodes.

(5 1)

// ~ d42 4 ~ ~

(6, 1) (4, 2)

FIGURE 5.18

(4,5)

The sink has been labeled and evidently we can increase the flow by 4
units to a total flow of 10 units. We move backward along the path

1 ~ 2 ~ 5 ~ 6

and calculate new excess capacities, which are indicated in the network in
Figure 5.19. In this network we have also indicated the newest labels on
the nodes.

356 Chapter 5 Special Types of Linear Programming Problems

(1

"PJ \ ~

(6

1)
"~ d24 =0 (/ ~
', _

o" '1
.~... ~ o ' , , ~ . . - . . ~
~. ~ ,.'xL o _/~,~

1) (5,3)

FIGURE 5.19

(2,5)

We have labeled the sink and can now increase the flow by 2 units to a
total of 12 units. We move backward along the path

1--->3--- ,5--- ,6

and calculate new excess capacities, which are indicated in the network in
Figure 5.20. In this network we have also indicated the newest labels on
the nodes.

At this point, the sink has not been labeled and no other nodes can be
labeled. The current flow of 12 units is maximal and we stop. The net flow
in each arc is shown in the network in Figure 5.21. ZX

We shall now show that if the above procedure yields case (i), then the
current flow is optimal. We must start with another definition. A cut in a
network is a set of directed arcs with the property that every path from the
source to the sink contains at least one arc from the set. Since the number
of directed arcs in a network is finite, the number of cuts is also finite.

(I,i)

% ,., ,,'Xf \

(4. I1 (3.31

FIGURE 5.20

5.4 The Maximal Flow Problem 357

8

4

FIGURE 5.21

From this finite set of cuts we shall soon single out one cut. We define the
capacity of a cut as the sum of the capacities of its directed arcs.

EXAMPLE 1. Consider the network in Figure 5.22. The set of directed
arcs

is a cut with capacity 19. The set of directed arcs

is not a cut because the path

1 ~ 2 ~ 5 ~ 6

contains no directed arc from the set.
For a given path, the flow along this path cannot exceed the smallest of

the capacities of its arcs. Hence, for any cut the flow along this path cannot
exceed the capacity of whichever of its arcs belongs to the cut. Now a
maximal flow consists of a sum of flows along various paths from the
source to the sink. Therefore, for any cut a maximal flow cannot exceed

1

, 4 �9

5

4 2

FIGURE 5.22

~58 Chapter 5 Special Types of Linear Programming Problems

the sum of the capacities of the arcs of the various paths that belong to the
cut. Hence, a maximal flow cannot exceed the capacity of the cut. A

Suppose that we are now in case (i) of the labeling algorithm: the sink
has not been labeled and no other nodes can be labeled. The set N of all
nodes of the network can be partit ioned into two disjoint subsets: N L, the
labeled nodes, and N u, the unlabeled nodes.

Let A be the set of directed arcs that join nodes in NL to nodes in N u.
We first show that A is a cut in the network. Suppose it is not a cut, so
that there is a path from source to sink that does not contain any directed
arc from A. It then follows that all the nodes in this path belong either to
ATE or to N u (why?). Since by definition the source is labeled and the sink
is unlabeled, we have a contradiction to our assumption that A is not a
cut. Therefore, it must be one.

We next show that the capacity of cut A is equal to the maximal flow in
the network. From Equation (2a) and the definition of the excess capaci-
ties, we can write

n

E (Cij -- dij) = 0, i = 2 , . . . , n - 1. (5)
j = l

When i = 1, we obtain from the definition of excess capacity

n n

E (Clj -- dlj) = ~-~ Xlj
j = 2 j = 2

(6)

since xjl = 0 for j = 1, 2 , . . . , n (why?). Thus, the sum in (6) gives the total
flow. We now combine (5) and (6) and obtain

n

E E (Cij -- dij) ---- ~ Xlj
i~N L j = 1 j = 2

= total flow (7)

since the source, node 1, belongs to N L. Consider the left side of (7). If i
and j both belong to N L, then c i j - dij and c j i - dji both occur on the
left side of (7) and cancel each other out. Thus, only the terms for which j
belongs to N U are left in the sum. If j is in N U, then dij = 0. Hence, the
left side of (7) becomes

E E Cij
i~N L j~N U

and thus (7) can be written as

E E Cij : total flow. (8)
i~NL j~Nu

Now the left side of (8) is the capacity of the cut A, since A consisted of
exactly those arcs joining nodes in NL to nodes in N u. Thus, for this
particular cut, the total flow is exactly equal to its capacity.

5.4 The Maximal Flow Problem 359

(! l)

L
0

- - ~ j \ \ O

(4. !)

'r,, .,'N /

b @ Cut line

d53 = 2
(3.3)

FIGURE 5.23

Since we have already shown that the maximal flow of a network cannot
exceed the capacity of any cut, we conclude that for the cut A, just
constructed, the flow is maximal. Thus, the labeling algorithm described
earlier does yield a maximal flow. Moreover, similar reasoning shows that
cut A has the minimum capacity among all cuts. The results established
here can also be stated as the max flow-min cut theorem.

T H E O R E M 5.5 (M A X F L O W - M I N C U T T H E O R E M) . The maximum flow in
a network is the minimum of the capacities of all cuts in the network. A

EXAMPLE 2. The cut A defined by the network in Figure 5.20 is
{(2, 4), (3, 6), (5,6)}. It takes the name cut from the graphical representa-
tion in Figure 5.23. The cut line is drawn through precisely those arcs that
belong to cut A. A

When using the labeling algorithm it is possible that an augmented path
will contain one or more arcs that must be traversed backward from their
direction in the original network. The following example illustrates this
situation.

EXAMPLE 3. Consider the network in Figure 5.24. We wish to find the
maximal flow. We apply the Labeling Algorithm and obtain the labels
shown in Figure 5.25.

9

7 5

4 7

FIGURE 5.24

360 Chapter 5 Special Types of Linear Programming Problems

(7,1) (7,2)
~ ' ~ d25 =9 _ ~ ' ~

d52=0 -

(9,1) (8,4)

FIGURE 5.25

Since the sink has been labeled, we can increase the flow by 5 units
from its initial value of 0. We move backward along the path

1 - - - , 2 - - , 5 - - , 8

and calculate the new excess capacities. These are shown in Figure 5.26
along with the new labels on the nodes.

(2,1) (2,2)
d25=4

(2,6)

~3~s

d74=0
(9,1) (8,4)

FIGURE 5.26

Again the sink has been labeled, and we can increase the flow by 2 units
to a total of 7 units. We move backward along the path

1-- - ,2- - - ,6- - ,8

and calculate the new excess capacities. These are shown in Figure 5.27
along with the new labels on the nodes.

5.4 The Maximal Flow Problem 361

(4,6)

~ 3 1 " ~ 0 ~ ~ " ~ d 3 6 : 4 ~ ~ ~ / ~

(9,1) (8,4)

FIGURE 5.27

(4,6)

Again the sink has been labeled, and we can increase the flow by an
additional 4 units to a total of 11 units. We move backward along the path

1--->3-->6--->8

and calculate the new excess capacities. These are shown in Figure 5.28
along with the new labels on the nodes.

(8,7)

d52= 5 -
I I N ~

(9,1) (8,4)

FIGURE 5.28

(3,7)

Also in this iteration of the Labeling Algorithm, the sink has been
labeled. The augmenting path is

1--->4-->7-->8,

and we can increase the flow by 3 units to a total of 14 units. We calculate
the new excess capacities as shown in Figure 5.29, along with the new
labels on the nodes.

362 Chapter 5 Special Types of Linear Programming Problems

(5,5) (5,7)

\ + ~ ' ~ ~ <,,~:o ~ X ~+~/~
++,\+, 7

(6,1) (5,4)

FIGURE 5.29

(2,6)

Aga in the sink has b e e n labeled , and we can inc rease the flow by 2 uni ts
to a total of 16 units. T h e a u g m e n t i n g pa th is

1 - - - > 4 - - + 7 - - - > 5 - - + 2 - - + 6 - - + 8 .

N o t e tha t the arc 5--+ 2 in this pa th is the reverse of the arc 2--+ 5
inc luded in the or iginal ne twork . Thus , we mus t be carefu l with the indices
in the excess capaci ty calculat ions . W e have

drl4 = d14 - - e 8 d]l = d41 + e 8

d]7 - d47 - - e 8 d~/4 = d74 --I- e 8

d~5 = d75 - e 8 d~7 = d57 + e 8

d~2 = d 5 2 - e 8 d~5 = d 2 5 + e 8.

N o t e tha t in ca lcula t ing d~5 we have to increase the excess capaci ty of a

forward arc.

d~6 = d26 -- e 8 d~i 2 = d62 -k- e 8

d~8 = d68 -- e 8 d86 = d86 + e 8

T h e new capaci t ies and new labels c o m p u t e d f rom t h e m are shown in
F igure 5.30.

(3,5) (3,7)
~ ' ~ d25 =6

~ d52=3 ~ o "

\ ' + + ' + + ' ~ <,.,,+:o ~ ~ .,J+l~
. +) u +

(4,1) (3,4)

FIGURE 5.30

5.4 7-he Maximal Flow Problem 363

In this case the sink is not labeled and no other nodes can be labeled.
We have found a maximal flow, as shown in Figure 5.31.

3

7 5

FIGURE 5.31

The minimum cut for this network can be computed by first partitioning
the set of nodes N = {1, 2 , . . . , 8} into the subsets NL and N v of labeled
and unlabeled nodes, respectively, using the labels obtained in the last
iteration of the Labeling Algorithm. We have N L = {1, 2, 3, 4, 5,7} and
N U = {6, 8} Cut A is the set of directed arcs in the network leading from
nodes in N L to nodes in N U. We have

A = {(2, 6), (3, 6), (5, 8), (7, 8)}.

The arcs in the cut set are shown in Figure 5.32 with gaps. Observe that
the capacity of this cut is

4 + 4 + 5 + 3 = 1 6 = m a x i m a l f l o w .
3

7 5

8

FIGURE 5.32

A

5.4 EXERCISES

In Exercises 1 and 2, a network that has been labeled with the labeling
algorithm is given. In each case the sink has been labeled. Following the appropri-
ate steps of the labeling algorithm, adjust the excess capacities and relabel the
network.

~4 Chapter 5 Special Types of Linear Programming Problems

(5, 1) (4 2)
~ ' , ~ d24 =4 - ~' ~ e r

~."<~ ,, --~' - /

(7.1)

(2,2)

(8, 1) (8, 2)

, , ~ l I N %

_/~,> ..y ~ ,,.,~

(4, 1) (3, 1)

In Exercises 3-6, find the maximal flow in the given network using the labeling
algorithm.

, .

8 -k,

4

5.4 The Maximal Flow Problem ~

.

7

7 ~ 4 9 ~ 4

9

5

............... , D J /

8

2 9 7 8

7. (a) Model the following situation as a maximal flow problem. There are an
equal number, say n, of boys and girls at a school dance. It is also known for
each boy-girl pair whether they are friends (this friendship relation could be
given by an n x n matrix). Find the maximum number of friendly pairs that
can be formed.

~ Chapter 5 Spech~l Types of Linear Programming Problems

(b) Solve the above problem for the friendship relation matrix

1 1 0 0 0
0 0 0 1 1
1 0 1 0 0 .
0 0 1 0 1
0 1 0 1 0

(c) Solve the problem in part (a) for the friendship relation matrix

0 1 0 1 0
1 0 0 1 1
0 0 1 0 1 .
0 0 0 1 1
0 1 0 0 0

(d) Find a condition on the friendship relation matrix that will guarantee that
each boy and girl is dancing with a friend.

8. (a) Model the following situation as a maximal flow problem. Each day at the
CPR Clothing Factory there are a large number of tasks to be assigned to
the various machines. Assume that any task when assigned to a machine will
occupy the machine for the entire day. Of course, only some tasks can be
assigned to each machine- - some machines are cutting machines; others are
pleaters; and others can be set for basting, straight stitching, or top stitching.
For a particular day suppose the list of tasks and possible machines is as
given in the accompanying table.

Machine

Task 1 2 3 4 5 6

1 J

2 J

3 J d

4 J d

5 J J

6 J J

7 J J

8 J J j

9 j

10 j j

(b) How many tasks can be completed?

9. Show that the flow out of the source of a network is equal to the flow into the
sink.

5.4 The Maximal Flow Problem 367

5.4 PROJECT

There are many situations in which one is concerned about flow along one
route. If there are no delays, the maximum flow is easily determined as the time
available divided by time per unit flow. The interesting cases occur when there are
delays at certain points and limited waiting facilities at these delay points. Exam-
ples of such a situation are trains moving on a single track with sidings at certain
points and a production line with certain slowly executed operat ions that cause
bottlenecks. Of course, a railroad siding can hold only a certain number of trains.
Likewise, we assume that the holding areas on the production line can contain only
a limited number of items.

These situations can be modeled as maximal flow problems. To construct the
model, we must determine the network and the meanings of its nodes, arcs, and
capacities. As a first step, let P be the duration of the period in which we want to
maximize the flow. Divide P into k equal units. Then we may examine the state of
the system at any time 0, 1 k. For example, a train schedule would probably
have P = 24 hr and k = 240, meaning that we know the status of each train every
0.1 hr.

Assume there are r delay points. Let n i (i = 1, 2 r) be the capacity of the
ith delay point. Let t o be the time needed to go from the beginning of the route to
the first delay point. Let t i (i = 1, 2 r - 1) be the time needed to go from the
ith delay point to the (i + 1)st delay point. Finally, let t r be the time needed to go
from the r th delay point to the end of the route.

(a) Assuming there are no delays, what is the maximal flow in the route during a
period of length P?

(b) What is the earliest arrival time at the end of the route, assuming that a unit
of flow starts at the beginning of the time period?

(c) What is the latest departure time from the beginning of the route that will
allow a unit of flow to arrive at the end of the route before the time period is up?

To construct the maximal flow model we will need a network that has a
different set of nodes for each of the k + 1 specified times in the period under
consideration. We will also need a decision function that governs whether a unit of
flow can move from one delay point to the next. In the case of the train example,
this function will be based in part on information about express train schedules and
the need for a local train to be able to move from one siding to the next without
being overtaken by an express. Let this function be

_ [1

8ij
0

if at time j the unit of flow can safely move

from delay point i to delay point i + 1

otherwise.

(d) Formulate the maximal flow model of this situation.
(e) Assume that

k = 1 3 , r = 3

t o = 2, t I = 3 , t 2 = 1, t 3 = 2

n 1 - - 2, n 2 = 1, n 3 = 3

368 Chapter 5 Special Types of Linear Programming Problems

1 1 1 0 1 1 0 0 1 0 1 1 1]
1 0 0 1 1 0 1 1 0 1 0 1 0] .
1 0 1 1 0 1 1 1 0 1 0 0 1

Find the maximal flow along this route for the given period of time.

Further Reading
Chv~tal, Va~ek. Linear Programming. Freeman, New York, 1980.
Dinic, E. A. "Algorithm for Solution of a Problem of Maximum Flow in Networks with Power

Estimation." Soviet Math. Doklady. 11 (1970), 1277-1280.
Ford, L. R., Jr., and Fulkerson, D. R. Flows in Networks. Princeton Univ. Press, Princeton, NJ,

1962.
Goldberg, Andrew V., and Tarjan, Robert E. "A New Approach to the Maximum-Flow

Problem." J. Assoc. Comput. Mach. 35 (1988), 921-940.
Papadimitriou, Christos H., and Steiglitz, Kenneth. Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

5.5 THE SHORTEST ROUTE PROBLEM

In many applied problems it is necessary to find the shortest path from
a given node in a network to another node in the network. These include
problems in the optimal distribution of goods (along highways or railroads),
routing of communication signals, and transporting people in metropolitan
areas. Another very interesting application of the shortest route problem is
the problem of optimally replacing equipment that deteriorates with age.
A number of these applications will be considered in the exercises.

Many algorithms have been developed for the solution of the shortest
route problem. The algorithm that we now present is not the most efficient
one; however, it does have the advantage of being one of the simplest to
describe and understand. Other algorithms are described in materials
listed under Further Reading.

Once we have designated our origin, the algorithm sweeps out to find
the shortest route to each node in the network; in particular, it gives the
shortest route from the origin to the designated destination node. The
nodes are examined in order of distance from the origin.

The set of nodes of the network is divided into two disjoint subsets, N r
and N u, as follows:

N r consists of the origin and all nodes that have been reached from the
origin by a shortest route.

N u consists of all nodes that have not yet been reached from the origin
by a shortest route.

Initially, N r contains only the origin; we transfer nodes from N u to N r in a
systematic fashion to be described below. The algorithm terminates when

5.5 The Shortest Route Problem 369

N, is empty. Of course, from a practical point of view, the algorithm can
be stopped as soon as the destination node is in N r.

To start the algorithm we find the node closest to the origin and place
this node in N r. In case of ties we place all nodes that are closest to the
origin in N r. This completes the first stage of the algorithm.

At all subsequent stages of the algorithm we will need to find the node
(or nodes) in N u that is (are) closest to the origin and move it (them) to
Nr. We now describe how to find such a node. Let j be a node in N u and
assume that j is at least as close to the origin as any other node in .IV,. We
claim that j is connected to a node in N r by a directed arc (a path that
does not go through any other nodes). Certainly j is connected to a node
(the origin) in N r by a path (why?). If this path contains a node in N,
other than j, then that node is closer to the origin, contradicting the
choice of j. Thus, in this path the arc from j must go to a node in N~.
Hence, the candidates for node j are all those nodes in N u that are
connected to some node in N r by a directed arc.

Thus, we select node j in N u as follows:
For each node i in N r (including the origin) that is connected to a node

k in N u by a directed arc, form s' = s + d, where s is the length of the
shortest route from the origin to i (we keep track of this number for each
node we add to N r) and d is the length of the directed arc from i to k.

Select j as the node for which s ' is minimal, put j in N r, and record its
distance to the origin. In case of ties, choose all the tying nodes and place
them in Nr. This completes the algorithm. This second step of selecting
node j is repeated until the destination node is placed in Nr.

We shall illustrate the algorithm and describe a way of keeping track of
the necessary information by using the network in Figure 5.33. Its origin is
node 1, and its destination is node 8. The number on each arc represents
the length of the arc rather than the capacity as for a flow problem.

Starting with the origin, we list each node across the top of the page.
Under each node we list all the nodes that are connected to this node by a

5 2 2

7

FIGURE 5.33

370 Chapter 5 Special Types of Linear Programming Problems

directed arc that leaves this node. Next to each node in the list we indicate
the length of the directed arc that joins the node at the top to that node in
the list. For example, the list shows that node 3 is connected to nodes 4
and 8 by directed arcs of lengths 6 and 9, respectively (Table 5.2).

TABLE 5.2

1 2 3 4 5 6 7 8

5-4 5-2 4-6 8-2 6-3 7-5 4-3
2-5 6-4 8-9 7-3 3-5 4-8 8-4
3-7 7-7

Initially, N r = {1}. We now find the node closest to the origin. The
candidates are nodes 5, 2, and 3. The closest one is node 5. In the list, we
circle the entry 5 -4 under node 1 and mark the distance 4 next to node 5,
indicating that the distance from the origin to node 5 is 4. We also cross
out all node 5's in every column, since we have now found the shortest
route to node 5, and the other directed arcs leading to node 5 will not be
used. At this point, N r = {1, 5}, and our modified list is shown in Table 5.3.

TABLE 5.3

1 2 3 4 5 - 4 6 7 8

(•
2-5 6-4
3-7 7-7

4-6 8-2 6-3 7-5 4-3

8-9 7-3 3-5 4-8 8-4

The nodes in N u that are connected to nodes in Nr by directed arcs can
be found by reading the uncircled and not-crossed-off entries in the
columns labeled by nodes in Nr. Thus, nodes 2, 3, and 6 are candidates for
the next node to be added to N r. The distance from the origin to node 6
via node 5 can be obtained by adding the number, 4, next to node 5 (the
distance from the origin to node 5) to the length of the directed arc (5, 6),
which is 3. The distances from the origin to nodes 2 and 3 come from the
table. Since the smallest of these distances is 5, we choose node 2 to be put
in N r. We circle 2-5 under 1 in the list, make the distance 5 next to node
2, indicating that the shortest distance to node 2 is 5, and cross out all arcs
leading into node 2 (there are none). At this point, N r = {1, 2, 5}, and our
modified list is shown in Table 5.4.

5.5 The Shortest Route Problem 371

TABLE 5.4

1 2 -5 3 4 5-4 6 7 8

(•
(~ 6-4
3-7 7-7

4-6 8-2 6-3 7-5 4-3

8-9 7-3 3-5 4-8 8-4

Using the technique described before, we find that nodes 3, 6, and 7 are
the next candidates for the node to be put in N r. The length of the routes
associated with these nodes are given in Table 5.5.

TABLE 5.5

Route Length

1 ~ 3 7
1 - - , 2 - , 6 5 + 4 = 9
1-- ,2-- ,7 5 + 7 = 1 2
1-- ,5-- ,6 4 + 3 = 7
1-- ,5-- ,3 4 + 5 = 9

We select both nodes 3 and 6 to be reached along routes with length 7.
We circle 3 - 7 under node 1 and 6 -3 under node 5, mark the distance 7
next to nodes 3 and 6 at the top of the columns, and cross out all node 3's
and node 6's in every column. At this point, N r = {1,2,3,5,6}, and our
modified list is shown in Table 5.6. Since the first and fifth columns have
no other available directed arcs, we can ignore them, so we place a check
mark over these columns.

TABLE 5.6

1 2-5 3-7 4 5-4 6-7 7 8

~) 7-7

4-6 8-2 6 ~) 7-5 4-3

8-9 7-3 ~ 4-8 8-4

The next candidates for inclusion in N r are nodes 7, 4, and 8. The
lengths of the routes associated with these nodes are given in Table 5.7.

372 Chapter 5 Special Types of Linear Programming Problems

TABLE 5.7

Route Length

1 --> 2 --, 7 5 + 7 = 1 2
1- - ,3 - - ,4 7 + 6 = 1 3
1--,3---,8 7 + 9 = 1 6
1--->5---,6--,7 7 + 5 = 1 2
1 ~ 5 - - , 6 ~ 4 7 + 8 = 1 5

We must choose node 7, m a r k its dis tance as 12 (along two dif ferent
paths), and circle 7 - 7 in co lumn 2 and 7 - 5 in co lumn 6. We also cross out
all o ther occur rences of node 7 in any of the columns. Our list is now as
shown in Table 5.8.

TABLE 5.8

1 2-5 3-7 4 5-4 6-7 7-12 8

@ �9

4-6 8-2 ~) 7 ~ 4-3

8-9 ~ ~ 4-8 8-4

Af ter the next stage the list becomes as shown in Table 5.9 (verify).

TABLE 5.9

1 2-5 3-7 4-13 5-4 6-7 7-12

@
�9 (3

8-9 ~ ~ ~ 8-4

Verify that the final list is Table 5.10.

5.5 The Shortest Route Problem 373

TABLE 5.10

~/ ~/ ~/ ~/ ~/ ~/ v ~
1 2-5 3-7 4-13 5-4 6-7 7-12 8-15

(•

@ @

@ @ @ @

From this list we see that the shortest route to the destination (node 8)
has length 15. The route can be found by looking in the circled numbers
and working back from node 8. Among the circles find 8; it occurs in
column 4. Thus, the last arc in the route is 4 ~ 8. Now find a 4 among the
circles; it is in column 3. Thus, the route goes 3 ~ 4 ~ 8. After another
step, we find the shortest route is

1 ~ 3 ~ 4 ~ 8 .

The list also tells us that to get to node 6, for example, the shortest
route has length 7. It is

1 - , 5 - - , 6 .

Equipment Replacement Problem
Another situation that can be modeled as a shortest route problem is

the question of when equipment that deteriorates with age should be
replaced. Over a period of several years we would expect the price of the
equipment to increase gradually and the cost of maintenance for the
equipment to increase rapidly as it ages. Certainly this situation is familiar
to every car owner.

Consider a factory that must occasionally replace a piece of equipment
that deteriorates with age. Assume that they are using a planning horizon
of 5 years. At the beginning of Year 1 they will purchase a new piece of
equipment that will be replaced after every j years. Their problem is to
determine j so that the combined maintenance costs and purchase prices
will be a minimum. The purchase prices and maintenance costs are given
in Table 5.11.

TABLE 5.11

Purchase price

Beginning of year 1 2 3 4 5
Price ($10,000) 17 19 21 25 30

Maintenance costs

Age (years) 0-1 1-2 2-3 3-4 4-5
Cost ($10,000) 3.8 5.0 9.7 18.2 30.4

374 Chapter 5 Special Types of Linear Programming Problems

We now construct a network that will model the equipment replace-
ment problem. The shortest path in the network will represent the optimal
replacement scheme. Each node of the network will represent the begin-
ning of a year in the planning horizon. We must also include a node to
represent the end of the last year in the planning horizon. Each node is
connected to every subsequent node by an arc. The arcs represent replace-
ment strategies. For example, the arc connecting node 1 to node 4
represents the strategy of purchasing a new machine at the beginning of
Year 1 and then replacing it at the beginning of Year 4. The length of
each arc represents the total cost (purchase price plus maintenance costs)
of the corresponding replacement strategy. For example, the length of arc
(1,4) is 17 + (3.8 + 5.0 + 9.7) = 20.5. Notice that this arc represents
owning a piece of equipment for 3 years, so that there is a maintenance
cost for each of the years. All the arcs for this network and the computa-
tions for their lengths are given in Table 5.12.

TABLE 5.12

(1,2) 17

(1,3) 17
(1,4) 17
(1,5) 17
(1,6) 17
(2,3) 19
(2,4) 19

(2,5) 19
(2,6) 19
(3,4) 21
(3,5) 21
(3,6) 21
(4,5) 25
(4, 6) 25
(5, 6) 30

+ 3.8 = 20.8

+ (3.8 + 5.0) = 25.8

+ (3.8 + 5.0 + 9.7) = 35.5

+ (3.8 + 5.0 + 9.7 + 18.2) = 53.7

+ (3.8 + 5.0 + 9.7 + 18.2 + 30.4) = 84.1

+ 3.8 = 22.8

+ (3.8 + 5.0) = 27.8

+ (3.8 + 5.0 + 9.7) = 37.5

+ (3.8 + 5.0 + 9.7 + 18.2) = 55.7

+ 3.8 = 24.8

+ (3.8 + 5.0) = 29.8

+ (3.8 + 5.0 + 9.7) = 39.5

+ 3.8 = 28.8

+ (3.8 + 5.0) = 33.8

+ 3.8 = 33.8

The network that models this equipment replacement problem is shown in
Figure 5.34.

Any route through the network will represent a 5-year plan for equip-
ment replacement. For example, the route 1 ~ 3 ~ 4 ~ 6 represents
purchasing a new piece of equipment at the beginning of Year 1, of Year
3, and of Year 4. The cost of this strategy is 25.8 + 24.8 + 33.8 = 84.4, or
$844,000. The reader may use the shortest route algorithm to show that
the optimal replacement strategy is to purchase a new piece of equipment
at the beginning of Years 1 and 3. The cost of this strategy is $653,000.

In general, if the planning horizon encompasses n time units, the
network will have n + 1 nodes. The length of the arc joining node i to

5.5 The Shortest Route Problem 375

39.5

N N \ - 5s.7
"NNt 33.8 - _

FIGURE 5.34

node j (i < j)w i l l be the sum of the purchase price at the beginning of
year i and the maintenance costs for the first j - i time periods.

5.5 EXERCISES

In Exercises 1-4 find the shortest path between the indicated origin and the
indicated destination.

6 L

Origin

5 ~ 4 1 3 ~ (~ 5

Destination

4 _.,,,,.'~= ~ jr 5
7 Origin ~ 7] 4 V 3 16

Destination

6 ~ 2

~ Chapter 5 Special Types of Linear Programming Problems

.

7 4

4 4

Origin 3 Destination

4.

Origin Destination

In Exercises 5 and 6 we give tables of purchase prices and main tenance costs for
pieces of equipment . Develop a rep lacement policy for the equipment .

5.

Year

1 2 3 4 5 6

Purchase price
($10,000) 5 6 8 9 11 12

Age (years) 0-1 1-2 2-3 3-4 4-5 5-6
Maintenance cost

($10,000) 3.0 3.5 5.5 8.5 12.0 18.0

Y e a r

1 2 3 4 5 6 7 8 9 10

Purchase price
($10,000)

Age (years)
Maintenance cost

($10,000)

3.0 3.5 4.1 4.9 6.0 6.5 6.7 6.7 7.5 8.0
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

1.0 1.5 2.1 2.8 4.0 7.0 20.0 7.0 8.0 9.5

5.5 The Shortest Route Problem 377

5.5 PROJECTS

Charlie Anderson lives in the town of Hatboro in eastern Montgomery County.
Frequently he travels to northeast Philadelphia to visit his parents. The network
of roads connecting the two points is shown in Figure 5.35. Node 1 is Charlie's
home and node 45 is his destination. This network is a combination of rural
roads, urban streets, and expressways. The rural roads are in the area from
Hatboro to the outskirts of Philadelphia (nodes 1 through 20). These roads have
long stretches without intersections, few traffic signals and stop signs, and
generally light traffic. The urban streets begin near the city limits of Philadel-
phia (nodes 21 through 45). They are generally more congested and have many
traffic signals. The expressway joins nodes 21, 44, and 45.

Charlie has computed average times for traveling over each arc of the
network. These times along with the length of each arc are given in Table 5.13.
(a) Compute the route Charlie should use to travel the shortest distance when

going from Hatboro to northeast Philadelphia.
(b) Compute the route Charlie should use to get to northeast Philadelphia most

quickly.
(c) Compare your answers in parts (a) and (b)with the route 1 ~ 3 ~ 4 ~ 6

10 ~ 17 ~ 19 ~ 23 ~ 29 ~ 34 ~ 38 ~ 41 ~ 42 ~ 43 ~ 45. Discuss

Rte.

Hatboro

Start

North

Rte. 611

Rte. 73
28

Rte. l

~7
'939

43
4! "Rte. 13
End
NE Philadelphia

FIGURE 5.35

63

95

378 Chapter 5 Special Types of Linear Programming Problems

TABLE 5.13 Distances and Times between Nodes

Distance Time
Nodes (miles) (sec)

1-2 1.5 380
1-3 0.7 190
2-5 3.1 360
3-2 1.4 210
3-4 0.7 200
4-6 3.6 380
4-7 1.1 230
5-6 0.9 120
5-8 1.6 140
6-9 1.8 225
6-10 1.8 220
7-11 3.5 450
7-13 3.1 420
8-9 0.9 150
8-20 2.0 275
9-18 1.7 255
9-20 1.2 230

10-12 0.4 85
10-17 0.8 170
11-12 0.8 110
11-14 1.8 235
12-15 1.5 220
13-14 1.5 280
13-28 4.8 750
14-16 0.6 110
15-16 0.8 140
15-24 2.2 340
16-25 1.6 230
17-18 0.2 60
17-19 0.4 95
18-19 0.3 80
18-22 2.6 400
19-23 1.6 160
20-21 1.3 260
21-22 1.6 250
21-44 6.5 480

Distance Time
Nodes (miles) (sec)

22-33 1.2 220
23-24 0.8 120
23-29 0.8 140
24-26 1.6 220
24-30 0.6 175
25-26 0.6 170
25-27 0.8 170
26-27 0.6 160
26-31 0.8 190
27-28 0.3 135
28-32 0.7 180
29-30 0.6 120
29-33 0.8 150
29-34 0.6 180
30-31 1.4 225
31-32 0.9 180
31-35 1.3 320
32-36 1.3 320
33-34 0.5 100
33-37 1.0 140
34-35 1.4 240
34-38 1.3 220
35-36 1.3 230
35-42 1.5 240
36-43 0.9 190
37-38 1.4 210
37-39 0.4 80
38-41 1.0 140
39-40 1.3 240
40-41 1.2 305
40-44 0.5 55
41-42 0.2 70
42-43 0.7 240
43-45 0.5 100
44-45 3.3 520

what penalt ies Charlie incurs by not using either the min imum distance or

the min imum time routes.

2. On the basis of publ ished figures for new car prices and costs for maintenance ,

develop an opt imal rep lacement policy for the t ime per iod 10 years ago until the

present.

Further Reading
Djiskstra, E. W. "A Note on Two Problems in Connection with Graphs." Numerische Math. 1

(1959), 269-271.

5.6 The Critical Path Method 379

Dreyfus, S. E. "An Appraisal of Some Shortest-Path Algorithms," Perspectives on Optimiza-
tion: A Collection of Expository Articles (A. M. Geoffrion, Ed.), pp. 197-238 Addison-
Wesley, Reading, MA, 1972.

5.6 THE CRITICAL PATH METHOD

Scheduling models are an important area of study in operations re-
search. We have examined some of these models in the examples and
exercises in previous sections. The assignment problem gave one form of a
scheduling model, as we showed in Project 1 of Section 5.2. This project
discussed an idealized method of scheduling nurses on a floor of a hospital.
The traveling salesman problem occurred as a scheduling model for a job
shop. In this situation we were minimizing total setup time. The literature
has extensive discussions of the airline flight crew problem. Some refer-
ences to this problem and other scheduling problems are given under
Further Reading.

In this section we discuss yet another model for scheduling. This model,
the critical path method, or CPM, was originally conceived by researchers
at E. I. duPont de Nemours Company and Remington Rand in a collabora-
tive effort. John W. Mauchly, James E. Kelley, and Morgan Walker had
the lead roles in its development. It was tested in early 1958 on scheduling
the construction of a $10 million chemical plant in Louisville, Kentucky.
Its advantage in this situation was the small effort needed to incorporate
design changes into the schedule.

Modifications of the original model have been made, but the basic
concepts remain the same. The model is based on a network that repre-
sents the activities and completion times of a process. CPM is used in a
variety of settings, including larger construction projects, complicated
maintenance procedures, installation of computer systems, and production
of motion pictures. A related planning process called PERT (Program
Evaluation and Review Technique) is widely used for government activi-
ties, especially in the Department of Defense. We will limit our discussion
to the network model for CPM.

It is typical of construction projects that many unrelated activities can
be performed simultaneously with the only constraint being that certain
activities must precede others. For example, the schedule for building a
house cannot call for tarring the roof before the supporting beams have
been erected and covered with sheeting. Aside from these mechanical
constraints, the other important constraint is meeting the scheduled com-
pletion date. CPM models the schedule of the activities of a project and
indicates an order in which the individual activities should be performed.

The nodes in the CPM network represent times, but not measured in
days from the beginning of the project. Rather the times are completions
of activities such as excavation completed or plumbing roughed in. In some

~ 0 Chapter 5 Special Types of Linear Programming Problems

of the literature these times are called events. The arcs of the network
represent activities such as install floor or paint walls. The source node is
the beginning of the project and the sink node is the end of the project,
and these can be the only source and sink, respectively, for the network.

Instead of the usual specification giving a criterion for connecting two
nodes with an arc, it is easier for CPM networks to give the dual
specification: a criterion for having two arcs join at a node with one arc
entering the node and one leaving. Two such arcs representing activities
A i and A i are joined at a node with A i entering and Aj leaving if activity
A i must be completed before activity A i can begin. For example, part of a
CPM network might be

"O O Erect roof Install sheeting
support beams

Tar roof

In joining arcs one must be careful not to produce sequences in the
network that do not fit with reality. If activities B and C must follow
activity A, but are independent, they should be diagrammed as

and not as

B

C

A 0 O c
A slightly more complicated situation occurs when there are four

activities, A, B, C, and D, where A and B both precede C but only B
precedes D. None of the following correctly diagrams this situation (why?).

" 0
A C A C

B D _ ~'

A

B

This dilemma is solved by introducing a dummy activity or logical re-
straint. It is an arc of the network, usually shown as a dashed rather than a

5.6 The Critical Path Method ~81

solid line, which represents no work. Using this device we can correctly
represent the above situation as

A - ~._.J c
/

/
/

B D

It is also important that no loops be introduced in a CPM network. A
loop would mean that an activity must both precede and follow ano the r - - a
logical impossibility. Loops are easily detected in a small network. In large
networks with thousands of nodes, loops may be introduced by errors in
the input data. Consequently, a first step in a CPM algorithm is to check
the network for loops.

Once a correct precedence network has been established for a problem,
the key step in the CPM process must take place. An estimate for the time
necessary to complete each activity must be given. The time estimates
should be as good as possible. However, after the critical path is found, the
planner can reexamine his or her estimates for the path to see if any are
unrealistic.

Typically the events of the projects are numbers but not necessarily in
any particular order. In this way more events can be added to a network
without having to renumber all previous events. The activities are specified
by giving the pairs of nodes that are joined by their representing arcs. To
ensure that each activity has a unique designation, dummy activities are
inserted in case two activities connect the same two nodes. Thus,

A

B

becomes

A X\ j/ C/--,

EXAMPLE 1. Consider the several-weekend project faced by a subur-
ban homeowner who wants to replace his small metal storage shed with a
larger, more solidly constructed one, building the newer one on the same
site as the old shed. Since he has no other place to store tools, he plans to
build the new shed around the old one and then to demolish the old shed.

382 Chapter 5 Special Types of Linear Programming Problems

(; r a d ~ Install walkway

Change ladder ~ . , v 4
storage ~ I Remove ~ lnstallncwdoor

! w " ~ i old ~
I / / door / " -

J i / / '
Layout I Modify I Lay I Frame /Remove Install Removc i
site / d r a i n a g c l found- I walls / o l d new old floor

. . . . �9 �9

4

FIGURE 5.36

He has drawn the precedence network shown in Figure 5.36. The number
below each activity represents the time (hr) estimate for that activity.

After the network representing the project activities has been deter-
mined and checked for its accuracy, the critical path algorithm can be
started. The first step of the algorithm is to compute the early event time
for each node. The early event time TE(j) for node j represents the
soonest that node j can be reached once all activities on all paths leading
to the node have been completed. Mathematically it can be computed by
modifying the shortest path algorithm to compute the longest path.

In this example, we give the details of computing the early event times
for the first six nodes. All the early event times are shown in square boxes
in Figure 5.37. For the source node we have TE(1) = 0, representing the
beginning of the project. Node 2 has only one arc leading into it, so that
TE(2) = TE(1) + 1 = 1, that is, TE(2) is the sum of the activity time and
the previous event time. Likewise, TE(3) = TE(2) + 1 = 2.

Since node 4 has two arcs leading into it, we must choose the longer of
the arcs to compute TE(4). Remember that TE(j) represents the earliest
that the event can occur after all activities leading into it are completed.
Thus,

TE(4) = max{TE(2) + 2, TE(3) + 0}

= max{3, 2}

= 3 .

5.6 The Critical Path Method 383

G ~ 1 r a d e ~ Instal walkway

Change ladder ['~ /3 x..J ~ 4 \
storage ~ / Remove ~ Install new door

D D ID N/ �89 N N \\@
Lay out Modify I Lay I Frame / Remove Install Remove Install \
site drainage ~ found- [walls / old new old floor ~,

6 ~ t'~ati~ r - t '~r~176 _ ~ r ~ 1 7 6 ~walls ~ _ (~
@ l --k, / 2 - - ~ 4 - ~ ,) 5 =~,~ 1 zk, fJ 2 : ~) 3 ~ 3 ~)

~ Trim / ~ / / ~ /
interfering

\ \ trees fl \ Install siding I i / \Finish interior/ 4 /
Run electric l i n e /

4

FIGURE 5.37

Likewise, node 5 has two arcs coming into it. Therefore,

TE(5) = max{TE(2) + 2, TE(4) + 4}

= max{3, 7}

= 7 .

We also find TE(6) = TE(5) + 3 = 10. Thus, in general,

TE(j) = m.ax {TE(i)+ length(/-~)},
l

where the maximum is taken over all arcs leading into node j.
The early event time computed for the node that represents project

completion (the sink) is the total amount of time necessary to complete the
project. If this time is unaceptable, the project manager can at this point
investigate ways of speeding up some of the activities. He or she can
choose the activities to concentrate on after the critical path (or several of
them) is (are) known for the project.

The second step of the algorithm is to compute the late event time for
each node. The late event time TL(j) for node j is the latest time by which
node j can be reached to still have the project completed in the shortest
possible time. Again in this example, we give the details of computing the
late event times for nodes 7 through 12. All late event times are shown in
diamonds below the early event times in Figure 5.38.

For the sink node we have TL(12) = 22, the total project time. For node
11, since the activity of laying the floor takes 3 units, the start of floor

384 Chapter 5 Special Types of Linear Programming Problems

B Grade site ~ Install walkway
Change ladder ['2"] U ~ ' x ~ 0"~ 4 \
storage ~_ (,~ [~ ~ Install new door

I I Y (3) / R em o ve/1 k . ~ / ~ 2 \ \
I I " I old / v \ l 1] d o o r / \ \

D ID Eft/ D/ D | N
�9 Lay Frame Remove Install Remove Install out Modify I Lay ,t I drainage | found- / wr:: e/R,:mov< new old f l~ t a l l~ t

site _(~_ (,~ation (~ _ (,~roof _f-g,,xroof t,,i~walls ~ _

e e
iTnrtimferin~g / ~ - ~ / / ~ (~ (~ / ~

k\ trees / ~ Install siding t / XFinish interior/ 4 / ,
~ , Run electric l i n e /

4
FIGURE 5.38

laying must occur at 19 units. That is,

TL(l l) = T L (1 2) - - 3 = 2 2 - - 3 = 19.

There are two paths from node 10 to node 12. We must use the longer of
the two to compute TL(10). We have

TL(10) = min{TL(l l) -- 3, TL(12) -- 5}

= min{ 16, 17}

= 1 6 .

For nodes 8 and 7, TL(9) = TL(10) - 2 = 14 and TL(8) = TL(12) -- 2 = 20,
since only one arc leaves each of these nodes. For node 7, we find that

TL(7) = min{Te(8) - 1, TL(9) - 1, TL(10) -- 4}

= min{ 19, 13, 12}

= 12.

In general, we have

TL< j) = m!n {TL<i) -- length(j-~)},
l

where i runs through all nodes for which there is an arc from node j to
node i. The fact that TL(1) must be 0 is a good check on the accuracy of
the event t ime calculations.

Recall that for any node j, TL(j) is the latest t ime by which all the
activities leading from node j must be started to have the project finished
on schedule. Also, TE(j) is the soonest t ime by which all the activities

5. 6 The Critical Path Method 385

leading from node j can be started. These activities could not be started
earlier because at least one activity leading to node j had not been
completed. The difference T L (j) - TE(j) is called the float time or slack
time. Any event that has zero float time is called a critical event. The next
activity must be started without delay. A critical path is a path in the
network that passes through only critical events and whose length is the
value of T E at the project-completion node. There may be more than one
critical path in a network. The activities along a critical path are the ones
whose lengths are determining the total length of the project.

In our example there is only one critical path, namely, 1 ~ 2 ~ 4
5 ~ 7 ~ 10 ~ 11 ~ 12. This path is indicated by the heavy lines in
Figure 5.38. /x

5.6 EXERCISES

For the precedence networks given in Exercises 1-4,

(a) find the early event times;
(b) find the late event times;
(c) find a critical path.

.

3 8 :

4 " ~ 3 ~ 1

6 ~ 4 = 5 :

3 7 7

8

5 ~ 2 r ~ ~ 6

)

7

4 6

8

~l]~ Chapter 5 Special Types of Linear Programming Problems

~ ~ '6 -

7

\

4 - ~ 8

.G2

6

\

/

D

G

4 _ f ~ . 2

2 9

/ / 5

[
1 2 _ @ 3 .

- \

v

The networks given in Exercises 5 and 6 are to be models for certain projects.
However, they are incorrectly constructed. Find and correct, if possible, the errors
in the networks.

5.6 The Critical Path Method 3 ~ 7

In Exercises 7 and 8 lists of activities and activity t imes are given. Also, we give

the logical const ra in ts on each activity. Cons t ruc t a p r ecedence ne twork for each

list of activities and find a critical pa th in the ne twork .

. Z 1 p recedes A2, A3, A4, A 5, and A 6.

A 10 follows A 2.

A 11 follows A 3.
A 7 follows A 5.
A 8 follows Z 4 and p recedes A lz.

A 9 follows A 4 and A 7.

A 6 and A 9 p recede A13.

A12 follows A10 and A l l .
A12 and A13 t e rmina t e at the same t ime.

Activity Time Activity Time

A 1 7
A 2 5
A 3 8
A 4 3
A 5 1
A 6 2

A 7 8
A 8 6
A 9 11
A10 2
All 5
A12 7
A13 9

A1, A2, A3, and A17 start at the same time.
A 1 precedes A 4 and A 5.
A 6 follows A 2.

A3 precedes A 7-
A 10 follows As.
A13 follows A 6, A7, and A10.
A 4 precedes A s and A 9.
A 12 follows As.
A 9 precedes A15 and A16.
Al l follows A17.

A 14 follows A 12.

A 11 precedes A 18.
A 19 follows A15.
A13 , A14 , A16 , A18 , and A19 terminate at the same time.

388 Chapter 5 Special Types o f Linear Programming Problems

Activity Time Activity Time

h 1 6
Z 2 7
Z 3 5
a 4 4
A 5 8
Z 6 9
h 7 3
A 8 7
Z 9 6

Zl0 9

All 4
A12 3
A13 6
A14 8
Z15 7
Z16 5
A17 4
A18 6
A19 7

Further Reading
Antell, J. M., and Woodhead, R. W. Critical Path Methods in Construction Practice, 2nd ed.

Wiley, New York, 1970.
Moder, J. J., and Phillips, C. R. Project Management with CPM and PERT, 2nd ed. Van

Nostrand, New York, 1970.
Shaffer, L. R., Ritter, J. B., and Meyer, W. L. The Critical Path Method. McGraw-Hill, New

York, 1965.

5.7 COMPUTER ASPECTS (OPTIONAL)

In this chapter we have described several linear programming problems
that because of their specialized structure are more efficiently solved using
their own algorithms rather than using the simplex algorithm. In fact, all
these models can be framed in terms of networks, and some commercial
simplex optimizers can recognize that the coefficient matrix of such a
model is a network even if the user had not envisioned it as such. The
algorithm that is most widely available for general network problems is the
out-of-kilter algorithm, which solves the minimum cost flow problem in a
capacitated network.

The minimum cost flow problem can be mathematically formulated as
follows. Consider a network with n nodes. With each node we associate a
number bi, indicating the availability of a single commodity at node i. If
b i > 0, there is b i of the commodity available at node i, and node i is
called a source; if b i < 0, there is a demand for b i of the commodity at
node i, and node i is called a sink; and if b i = 0, node i is called an
intermediate or transshipment node. Let u ij and lij denote the upper and
lower capacities of arc (/--~). Let c ij denote the cost of shipping one unit

from node i to node j along arc (i, j). Since flow can be neither created
nor destroyed at any node, we obtain the conservation of flow equations

n ~

E Xij -- Xki = b i, i = 1 , 2 , . . . , n.
j = l k = l

5.7 Projects 389

Of course, we are interested in minimizing the total cost

n

~ E CijXij"
i = l j = l

Thus, a mathematical formulation of the minimum cost flow problem is

Minimize
n n

E E CijXij
i=1 j--1

subject to

n n

E Xij -- E Xki- - bi,
j = l k=l

i = 1 , 2 , . . . , n

0 ~ lij <__ Xij <__ Uij,
i = 1 , 2 , . . . , n

j = 1,2, ,n .

When this problem is represented by a network diagram, it is convenient
to label each arc with the triple n u m b e r s [Cij, Uij, lij]. If an arc has no
upper bound on its capacity, only the cost of shipping one unit of goods
along the arc is given.

The out-of-kilter algorithm finds, for a given amount of flow, the path
that is cheapest. We examined a special case of this problem as we
discussed the shortest route algorithm. There the amount of flow was one
unit and each arc had an upper capacity of one unit and a lower capacity
of zero units.

All the models that we have discussed in this chapter can be trans-
formed to minimum cost flow models. Thus, the out-of-kilter algorithm
could be used to solve any of them. As an example of the types of network
computer codes available, we discuss the features of a typical code for the
out-of-kilter algorithm. However, a description of the algorithm itself is
beyond the scope of this book.

Input
The network is specified by giving a list of arcs. Each arc is specified by

giving the names of the nodes it joins in the order "from-to." For each arc
the user must also specify the upper bound on the capacity (using a large
number if the capacity is unbounded), the lower bound on the capacity, the
cost, and the initial flow. In many cases the initial flow is chosen to be
zero. The computer code may be designed to handle only integer flow
problems, so that the cost, initial flow, and capacities must be restricted to
integer variables.

390 Chapter 5 Special Types of Linear Programming Problems

Since some codes do not have built-in routines for input verification, the
user may have to check the inputs to make sure that:

1. there are no dangling nodes in the network;
2. there is only one source and one sink;
3. the initial flow is conserved at each interior node, namely, at node j,

E X p j "~ EXjq;
P q

4. the upper bound on each arc is greater than or equal to the lower
bound for that arc.

Output
The code will have output options that allow the user to save the

problem and restart it after making modifications to the network. The
printed output will include a listing of the active arcs at an optimal
solution along with the flow for each of these arcs. The output may also
include a list of the z i j - c i j , which are marginal costs for increasing the

flow one unit along the arcs (i, j).

EXAMPLE 1. Consider the transportation problem (Example 1, Section
5.1) with a cost matrix and demand and supply vectors as follows:

[579 6] [120] 100
C = 6 7 10 5 , s = 140 , and d = 60

7 6 8 1 100 80 "
120

A minimum cost flow network that models this problem is given in Figure
5.39. Note that each source is a node and each destination is a node. Each
source node is connected to every destination node by an arc. The cost of
each arc is that specified by the matrix C. Also included are two additional
nodes, a supersouree and a supersink. These nodes serve to place the
supply and demand constraints on the sources and destinations. The
supersource is connected to each source by an arc that has cost zero, lower
bound zero, and upper bound equaling the supply capacity of the source. A
flow from the supersource to a source can be thought of as the process of
manufacturing the goods at the source. The conservation of flow at each
source guarantees that no more than the available supply may be shipped
from that source.

Likewise, each destination is connected to the supersink by an arc with
upper bound equaling the demand at the destination, lower bound zero,
and cost zero.

5.7 Projects 391

5 / t3,
@___

FIGURE 5.39

We show in Table 5.14 the input necessary for solving this problem
using the Unisys UKILT 1100 Out-of-Kilter Network Optimization System.
There is one additional arc required for this system, connecting the
supersink to the supersource. The system expects all nodes to have arcs
leading both in and out of them. Such a network is called a circularization
network. The cost of the new arc is zero, and the lower and upper bounds
are equal to the total supply. This ensures that the total supply is used and
that the total demand is met. The nodes are labeled by numbers and the
arcs, by the pair of nodes that they join. The initial flows are all chosen to
be zero. Table 5.15 shows the output of UKILT 1100 for this problem.

Besides the out-of-kilter algorithm, there are implementations of the
various specialized algorithms for particular settings. For example, the
critical path method is typically used outside operations research settings,
so that easily used codes for this algorithm have been developed.

CPM Codes

The CPM codes will produce charts and tables that can be used in the
field by the project supervisors and foremen. Much of the effort in writing
a CPM code goes into making this output meaningful to those who must
use it.

There are about 100 commercially available CPM codes. These are
owned either by larger corporations that do many complicated scheduling

392 Chapter 5 Special Types of Linear Programming Problems

TABLE 5.14

Upper Lower
From To Cost bound bound

Initial
flow

1 BEGIN

2 TRANSPORTATION

3 ARCS

4 Sl D1 5 i000 0 0

5 Sl D2 7 i000 0 0

6 S1 D3 9 i000 0 0

7 S1 D4 6 i000 0 0

8 S2 D1 6 I000 0 0

9 S2 D2 7 i000 0 0

i0 S2 D3 i0 i000 0 0

ii $2 D4 5 i000 0 0

12 S3 D1 7 i000 0 0

13 S3 D2 6 i000 0 0

14 S3 D3 8 i000 0 0

15 $3 D4 1 i000 0 0

16 SSA Sl 0 120 0 0

17 SSA $2 0 140 0 0

18 SSA S3 0 i00 0 0

19 D1 SSB 0 i00 0 0

20 D2 SSB 0 60 0 0

21 D3 SSB 0 80 0 0

22 D4 SSB 0 120 0 0

23 SSB SSA 0 360 360 0

24 END

25 SOLVE

26 OUTPUT ii

27 REPORT ii

28 STOP

tasks or by consulting firms. Experience has shown that networks repre-
senting more than 250 activities should certainly be processed on a
computer. In fact, the break-even point between hand and computer
processing may drop to as low as 100 activities if the network is extremely
complicated. The larger CPM codes can handle problems with as many as
10,000 activities. The most popular CPM/project management codes are
now run on PCs. They provide very easy to understand graphical displays
and easy to use editing features. Some examples of such software are
Super-Project, Time-Line, and Microsoft Project.

Besides using the CPM algorithm on a given network, a typical code
does a substantial amount of input verification. It will check for loops,
dangling activities, and duplicate activities. Most codes also have provi-
sions for saving the network in computer-readable form (e.g., on disk or
tape) so that changes in the network can be easily made.

5.7 Projects 393

TABLE 5.15

TITLE TRANSPORTATION

NUMBER OF NODES: 9

NUMBER OF ARCS: 20

TOTAL COST: 1900

* THE SOLUTION IS OPTIMAL *

TRANS PORTAT I ON

ARC NUMBER FROM NODE TO NODE COST MARG COST UPPER BOUND LOWER BOUND FLOW

1 S1 D1 5 0 i000 0 i00

2 Sl D2 7 1 i000 0 0

3 Sl D3 9 0 i000 0 20

4 S1 D4 6 2 i000 0 0

5 $2 D1 6 0 i000 0 0

6 $2 D2 7 0 i000 0 60

7 $2 D3 i0 0 i000 0 60

8 $2 D4 5 0 i000 0 20

9 S3 D1 7 5 I000 0 0

I0 $3 D2 6 4 I000 0 0

ii $3 D3 8 2 i000 0 0

12 $3 D4 1 0 i000 0 i00

13 SSA S1 0 -i 120 0 120

14 SSA $2 0 0 140 0 140

15 SSA $3 0 -4 i00 0 i00

16 D1 SSB 0 -4 i00 0 i00

17 D2 SSB 0 -3 60 0 60

18 D3 SSB 0 0 80 0 80

19 D4 SSB 0 -5 120 0 120

20 SSB SSA 0 i0 360 360 360

5.7 EXERCISES

1. Why is a supersink necessary in modeling a transportation problem as a
minimum cost flow problem? What aspect of the problem could it represent?

2. Model the assignment problem as a minimum cost flow problem. Assume that
there are n persons and n jobs.

3. Model the shortest route problem as a minimum cost flow problem.

4. Model the critical path method as a minimum cost flow problem.

5.7 PROJECTS

1. The transshipment problem. In many applications of the transportation problem
we encounter a situation in which a node serves merely as a transshipment

394 Chapter 5 Special Types of Linear Programming Problems

-8 -5

+6 0

FIGURE 5.40

point. That is, there is neither supply nor demand at the point, but goods are
shipped through the point. Consider the network in Figure 5.40, where the
numbers beside the nodes are the b i described in this Section. The nodes can be
divided into five classes.

Pure sourcemal l arcs lead away from the node, b i > 0

Pure sink--all arcs lead into the node, b i < 0

Transshipment sourcemarcs leading into and out of the node, b i > 0

Transhipment s inkmarcs leading into and out of the node, b i < 0
Pure transshipment po in t - -a rcs leading into and out of the node,
b i = 0

(a) Classify the nodes in the network in Figure 5.40.

Every transshipment problem can be formulated as a minimum cost flow
problem. This formulation may require the introduction of a supersource or
supersink. A supersource will be necessary when there is more than one pure
source in the network. This supersource is connected to each pure source with
an arc whose capacity has an upper bound equal to the supply at the pure
source. Likewise, a supersink is necessary when there is more than one pure
sink. A minimum cost flow problem specifies a particular value of flow that must
be sent from the supersource to the supersink. Because there must be conserva-
tion of flow at each node, the sum of the amounts available at the sources of a
transshipment problem must equal the sum of the amounts required at the sinks
before the problem can be formulated as a minimum cost flow problem. If these
sums are not equal, an additional pure source or pure sink must be added as a
dummy to the network to compensate for this difference.

(b) Why does a dummy sink node have to be connected only to the source
node and not to the transshipment nodes or other sink nodes?

(c) Classify the nodes of the network in Figure 5.41.
(d) Formulate the network in Figure 5.41 as a minimum cost flow problem.

5.7 Projects 395

+5 +3

+6

-2

+2

-8

0 -5

FIGURE 5.41

2. If your computer center has a network code, formulate and run the following.

(a) Figure 5.4, Section 5.4
(b) Example 2, Section 5.1
(c) Example 1, Section 5.1
(d) The shortest route example in Section 5.5

APPENDIX

.4
Karmarkar's

Algorithm

I
MPLEMENTATIONS OF THE simplex method, and later the revised
simplex method, have been used as the primary techniques for
solving linear programming problems since the simplex method was

first discovered by Dantzig. The experience of solving a huge number of
linear programming problems over a number of years led to the conjecture

3 that the number of iterations of the simplex method is proportional to ~n,
where n is the number of variables in the problem. Furthermore, the
number of operations per iteration is proportional to m n , where m is the
number of constraints. Such an estimate indicates that the simplex algo-
rithm is a polynomial time algorithm because its running time is propor-
tional to a polynomial in n. However, in 1972 Klee and Minty provided a
particular linear programming problem that interacted badly with the rules
for choosing entering and departing variables and consequently had a
running time proportional to 2"/2 _ 1. Thus the simplex algorithm is not a
polynomial algorithm after all. Note that the problem used to disprove the
conjecture was tailored to the particular pivoting strategy used by the
simplex method. Jeroslow later showed that for any choice of pivoting

397

~ 9 8 Appendix A: Karmarkar's Algorithm

strategy, an equivalent problem could be constructed that had the same
bad behavior. Although problems such as this have not arisen in applica-
tions, there is no guarantee that such a problem will not occur.

In the mid-1980s a new approach to solving linear programming prob-
lems was proposed. It was based on work done in investigating algorithms
to follow paths in the interior of the convex set of feasible solutions.
Although these algorithms were first devised in the 1950s, they did not
initially achieve the performance of the simplex method. In 1979 Khachiyan
proved that by using the appropriate interior path algorithm, one can
guarantee that a linear programming problem will be solved in polynomial
time. This proof renewed interest in interior path methods.

Instead of following the edges of the convex set from extreme point to
extreme point, eventually reaching an optimal solution, the interior path
methods burrow through the interior of the set to find an optimal solution.
Because they are not constrained to the directions of the edges, nor their
length, it is reasonable to assume that the interior path methods might be
faster than the edge-following method. However, there has been no clear
demonstration of the superiority of interior path methods. Most of the
users of sophisticated linear programming software for frequent solutions
of large problems still use software based on the edge-following simplex
algorithm.

The most successful of the interior path methods has been that due to
Karmarkar. We will give a description of the main points of the algorithm
without presenting the technical details. A full description of the algorithm
is quite complex and involves geometric ideas that are beyond the scope of
this book. A more complete description may be found in Nering and
Tucker (Further Reading).

To apply Karmarkar's method to a general linear programming prob-
lem, we first convert the problem to a minimization one of the form:

M i n i m i z e z -- cTx

subject to

A x = b

x>_O.

Let x 0 be a feasible solution to this problem. For the Karmarkar
method, x 0 will be chosen to be in the interior of the set of feasible
solutions. That is, x 0 will be chosen to not lie on an edge or hyperplane
forming the boundary of the set of feasible solutions. As contrasted to the
simplex method in which most of the components of a basic feasible
solution are 0, all the components of x 0 will be nonzero. We want to
calculate a new feasible solution x 1 that is closer to the optimal solution of
the problem. Let x 1 = x 0 + A x. We investigate how to choose A x to meet
this criterion. The important aspects of the choice are the direction of A x

Appendix A: Karmarkar's Algorithm 399

as a vector and its magni tude, or step size, to ensure that x~ remains within
the set of feasible solutions. Note that the objective function at the new
feasible solution x I is given by

= C T C T c T x 1 X0 + A X.

Since this is a minimization problem, the quantity cTA x should be negative
and as large as possible in absolute value, so that the value of the objective
function at x 0, cTx0, is reduced as much as possible. Also

A x I = A x 0 -[- AAx.

If x 1 is to be feasible, we must have Ax 1 = b, so, by substitution, b =
b + A A x or A A x = 0. This means that Ax must be chosen to lie in the
null space of A (see Example 5, Section 0.4). Finally, x I must be nonnega-
tive, which means that

o r

0 __~ X 1 "-- X 0 -[- A X

Ax > --x 0.

We now develop a way to construct a vector in the null space of A from
any given vector z. This process will allow us to choose A x so that e T A x
has the proper value. We claim that for any vector z, the vector

Pz = (I - AT(AAT)-~A)z = z - AT(AAT)- 1Az

lies in the null space of A; that is, A(Pz) = 0 since

A(Pz) = Az - AA T (AAT) - l a x = Am - A z = 0 .

If we let z = - c and choose A x = --Pc then c T A x is as large negative as
possible.

We have now found the correct direction (- P c) . In comput ing the
magni tude of the step, we want x I to lie in the interior of the set of
feasible solutions so we must guaran tee that we do not step as far as the
boundary. This guarantee comes by choosing x I to be

Pc
x 0 - 0.98s

IPcI'

where s, the distance from x 0 to the boundary, can be computed f rom the
inequality Ax >_ - x 0 and where - P c / I P c l is a vector of length 1 in the
direction of - Pc.

The two features of this algori thm that we have over looked are rescal-
ing and a stopping condition. In practice, the general minimizat ion prob-
lem is t ransformed to a restricted form that has an obvious feasible
solution for the initial value and whose objective function min imum is

4{}0 Appendix A: Karmarkar's Algorithm

known to be zero. After each iteration of the algorithm, variables are
rescaled to bring the current feasible solution to a standard form and to
allow some freedom of movement near the boundary of the set of feasible
solutions. We can stop the iterations when the objective function is within
a preset distance from zero. We will then have to recover the solution to
the linear programming problem as it was originally presented by undoing
the various transformations that we performed on the given problem.

Examples of Karmarkar's algorithm that clearly show its workings and
its power in a simple setting are impossible to construct. The iterations of
the algorithm require careful attention to numerical computations, some
of which are quite complex. The following example constrains the set of
feasible solutions to two dimensions, yet it highlights the important proper-
ties of the algorithm.

EXAMPLE 1. Consider the linear programming problem,

Maximize z = 20x + 30y

subject to

- 3 x + y < l

- x + y < 3

- x + 2 y < 8

y < 6

x + 2y < 18

0.9x + 0.9y < 12

x < 9

x - y < 6

x - 2 y < 4

x - 3 y < 3

x > 0 , y > 0 .

By adding a slack variable to each constraint and converting the
problem to a minimization problem, we can cast it in the form necessary
for the Karmarkar algorithm. We obtain the problem,

M i n i m i z e z = cTx

subject to

A x = b

x>__O,

Appendix A: Karmarkar's Algorithm 4 0 1

where

and

A ~ .

- 3 1 1 0 0 0 0 0 0 0 0 0
- 1 1 0 1 0 0 0 0 0 0 0 0
- 1 2 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0
1 2 0 0 0 0 1 0 0 0 0 0

0.9 0.9 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
1 - 1 0 0 0 0 0 0 0 1 0 0
1 - 2 0 0 0 0 0 0 0 0 1 0
1 - 3 0 0 0 0 0 0 0 0 0 1

b T = [1 3 8 6 18 12 9 6 4 3]

c x = [- 2 0 - 3 0 0 0 0 0 0 0 0 0 0 0].

Since the problem has not been rescaled, an initial feasible solution for
the Karmarkar algorithm looks rather unintuitive, but can be constructed
from knowing that the point (1, 1) lies in the set of feasible solutions of the
original maximization problem. We simply compute the values of the slack
variables and find that

x ~ = [1 1 3 3 7 5 15 10.2 8 6 5 5]

We will step in the direction - P c from x 0. Using the definition of P given
above and software that can perform numerical matrix manipulations, we
find that the unit vector in the direction - P c is

U "-
Pc

IPcl

0.2106943871859121
0.1863525550415169
0.4457306065162191
0.0243418321443944

-0.1620107228971102
-0.1863525550415162
-0.5833994972689248
-0.3573422480046798
-0.2106943871859076
-0.0243418321443999

0.1620107228971091
0.3483632779386140

We let Ax = su and solve the system of inequalities su > - x 0 for s. We
find that s = 25.71136943075831. Thus, the new feasible solution for this

402 Appendix A: Karmarkar's Algorithm

problem is

x a = x o + 0 . 9 8 s u =

n

6.308896401405732
5.695551799297400

14.231137404919790
3.613344602108312
2.917792802811221
0.304448200702618
0.300000000000000
1.195996619367340
2.691103598594382
5.386655397891551
9.082207197188751

13.777758996485850

These steps are repeated until we obtain a new feasible solution that is
within a preset distance of the current solution.

This example was solved using a version of Karmarkar ' s algorithm that
included rescaling at each step. The interior path followed by this version
is shown in Figure A.1. /x

Optimal solution
6 - - _ 940

5-

4-

3-

2-

1-

0 I I , , I I I I I
0 1 2 3 4 5 6 7 8 9

FIGURE A.1

Further Reading
Karmarkar, N. "A New Polynomial-Time Algorithm for Linear Programming." Combinator-

ica 4 (1984), 373-395.
Nering, Evar D., and Tucker, Albert W. Linear Programs and Related Problems. Academic

Press, New York, 1993.
Rockett, A. M., and Stevenson, J. C. "Karmarkar 's Algorithm." Byte (September 1987), 156.

APPENDIX

Microcomputer

Software

S
INCE THE FIRST edition of this book appeared, major develop-
ments have taken place in the availability of software that can be
effectively used in a linear programming course. As has already

been noted in the text, one of the fortuitous events in the history of linear
programming was the prodigious growth of computing power coupled with
its precipitous cut in cost. Thus, as early as the 1960s powerful programs
were developed to solve sizable linear programming problems on large
computers.

Nowadays, we are in the fortunate position of having a number of
software packages for solving linear programming problems that are inex-
pensive, are easy to use, and will run on a personal computer. In this
appendix we provide some information on the following software packages:
LINDO, MPSIII/pc, and the MATLAB optimization toolbox, programs
that solve a problem presented to them in mathematical form; LINGO and
PAM, programs that formulate a mathematical model of the problem and
then proceed to solve it; and finally WHAT'S BEST!, a spreadsheet-based
program that solves a mathematically presented program. These programs

403

404 Appendix B: Microcomputer Software

solve linear, integer, and mixed-integer programming problems and run on
a variety of platforms, including PCs, Macintoshes, and various work
stations. They are each available in a number of different versions, whose
capabilities differ according to the platform. For example, standard LINDO
will handle at most 200 variables, whereas extended LINDO will handle at
most 100,000 variables. Keep in mind that to run the MATLAB optimiza-
tion toolbox it is necessary to have MATLAB itself; similarly, to run
WHAT'S BEST! it is necessary to have a spreadsheet that it supports,
which includes the most widely used four or five spreadsheet programs.

LINDO, LINGO, and WHAT'S BEST! are available from LINDO
Systems, 1415 North Dayton Avenue, Chicago 60622; telephone, (800)
441-2378. MATLAB and the MATLAB optimization toolbox are available
from the The Math-Works, Inc., Cochituate Place, 24 Prime Park Way,
Natick, Massachusetts 01760; telephone, (508) 653-2997. MPSIII/pc and
PAM are available from Ketron Management Science, 2200 Wilson Boule-
vard, No. 220, Arlington, Virginia 22201; telephone, (703) 558-8700.

Further Reading
Mor~, Jorge J., and Wright, Stephen J. Optimization Software Guide. SIAM, Philadelphia,

1993.

APPENDIX

SMPX

INTRODUCTION

There are two main ways to use software to learn about linear program-
ming and its extensions. One method uses a small version of a substantial
linear programming code to find the solution to a problem and to interpret
the solution in light of the scenario that was being modeled. This version
should have good input and output capabilities but can hide all of the
simplex algorithm. It is the answer that is most important.

Alternatively, one can use a specially tailored version of the simplex
algorithm as an experimental tool for understanding the subtleties of the
algorithm, the sequence of steps taken as the problem is solved, and the
consequences of the choices and decisions that are hidden in the
problem-solving code.

Using both types of software will contribute to understanding both the
algorithmic process and its application to realistic problems. LINDO is an
example of applications-oriented software; a copy can be obtained by
mailing the order card that accompanies this book. SMPX has been
created by Evar D. Nering to allow experimentation with the simplex

405

406 Appendix C: SMPX

algorithm: it is not recommended for use in solving applied problems. A
disk with this program and some examples from the text is included with
this book. A brief description of how to get started conducting experiments
with SMPX follows. More information on the details of the software is
available through the help system of SMPX.

SMPX

SMPX is a program for an IBM compatible personal computer and is
designed for instructional purposes to support learning the principles of
linear programming and the simplex algorithm. The program can handle
only small tableaux, up to 10 by 10, that can be displayed on a computer
screen. It also displays intermediate results that are useful to someone
learning about the theory of linear programming but are unnecessary for
using the simplex algorithm in an applied problem.

The user interface of SMPX is similar in appearance to the user
interface that characterizes Microsoft Windows. However, the program
runs under DOS and the screen is a character-oriented display. Commands
can be entered either with the keyboard and function keys or by using a
mouse to activate buttons and menu items. The arrow keys and tab keys
are used to navigate among the buttons and menus. A linear programming
problem is described to SMPX by using its equivalent tableau and marking
variables that are artificial. The software automatically provides slack
variables, but it assumes that all constraints are written with < signs.

Several files of examples and exercises taken from the book are in-
cluded on the disk. These can be used as you explore the use of the
software. You can add to these files or create other files of problems as
you continue through the book and expand your investigations. The
software _allows you to create new problems either by starting from a
template with the correct number of variables and constraints or by
modifying an existing problem.

GETTING STARTED

The simplest way to use SMPX is to create a directory on your hard
drive called \LP . Then copy all the files from the disk to your hard drive.
Start the program by giving its name as a command. Once the program is
running you can explore the choices on the menu bar, including HELP,
which starts the extensive context-sensitive help system.

When you start SMPX, the first action you will usually take is to open a
problem file. You can scan its contents in the preview window and then
select a problem to solve in the work window.

To stop work and exit from SMPX use the command Alt-X.

Answers to

Odd-Numbered

Exercises

CHAPTER 0

Section 0.1, page 9

1. a = 4 , b = 2 ,

3. (a) No t possible

(c) 3 1
1 2

[9 1 1]
5. A l l = 10 2 '

7. AC = BC =

c = 9 , d = - 1

(b) Not possible

[4 4 4]
2 4 4
1 11 4

(d)

B A =

- 3 - 1 2 1
8 32

9. 3x 1 - 2x 2 + 5x 3 + 4x 4 = 1
4x 1 + 2x 2 + x 3 = - 3
3x I + 4x 2 - 2x 3 + x 4 - " 5

- 5
12

1
16

407

408 Answers to Odd-Numbered Exercises

Section 0.2, page 20

1 0 0 11] 1 0
0 1 0 0 3. 0 1
0 0 1 - 4 0 0

0 0

5. (a)
(b)

7. (a)
(b)

9. (a)
(b)

11. (a)
(b)

13. (i)
(ii)

(iii)

~ 2 -~
2 - 1 3
0 0 0
0 0 0

x = 1, y = 2 , z = - 2
No solution

No solution
x = 3 , y = - 2 , z = 0 , w = 1

No solution
7 7 4 8 x = ~ - ~r, y = g + ~r,

x = 0 , y - - 0 , z = 0
x = - r , y = 0 , z = 0 ,

a = - 3
a = any real number except 3 or - 3
a = 3

z = r, where r is any real number.

w = r, where r is any real number.

Section 0.3, page 27 [4 1]
3 2
5

3. (a) I
1 0
0 0
0 0
0 1

001 i 1000 0 1 (b) 0 1 0 0
1 0 0 0 2 0
0 0 0 0 0 1

5. (a)
5

4

3] -q
1

7. (a)
[2] 3

1 1
1-'-0

9. (a) Does not exist

(b)

I 4 - 2
13 1
7
12 1
7

(c) Does not exist

(b) No inverse (c)

(b)

1 1 0 - 3
7 3 5
~" 2 4

-1 1 1

31 --3

9

11

I1 0 0 0 0 1 0 0
(c) 0 0 1 0

0 0 - 3 1

I 14 1 1 1 3
2 1 0 -~
5 1 1

(c) No inverse

Answers to Odd-Numbered Exercises 409

Section 0.4, page 32
3. (b) and (c)

5. (a) and (b)

Section 0.5, page 41
1. (a) and (b)

3. (a) and (b)

5. (c): 1 +
2

[1][3][5]
2 + 4 = 7

- 1 - 2 - 1

[i]+2[i] [i]
7. (a)

9. (a)

[o] [31 [11 11. (c): 0 - 1 - 2 2 + 3 1
1 0 1 1

13. (a) (b) 2 (c) 1
- 2 2

19. 2

[1]
(d) 2

4

CHAPTER 1

Section 1.1, page 60
1. Let x = amount of PEST (in kilograms) and

y = amount of BUG (in kilograms).

Minimize z = 3x + 2.5y
subject to

30x + 40y > 120

4 0 x + 2 0 y < 80

x > 0 , y > 0 .

To change to standard form, change the objective function and the first
constraint.

3. Let x = number of Palium pills prescribed per day and
y = number of Timade pills prescribed per day.

~1 0 Answers to Odd-Numbered Exercises

Minimize z = 0.4x + 0.3y
subject to

4x + 2y > 10

0.5x + 0.5y < 2

x > _ 0 , y > _ 0 .

To change to s tandard form, change the objective function and the first

constraint.

5. Let x = number of kilograms of Super and
y = number of kilograms of Deluxe.

Maximize z = 20x + 30y

subject to
0.5x + 0.25y < 120

0.5x + 0.75y < 160

x > 0 , y > 0 .

This model is in s tandard form.

7. Let x I = number of bags of Regular Lawn (in thousands)
x 2 = number of bags of Super Lawn (in thousands), and
x 3 = number of bags of Garden (in thousands).

Maximize z = 300x I + 500x 2 + 400x 3
subject to

4x 1 + 4x 2 + 2x 3 < 80

2x I + 3x 2 + 2x 3 < 50

X 1 ~_~ 0 , X 2 >_~ 0 , X 3 >__ 0 .

This model is in s tandard form.

9. Let x 1 = number of books in paperback binding,
x 2 - number of books in bookclub binding, and
x 3 - number of books in library binding.

Maximize z = 0 . 5 x 1 4- 0 . 8 x 2 4- 1.2x 3
subject to

2 x 1 + 2 x 2 + 3x 3 < 420

4x 1 + 6 x 2 4- 1 0 x 3 < 600

X 1 >__ 0 , X 2 >__ 0 , X 3 >__ 0 .

This model is in s tandard form.

11. Let x~j - amount of the i th ingredient in the j t h mixture (in kilograms), where

Ingredient 1 = Sunflower seeds

Ingredient 2 = Raisins

Ingredient 3 = Peanuts

Mixture 1 = Chewy

Mixture 2 = Crunchy

Mixture 3 = Nutty

Answers to Odd-Numbered Exercises 411

3 3 3

Maximize 2 E Xil Jr 1.6 E xi2 + 1.2 E xi3
i=1 i=1 i=1

3 3 3
- ~ x~j - 1.5]~ x2j - 0.8 ~ x3j

j = l j = l j = l

Xij >__ O,

subject to
3

Xlj ~__ 100
j = l

3

E XEj <-- 80
j= l

3

E X 3 j <__ 60
j = l

0.6Xll -- 0.4X21 + 0.6X31 _< 0

- -0 .2Xl l -- 0.2X21 + 0.8X31 _~< 0

--0.4X12 + 0.6X22 + 0.6X32 _< 0

0.8X13 -- 0.2X23 -- 0.2X33 __< 0

0.6X13 + 0.6X23 -- 0.4X33 ~ 0

i = 1 ,2 ,3 ; j = 1 , 2 , 3

Section 1.2, page 68

1. Maximize z = [20

subject to

30,[yl
0.4
0.2 1[1 [181 0.3 x <

0.4 Y - 14

[;1 o]
3. Maximize z = 3x + 2y + 3v - 2w

subject to

2 6 2 - 4 r . . 7 7
- 2 - 6 - 2 4 , . x . | - 7

3 2 5 1 [~] < 8
3 2 5 1 8
6 7 2 5 4

ixl Ii y > o

u -- 0
w 0

412 Answers to Odd-Numbered Exercises

5. Maximize z = [- 3 - 2 0 O]

subject to

2 1 1
3 - 2 0

Iil
O] = 4
1 6

7. M a x i m i z e z = [3 2 3 - 2 O]

subject to

Ixl uy I~ o

2
3
6

x

Y
U

w

u

6 2 - 4
2 - 5 1
7 2 5

x o

Y
~ > _ _ o
w

u 0

[~1
LvJ

subject to

x o]y
0 v --
1 w

u

iil { 1 [o~ o~ 1 o] _ ~ o
0.5 0.75 0 1 160

I lx Ioil
2 2]- [~3]-~ [15]; [2 ~a, [~ ~][~ 6 ~]~_[o] 340 1 1 0 j; z

2 2 1 8 8 1 0

Answers to Odd-Numbered Exercises 413

2 2 8 8 ~, [~ ~1[~1-1 [~1 ~- [1~]
2 2 2 8 8

- 2 O]

13.(a) x = 2 , y - 3 , u = 3 , v - 4
(b) Impossible

Section 1.3, page 81

~'14 Answers to Odd-Numbered Exercises

Answers to Odd-Numbered Exercises ~'15

~'1 ~ Answers to Odd-Numbered Exercises

Answers to Odd-Numbered Exercises 4"1 "~

~'1 ~ Answers to Odd-Numbered Exercises

Answers to Odd-Numbered Exercises 419

Section 1.5, page 99

1. (i) (a), (c), (e) (ii) (a), (c) (iii) (a), (b), (c)

(iv) (a) bas ic v a r i a b l e s a re x 2, x4, x 5

(c) bas ic v a r i a b l e s a r e x 1, x 4, a n d o n e o f x 2, x 3, x 5

3. Le t x 1 - n u m b e r o f g l azed d o u g h n u t s p e r day a n d

x 2 = n u m b e r o f p o w d e r e d d o u g h n u t s p e r day.

M a x i m i z e z - O.07x 1 + O.05x 2
sub jec t to

X 1 "~" X 2 ___< 1400

X 1 __< 1 0 0 0

x 2 < 1200

X 1 ~__ 600

x I > 0, x 2 > 0

E x t r e m e poin ts : (600, 0), (1000, 0), (1000, 400) (600, 800)

O p t i m a l so lu t ion : (1000, 400); z = $90

5. Le t x 1 = n u m b e r o f g l azed d o u g h n u t s p e r day

x 2 = n u m b e r o f p o w d e r e d d o u g h t n u t s p e r day, a n d

x 3, x 4, x 5, x 6 = s lack var iab les .

M a x i m i z e z = 0 .07x I + 0 .05x 2

sub jec t to

X 1 + X 2 + X 3 = 1400

X 1 "+" X 4 -- 1000

+ X 2 + X 5 = 1200

X 1 - - X 6 " - 6 0 0

A t the o p t i m a l so lu t ion ,

x 3 = 0 = a d d i t i o n a l n u m b e r o f d o u g h n u t s p e r day t ha t cou ld be b a k e d ;

x 4 - 0 = a d d i t i o n a l n u m b e r o f d o u g h n u t s p e r day t ha t c o u l d be g lazed;

x 5 - 800 = a d d i t i o n a l n u m b e r o f d o u g h n u t s p e r day t ha t c o u l d be d i p p e d ; a n d

x 6 = 400 = n u m b e r o f g l azed d o u g h n u t s ove r t h e r e q u i r e d n u m b e r .

T h e bas ic v a r i a b l e s a r e Xl, x 2, xs, a n d x 6.

7. (a) Bas ic if x2 a n d x4 a re t a k e n as n o n b a s i c va r i ab les ; bas ic if x I a n d x 2 a r e

t a k e n as n o n b a s i c va r iab les ; a n d n o t bas ic if x l a n d x4 a re t a k e n as

n o n b a s i c v a r i a b l e s

(b) N o t bas ic

(c) N o t bas ic

420 Answers to Odd-Numbered Exercises

9. (a) M a x i m i z e z = 4 x 1 + 2 x 2 + 7x 3

s u b j e c t to

2 x 1 - - X 2 + 4X 3 + X 4 " - - 18

4 x 1 + 2 x 2 + 5 x 3 + - x 5 - - 1 0

x j > 0 , j = 1 , 2 5

(b)

X 1 X 2 X 3 X 4 X 5 B a s i c v a r i a b l e s Optimal

0 0 0 18 10 x4, x 5 No
0 0 2 10 0 x 3, x 4 Yes
0 5 0 23 0 x 2, x 4 No
5

0 0 13 0 x 1, x 4 No

CHAPTER 2

Section 2.1, page 119

1.

x y u v

u 3 5 1 0 8
v 2 7 0 1 12

2 5 0 0 0

3. (a) x 2 (b) x I (c) N o f in i te o p t i m a l s o l u t i o n

5. U s i n g x 2 as t h e e n t e r i n g v a r i a b l e ,

X1 X2 X 3 X4

1 1 0 1 X 2 ~ ~-
1 5

X 3 ~ 0 1 4

2 0 0 - 2

U s i n g x 4 as t h e e n t e r i n g v a r i a b l e ,

Xl X 2 X 3 X4

X 4 1 2 0 1 3
X 3 1 5_ 1 0 9 2 2

4 4 0 0 35
2

Answers to Odd-Numbered Exercises 421

X 1 X2 X3 X4

x 1 1 1 5 0 4
x 4 0 1 7 1 10

0 3 13 0 19

9. (a) x l = 2 0 , x 2 - - 0 , x 3 = 0 , u = 6 , v = 12, w = 0
Basic variables: Xl, u, v
(b)

X 1 X 2 X 3 U V W

x I 1 0 8 z5 0 13
1 0 2 x 2 0 1 2 5-

v 0 0 - 5 1 1 7

5 0 0 7 7 0 7 27

11.

13.

15.

17.

19.

21.

(c) x 1 = 5 , x 2 = 3 , x 3 = 0 , u = 0 , v = 6 , w = 0
Basic variables: x 1, x 2, v

[0] .
O ' z = O

38 y + 12 -- 136
x = 5g, = gs, y = 0 ; z - 23

Make 0 kg Super blend and ~ kg Deluxe blend.
Profit = $64.00

Make 0 books in ei ther paperback or library bindings and 100 books in
book-club binding. Profit = $80.00

No finite optimal solution

[3 0 0 0]T; Z = 15

Section 2.2, page 130
1. [0 15 75 T]T; z = y

The simplex algori thm examines the following extreme points: O, O, A, B.

~ Answers to Odd-Numbered Exercises

Answers to Odd-Numbered Exercises 423

Section 2.3, page 150
1. (a)

Yl

Y2

X1 X2 X3 Yl Y2

1 2 7 1 0 4
1 3 1 0 1 5

2 5 8 0 0 - 9

(b)

Yl

Y2

X1

2 M

X2 X3 Yl Y2

2 7 1 0
3 1 0 1

- 5 M 3 8 M 0 0 9M

3. (a)

Xl X2 X3 X4 X5 Yl Y2

Yl 1 3 2 1 0 1 0 7
Y2 2 1 1 0 1 0 1 4

3 4 3 1 1 0 0 11

(b)

Yl

Y2

X1 X2 X3 X4 X5 Yl Y2

3 2 1 0 1 0
1 1 0 1 0 1

3M 2 4M 3M M M 0 0 11M

Xl X2 X3 X4 X5 YZ Y2

1 1 3 1 3 1
X 2 ~ 1 0 a X X 4
X3 3 0 1 1 1 1 3 3

0 0 0 0 0 1 1 0

424 Answers to Odd-Numbered Exercises

7. (a)

x 1 x2 x 3 x4 x 5

3 0 1 3 X 2 1 1 ~o ~
1 0 1 1 10 7 x4 ~ ~

7 1 3 3 0 ~ 0 ~

11.

13.

15.

17.

19.

21.

23.

(b) N o finite op t ima l so lu t ion

A n artificial va r iab le Y l has a n o n z e r o va lue at the end of Phase 1. T h e r e a re

no feas ib le solut ions.

Inves t $70,000 in b o n d A A A and $30,000 in s tock BB. R e t u r n = $7600

No feas ible so lu t ions

M a k e no P E S T and 3 kg B U G . Profi t = $7.50

No feas ible so lu t ions

Invest $40,000 in the utili t ies stock, $0 in the e lec t ron ic stock, and $160,000 in

the bond . R e t u r n = $11,600

No finite op t ima l so lu t ion

[0 2 0 4 0 1]T; Z = 12

CHAPTER 3

Section 3.1, page 165

1. Max imize z ' = 8w I + 12w 2 + 6w 3
subject to

w I + 2w 2 + 2w 3 < 3

4w 1 + 3w 2 + w 3 < 4

W 1 >~ O, W 2 >_~ O, W 3 >__ 0

5. M i n i m i z e z ' = 18w 1 + 12w2
subject to

3. Min imize z ' = 8W 1 -'[- 7w 2 + 12w 3
subject to

3w I + 5 w 2 --b 4w 3 >_ 3
2w 1 + w 2 > 2

w I + 2w 2 + w 3 >_ 5
4w 2 -- 2w 3 >_ 7

w I >_ O, w 3 >_ O, w 2 u n r e s t r i c t e d

3w I + 2w 2 >_ 3

3w I + 2w 2 = 1

w 1 + 4w 2 >_ 4

w1 ~> O, w2 un re s t r i c t ed

A n s w e r s t o O d d - N u m b e r e d E x e r c i s e s 425

7. (a) P r ima l p r o b l e m :

Maximize z ' = - 2 x 1 + 3x 2 - x 4
subject to

x I + 2x 2 + X 3

X 1 + 4 x 2

x 2 - - x 3

x 1 >_~ O, x 2 >__ O,

D u a l p rob l em:

Min imize z"

subject to
= 7w 1 + 5w 2 - 3w 3

< 7

- - X 4 - - 5

- - 5X4 __< - - 3

X 3 >__ 0 , X 4 >__ 0

w I + w 2 > - 2

2w I + 4w 2 - w 3 > 3

w I - w 3 > 0

- w 2 - 5w 3 > - 1

Wl > 0, w3 > 0, w2 un re s t r i c t ed

9. Min imize z ' = 12Wl + 48w 2 + 360w 3
subject to

w I + 6w 2 + 36w 3 > 40

w 1 + 6w 2 + 24w 3 > 30

w 1 + 2w 2 + 18w 3 >__ 20

w 1 > 0, w 2 > 0, w 3 > 0 ,

w h e r e wl, w2, and w 3 d e n o t e ficti t ious pr ices r e p r e s e n t i n g the con t r ibu t ions to

profi t of one uni t of land, capital , and labor , respect ively.

11. Min imize z ' = bTw
subject to

Afw>__c
BTw = d

w > O

Section 3.2, page 182
1. The dual p r o b l e m has an op t ima l feas ible so lu t ion with object ive func t ion

va lue 117.81. M o r e o v e r , the s lack var iab les for the first four cons t ra in t s of the

dual p r o b l e m mus t be zero at the op t ima l solut ion.

3. The dua l p r o b l e m has e i ther no feas ible so lu t ions or feas ible so lu t ions with

u n b o u n d e d object ive func t ion values .

5. z = c T x = 139

426 Answers to Odd-Numbered Exercises

1 7. [1 ~ 0]T; Z - - 11

Dua l p rob lem:

Min imize z ' = 2w 1 + 3w2 + 4w3
subject to

w I + 2w 2 + 3w 3 >__ 8

w 1 + 3w 2 + 3w 3 >__ 9

2w I + 4w 2 + W 3 >_~ 5

W 1 > O, W 2 > O, W 3 ~__ 0

Solut ion: [0 1 2]T;

11. [0 1 1]; z ' = 2 0

z ' = 11

Section 3.3, page 202

CB

2 X 2

5 X 6

0 X 5

1 2 6 0 0 5
X 1 X2 X3 X4 X5 X6 XB

3 1 1 2 0 0 2
2 0 0 1 0 1 3
6 0 7 6 1 0 1

5 0 4 9 0 0 19

CB

2 X 1

1 x 4

0 x 6

0 Yl
0 Y2

2 3 5 1 0 0 0 0 0

Xl X2 X3 X4 X5 X6 X7 Yl Y2

1 1 0 1 7
1 0 1 ~. 1

0 2 2 0 3
3 0 ~- 2 0

0 4 1 0

0 1 7 0 2

XB

1 3
7 0 0 4 0

7. Any poin t on the line segmen t jo ining [5

z = 8

9. No feasible solut ion

11. [0 2 0 4]T; Z -- 6

I
T

0 ;

0 3

z = 5

0] T and [0 0]T;

Answers to Odd-Numbered Exercises 427

13. Exercise 6

1 0 0]
First: B = 0 1 0 ,

0 0 1

3 0 0]
Second: B = 5 1 0 ,

1 0 1

1 0]
Third: B = 5 3 0 ,

1 0 1

Final: B = 5 3 1 ,
1 0 2

Exercise 9

1 0 O]
B - 1 - 0 1 0

0 0 1

i1 1 0 0
5 B -1 --3 1 0
1 0 1

~ 14
B_I 3 0

- - 1--4"

3 z 1
14 14

2 2 1 1 ff 2-T

B _ 1 3 4 1
- - 7 2--]

1 1 2
7 21

First: B =

Second: B =

Third: B =

Final: B =

I 1
1 0 0 0
0 1 0 0
0 0 1 0 '
0 0 0 1

I
1 3 0 0
0 4 0 0
0 2 1 0
0 3 0 1

I1 i 3 1 01 4 0 0
2 3 0 '
3 1 1

I 1 1 1 0 1 0 2 0 0
0 - 1 3 0 '
0 4 1 1

I 1 0 0 01 B _ l = 0 1 0 0
0 0 1 0
0 0 0 1

3 0 0 1 4
1

B _ l = 0 a 0 0
t 1 0 0 2
3 0 1 0 4

1 7 1 0
12 3

1 0 0 B _ I = 0 ~-
1 1 0 6 ~ 0

0 7 1 1
12 3

1 2 1 0
3 3
1

B _ I = 0 ~ 0 0
1 1 0 ~ ~ 0

0 13 1 1
6 3

15. Invest $70,000 in bond AAA and $30,000 in stock BB. Return = $7600

17. Use only the large backhoe for 62 h. Cost = $266.67

Section 3.4, page 214
1. [4 ~ 2 0 o]'r; z = 4 0

5 5 37 3. [0 ~ 2 2 ~ 0 0]; z =

5. No feasible solutions

428 Answers to Odd-Numbered Exercises

Section 3.5, page 223
Z 1 0 0 - ~
2

1. 0 1 0

0 0 1 0
1 0 0 0

[1 0
5 1 0 3. 2

- 2 2 - 3

5 1 28 5 . [~ ~ ~]T; z = ~ -

7. O p t i m a l so lu t ion is u n b o u n d e d .

9. [0 0 10 0 0 0 18 0]T; z = 66

Section 3.6, page 233
7 1. (a) - ~ < A C 1 _~< ~ (b)

7 < Ac 2 < oo

- 1 _< Ac 3 _< 5
14

- - o o < A c 4 __< -V

3. (a) - 2 < A c 1 < oo (b)

- o o < Ac2 _< 4

- 1 < Ac 3 <
1

- - o o < A C 4 _<< ~-

- o o < Ac 5 _< 4

- 1 < Ac 6 <

- 4 _< Ab I < 17

- 1 2 _< Ab 2 _< 12
3 - < Ab3 < oo

- 4 _< Ab 1 < 12
- 9 _< Ab 2 < oo

- 1 2 _< Ab 3 _< 12

5. (a) Plant 15 3 acres of corn, ~ acres of soybeans , and 3 acres of oats.

Profi t = $405

(b) P lan t seven acres of corn, t h r e e acres of oats, no soybeans .

Profi t = $340

(c) P lan t six acres of corn, six acres of oats, no soybeans .

P r o f i t - - $366

(d) A t least $ 1 0 / a c r e

CHAPTER 4

Section 4.1, page 259
1. Le t x I - - n u m b e r of type A and

x2 = n u m b e r of type B

Min imize z = 22,000x 1 + 48,000x 2
subject to

100x I + 200x 2 >__ 600

50x I + 140x 2 < 350

x 1 > 0 , x 2 > 0 , i n t e g e r s .

A n s w e r s to O d d - N u m b e r e d Exercises 429

1
3. L e t x i - - 0

{1
a q = 0 otherwise

10

Minimize Z -- E CiXi
i = l

subject to

if the i th CD is purchased

otherwise

if the j th song is on the i th CD

10

E a i j x i ~ 1
i = l

j = 1 , 2 , . . . , 6

5. L e t w i = person-weeks necessary for project i
c i -~ cost of project i (in thousands of dollars)
v i = value of completion of project i

1 if project i is to be completed
xi = 0 otherwise

10

M a x i m i z e Z = E ViXi
I

i= l
subject to

10

E WiXi <-- 1000
i=1

10

E CiXi <-- 1500.
i=1

Section 4.2, page 274
1 1 7

�9 -- ~X3 "k- Ul -" 8

3. x = 2 , y = 2 ; z = 4

5. x = l , y = 0 ; z = 4

7. x = 8 , y = 2 ; z = 4 4
13 9. x = l , y = ~ ; z = 5

4 28 11. [0 4 g 0]T; ~ Z-- 5-

430 Answers to Odd-Numbered Exercises

Section 4.3, page 289
1.

Q

�9

Q
z = 4]- 1

x = l 1

y - 3

z-4~ Q z - 4

z = 4

x = l

y = 3

x = l

y = 3 1

z = 5

x = l

y = 4

Q

Optimal
solution

Optimal
solution

x = 2

y = 2

Optimal
solution

2 z = 6g

2 x = 1-~

y = O

~ [~ot~asi~,e]
z = 4 i

x = l

3
Y = 7

z:4 [~o, fea~i~'e 1
x = l

y = O

Optimal
solution

Answers to Odd-Numbered Exercises 431

o

z -- 46~110

x •81

4 y=l~-

2

z = 34~- 2

x =6�89

y = l

z - ~
x=81

y = 2

z-44~ I N~]
x = 8

y = 2 1

z = 38�89

x =61

y = 3

z = 4 4

x = 8

y = 2

Optimal
solution

z = 4 /

I x = 15-

v = 3

z=4~. z = 4

x = ! x = 2

Y =3 / y = 2

Optimal
solution

432 Answers to Odd-Numbered Exercises

z = 91

X 1 "-" X 4 - " 0

x 2 = 4
1

X 3 = l ~

Optimal
solution

11. Buy six machines of type A and no machines of type B.
Cost = $132,000

13. Buy two bottles each of cola and ginger ale, five bottles of root beer, and three
bottles of grape. Cost = $7.28

CHAPTER 5

Section 5.1, page 324
3. (a)

50

50

70

60

90

40 30 30

(b)

100

40 1 O0

40

10

10

90

30

(c)

100

40 100

40

10

10

90

30

Answers to Odd-Numbered Exercises 4 ~

~

20

30

60 80

30 70 z = $1730

70

100

40 100

40

10

10

90 z = $950

30

.

10

10

50

70

50

20 80

o r

60

10

20

50

50

20 80

z = $940

11.

z = 12

13.

20

40

20 20

60

50

z = $800

40

o r

20

Dummy supply 40

60

20

40

30

40

Dummy supply

434 Answers to Odd-Numbered Exercises

Section 5.2, page 338

I O 1 0 01 1 0 0 0
0 0 0 1 ;
0 0 1 0

z = 9

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0 ;
0 1 0 0 0 0
0 0 0 1 0 0

z = 12

,

0 0 0 0 0 1
1 0 0 0 0
0 0 0 1 0 .

i 0 0 0 0 0 '
0 0 1 0 0
0 1 0 0 0

z = 1 4

7. One of the possible answers is

702 --. 706
705 ~ 707
708 ~ 714
709 ~ 712
713 --. 715

Section 5.3, page 344

1. (a)

0 1 0 1 0 0
0 1 1 0 1
1 0 0 1 0
1 0 0 1 0

0 1 1 0 1
1 0 0 1 0

(b) (i) (1, 4)
(ii) (1, 2), (2,4)

(iii) (1,2), (2,6), (6,5), (5,3), (3,2), (2,4)

(c) (i) (2,3), (3, 2)
(ii) (2,1), (1, 4), (4, 2)

3. (a)

(b)

d

Answers to Odd-Numbered Exercises 435

0 10 0 20 0
0 0 0 0 0

5. (a) 0 9 0 0 0
0 12 0 0 5
0 0 17 0 0

(b) 1
(c) 2

Section 5.4, page 363

(3, 1) (3, 2) ,,~~~ ,i'::; -Q

(7, 1) (3,3)

4)

4 ~ Answers to Odd-Numbered Exercises

7// ""

5

Maximum flow = 12

3

/ 8 v

Maximum flow -- 16

7. (a)

Boys Girls

l 1

�9 1

Source Sink

C o n n e c t B i to Gj wi th an arc o f capac i ty 1 if boy i and girl j a re f r iends .

Answers to Odd-Numbered Exercises 437

(b)

(c)

1 (~ 0 0 0

0 0 0 1 (~

(~) 0 1 0 0

0 0 (~ 0 1

0 1 0 (~) 0

0 1 0 C) 0

(~) 0 0 1 1

0 0 (~) 0 1

0 0 0 1 (~)

0 (~) 0 0 0

(d) n lines are necessary to cover the Is.

Section 5.5, page 375

1. Path: 1 ~ 5 ~ 7 ; L e n g t h = 8

3. Path: 1 ~ 2 ~ 4 ~ 9 ; Leng th - - 14

5. Replace the equipment at the beginning of the fourth year.
Total equipment cost -- $380,000

Section 5.6, page 385

1. (a) and (b)

Node Early event times Late event times

1 0 0
2 3 8
3 6 6
4 8 8
5 5 10
6 9 14
7 16 20
8 9 9
9 7 12

10 18 18
11 17 22
12 25 25

(c) 1 ~ 4 ~ 8 ~ 1 0 ~ 12 or 1 ~ 3 ~ 8 ~ 1 0 ~ 12

~ Answers to Odd-Numbered Exercises

3. (a) and (b)

Node Early event times Late event times

1 0 0
2 3 3
3 8 8
4 7 14
5 7 21
6 22 22
7 9 23
8 14 14
9 22 22

10 15 29
11 15 29
12 31 31

(c) 1 ---> 2 ---> 3 ---> 8 ~ 6---, 9 ~ 12

5. Inser t d u m m y activity b e t w e e n n o d e 2 and n o d e 5.

7.

s / f , ~ s

7 .,'7"x, _ f 3

2

D D

Crit ical pa th : 1 ~ 2 ~ 6 ~ 5 - - - > 8 ~ 9

Answers to Odd-Numbered Exercises 439

Section 5.7, page 393

3.

| iOl,, ~ networkPr~ ~ [0,1,1] _ @

All remaining arcs should be labeled [c, 1, 0], where c is the length of the arc.

Index

Accounting price, 163
Activity

critical path method, 379-381
dummy, 380

Adjacent extreme points, 105, 109
Algorithm, see also Method; Procedure

cutting plane, 262-274, 276-277
Karmarkar's, 397-402
labeling, 350
out-of-kilter, 388-391
polynomial time, 397
transportation, 308-309

Arc, 340
capacity, 343
directed, 341
oriented, 341

Artificial variable, 131
big M method, 147-150
two-phase method, 135-147, 189-192

Assigned column, 329
Assigned row, 329
Assignment problem, 251-252, 260, 326

cost matrix, 328-338

Hungarian method, 337-338
incomplete assignments, 330-332
scheduling problem as, 339, 379

Augmented matrix, 5
Augmenting path method, 350

Basic solution, 95
feasible, 96-98, 105-108
feasible and degenerate, 123-126
optimal, 97, 104

Basic variable, 96
departing, 109-111
entering, 108-109

Basis, 38, 40, 92
reinverting, 243

Big M method, 147
Bland's Rule, for avoidance of cycling,

128-129
Boundary, of closed half-space, 73
Boundedness

convex set, 81, 267-268

441

442 I.de~

Boundedness (c o n t i n u e d)

objective function, 172-173, 176
solution set, 87, 89, 126, 172, 176-177

Branch, 340
dangling, 280

Branch and bound method
computer software, 280, 290-292
Dakin's method, 280-289
implicit enumeration, 277-279
search method, 280
solution tree, 278-280
tableau tree, 288, 289

Canonical form, 52-53
duality, 157-159
standard form, conversion from, 56, 65-68,

97-98
Capacity

arc, 342
cut, 356
excess, 351

Capacity matrix, 343
Cell, tableau, 309
Checking row sums, 243
Circularization network, 391
Closed half-space, 70

hyperplane boundary, 73
Codes, computer, see Computer software
Coefficient matrix, 5
Complementary slackness, 178-181
Computer software packages

CPLEX, 236
Functional Mathematical Programming

System, 236
GAMS, 237
LINDO, 237, 403, 404
LINGO, 237, 403, 404
Mathematical Programming System Ex-

tended, 236
Mathematical Programming System III,

236
MATLAB, 403, 404
MIPIII, 291
MPSIII/pc, 237, 403, 404
Optimization Subroutine Library, 236
PAM, 403, 404
TRANCOL, 240
UKILT 1100 Out-of-Kilter System, 391
WHAT'S BEST!, 237, 403, 404

Connected graph, 341
Constraint, xx, 51

additional, 204-205, 211-213, 263

cutting plane, 263-264, 269-271
dual, 178, 308-309, 312
generalized upper bounding, 241-242
geometry of, 70-75, 85
nonnegative, 106, 114-118, 131-135
scaling, 56

Convex combination, 85, 86
Convex function, 84
Convex polyhedron, 85
Convex set, 79-80

bounded, 81, 267-268
extreme point, 85

Coordinate vector, 39-40
Cost, see also Duality

dual variable, 163
equipment replacement, 373-375, 378
minimum rule, 308
penalty, 147

Cost flow problem, minimum, 388-391
Cost matrix, 328-338
CPLEX software, 236
CPM, see Critical path method
Critical path method, 379

activity diagram, 380-381
computer code, 391-393
critical path, 385
dual specification, 380
dummy activity, 380
event, 380
loops, avoidance of, 381
time

estimate, 381
event, 382-383
float, 385

Cut, in a network
capacity of, 356
Max Flow-Min Cut Theorem, 358

Cutting plane algorithm
basic variable selection, 264, 276-277
constraint derivation, 263-264, 269-271
mixed integer programming, 268-274
pure integer programming, 262-268

Cycle, in a graph, 341
Cycling, 122

Bland's Rule, 128-129
degeneracy, 126

Dakin's method, 280-289
Dangling branch, 280
Dangling node, 281, 283, 287
Decision variable, xx

Index 443

Degenerate solution, 123
cycling, 126

Departing variable
choice of, 312, 397
simplex method tableaux, 109-111
transportation algorithm, 309, 311-312

Deterministic model, xx
Diet problem, 46-47, 164-165
Digraph, 341
Dimension, of a subspace, 38
Directed arc, 341
Directed graph, 341
Duality, see also Dual problem; Primal prob-

lem
constraints, 178, 308-309, 312
economic interpretation, 156, 161-165, 181
general problem, dual of, 197-201
objective function, 172-173
optimal solution, 174-182
primal-dual solution pairs, 172-182
profit, 163
slack variable, 178-181

Duality Theorem, 166, 174-176
Weak, 172-173

Dual problem, 156
infeasible solution, 205-207
optimal solution, 163, 193-201
primal-dual solution pairs, 172-182
primal problem, compared with, 160
primal solution, 205-207
transportation problem, 304-308

Dual simplex method, 204-207
procedure, 208-209
reduction of infeasibility, 208-211
restoration of feasibility, 205, 211-214

Dual specification, in critical path method,
380

Dummy activity, in critical path method, 380
Dummy destination, in transportation prob-

lem, 324

Early event time, 382
Economics, see also Cost

duality and, 156, 161-165, 181
Edge, of a graph, 340
Element, of a matrix, 2
Elementary matrix, 23-24
Elementary row operation, 12

elementary matrix, 23-24
inverse of a matrix, 25-26

End point, 78

Entering variable
choice of, 397
simplex method tableaux, 108-109

Entry, 2
leading, 11

Equality
converting to an inequality, 54-55
converting an inequality to, 65-68

Equipment replacement problem, 368,
373-375, 378

Error correction, 239, 243, 245
Eta matrix, 218
Eta vector, 218
Event, in critical path method, 380, 385

early event time, 382
late event time, 383

Excess capacity, 350
Extreme point, 85

adjacent, 105, 109
Extreme Point Theorem, 85, 87, 97

Feasibility criterion, in dual simplex method,
208

Feasible solution, see also Infeasible solu-
tion, 64

basic, 96-98, 105-108, 123-126
bounded, 87, 89, 126, 172, 176
degenerate, 123-126
duality, 174-177, 205-207
extreme point as, 86-87, 92-98
geometry, 74-81, 85-90
implicit enumeration, 277
initial basic, 106-108, 135-150
line segment joining any two, 79
transportation problem, 298

Fictitious flow, 349
Fictitious price, 163, 165
Float time, in critical path method, 385
Flow

fictitious, 349
Max Flow-Min Cut Theorem, 358
maximal, 345-363
in a network, 343

Flowchart, see also Procedure; Structure dia-
gram

dual simplex method, 209
simplex method, 115
two-phase method, 146

Ford-Fulkerson method, 350
Fractional part, 264

444 tndex

Functional Mathematical Programming Sys-
tem software, 236

GAMS computer modeling language, 237
Gauss-Jordan reduction, 11, 17-20
Generalized upper bounding, 241-242
General linear programming problem, 51

dual of, 197-201
Geometry

of a constraint, 70-75, 85
of a feasible solution, 74-81, 85-90
of a linear programming problem, 70-81
of an objective function, 75-78

Gomory cutting plane method, s e e Cutting
plane algorithm

Graph, s e e a l s o Network; Node; Path
activity diagram, 380-381
connected, 341
directed, 341
incidence matrix of, 340-341
as a network, 342
oriented, 341

GUB, see Generalized upper bounding

Half-space, s e e Closed half-space
Homogeneous linear equations, 19-20
Hungarian method, 337-338
Hyperplane

closed half-space intersection, 73
constraints as, 73
objective function as, 75-77

Identity matrix, 4
Implicitly enumerated set, 277-279
Imputed value, 163, 176
Incidence matrix, 340-341
Index of summation, 4
Inequality

converting to an equality, 65-68
converting an equality to, 54-55
reversing of, 54

Infeasible solution, s e e a l s o Feasible solution
restored to feasibility, by dual simplex

method, 205, 211-214
Initial basic feasible solution, 106-108,

135-150
Larson's method, 322-323, 324
minimum cost rule, 308, 319
Vogel's method, 319-323

Initial basic variable, 194
Integer programming

computer software, 290-292
linear programming problem, related

branch and bound method, 277, 279-287
cutting plane algorithm, 265, 267,

268-269
mixed, s e e Mixed integer programming
model construction, 291-292
network problem as, 292
pure, s e e Pure integer programming
zero-one, 251, 277-279

Integer programming problems
air filter manufacture, 290
assignment, 251-252, 260
either-or, 257
equipment purchasing, 259
fixed charge, 256-257
future worth, 261-262
knapsack, 250-251
making change, 262
mix of purchases, 259-260
production, 259
scheduling, 260
stock cutting, 255-256
transportation, 249-250
traveling salesman, 252-254

Integer programming solution
by branch and bound method, 280
by cutting plane algorithm, 262-274,

276-277
by Dakin's method, 280-289
by dual simplex method, 265, 267, 274, 283
by simplex method, 263

Interior path method, 398-402
Interior point, 78
Intermediate node, 388
Inverse, of a matrix, 22-27
Invertible matrix, 22

Karmarkar's algorithm, 397-398, 401-402
rescaling, 399-400
stopping condition, 399-400

Knapsack problem, 250

Labeling algorithm, 350-363
Land-Doig Method, 280
Larson's method, 322-323, 324
Late event time, 383
Lattice point, 267

I,,de~ 445

LINDO software, 237, 403, 404
Linear combination

of tableau columns, 168
of vectors, 33-34, 37

Linear dependence, 35-37
Linear independence, 35-40
Linear programming

canonical form, s ee Canonical form
dual of canonical form, 157-159
dual of general problem statement,

197-201
dual of noncanonical form, 159-161
dual of standard form, 161-165
fundamental theorem, 167; s ee a l s o Dual-

ity Theorem
general problem statement, 51
integer programming problem, related, 258
standard form, s ee Standard form

Linear programming problems
activity analysis, 46
advertising budget, 61-62
agricultural crops, 57
air filter manufacture, 235
air pollution, 58
blending, 49
book binding, 59
construction machinery, 62
desk moving, 339
diet, 46-47, 164-165
disease treatment, 57
either-or, 257
equipment purchasing, 57
equipment replacement, 368, 373-375, 378
financial investment, 50-51, 58
manufacturing, 156, 161
maximal flow, 345-363
minimum cost flow, 388-391
mix

coffee, 58
feed, 60-61
fertilizer, 58
food, 60, 211-213
pesticide, 57
product, 46
sweetener, 49-50

refinery operation, 59-60
sawmill, 46, 161-164, 205-207, 219-222,

230-233
scheduling, 339, 379-385
shortest route, 368-375, 376-378
train route, 366-367
transportation, 47-49

transshipment, 393-394
Linear programming solution

by dual simplex method, 204-214
by interior path method, 398-402
by Karmarkar's algorithm, 397-398,

401-402
by revised simplex method, 215-222
by simplex method, 103-104

Linear system of equations, 5
condition for no solution, 19
homogeneous, 19-20
matrix representation, 5-6
solved by Gauss Jordan reduction, 17-20

Linear transformation, 84
Line segment, 78
LINGO software, 237, 403, 404
Logical restraint, critical path method, 380
Loop, 340

critical path network, 381
transportation tableau, 309-312

LP codes, s e e Computer software
LU factorization, 241

Manufacturing problem, in standard form,
156, 161

Marginal value, 163-164
Mathematical Programming System Ex-

tended software, 236
Mathematical Programming System III soft-

ware, 236
MATLAB software, 403, 404
Matrice,~ tvnes of

augmented, 5-6, 17-20
capacity, 343
coefficient, 5
cost, 328-338
elementary, 23-24
identity, 4
incidence, 340-341
inverse, 22-27
invertible, 22
negative, 3
noninvertible, 22
nonsingular, 22-24
partitioned, 8-9
permutation, 327-328
reduced row echelon, s ee Reduced row

echelon form
row equivalent, 13, 17-20
singular, 22
sparse, 241
square, 2

446 I.de~

Matrices, types of (c o n t i n u e d)

submatrix, 7-8
transpose, 7-9
zer 0, 3

Matrix, 1-2
column of, 2
element of, 2
elementary row operations, 12-13, 23-26
entry of, 2
partitioning of, 8-9
rank of, 41
row of, 2

Matrix addition, 2-3
Matrix multiplication, 3, 4
Matrix notation, for linear programming,

63-68
Matrix representation, of linear equations,

5-6
Max Flow-Min Cut Theorem, 358
Maximal flow problem, 345

augmenting path method, 350
backward path, 358-363
fictitious flows, 349
labeling algorithm, 352-356
Max Flow-Min Cut Theorem, 358

Maximization problem
conversion to minimization, 53-56, 133
dual minimization problem, 156-161

Method, see also Algorithm; Procedure
augmenting path, 350
big M, 147-150, 198, 201
branch and bound, 277-289
critical path, 382-385
Dakin's, 280-281, 287-289
dual simplex, 205-214
Gomory, see Cutting plane algorithm
Hungarian, 337-338
interior path, 398-402
labeling, 350-363
Land-Doig, 280
Larson's, 322-323, 324
revised simplex, 215-222
simplex, see Simplex method
two-phase, see Two-phase method
Vogel's, 319-323

Microcomputer software, 236-237, 403-404
Minimization problem

conversion to maximization, 53-56, 133
dual maximization problem, 156-161

Minimum cost flow problem, 388-391
Minimum cost rule, 308
MIPIII software, 291

Mixed integer programming, 256-258
branch and bound method, 277-281,

287-289
cutting plane algorithm, 268-274
Dakin's method, 280-281, 287-289

Model
deterministic, xx
probabilistic, xx

MPSIII/pc software, 237, 403, 404
MPSX software, 236

Necessary column, in cost matrix, 336
Necessary row, in cost matrix, 336
Negative of a matrix, 3
Network, 342-343

circularization, 391
flow, 343
maximal flow problem, 345-363
shortest route problem, 368-375, 376-378

Network cut
capacity, 356
Max Flow-Min Cut Theorem, 358

Network problem, 292
computer software, 388-393

Node, 278, 340
dangling, 281, 283, 287
intermediate, 388
sink, 343, 346-362, 388-391
source, 343, 346-353, 388-391
supersink, 390-391
supersource, 390-391
terminal, 279, 281, 292
transshipment, 388

Node, in solution tree, 278
Dakin's method, 281
generation of, 280-281
selection of, 281
terminal, 279, 281

Nonbasic variable, 96
Noninteger programming, see Linear pro-

gramming; Mixed integer programming
Noninvertible matrix, 22
Nonlinear programming, 51
Nonoptimal solution, see Optimal solution
Nonsingular matrix, 22-24
n-space, 29
n-tuple, 29
Null space, 32
n-vector, 29

,,,de~ 447

Objective function, 51
boundedness of, 172-173, 176
changes in, 226, 227-231
computer modeling, 237-239
cutting plane algorithm, 264
dual, 172-173
geometry of, 75-78

Objective row, 106
modification, in duality, 184-189
optimality criterion, 108-109, 170

Operations research, xvii
Operations research study

phases of, xviii
Optimality criterion, 108-109

dual simplex method, 208, 211-214
Optimal solution, 64

assignment problem, 329
boundedness of, 177

Optimization Subroutine Library software,
236

Optimizer, software module, 239
OR, s e e Operations research
Oriented arc, 341
Oriented graph, 341
OSL software, 236
Out-of-kilter algorithm, 388-391

PAM software, 403, 404
Parameter, xx
Parametric programming, 226
Partition, of feasible solutions, 277-278
Partitioned matrix, 8-9
Path, 278, 340

critical, 385
interior, 398-402

Penalty cost, 147
Permutation matrix, 327-328
Personal computer software, 236-237,

403-404
PERT, s e e Program Evaluation and Review

Technique
Pivot, in reduced row echelon form, 14-16
Pivotal column, 110

in Bland's Rule, 129
Pivotal row, 110, 114

in Bland's Rule, 129
Pivoting, 112

modification, in duality, 184-189
simplex method, 110-116

Polynomial time algorithm, 397
Postprocessor, 239
Preprocessor, 238-239
Price, as a dual variable, 163
Primal problem, 156

dual-primal solution pairs, 172-182
dual problem, compared with, 160
dual solution, 193-201, 205-207
nonoptimal solution, 205-207
optimal solution, 207

Probabilistic model, xx
Problem statement, changes in, 225-233
Procedure, s e e Algorithm; Flowchart;

Method; Structure diagram
Profit, s e e a l s o Cost

duality, 163
maximization, 156

Program Evaluation and Review Technique,
379

Pure integer programming, 258
cutting plane algorithm, 262-268
Dakin's method, 281-287

Rank, of a matrix, 41
Reduced row echelon form, 11-12

augmented matrix, 17-20
solution to linear equations, 17-20

Reinverting the basis, 243
Replacement value, 164
Resource vector, changes in, 226, 231-233
Restarting, 246
Revised simplex method

artificial variable, 216
computer software, 241, 243
eta matrix and vector, 218
procedure, 217-219
speed of computation, 216, 219

Round-off error, 243
Route, s e e Shortest route problem
Row echelon form

pivoting to, 112
reduced, 11-20

Row equivalent matrices, 131
augmented, 17-20

Sawmill problem, 46
duality, 161-164
dual simplex method, 205-207
revised simplex method, 219-222
sensitivity analysis, 230-233

448 ~ , ~

Scalar multiplication, 6-7
Scaling, 56

computer software, 245-246
Karmarkar's algorithm, 399-400

Scheduling problem, 339, 379-385
Search methods

assignment problem, 332, 336-337
solution tree, 280

Sensitivity analysis, 225-233
Shadow price, 163
Shortest route problem, see also Traveling

salesman problem
distances and times between nodes,

376-378
equipment replacement, 373-375
procedure, 368-373

Sigma (E) notation, 4
Simplex method, 103-104

artificial variable, 135-147, 189-192
basic feasible solution, 105-108
cycling, 126-129
degenerate solution, 122-126
departing variable, 109-111, 397
dual, see Dual simplex method
entering variable, 108-109, 397
inefficiency of, 250, 252, 346, 388
integer programming, 263
iterations, number of, 397
modification, in duality, 184-189
nonnegative constraints, 106, 114-118,

131-135
optimality criterion, 108-109
pivoting, 110-116
polynomial time algorithm, 397
revised, see Revised simplex method
running time, 397
tableau construction, 106-114
two-phase method, 135-147, 188-193

Singular matrix, 22
Sink node, 343

maximal flow problem, 346-362
minimum cost flow problem, 388-391

Slackness, complementary, 178-181
Slack time, 385
Slack variable, 65

primal and dual problems, 178-181
simplex method, 104-106, 116-118
standard to canonical conversion, 65-68

Software, computer, see Computer software
Solution tree, 278-280

Source node, 343
maximal flow problem, 346-353
minimum cost flow problem, 388-391

n-space, 29
Spanning set, 34-35, 38
Sparse matrix, 241
Square matrix, 2
Standard form, 51-53

canonical form, conversion to, 56, 65-68,
97-98

defined, 51-53
duality, 161-165
general problem, conversion to, 54-56
manufacturing problem, 156, 161
simplex method, 104-118

Starting procedure, see also Initial basic fea-
sible solution

restarting, 246
transportation problem, 319-323

Stock cutting problem, 255
Structure diagram, see also Flowchart; Pro-

cedure
dual simplex method, 209
simplex method, 116
two-phase method, 147

Submatrix, 7-8
Subspace, 29-32

dimension, 38
null space, 32
trivial, 30

Summation notation, 4
Supersink node, 390-391
Supersource node, 390-391
Supply and demand tableaux, 304-324
Supply and demand vectors, 296-297

Tableau
cell, 309
construction, 106-114
cycling, 127-129
degenerate solution, 122-126
final, 193
initial, 106-108
linear combination of columns, 168
loop, 309-312
modification, in duality, 184-189
pivoting, 110-116, 184-189
transportation problem, 304-324
tree, in branch and bound method, 288,

289
Terminal node, 279, 282

~,,de~ 449

Theta (0) ratio, 110, 114
tie for minimum, 122-126

Time
event, 382-383
float, 385
between nodes, scheduling problem,

379-385
between nodes, shortest route problem,

376-378
polynomial, 397
slack, 385

TRANCOL software, 240
Transportation algorithm, 308-309

minimum cost rule, 308
Transportation problem, 47-49, 295

assignment problem, as a, 327
cost matrix, 296
cost minimization, 299-324
cycling, 317
degeneracy, 317-318
dual problem, 304-308
dummy destination, 324
initial basic feasible solution, 308, 319-323
integer programming, 249-250
loops, 309-312
minimum cost rule, 308
properties, 298
routes, 300-304
supply greater than demand extension, 324
tableaux, 298, 304-324

Transpose, of a matrix, 7-9
Transshipment node, 388
Traveling salesman problem, s ee a l s o Short-

est route problem, 252-254
Tree of solutions, 278-280
n-tuple, 29
Two-phase method

final optimal solution, 188-193
initial basic solution, 135-147
optimal dual solution, 198-201

UKILT 1100 Out-of-Kilter software, 391
Unboundedness, s ee Boundedness
Unknown, s e e Decision variable

Variable
artificial, 135-150, 189-192
basic, 96, 264, 276-277
constraint, 55-56
decision, xx
departing, 109-111, 309, 311-312, 397
dual, 163-165, 178-179, 181
entering, 108-109, 397
integer, s e e Integer programming
nonbasic, 96
slack, s e e Slack variable
unconstrained, 55

Vector
basis, 38-40
components of, 29
coordinate, 39-40
feasible solutions, 93-95
linear combination, 33-34, 37
linear independence, 35-40, 93-95
n-vector, 29
spanning set, 34-35, 38
subspace, 30-32, 38
supply and demand, 296-297

Vertex, of a graph, 340
Vogel's method, 319-323

Weak Duality Theorem, 172-173
WHAT'S BEST! software, 237, 403, 404

Zero matrix, 3
Zero-one programming, 251, 277-279

	Preface.pdf
	Acknowledgments.pdf
	Prologue Introduction to Operations Research.pdf
	0 - Review of Linear Algebra (Optional).pdf
	1 - Introduction to Linear Programming.pdf
	2 - The Simplex Method.pdf
	3 - Further Topics in Linear Programming.pdf
	4 - Integer Programming.pdf
	5 - Special Types of Linear Programming Problems.pdf
	Appendix A - Karmarkar's Algorithm.pdf
	Appendix B - Microcomputer Software.pdf
	Appendix C - SMPX.pdf
	Answers to Odd-Numbered Exercises.pdf
	Index.pdf

